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Abstract—Channel estimation is challenging for millimeter-
wave (mmWave) massive MIMO with hybrid precoding, since
the number of radio frequency (RF) chains is much smaller than
that of antennas. Conventional compressive sensing based channel
estimation schemes suffer from severe resolution loss due to the
channel angle quantization. To improve the channel estimation
accuracy, we propose an iterative reweight (IR)-based super-
resolution channel estimation scheme in this paper. By optimizing
an objective function through the gradient descent method, the
proposed scheme can iteratively move the estimated angle of
arrivals/departures (AoAs/AoDs) towards the optimal solutions,
and finally realize the super-resolution channel estimation. In the
optimization, a weight parameter is used to control the tradeoff
between the sparsity and the data fitting error. In addition, a
singular value decomposition (SVD)-based preconditioning is de-
veloped to reduce the computational complexity of the proposed
scheme. Simulation results verify the better performance of the
proposed scheme than conventional solutions.

Index Terms—Millimeter-wave (mmWave), massive MIMO,
hybrid precoding, angle of arrival (AoA), angle of departure
(AoD), super-resolution channel estimation.

I. INTRODUCTION

Millimeter-wave (mmWave) massive MIMO has been rec-

ognized as a promising technology for future 5G wireless

communications [1]. To reduce the hardware cost and power

consumption, hybrid precoding has been proposed for prac-

tical mmWave massive MIMO systems, where hundreds of

antennas are driven by a much smaller number of radio

frequency (RF) chains [2], [3]. The analog and digital co-

design in hybrid precoding requires accurate channel state

information. However, the digital baseband cannot directly

access all antennas due to the small number of RF chains,

so it is difficult to accurately estimate the high-dimensional

MIMO channel [4], [5].

Several novel channel estimation schemes have been re-

cently proposed for mmWave massive MIMO with hybrid
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precoding [5]–[9]. Specifically, [5], [6] proposed the adap-

tive codebook-based channel sounding scheme, where the

transmitter and receiver search for the best beam pair by

adjusting the predefined precoding and combining codebooks.

However, the channel estimation resolution is limited by the

codebook size. [7] was able to achieve better angle estimation

by performing an amplitude comparison with respect to the

auxiliary beam pair. On the other hand, by exploiting the

angular channel sparsity, the on-grid compressive sensing

based methods [8], [9] could estimate the channel with reduced

training overhead. However, such solutions assumed that the

angle of arrivals/departures (AoAs/AoDs) lie in discrete points

in the angle domain (i.e., “on-grid” AoAs/AoDs), while the

actual AoAs/AoDs are continuously distributed (i.e., “off-

grid” AoAs/AoDs) in practice. The assumption of on-grid

AoAs/AoDs results in the power leakage problem, which

severely degrades the channel estimation accuracy. To solve

this resolution limitation caused by the on-grid angle esti-

mation, we propose an iterative reweight (IR)-based super-

resolution channel estimation scheme to estimate the off-grid

AoAs/AoDs.1

Specifically, we iteratively optimize the estimates of

AoAs/AoDs, to decrease the weighted summation of the

sparsity and the data fitting error. The weight controlling

the tradeoff between the sparsity and the data fitting error,

is iteratively updated to avoid over-fitting or under-fitting.

Since the estimated AoAs/AoDs can be moved from the initial

angle-domain grids towards the actual off-grid AoAs/AoDs,

the proposed scheme is able to achieve the super-resolution

channel estimation. In addition, we propose a singular value

decomposition (SVD)-based preconditioning method to reduce

the computational complexity of the proposed scheme, which

is realized by reducing the number of initial candidates of

AoAs/AoDs in the IR procedure. Simulation results show that

the proposed IR-based super-resolution channel estimation can

achieve better performance than conventional solutions.

The contributions of this paper are the follows. We propose a

novel IR-based super-resolution channel estimation scheme for

mmWave massive MIMO with hybrid precoding. Comparing

with the state-of-art schemes schemes such as those in [6]–

[8], we can achieve super-resolution channel estimation, which

means substantially improved estimation accuracy. Moreover,

the proposed SVD based preconditioning significantly reduces

the computational complexity of the IR procedure, and makes

the method practical in mmWave channel estimation.

Notation: In this paper, the boldface lower and upper-case

1Simulation codes are provided to reproduce the results presented in this
paper: http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html.
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symbols denote vectors and matrices. (·)T , (·)H and (·)−1

denote the transpose, the conjugate transpose, and the inverse

of a matrix, respectively. diag(x) is the diagonal matrix with

the vector x on its diagonal. The ℓ0-norm, ℓ2-norm, and

Frobenius norm are given by ‖·‖0, ‖·‖2, and ‖·‖F, respectively.

II. SYSTEM MODEL

We consider a hybrid-precoding mmWave massive MIMO

with arbitrary array geometry. Let NT, NR, NRF
T , and NRF

R be

the number of transmit antennas, receive antennas, transmitter

RF chains, and receiver RF chains, respectively. For practical

mmWave massive MIMO with hybrid precoding, the number

of RF chains is much smaller than that of antennas, i.e.,

NRF
T < NT, NRF

R < NR [1]–[3]. The system model can

be given by

r = QHHPs+ n, (1)

where r ∈ CNRF

R
×1 is the received signal, Q ∈ CNR×NRF

R is

the hybrid combining matrix, H ∈ CNR×NT is the channel

matrix, P ∈ CNT×NRF

T is the hybrid precoding matrix, s ∈
CNRF

T
×1 is the transmitted signal, and n ∈ CNRF

R
×1 is the

received noise after combining.

The channel model

H =

L
∑

l=1

zlaR
(

φazi
R,l, φ

ele
R,l

)

aHT
(

φazi
T,l, φ

ele
T,l

)

(2)

is widely adopted in mmWave massive MIMO systems, and

it is regarded almost unchanged within the channel coherence

time for channel estimation [6]–[8], where L is the number

of propagation paths, L ≪ min (NR, NT), zl, φ
azi
R,l (φ

ele
R,l) and

φazi
T,l (φ

ele
T,l) are the complex path gain, the azimuth (elevation)

AoA and AoD of the l-th path, respectively. aR

(

φazi
R,l, φ

ele
R,l

)

and aT

(

φazi
T,l, φ

ele
T,l

)

are the steering vector at the receiver

and the steering vector at the transmitter, respectively. These

steering vectors depend on the array geometry. Ignoring the

subscripts without loss of generality, for the typical N1 ×N2

uniform planar arrays (UPAs), a
(

φazi
l , φele

l

)

is given by [2]

a
(

φazi,φele
)

=
[

1, ej2πd sinφazisinφele/λ, · · ·, ej2π(N1−1)d sinφazisinφele/λ
]T

⊗
[

1, ej2πd cosφele/λ, · · ·, ej2π(N2−1)d cosφele/λ
]T

,

(3)
where d is the antenna spacing, λ is the wavelength, ⊗ denotes

the Kronecker product. For uniform linear arrays (ULAs), the

steering vector is only determined by one angle [6]

a (φ) =
[

1, ej2πd sinφ/λ, · · ·, ej2π(N−1)d sinφ/λ
]T

. (4)

By defining the normalized spacial angles by θazi
∆
=

d sinφazi sinφele/λ and θele
∆
= d cosφele/λ, the mmWave

channel matrix H in (2) can be also written as

H = AR(θR) diag (z)A
H
T (θT) , (5)

where z=[z1, z2, · · · , zL]
T

, θR=
[

θaziR,1, θ
ele
R,1, θ

azi
R,2, θ

ele
R,2, · · ·,

θaziR,L, θ
ele
R,L

]T
, θT =

[

θaziT,1, θ
ele
T,1, θ

azi
T,2, θ

ele
T,2, · · ·, θ

azi
T,L, θ

ele
T,L

]T
,

AR(θR)=
[

aR(θ
azi
R,1, θ

ele
R,1) aR(θ

azi
R,2, θ

ele
R,2) · · · aR(θ

azi
R,L, θ

ele
R,L)

]

,

AT(θT)=
[

aT(θ
azi
T,1, θ

ele
T,1) aT(θ

azi
T,2, θ

ele
T,2) · · · aT(θ

azi
T,L, θ

ele
T,L)

]

.

Denote x = Ps ∈ CNT×1, where the i-th element of x is

the transmitted signal at the i-th transmit antenna. Suppose that

the transmitter sends NX (NX < NT) different pilot sequences

x1,x2, · · · ,xNX
. Since the number of RF chains is smaller

than the required dimension of received pilot sequence, for

each transmit pilot sequence xp (1≤p≤NX), we use M time

slots to obtain an NY-dimensional received pilot sequence yp,

where NY = MNRF
R . Thus, the training overhead is T =

MNX. In the m-th time slot, we use the combining matrix

Wm to obtain an NRF
R -dimensional received pilot sequence

yp,m = WH
mHxp + np,m. (6)

By collecting the received pilots in the M time slots, we have

yp = WHHxp+np, where yp = [yT
p,1, y

T
p,2, · · · , yT

p,M ]T ∈
CNY×1, W = [W1,W2, · · · ,WM ] ∈ CNR×NY , np ∈
CNY×1 is the noise. By defining Y = [y1,y2, · · · ,yNX

],
X = [x1,x2, · · · ,xNX

], N = [n1,n2, · · · ,nNX
], we have

Y = WHHX+N. (7)

The estimation of the channel matrix H in (7) is equivalent

to the estimation of the number of paths, the normalized

spacial angles (θT, θR), and path gains z for all L paths.

Due to the angle-domain sparsity of the channel matrix H,

the sparse channel estimation problem can be formulated as

min
ẑ,θ̂R,θ̂T

‖ẑ‖0, s.t.
∥

∥

∥Y −WHĤX

∥

∥

∥

F
≤ ε, (8)

where ‖ẑ‖0 is the number of non-zero elements of ẑ, which

means the estimated number of paths L̂, Ĥ is the estimated

channel matrix, and ε is the error tolerance parameter [9].

III. PROPOSED IR-BASED SUPER-RESOLUTION CHANNEL

ESTIMATION

A. Proposed Optimization Formulation

The main difficulty in solving (8) lies in the fact that the l0-

norm is not computationally efficient for finding the optimal

solution. By replacing the l0-norm with a log-sum function

[10], we have

min
z,θR,θT

F (z)
∆
=

L
∑

l=0

log
(

|zl|
2
+ δ
)

, s.t.
∥

∥

∥Y−WHĤX

∥

∥

∥

F
≤ ε,

(9)

where δ > 0 ensures that the logarithmic function is well-

defined [10], Ĥ is determined by the parameters z, θR and θT

defined in (5). By adding a regularization parameter λ > 0,

we can further formulate the problem (9) as a unconstrained

optimization problem:

min
z,θR,θT

G (z, θR, θT)
∆
=

L
∑

l=1

log
(

|zl|
2+δ

)

+λ
∥

∥

∥Y−WHĤX

∥

∥

∥

2

F
.

(10)

Moreover, by using an iterative surrogate function instead of

the log-sum function, the minimization of G (z, θR, θT) is

equivalent to the minimization of the surrogate function [10]:

min
z,θR,θT

S(i)(z, θR, θT)
∆
= λ−1zHD(i)z+

∥

∥

∥Y −WHĤX

∥

∥

∥

2

F
,

(11)

where D(i) is defined as

D(i) ∆
= diag







1
∣

∣

∣ẑ
(i)
1

∣

∣

∣

2

+δ

1
∣

∣

∣ẑ
(i)
2

∣

∣

∣

2

+δ

· · ·
1

∣

∣

∣ẑ
(i)
L

∣

∣

∣

2

+δ






, (12)
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Algorithm 1 IR-based super-resolution channel estimation

Input: Noisy received signals Y, transmit pilot signals X, com-

bining matrix W, initial on-grid AoAs and AoDs θ̂
(0)
R , θ̂

(0)
T ,

pruning threshold zth and termination threshold εth.
Output: Estimated AoAs/AoDs and path gains of all paths.

1: Initialize ẑ(0) = zopt

(

θ̂
(0)
R , θ̂

(0)
T

)

according to (13).

2: repeat
3: Update λ by (15).

4: Construct the function S
(i)
opt(θR,θT) by (14).

5: Search for new angle estimates θ̂
(i+1)
R , θ̂

(i+1)
T by (17).

6: Estimate the path gains ẑ(i+1) according to (13).

7: Prune path l if ẑ
(i+1)
l < zth.

8: until L(i) = L(i+1) and

∥

∥

∥
z(i+1) − z(i)

∥

∥

∥

2
< εth.

9: θ̂R = θ̂
(last)
R , θ̂T = θ̂

(last)
T , ẑ = ẑ(last).

where ẑ(i) is the estimate of z at the i-th iteration.

Then, as proved in Appendix A, we can optimize (11) with

regard to the path gains z, to find the optimal point of ẑ and

the corresponding optimal value of S(i) as follows:

z
(i)
opt(θR, θT)

∆
=argmin

z

S(i)(z, θR, θT)

=

(

λ−1D(i)+

NX
∑

p=1

KH
p Kp

)−1(NX
∑

p=1

KH
p yp

)

,

(13)
S
(i)
opt(θR, θT)

∆
= min

z

S(i)(z, θR, θT)

=−

(

NX
∑

p=1

yHp Kp

)

·

(

λ−1D(i)+

NX
∑

p=1

KH
pKp

)−1

·

(

NX
∑

p=1

KH
p yp

)

+

NX
∑

p=1

yHp yp,

(14)

where Kp = WHARdiag
(

AH
T xp

)

. After that, we only need

to optimize the normalized spatial angles θR and θT in (14),

which will be discussed in the next subsection.

B. IR-Based Super-Resolution Channel Estimation

In the previous subsection, we have already simplified

the constrained optimization problem (8) to an unconstrained

angle optimization problem (14). To solve this reformulated

problem, now we propose an IR-based super-resolution chan-

nel estimation scheme as described in Algorithm 1.

The objective function S(i) (z, θR, θT) is the weighted sum

of two parts: zHDz controlling the sparsity of the estimation

result and

∥

∥

∥Y −WHĤX

∥

∥

∥

F
denoting the residue. In addition,

λ is the regularization parameter that controls the tradeoff

between the sparsity and the data fitting error.

In the iterative reweighted method [10], λ is not fixed

but updated in each iteration. To be specific, if the previous

iteration is poorly-fitted, we will choose a smaller λ to make

the estimate sparser. On the other hand, if the previous iteration

returns a well-fitted estimate and leads to a small residue,

our method will choose a larger λ to accelerate the searching

for the best-fitting estimate. In the proposed algorithm, λ is

updated by
λ = min

(

d/r(i), λmax

)

, (15)

where d is a constant scaling factor, and λmax is selected to

make the problem well-conditioned, r(i) is the squared residue

in the previous step, i.e.,

r(i) =
∥

∥

∥Y −WHAR

(

θ̂
(i)
R

)

diag
(

ẑ(i)
)

AH
T

(

θ̂
(i)
T

)

X

∥

∥

∥

2

F
. (16)

The updation of λ was discussed in [10] with more details.

The proposed algorithm starts iteration at the angle do-

main grids. In the i-th iteration, our task is to search for

new estimates θ̂
(i+1)
R and θ̂

(i+1)
T in the neighborhood of the

previous estimates θ̂
(i)
R and θ̂

(i)
T to make the objective function

S(i) become smaller. This searching can be accomplished via

gradient descent method:

θ̂
(i+1)
R = θ̂

(i)
R − η · ∇θR

S
(i)
opt

(

θ̂
(i)
R , θ̂

(i)
T

)

,

θ̂
(i+1)
T = θ̂

(i)
T − η · ∇θT

S
(i)
opt

(

θ̂
(i)
R , θ̂

(i)
T

)

,
(17)

where the gradients can be calculated according to Ap-

pendix B, and η is the chosen step-length to make sure

S
(i)
opt

(

θ̂
(i+1)
R , θ̂

(i+1)
T

)

≤S
(i)
opt

(

θ̂
(i)
R , θ̂

(i)
T

)

. The estimates become

more and more accurate during the iterative searching, until the

new estimates are almost the same as the previous ones. With

our proposed IR-based super-resolution channel estimation

scheme, the estimates of (θR, θT) can be moved from the

initial on-grid coarse estimates to its actual off-grid positions,

thus the super-resolution channel estimation can be realized.

It is worthy to point out that the sparsity level L is unknown

in practice. In the proposed scheme, the sparsity level can be

initialized to be larger than the real channel sparsity. During

the iteration process, the paths with too small path gains will

be regarded as noise instead of real paths. Then, our algorithm

prune these paths to make the result sparser. By iteratively

pruning these paths, the estimated sparsity level will decrease

to the real number of paths.

The computational complexity in each iteration lies in calcu-

lating the gradient in Step 5. The computational complexity to

calculate the gradient is O
(

NXNY(NR+NT)L
2
)

. As a result,

the number of initial candidates L(0) is critical, and it should

be as small as possible to make the computation affordable.

The problem how to effectively select the initial θ̂
(0)
R and θ̂

(0)
T

before the iteration will be discussed in the next section.

C. SVD-based Preconditioning

In this section, we propose a singular value decomposition

(SVD)-based preconditioning as shown in Algorithm 2, to

reduce the computational complexity of the IR procedure

in the proposed IR-based super-resolution channel estimation

scheme. The proposed scheme can find the angle-domain grids

nearest to the real AoAs/AoDs. Comparing to using all NRNT

angle-domain grids as initial candidates, the preconditioning

can significantly reduce the computational complexity of the

IR-based super-resolution channel estimation scheme.

Specifically, by applying SVD to the matrix Y, we have

Y = UΣVH , where Σ = diag
(

σ1, σ2, · · · , σmin(NX,NY)

)

∈
RNY×NX whose diagonal entries σ1 ≥ σ2 ≥ · · · ≥
σmin(NX,NY) ≥ 0 are the singular values of Y, and UHU =
INY×NY

, VHV = INX×NX
. From (5) and (7), we have

Y =
(

WHAR(θR)
)

diag (z)
(

XHAT(θT)
)H

+N. (18)

As the noise is small, the largest L singular values and their

corresponding singular vectors are approximately determined

by the L paths, i.e., for i = 1, 2, · · · , L, we have
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Algorithm 2 SVD-based preconditioning

Input: Noisy received signals Y, transmit pilot signals X, combin-
ing matrix W, and Ninit, the number of paths to detect.

Output: Coarse AoAs/AoDs estimates of the Ninit paths.
1: [U,Σ,V] = SVD(Y).
2: Take the first Ninit columns, {u1,u2, · · · ,uNinit

} from U, and
{v1,v2, · · · ,vNinit

} from V, which are correspondent to the
Ninit largest singular values.

3: for i = 1, 2, · · · , Ninit do

4:

(

θ̂
azi(0)
R,i , θ̂

ele(0)
R,i

)

= argmax
(θazi

R
,θele

R
)∈ΩR

uH
i WHaR

(

θaziR , θeleR

)

.

5:

(

θ̂
azi(0)
T,i , θ̂

ele(0)
T,i

)

= argmax
(θazi

T
,θele

T
)∈ΩT

vH
i XHaT

(

θaziT , θeleT

)

.

6: end for

σi ≈ |zli |
∥

∥WHaR
(

θaziR,li ,θ
ele
R,li

)∥

∥

2

∥

∥XHaT
(

θaziT,li ,θ
ele
T,li

)∥

∥

2
,

ui ≈ WHaR
(

θaziR,li , θ
ele
R,li

)

/
∥

∥WHaR
(

θaziT,li , θ
ele
T,li

)∥

∥

2
,

vi ≈ XHaT
(

θaziR,li , θ
ele
R,li

)

/
∥

∥XHaT
(

θaziT,li , θ
ele
T,li

)∥

∥

2
,

(19)

where ui and vi are the i-th column of U and V, respectively,

{l1, l2, · · · , lL} is a permutation of {1, 2, · · · , L}.

Then, in steps 4-5 of Algorithm 2, we search for the coarse

estimate of normalized AoAs (AoDs) in the finite set of

angle-domain grids ΩR (ΩT). Take UPA as an example. For an

N1×N2 receiver array, the set of grids can be defined by ΩR =
{(i/N1, j/N2)|i = 0, 1, · · · , N1 − 1; j = 0, 1, · · · , N2 − 1}.

We can similarly define ΩT for the transmitter.

In [10], the initial candidates of Algorithm 1 are set to be all

the grids, i.e., L(0) = NRNT. The computational complexity

is O
(

NXNY(NR+NT)N
2
RN

2
T

)

, which is unaffordable when

NR and NT are very large. Fortunately, with the proposed

SVD-based preconditioning shown in Algorithm 2, the coarse

estimates will be used as the initial candidates of Algorithm

1, i.e., L(0) = Ninit ≈ L. Thus, the computational complexity

after SVD preconditioning is O
(

NXNY(NR+NT)L
2
)

, which

is much lower than directly applying the scheme in [10].

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, simulation results are provided to investigate

the performance. We consider the mmWave massive MIMO

system with hybrid precoding, where L = 3, d = λ/2,

NR = NT = 64, NRF
R = NRF

T = 4 and NX = NY = 32.

The path gains are assumed Gaussian, i.e., αl ∼ CN (0, σ2
α).

Each element of the transmitted pilots X satisfies xi,j =
√

ρ/NTe
jωi,j , where ρ is the transmitted power, ωi,j is the

random phase uniformly distributed in [0, 2π). The signal-

to-noise ratio (SNR) is defined by SNR =
ρσ2

α

σ2
n

, where

σ2
n is the noise variance. We consider the ULA geometry,

so that the adaptive codebook-based channel estimation [6],

the auxiliary beam pair based channel estimation [7], and

the OMP-based channel estimation [8] can be adopted for

performance comparison.

Fig. 1 and Fig. 2 compares the normalized mean square error

(NMSE) performance against SNR, under none-line-of-sight

(NLoS) and line-of-sight (LoS) channels, respectively. The

Rician K-factor is 20 dB in the LoS scenario. In both cases, the

proposed scheme achieves much better NMSE performance

when SNR becomes large. Moreover, we show the perfor-

mance of the proposed scheme when UPA is considered. Both
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Fig. 1. NMSE performance comparison of different channel estimation
schemes under NLoS channel.
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Fig. 2. NMSE performance comparison of different channel estimation
schemes under LoS channel.
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Fig. 3. Average spectral efficiency when different channel estimation schemes
are used.

the transmitter and the receiver adopt 64-antenna UPA with 8

rows and 8 columns. We estimate the azimuth and elevation

angles at both sides. We can observe that the proposed scheme

is also able to achieve super-resolution channel estimation

when UPA is used. Since the estimation errors of both azimuth

and elevation angles contribute to the NMSE, under the same

number of antennas and number of pilot overhead, the NMSE

performance of UPA is higher than that of ULA.

Fig. 3 compares the average spectral efficiency when dif-

ferent channel estimation schemes are used. The spectral
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efficiency is evaluated in the hybrid precoding system [2].

The case with ideal CSI was adopted as the upper bound for

performance comparison. It can be observed that the proposed

super-resolution channel estimation is able to approach this

upper bound. This is because the angle resolution of the

proposed scheme does not suffer from limited codebook size

or angle quantization. Thus, we can conclude that the proposed

scheme can achieve the super-resolution channel estimation.

There is a tradeoff between the channel estimation accu-

racy and the computation complexity. The proposed scheme

with SVD preconditioning is able to achieve much higher

channel estimation accuracy, but has a higher computational

complexity. The computational complexity of the proposed

super-resolution channel estimation scheme with SVD pre-

condistioning is O
(

NXNY(NR+NT)L
2
)

. In comparison, the

computational complexity of the OMP-based channel estima-

tion [8] is O (NXNY(NR+NT)L). In order to achieve higher

estimation accuracy, the increase in computational complexity

is acceptable since L is usually small for mmWave channels.

V. CONCLUSIONS

In this paper, we have proposed an IR-based super-

resolution channel estimation scheme for mmWave massive

MIMO with hybrid precoding. Specifically, we have trans-

formed the channel estimation problem to the optimization

problem of a new objective function, which is the weighted

summation of the sparsity and the data fitting error. The

proposed scheme starts from the on-grid points in the angle

domain, and iteratively moves them to the neighboring off-

grid actual positions via gradient descent method. In addition,

we have proposed an SVD-based preconditioning to reduce

the computational complexity. Simulation results have con-

firmed that the proposed super-resolution channel estimation

scheme can advance the state-of-art by estimating the off-grid

AoAs/AoDs with much increased accuracy. Angle estimation

is the key of channel estimation for mmWave massive MIMO.

Estimating the AoAs/AoDs with higher resolution is a practi-

cal way to realize higher spectral efficiency. For future work,

it would be interesting to study other super-resolution channel

estimation schemes with reduced complexity. In addition,

super-resolution channel estimation under high mobility is an

important yet challenging topic to be investigated.

APPENDIX A

OPTIMIZATION OF S IN (11) WITH REGARD TO z

For notational conciseness, we ignore the superscript (i) of

S(i) and D(i) in (11), and use AR, AT for AR (θR), AT (θT)
respectively. Let Kp = WHArdiag

(

AH
t xp

)

. In order to find
the optimal S (z, θR, θT) with regard to z, we can expand the
objective function S as

S (z,θR,θT) = λ
−1

z
H
Dz+

NX
∑

p=1

∥

∥

∥yp −W
H
ARdiag (z)A

H
T xp

∥

∥

∥

2

2

= λ
−1

z
H
Dz+

NX
∑

p=1

(yp −Kpz)
H(yp −Kpz)

= z
H

(

λ
−1
D+

NX
∑

p=1

K
H
pKp

)

z−z
H

(

NX
∑

p=1

K
H
pyp

)

−

(

NX
∑

p=1

y
H
pKp

)

z+

NX
∑

p=1

y
H
pyp,

(20)

Then, we can obtain the partial derivative by

∂S (z, θR,θT)

∂z
= z

H

(

λ
−1

D+

NX
∑

p=1

K
H
p Kp

)

−

(

NX
∑

p=1

y
H
p Kp

)

.

(21)
By setting the derivative to zero, the minimum point z and the

corresponding minimum value of S (z, θR, θT) as the function
of θR and θT can be obtained as

zopt(θR,θT) =

(

λ
−1

D+

NX
∑

p=1

K
H
p Kp

)−1(NX
∑

p=1

K
H
p yp

)

, (22)

Sopt(θR, θT) = −

(

NX
∑

p=1

K
H
p yp

)H(

λ
−1

D+

NX
∑

p=1

K
H
p Kp

)−1

·

(

NX
∑

p=1

K
H
p yp

)

+

NX
∑

p=1

y
H
p yp.

(23)

APPENDIX B

GRADIENT OF Sopt (θR, θT)

Denote v=
∑NX

p=1 K
H
p yp, A= λ−1D +

∑NX

p=1 K
H
p Kp, we

have Sopt=−vHA−1v+
∑NX

p=1 y
H
p yp. Take partial derivative

with respect to θR,l, we have

∂Sopt

∂θR,l

= −
∂vH

∂θR,l

A
−1
v−v

H ∂A−1

∂θR,l

v−v
H
A

−1 ∂v

∂θR,l

= −
∂vH

∂θR,l

A
−1
v+v

H
A

−1 ∂A

∂θR,l

A
−1
v−v

H
A

−1 ∂v

∂θR,l

,

(24)

where

∂v

∂θR,l

=

NX
∑

p=1

∂KH
p

∂θR,l

yp,
∂A

∂θR,l

=

NX
∑

p=1

(

∂KH
p

∂θR,l

Kp+K
H
p

∂Kp

∂θR,l

)

,

∂Kp

∂θR,l

=
[

0 · · · 0 WH ∂aR(θR,l)
∂θR,l

aH
T(θT,l)xp 0 · · · 0

]

.

(25)
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