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Occupant Posture Analysis With Stereo and
Thermal Infrared Video: Algorithms and
Experimental Evaluation

Mohan Manubhai Trivedi, Senior Member, IEEE, Shinko Yuanhsien Cheng, Student Member, IEEE,
Edwin Malcolm Clayton Childers, and Stephen Justin Krotosky, Student Member, IEEE

Abstract—Dynamic analysis of vehicle occupant posture is
a key requirement in designing ‘“smart airbag” systems. Vi-
sion-based technology could enable the use of precise information
about the occupant’s size, posture, and, in particular, position in
making airbag-deployment decisions. Novel sensory systems and
algorithms need to be developed for capture, analysis, and classi-
fication of dynamic video-based information for a new generation
of safe airbags. This paper presents a systematic investigation in
which stereo and thermal long-wavelength infrared video-based
real-time vision systems are developed and systematically eval-
uated. It also includes the design of several test beds, including
instrumented vehicles for systematic experimental studies for
the evaluation of independent and comparative evaluation in
automobiles. Results of extensive experimental trials suggest
basic feasibility of stereo and thermal long-wavelength infrared
video-based occupant position and posture-analysis system.

Index Terms—Head detection, infrared imaging, machine vision,
real-time vision, stereo vision, tracking.

I. INTRODUCTION

CCORDING TO the National Highway Traffic Safety Ad-

ministration (NHTSA) [1], in the past ten years, airbags
were deployed more than 3.3 million times in the U.S.. Airbags
are credited with saving more than 6000 lives and preventing a
much greater number of serious injuries. These numbers clearly
highlight the life-saving attributes of airbag technology. Alas,
there are other rather disheartening numbers that are presented
in the same report. It states that since 1990, over 200 fatalities
have been recorded as a direct result of an airbag deployment.
The majority of these deaths have been children. The number of
severe injuries is much higher. Obviously, these deaths and in-
juries must be prevented by exploring and adopting the most
appropriate technologies, policies, and practices. A new law,
which went into effect in the U.S. in the beginning of 2004, re-
quires that airbag systems are able to distinguish persons that
are too small or persons in unsafe positions from persons of a
safe size and in safe positions for airbag deployment [1]. One
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of the main difficulties encountered by the decision logic sys-
tems used in airbag deployment deals with the critical assump-
tion about the occupant size and position in the car at the time
of a crash. Most airbag systems consider a single standard for
the occupant’s size and the nature of the crash. Vision-based
technology enables the use of precise information about the oc-
cupant’s size, position, and posture to aid the single standard
airbag system in deciding whether the occupant is of the right
type for deployment.

Our overall research objective is to describe the design, im-
plementation, and evaluation of vision-based occupant posture-
analysis systems to control the deployment of an airbag in a safe
manner. These efforts resulted in the development of the fol-
lowing:

1) framework for sensing the most relevant visual informa-

tion;

2) set of robust and efficient algorithms for extracting fea-
tures that characterize the size, position, and posture of
the occupant;

3) pattern-recognition module to classify the visual cues
into categories, which can trigger the safe deployment
logic of the airbag system.

In this paper, we describe our experiments on two systems
that estimate occupant body position and pose inside a vehicle
using long-wavelength infrared (LWIR) imagery and stereo
depth data. We will show that these systems are capable of
reliably and of accurately extracting and tracking the position
of the head in real time.

A novel test bed was constructed to perform the comparison
between these vision-based “smart airbag” systems. The test bed
is built around a Volkswagen Passat outfitted with the necessary
equipment to perform real-time side-by-side tests. This frame-
work not only subjects the systems to realistic conditions, but
also allows us to quickly accommodate new systems for com-
parison under identical conditions.

II. RESEARCH OBJECTIVES AND APPROACH

The objective of the proposed research is the development of
a highly reliable and real-time vision system for sensing pas-
senger occupancy and body posture in vehicles, ensuring safe
airbag deployment and helping to prevent injuries. The design
of the “smart airbag” system can be divided into three parts: 1)
real-time scene sensing; 2) feature selection; and 3) body size,

0018-9545/04$20.00 © 2004 IEEE
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Fig. 2. Schematic showing the IP, OOP, and COOP regions of the passenger
seat.

Fig. 1. Occupant position and posture-based safe airbag deployment design
approach.

posture, and movement analysis, followed by decision logic for
various levels of airbag deployment (see Fig. 1). We propose
using video cameras for their unobtrusiveness and potential for
other purposes beyond “smart airbags.”

For scene sensing, we consider emitted LWIR imaging and
stereo depth imaging. For feature selection and analysis, we
consider both simple region occupancy features to detailed
human body model pose estimation. For both scene sensing
and feature selection and analysis, the choice of method will
depend on its robustness and cost. However, using stereo or
multicamera systems with high-level human body modeling
would provide information that is useful not only for optimal
airbag deployment, but for other applications with minimal
extra effort. High-quality input data and detailed analysis of
body pose can also be used to enhance safety by analyzing
driver alertness and could also be used to build intelligent
interfaces to different in-car devices, such as the mobile phone
or radio [2].

To determine whether a person is in the right position for
airbag deployment, the area between the back of the seat and the
dashboard can be divided into sections. A diagram of the in-po-
sition (IP), out-of-position (OOP), and critically out-of-position
(COOP) areas in the passenger seat is shown in Fig. 2. By an-
alyzing these regions, we can categorically examine the human
body under various positions that an occupant can take in the
passenger seat, including sitting in a normal position, leaning
forward, reaching down, seated with the seat advanced, reclined,
slouched, knees on the dashboard or the edge of the seat, etc.

Fig. 3.
airbag” systems. In row-major order, the correct classifications for each situation
is IP, OOP, COOP, not found, OOP, COOP.

Selected occupant positions considered in the development of “smart

The set of possible positions can be extended to include these
positions and others that infants, three-year-old children, six-
year-old children, fifth-percentile female adults, and 50th-per-
centile male adults can take on as occupant. These occupant
types are used to define compliance with the new airbag law in
the Occupant Crash Protection Standard (FMVSS 208) by the
NHTSA [1].

Associated with each position is a desired airbag response,
which is to deploy normally, deploy with limited power, or to
suppress deployment. Associated with each desired operation
is a cost of making the wrong decision. This cost is weighted
relative to the other positions that the systems are to recognize.
The average cost of making an error is system’s primary perfor-
mance measure. Fig. 3 shows a few positions that are considered
in our investigations.

III. RELATED STUDIES

The focus of this research is to investigate vision-based sys-
tems that estimate occupant size, position, and pose. Vision is
attractive because of its passive nature and its potential to pro-
vide a multitude of cues for safe airbag deployment, as well as
for other uses from a single sensor.
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Alternative sensor modalities for the purpose of safe airbag
deployment include a system of measuring the weight distribu-
tion placed in the seat. Technologies for measuring the presence
and position of an occupant include ultrasound, capacitance,
and near-infrared spotlight grid. For detecting a rear-facing in-
fant seat (RFIS), which is a “must not deploy” occupant, res-
onating proximity sensors, much like radio-frequency identifi-
cation (RFID) cards for unlocking doors in offices, have been
employed to detect presence of RFISs.

There exists a number of experiments using active illumina-
tion to capture the scene features [1]-[7]. They range from unob-
trusive near-infrared light-emitting diodes (LEDs) to projecting
light patterns and emitting multiple flashes to light the scene.
The benefits of active illumination is a system that is less sen-
sitive to different types of scene-illumination changes, but for
some systems that gain comes at the cost of being obtrusive to
the environment. In contrast, our focus is purely on unobtrusive
active illumination, such as near-infrared illuminators or passive
scene sensing, and we show that obtrusive lighting schemes are
not necessary for robust estimation of occupant posture infor-
mation.

Reference [8] presents an approach in which four image
features and a series of learning algorithms are used to classify
conditions that are safe or unsafe for airbag deployment. These
four features were two-dimensional (2-D) and range (2-1/2-D)
features, edges, motion, shape, and range. However, they do
not consider emitted energy from the passenger nor volumetric
representations of the passenger acquired from multiple points
of view in the context of side-by-side system comparisons.
Furthermore, these systems rely on the fact that a complete
and varied reference image set of all passenger seat occupant
types and positions, including the many types of infant seats,
are known a priori for the training of the system to recognize
occupant posture.

Faber [9] previously documented the approach that restricts
the problem of describing the occupant space as occupied or un-
occupied by using sparse range data of the passenger seat back.
Stereo-based range data was used to detect the presence of a
backrest to determine occupancy. Although this system was able
to acquire occupancy information from the seat well, this system
lacked detailed occupant size, position, and pose information.

In [10], Krumm and Kirk augmented the class space to
include the presence of rear-facing infant seat, which to-
gether with the unoccupied classification requires the airbag
to be turned off. Krumm took both image intensity (2-D) and
stereovision-based (2-1/2-D) range data and found the prin-
ciple components for each class, with which nearest neighbor
classification was performed. Both systems were found to be
quite successful in classifying the passenger seat into these
three classes. However, this approach required an even larger
training data set to include the types of car interiors along with
person type and position to achieve this accuracy. And, like
[9], the information that this system provides lacks detailed
occupant position information.

In describing occupant position, the head appears to be the
easier human part to detect that simultaneously provides rich
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implicative positional information on the rest of the body. Re-
maining in the 2-D category, Reyna et al. [11] uses a modified
support vector machines (SVM) method to estimate the location
of the head, much in the same way that face recognition is per-
formed using SVM. They found an accuracy rate of 72% correct
detection and 33% false alarm. Drawbacks in such a system as-
sume that a representative set of head images are a priori known
and hardware requirements for real-time execution of this algo-
rithm are considerable. In contrast, we propose a method that
gathers thermally emitted, stereo depth, and volumetric infor-
mation that requires no training and, with the exception of the
third, operates in excess of 15 frames per second (f/s) on an
off-the-shelf Windows PC.

In the 2-1/2-D and three-dimensional (3-D) sensing category,
the research community has made some effort. We can subdi-
vide their approaches into two main classes: one based on re-
gion occupancy detection and the other based on object tracking.
The first is an approach in which the region in which the feature
resides, regardless of whether it is a head, arm, limb, or noise,
determines the outcome of the classification. The other is an ob-
ject-tracking-based approach in which a particular body part is
tracked, providing unambiguous body-pose information such as
limb orientation, angle with respect to other body parts, sizes,
and lengths. The lack of a fit to a body model usually implies
the existence of an object other than a human body, requiring
other models to be used in detection of child seats, inanimate
objects, etc.

Lequellec et al. [S] approached the problem of modeling oc-
cupants by way of projecting a pattern of dots onto the occu-
pant and detecting their position in 3-D space using epipolar
geometry, a stereovision-based technique (2-1/2-D). Devy et al.
[12] get rid of the active illumination requirement of [5], re-
lying solely on stereovision and features in the scene to provide
a dense stereo reconstruction of the occupant, 3000-5000 as op-
posed to 400 3-D points in [5]. Both systems by Devy et al. and
Lequellec et al. and our stereo-based approach rely on the sur-
face of the occupant. Our effort differs in that we fit the acquired
depth data to a model that we then track from frame to frame.

Farmer and Jain [13] presented work on an occupant classifi-
cation system that addresses the static suppression requirement
of the NHTSA standard by a system that is able to discern
between four categories of occupants with high detection rates.
The static suppression requirement specifies occupant types
that, when present in the passenger seat, the airbag system
must automatically suppress deployment [1]. The requirements
specify automatic suppression of the airbag for occupant types
such as a three- or six-year-old child, rear-facing infant seat,
forward-facing child seats, and booster seats, while activating
the airbag for a fifth-percentile adult female or larger. While our
approach is not yet able to detect the presence of a rear-facing
infant seat or a forward-facing child seat or booster seat, our
approach was designed to detect the presence and exact lo-
cation of a head of any type of passenger, including that of a
child or a fifth-percentile adult female. Our approach addresses
alternative requirement of the NHTSA standard for dynamic
suppression, where the problem is instead to detect whether the
same occupants are in or out of position.
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Fig. 4. Laboratory for Intelligent, Safe Automobiles-M (LISA-M) test bed for
data collection and algorithm development.

IV. DESIGN OF A MULTIMODAL VIDEO-CAPTURING SYSTEM,
TEST BEDS, AND INSTRUMENTED VEHICLES

To provide an adaptable experimental test bed for evaluating
the performance of various sensing modalities and their combi-
nation, two test environments, based upon a Daimler-Chrysler
S-class [Laboratory for Intelligent, Safe Automobiles-M
(LISA-M)] test frame and a Volkswagen Passat (LISA-P)
vehicle, were outfitted with a computer and a multitude of cam-
eras and acquisition systems. Of principal importance in the
hardware specification and software architecture was the ability
to capture and process data from all the sensor subsystems
simultaneously and to provide facilities for algorithm devel-
opment and offline testing. Fig. 4 shows the laboratory-based
test bed. Various sensory and computing modules used in this
laboratory test frame LISA-M and the instrumented automobile
LISA-P include the three types of camera modules [thermal
long-wavelength infrared, trinocular stereo, and color National
Television Standards Committee (NTSC) cameras], synchro-
nized video-stream-capturing hardware, and high-volume
storage. LISA-P is outfitted with a power inverter to supply 120
volts alternating current (vac) power. Details of these test beds
are presented later.

The LISA-P is equipped with a 120-V alternating current
power-distribution system. This comprises a marine-type
1.0-kW true sine wave inverter, an auxiliary battery, and ap-
propriate isolation circuitry. The availability of 120 vac avoids
the alternative of adapting equipment to the vehicle’s 12-volt
direct current (vdc) supplies and yields an easier transition from
laboratory to vehicle.

The computing platform consists of a commercial Xeon PC
with a high-throughput disk subsystem for streaming video data.
This subsystem consists of four 15-K r/min Ultra320 SCSI disk
drives in a RAIDO array that achieves in excess of 220-MB/s
sustained throughput. This data rate allows for the capture of
several simultaneous high-resolution video streams. The com-
puting platform allows for a good deal of processing to be done
in real time as well, but normally in the course of algorithm de-
velopment speed is achieved after functionality and data collec-
tion is expensive. Hence, the overriding requirement is to cap-
ture the data for efficient offline development.

The video-capture hardware currently consists of a dual Cam-
eraLink PCI-X capture board, an analog color RS-170 PCI cap-
ture board, and an IEEE 1394 PCI host controller. Addition-
ally, a quad combiner is available to combine quarter resolu-
tion images to be acquired simultaneously using the analog cap-
ture board. The variety of acquisition devices allows for exper-
imentation with a wide range of imaging sensors. Three video-
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sensing systems are being used in the experiments described in
this report.

The first sensor system is a trinocular stereo system from Pt-
Grey Research, which provides 2-1/2-D stereo disparity maps.
This consists of three black and white 640 x 480 element 1/3”
charge-coupled device (CCD) sensors mounted with 3.8-mm
focal length lenses in a common enclosure as two stereo pairs
in an isosceles right triangle. Integrated digitization, buffering
circuitry, and an IEEE 1394 interface allows transfer of video
from all three cameras to the host. This system is supplied with
host software that performs the correspondence calculation and
provides a disparity image. The nearest object that can be seen
by all cameras is roughly 30 cm from the face of the enclosure,
which poses some restrictions on camera placement in the au-
tomobile.

The second sensor uses a miniature 2-D thermal long-wave-
length infrared sensor, Raytheon model 2000 AS. This device
provides response in the LWIR spectrum (7-14 pm) and an
analog video output. The camera uses a 160 x 120 element amor-
phous silicon focal plane array and lens that produces a 35° x
50 ° field of view. It requires no cooling; the absence of active
cooling provisions allows the sensor head/lens assembly to be
quite small (~ 125 cm?) so that it can be unobtrusively mounted
on the dashboard. The camera has no absolute calibration and
is subject to considerable drift in both gain and offset with tem-
perature. It does have a mechanism for correcting per pixel gain
variation, which employs a shutter that momentarily closes in
front of the focal plane array every few minutes [13]. Minia-
turization and cost reduction is moving at a rapid pace in LWIR
cameras, with roughly a four-fold decrease in both size and price
in the last two years. In selecting this device, we intend to test
something representative of what may be reasonably added to a
passenger car a few years from now.

The third sensing system provides 3-D imagery through
shape-from-silhouette (SFS) voxel reconstruction. The hard-
ware is comprised of four color 1/3”” CCD cameras, each
producing NTSC output with 2.3-mm focal length lenses and
a quad video-signal combiner to merge the four video signals
into one, such that each input video frame occupies a quadrant
of the output video frame.

The placement of the cameras is shown in Figs. 5 and 6.
The output of all seven cameras captured synchronously and the
stored images of one experiment with a male subject are shown
in Fig. 7.

The software architecture was designed to allow for efficient
development of multiple video-processing algorithms and their
incorporation into an integrated framework. To this end, the ac-
quisition, storage, user interface, and display functionality are
modular and separate from the image-processing functionality.
Two applications have been developed, one for processing and
capturing live data and one for processing the captured data for
offline algorithm development in the laboratory. Both applica-
tions use the same frame processor C++ object interface en-
capsulating video-processing algorithms. The block diagram for
this basis frame processor is shown in Fig. 8. This standard in-
terface ensures that algorithms developed separately in the lab-
oratory can be painlessly integrated on the test bed.
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Fig. 5. Multimodal video cameras, synchronized capture, computing, storage, and power modules in the LISA-P instrumented vehicle test bed.

Fig. 7. Example acquired image data from LISA-P. Top left, top middle, bottom left: Multiple perspective NTSC images. Bottom middle: LWIR image. Top
right: One of three grayscale images for depth map calculation. Bottom right: Resulting depth image from stereo correspondence.

The live-data application is configurable at compile time to
capture one or multiple streams using a digitizer-independent
image-acquisition framework derived from the Microsoft Vision
SDK. This approach minimizes the effort required to run the live
data system on different hardware, so laboratory machines fitted
with various makes and models of digitizer may be utilized for
algorithm development. The live data application acquires mul-
tiple video streams in a synchronous manner, so that, for each
time step, one frame from each stream is available. Therefore,

the results of the various sensor modalities may be compared on
a frame-by-frame basis. The processed and/or raw data is com-
bined in a single AVI file to minimize disk seeks and written to
the RAIDO array.

The captured-data application allows captured raw video
streams to be played back and routed to the same frame-pro-
cessor object used in the live system. Similar display function-
ality is provided and the identical processor specific GUI may
be summoned, simulating the test-bed environment precisely
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Fig. 9. Flowchart for the generic edge-based face-detection algorithm. Details of 1, 2 5, and 8 are specific to the capture modality. See the appropriate sections

for descriptions of these steps for stereo and LWIR capture methods.

from the viewpoint of the frame-processor object. In this way,
each frame-processing object may be developed separately
offline and later incorporated into the live data application with
a minimum of integration issues.

V. HEAD DETECTION AND TRACKING

Both the Stereo and LWIR-based head-detection algorithms
are derived from Eleftheriadis and Jacquin [14], who propose an
edge-based head-detection algorithm that provides head-pose

and size estimates that are easily implemented in real time (in
excess of 30 f/s on commercial PCs). The basic edge-based algo-
rithm is discussed here and the specific stereo and LWIR modi-
fications are outlined in their respective sections.

The edge-based algorithm flowchart is shown in Fig. 9 and
each step is described as follows.

Step 1) For each camera, the image on which the edge-
based algorithm operates is derived in a specific
way. Details on the image formation are discussed
in the Stereo and LWIR sections.
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Step 2)

Step 3)

Step 4)

Step 5)

Step 6)

Step 7)
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For each stereo and LWIR image, specific prepro-
cessing operations are performed before head detec-
tion is attempted. Again, these details are discussed
in the Stereo and LWIR sections.

Resultant input images are then smoothed with a
Gaussian kernel and down-sampled by a factor of
4, similar to the algorithm described in [14].
Gradient magnitude image is calculated using 1 X
3 Sobel operators in vertical and horizontal orienta-
tions. This is stored as a floating-point image.
Gradient magnitude image can then be refined to
eliminate gradients associated with areas that are
unlikely to contain the head location. This is de-
signed to speed up processing by reducing the seed
points and also helps to reduce false detections.
Specific refinements are discussed in the Stereo and
LWIR sections.

A two-stage horizontal run detector, as described
in [14], is applied to the gradient magnitude image.
This process consists of first applying a threshold
to the gradient magnitude image to obtain a binary
edge image. In our implementation, this threshold
was set to 0.5 standard deviations of the gradient
magnitude above the mean gradient magnitude,
which gave a binary edge image of fairly constant
density. This image is then examined in two stages:
a coarse scan and a fine scan, as in [14]. In the
coarse scan, the image is divided into 5 x 5 pixel
blocks; the blocks that have at least one edge pixel
are marked. In the fine scan, each run of consecu-
tively marked horizontal blocks is examined. For
each such run, the first scan line with an edge
pixel is found. On this scan line, within this run of
blocks, all pixels between the first and last edge
pixels possibly correspond to the top of a head
and are marked as possible seed points for ellipse
contour template matching.

A set of pairs of precalculated templates for ellipse
contours and ellipse boundaries are overlaid on the
gradient magnitude image from Step 5). These tem-
plate pairs consist of one template that represents
the contour of the ellipse and one that represents the
boundary just outside the ellipse contour and are de-
scribed in [14]. However, two slightly different fig-
ures of merit are used to filter ellipse candidates.
In [14], the ellipse templates were applied against
the binary edge image and the figures of merit were
calculated by the number of edge pixels underlying
the templates normalized for the size of the tem-
plate, with the pixels at the top of the ellipse contour
given 50% more weight. In this algorithm, the tem-
plates are applied to the gradient magnitude image
itself and the average gradient magnitude under-
lying the template is used as a figure of merit (also
with 50% extra weight given to those pixels at the
top of the ellipse.) This approach yielded better fit-
ting than justified its small impact on computation
speed. Only ellipses that simultaneously exceeded

a threshold on average gradient underlying the con-
tour and were below a threshold for average gra-
dient underlying a boundary were given further con-
sideration.

Step 8) At this point in the processing, we have a list of
ellipse candidates. Whereas in [14] this step was
followed by the selection of the “best” ellipse, we
found that for both stereo and LWIR images, this
approach would sometimes find elliptical objects
that were not body parts or elliptical contours that
occurred due to the chance arrangement of several
nonelliptical objects. To eliminate most of these
candidates, additional selection measures for each
seed point are calculated. These selection measures
are specific to stereo and LWIR methods and are
discussed in their respective sections.

Step 9) The best candidate ellipse is selected based on a cost
function specific to stereo and LWIR. The cost func-
tion for each method shares the same basic form.
We select the “best” candidate by maximizing the
expression

(1+ L) YMax - Y
(1+1.) Yuax

PavE is a selection measure based on the average
of intensities inside the ellipse candidate. For the
stereo and LWIR methods, Psyg is based on dif-
ferent values and is discussed further in their re-
spective sections. I; is the mean gradient value on
the contour and should be a large value. I, is the
mean gradient value on the outer contour and should
have a small value. Y and Yyax are the ellipse
height and maximum height in the image, respec-
tively. These values are used to give preference to
candidates higher in the image.

Step 10) To reduce the effects of measurement noise, seven
ellipse parameters are tracked using a Kalman filter.
The tracked parameters are the ellipse center coor-
dinate, ellipse axes size, and inclination angle, as
well as the position change from the previous de-
tected location.

ey

Pyve

VI. STEREO-BASED HEAD DETECTION AND TRACKING
A. Stereo-Based Head-Detection and Tracking Algorithm

The stereo-based head-detection and tracking algorithm is
a modification of the edge-based head-detection algorithm de-
scribed in Section V and displayed in Fig. 9. Modifications to
the algorithm specific to the stereo algorithm are discussed later.

In Step 1), a background model is generated based on N
frames of disparity data captured in an empty cabin. Using the
disparity image in the background model allows for a larger de-
gree of lighting changes than using the reflectance images. Once
the background model is obtained, the current foreground data
is computed. The SVS API can give high-valued noisy response
in regions where the stereo is incomputable, so disparity values
that are too high are removed from the current image. Disparity
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Fig. 10. Example reflectance and disparity images for a subject in the LISA-P
test bed.

TABLE 1
STEREO HEAD-DETECTION AND TRACKING RESULTS

Correct % Correct %
Occupant Detected  Correct Tracked Correct
Location  Detected  Location  Tracked
Male 1, 5° 87, 2830 95.3% 2832 95.4%
Average Build = e
Male 2, 5°9”, o o
Average Build 5374 94.8% 5378 94.9%
Female 1, 5°0”, o o
Petite Build 5287 97.9% 5310 98.3%
Female 2, 5°8”, o o
Average Build 3878 94.1% 3876 94.0%
Female 3, 5’117, o N
Average Build 2945 99.8% 2946 99.8%
All Occupants 20314 96.3% 90342 96.4%

values that fall outside the car, specifically those in the car’s
window region, are also removed from the current disparity
image. This refinement helps to remove extraneous and invalid
foreground data. After this threshold is applied, a foreground
map is generated through background subtraction. An example
of the raw reflectance image and its corresponding depth map
are shown in Fig. 10.

In Step 2), to eliminate more of the extraneous stereo data,
a median filter operation is performed, followed by a morpho-
logical opening. Then, connected component analysis removes
all areas smaller than the minimum head size. This final binary
foreground map is combined by a logical AND with the current
disparity image. The result is the current foreground disparity
image. The input images are the foreground disparity image and
the corresponding reflectance image.

In Step 5), the gradient magnitude image is computed using
the reflectance image and only those values that fall within the
current disparity-based foreground map are kept.

In Step 7), the additional selection measure computed is the
average normalized disparity value within the bounding box en-
closing the candidate ellipse. The inclusion of this measure is
meant to ensure that the ellipse location corresponds to a region
of valid and consistent depth. The average normalized disparity
value is denoted as Payg in (1).

B. Performance Evaluation

The performance of the stereo algorithm was evaluated on
a data set consisting of 21 379 frames of video acquired in a
moving automobile with five different passenger subjects. Each
subject was asked to assume several poses, listed in Table 1.
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Fig. 11.

Examples of successful stereo-based head detection and tracking of
an occupant in four different situations.

TABLE 1I
LWIR HEAD-DETECTION AND TRACKING RESULTS
Correct % Correct %
Occupant Detected Correct Tracked Correct
Location Detected  Location  Tracked
Baby 415 92.2% 401 89.3%
Male 1, 6’27,
Laree Build 555 92.5% 547 91.2%
Male 2., 5°8”
Average Build 2688 90.5% 2678 90.2%
Female 1, 5°27,
Average Build 425 94.4% 428 95.1%
Female 2, 5’17,
Petite Build 492 83.8% 483 82.3%
Female 3, 5°8”,
Average Build 3761 91.2% 3746 90.9%
Female 4, 5’117, 2656 90.0% 2646 89.6%
Average Build
All Occupants 10992 90.7% 10929 90.1%

Head-detection results were considered to be correct if the
algorithm placed an ellipse center point somewhere on the sub-
ject’s head. For a successful detection, the estimated ellipse size
needed to be comparable to occupant’s head size. Examples of
successful detection are shown in Fig. 11 and the detected lo-
cation is denoted by the white circle and corresponding center
Cross.

Similarly, head tracking results were considered to be correct
if the algorithm placed the tracked ellipse center point some-
where on the subject’s head, denoted in the examples by the
dark gray cross. Results of stereo head detection and tracking
are listed in Table II.

With an overall detection rate of 96.4%, this head-detec-
tion algorithm is very successful. There are however, certain
instances in which the algorithm could be improved. The
detection rates drop when the occupant leans forward or to her
left. These drops can be explained by the nature of the stereo
data and the camera setup.
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Fig. 12. Examples of unsuccessful head detection due to invalid disparity data
because of camera limitations.
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Fig. 13. Examples of unsuccessful head detection due to competing elliptical
objects in the scene.

When using the SVS API, the left-most 64 columns are inval-
idated in the disparity image, as it is the value of the disparity
search range used in this test. This corresponds to the area in the
left image that is presumed to not overlap with the right image.
If the head falls in or near this region, denoted by the white ver-
tical line in Figs. 11-13, the invalid stereo data region can distort
the head contour, causing detection problems.

Similarly, if the occupant leans too close to the camera, the
head can fall out of the range of valid disparities. The SVS soft-
ware will return invalid data in that area where the head ex-
ceeds the minimum distance from the camera where stereo data
is computable. Naturally, this invalid data can cause problems
detecting the head. These out-of-position errors are indicated in
Fig. 12.

These errors are due entirely to camera selection and place-
ment. This can be resolved easily by selecting a camera with a
field of view and baseline that contains the entire range of poten-
tial occupant positions. Under the current setup, the Digiclops’
enclosure size and baseline limits the camera positioning op-
tions and the position selected for these tests is the most optimal.
These errors directly contribute to lower results for leaning for-
ward and left.

The largest falloffs in detection rates occur in the hand-mo-
tion and object tests. Specifically, when the occupants put on
or remove the hat or put their hands on their face, the detection
rates drop significantly. This occurs because other objects in the
cabin, namely the hat and hands, look similar to the head in the
disparity image and may maximize the detector cost function
better than the head location for that frame. Examples of these
errors are in Fig. 13.

These competing object errors are critical since the head is not
only being detected incorrectly, but there also may be potentially
dangerous foreign objects in the scene that could cause further
harm in the event of an improper airbag deployment.
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Fig. 14. Gaussian intensity to probability of skin-temperature mapping. The
appropriate mean of the intensity map is chosen on a per-session basis.

C. Enhancements

Further processing is necessary to remedy the beforemen-
tioned errors. It is not enough to only search for the head in
the current proposed manner. To further validate the choice of
head position, subfacial cues such as eyes and noses could be
searched for inside of the ellipse area. This would help to elim-
inate areas in which the stereo data presents a valid option for a
head location, since the reflectance data would invalidate it.

It may also prove to be useful to classify all the stereo-dis-
parity data as in a safe or unsafe position relative to the real-
world automobile cockpit. This would allow for validation of
the occupant’s safety by a method in combination with the head
location and would help to make correct decisions in situations
where foreign objects are in the scene. This is critical because
when foreign objects are in the scene, decision errors could
occur both when the head location is detected correctly (by
using the correct head location to decide that it is safe when the
foreign object could cause injury) and incorrectly (by detecting
the head location in the incorrect position, thereby giving an in-
accurate decision). In [15], methods are proposed to extend the
stereo-detection algorithm to include other body parts and for-
eign-object detection.

Despite the potential for these detection errors, the overall
error rate is very low. The errors also seem to occur in short
isolated bursts. Most of the time, errors occur in a single frame or
two and are corrected in the next frame. The time for each error
is a fraction of a second. Considering that the Kalman tracked
head location is often correct when these detection errors occur,
the time when both the detector and tracker are wrong is even
smaller.

VII. THERMAL INFRARED-BASED HEAD
DETECTION AND TRACKING

A. Face Detection and Tracking Based on Face and
Background Contrast in LWIR Signatures

This algorithm is based on the edge-based head-detection al-
gorithm described in Section V and displayed in Fig. 9. Mod-
ifications to the algorithm specific to the LWIR algorithm are
discussed below.

In Step 1), the eight-bit per pixel intensity image is remapped
to approximate the probability of membership in the human
skin class from LWIR intensity based on [16], using a simple
Gaussian probability density function (pdf) shown in Fig. 14,
with the mean and variance manually, empirically set. This is
implemented using a precalculated lookup table and yields an
eight-bit output image with pixels valued 255 most likely to
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Fig. 15. LWIR images before and after intensity to probability of
skin-temperature mapping. Note that areas containing human skin are
now bright relative to other objects in the scene.

be skin and pixels valued O least likely. The probability lookup
table P(I) is populated with values given by

I — 2
p(1) = 2551 =" ©)
202
where intensity I = 0,...,255, mean yu, and variance o2 are

manually set on a per-run basis.

In Step 2), the probability image obtained from Step 1),
shown in Fig. 15, is subjected to an iteration of grayscale
erosion where each pixel is replaced by the minimum of
its eight neighborhood. This eliminates the consideration of
one-pixel-wide edges in the probability image caused by the
boundaries of hot objects passing rapidly through the human
skin-emission region.

In Step 5), no further gradient refinement is performed. In
Step 7), to refine the list of these candidates, the average skin
probability of each ellipsis’s bounding box is calculated by sum-
ming the pixel values in the image from Step 2). This quan-
tity is referred to as Payg. Only those candidates exceeding a
threshold for this average probability are considered further.

B. Thermal Infrared Performance Evaluation

The performance of the LWIR algorithm was evaluated on
a data set consisting of 12 132 frames of video acquired in a
moving automobile with seven different passenger subjects.
Each subject was asked to assume poses, as listed in Table I.

Results were deemed correct if the algorithm placed a head
center point somewhere on the subject’s head or neck if a head
was present in the image or if the algorithm failed to find a head
if none was present. It is not always possible to accurately de-
termine the jawline in the LWIR imagery. For the purpose of
head tracking in the context of intelligent airbag deployment,
the neck/head position is a sufficiently accurate indicator. Fail-
ures by the algorithm were further classified into categories of
the head not being found although present, the head being found
in the wrong location, or a head being found when no head was
present. A summary of LWIR head-detection and tracking re-
sults is listed in Table III.

The LWIR algorithm’s performance is quite robust, with an
average of 90% accuracy. It too suffered the occasional failure
by misidentifying a hand as a head, but only when the hand’s
aspect was quite elliptical (e.g., palm out, fingers not spread).
It rarely found some other body part, usually only for a frame
or two in sequence. This usually occurs when another part of
the person’s body emitted the same LWIR characteristics as the
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TABLE III
OCCUPANT TEST SCRIPT

Test Occupant Task
Enter car and sit normally
Lean halfway forward

Lean completely forward
Return to normal position
Lean back completely
Return to normal position
Lean to right against window
Lean to left towards driver
Return to Normal Position
Move Hands about cabin
Open the glove box

Put hands on face, stretch

Position Test

Hand Motion & Object  Adjust car radio
Test Place hat in lap
Move about cabin while wearing hat
Remove hat
Place feet on dashboard
Free Motion Test Subject is free to move about cabin as

they wish

head. Such examples occur when the subject’s pants are highly
emissive and allow for much of the body heat to escape.

The algorithm would sometimes fail to find the head when a
head was present. This happens most often during rapid head
movements. The nature of the thermal camera’s focal plane
array is such that the pixels’ time constants are on the order of
the frame rate. This causes an afterimage and, therefore, motion
blur. Since the algorithm requires a sharp edge (high gradient
magnitude) in its very first, coarse scanning, the appropriate
seed points for the subsequent ellipse fitting are never found.
On several occasions, with a strong wind blowing in the open
window at roughly 35 mi/h, the passenger’s skin temperature
was lowered to the point where it was momentarily cooled and
classified as background.

The fact that the failures of the algorithm were only occa-
sional and usually consisted of a sequence of few wildly incor-
rect frames (for instance, finding a hand) among a series of a
hundred or more correct frames caused the tracker to degrade
the performance of the system as a whole. Although it did im-
prove the stability of the head location during those sequences
where the head was found correctly, a single result far from the
true head location would require a few frames for the Tracker
to settle on the new position, whereas the raw reading was cor-
rect in the very next frame. The Kalman filter used in the head
tracker is designed to model a system with Gaussian process and
measurement noise, whereas this noise is of an impulse flavor. It
is probably appropriate to apply some nonlinear temporal filter
(i.e., a median filter) to the sequence of head-position readings
before they are incorporated into the tracker estimate.

C. Enhancements

The performance of the LWIR algorithm is quite good, but it
does occasionally suffer from a preference to body parts other
than the head. In these cases, an ellipse candidate was usually
found for the head, but scored lower than the hand when the
final selection of the best ellipse was made. One such approach
is to search the candidate ellipses for one or more subfeatures
that one would expect to find on a face, but not on a hand. Eyes,
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Fig. 16. Inferring head depth from ellipse size estimation in LWIR images.
ears, and mouths show up quite distinctively in LWIR imagery,
although they appear to be completely different than in visible
spectrum images.

The algorithm may also benefit from calculating PayEg as the
estimated probability underlying the ellipse, as opposed to that
underlying the ellipse’s bounding box, at the cost of slightly
more computational complexity.

The LWIR camera also exhibits some undesired characteris-
tics. Currently, the LWIR camera sensors have a nonstationary
skin temperature-to-intensity mapping. Over time, the intensity
for skin changes in the LWIR image. This is a problem for the
LWIR algorithm, which relies on a skin intensity pdf that be-
comes invalid if the intensity mapping changes. An adaptive re-
calibration of the intensity mapping would rectify this problem.

The size of the ellipse may be used to get a rough depth from
size estimate, although currently the head is sometimes found
from the top of the head to the chin and sometimes found from
the top of the head to the neck, yielding two distributions of
head size. If we can robustly measure one or the other, then the
head-image size data might be combined with switches in the
seatback to give a reference head image size for the passenger
sitting fully back. It would then be possible to give an estimate of
the passenger distance from the camera (and, hence, the dash-
board) by comparing the head image size with that in the ref-
erence position. An illustration of inferring depth information
from the ellipse size in LWIR images is shown in Fig. 16.

VIII. STEREO AND LWIR HEAD-DETECTION AND TRACKING
ALGORITHMS: COMPARATIVE ANALYSIS

Experiments were performed using the LISA-P test bed. A se-
ries of experiments were conducted in which data was captured
for both the stereo and LWIR methods simultaneously. The de-
sire is to have a direct comparison of the two-head tracking
methods on a frame-by-frame basis.

The tests were conducted on three nonconsecutive mornings
from 8:00 to 11:00 AM using the LISA-P test bed. The stereo
camera was placed on the driver’s side roof rack, looking down
on the passenger’s seating area. Left and right images we cap-
tured at 320 x 240 resolution at 15 f/s. Stereo data was com-
puted using SRI’s Small Vision System API. For these tests, the
LWIR camera was next to the stereo camera in the same orien-
tation, so that approximate depth from the dashboard could be

inferred. Infrared data was captured simultaneously at a reso-
lution of 640 x 480, also at 15 f/s. Each captured stereo image
has a corresponding and comparable LWIR image. Test subjects
were asked to enter the vehicle and perform a series of move-
ments and tasks while the car was driven at road speeds.

The occupant script listed in Table III was divided into a posi-
tion test, which tests the algorithm’s ability to detect the head at
various positions in the cabin and to track the head’s movement;
a hand-motion and object test, which was designed to evaluate
the algorithm’s robustness to competing objects and hand mo-
tion in the scene; and a free motion test, which was designed to
catch other potential situations for detection error, as the subject
was free to move as they wish during this test. Example images
of each of the occupant script poses are shown in Fig. 17. In all,
stereo and LWIR data was collected with three subjects for a
total of 10045 frames of collected data.

Ideally, a method of comparison would consist of answering
the following question: how well does a system make decisions
on the most critical occupant sizes, positions, and poses, at the
same time addressing the less critical airbag deployment con-
ditions? In the standard issued by the NHTSA [1], it states that
airbag systems must be able to disable itself when occupants
of five standardized sizes are in various positions. This is the
so-called dynamic suppression test. One way is to associate with
each occupant size and position the cost for making the erro-
neous decision and having the airbag deploy or not deploy by
mistake. For every system, there is an associated miss-detection
rate. False alarms are not considered, since there is a compre-
hensive set of occupant sizes and positions. An acceptable cost
function would be the sum of false-alarm and miss-detection
rates weighted by the cost of making an erroneous classification
for each occupant size and position. This “likelihood of safe de-
ployment” is the measure of goodness for the system under test.

In the stereo and LWIR tests, the distance from the detected
head to the dash is the only variable to be considered when
classifying a person to be in or out of position. Since all sub-
jects were normal-sized adults, the other variable, occupant
size, is constant. Correct head detection, therefore, is equiv-
alent to a valid distance estimate between the dashboard and
the head, within some distance variance. Table IV lists the
detection rates for the stereo and LWIR head-detection and
tracking algorithms.
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Fig. 17. Example images of occupant script poses. From top left: sitting normally, leaning halfway, leaning completely forward, leaning back, leaning right,
leaning left, moving hands about cabin, opening glove box, hands on face, stretching, adjusting radio, hat in lap, putting on hat, moving while wearing hat, removing
hat, feet on dashboard.

TABLE 1V
STEREO AND LWIR HEAD-DETECTION AND TRACKING COMPARISON
o Male 1, 5’8" Female 1, 5’8" Female 2, 5’117 All Occupants
ccupant Task

Stereo LWIR Stereo LWIR Stereo LWIR Stereo LWIR
Sit Normal 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Lean Halfway 100.0% 73.0% 100.0% 92.9% X X 100.0% 82.8%
Lean Forward 76.4% 0.9% X X X X 76.4% 0.9%
Return to Normal 1 100.0% 95.9% 98.0% 98.0% 100.0% 100.0% 99.6% 97.4%
Lean Back 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Return to Normal 2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Lean Right 100.0% 52.1% 100.0% 100.0% 97.8% 96.7% 99.1% 92.1%
Lean Left 100.0% 98.9% X X 97.7% 100.0% 98.4% 99.7%
Return to Normal 3 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Position Test Totals 97.3% 80.3% 99.8% 98.7% 98.7% 99.1% 98.4% 91.7%
(Number of Frames) (940) (776) (537) (531) (676) (679) (2153) (1986)
Move Hands about cabin 78.1% 100.0% 100.0% 97.4% 97.8% 99.1% 91.6% 99.2%
Open the glove box 100.0% 100.0% 100.0% 95.5% 74.3% 97.6% 91.2% 97.8%
Put hands on face & stretch 81.7% 100.0% 100.0% 85.2% 87.8% 89.4% 90.0% 91.3%
Adjust car radio 100.0% 100.0% 100.0% 100.0% 99.4% 100.0% 99.8% 100.0%
Place hat in lap 100.0% 100.0% 100.0% 97.5% 100.0% 97.7% 100.0% 97.9%
Put hat on head 90.0% 84.3% 90.5% 35.7% 100.0% 93.3% 95.2% 85.2%
Move with hat 98.8% 87.9% 100.0% 68.3% 92.6% 62.8% 96.5% 71.0%
Remove Hat 100.0% 100.0% 100.0% 62.1% 100.0% 100.0% 100.0% 94.9%
Feet on Dashboard 100.0% 94.5% 100.0% 76.4% 93.9% 100.0% 98.3% 87.3%
Hand Motion & Object Test Totals 92.6% 97.4% 99.8% 85.7% 92.0% 90.5% 94.8% 90.9%
(Number of Frames) (1399) (1471) (1939) (1665) (2258) (2221) (5596) (5357)
Free Motion Test 100.0% 87.4% 99.8% 95.5% 95.8% 86.1% 97.9% 88.9%
(Number of Frames) (493) (431) (470) (450) (942) (846) (1905) (1727)
All Test Totals 95.4% 90.2% 99.8% 89.6% 94.0% 90.9% 96.2% 90.3%
(Number of Frames) (2832) (2678) (2946) (2646) (3876) (3746) (9654) (9070)

X denotes that the subject moved out of the camera frame for this test, and the results were invalid.
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Fig. 18.

IX. DISCUSSION

A. Stereo and LWIR Head-Detection and Tracking-Evaluation
Summary

This test setup is particularly unique in that it allows for a di-
rect comparison of the stereo and LWIR head-detection methods
on a frame-by-frame basis. The test bed allows for the simulta-
neous capture of multiple inputs from differing modalities all
synchronized to the same clock. The test bed is also set up to
allow for easy modularization, so that both new cameras and
new algorithms can be introduced into the system and tested
with minimal further development. As both camera and algo-
rithm advancement are anticipated, the test bed gives an ideal
circumstance to extend this research.

Both algorithms achieve a high average accuracy in detecting
and tracking the head. At success rates of 96.4% and 90.1%,
respectively, for various occupant types, it can be concluded that
both the stereo and LWIR systems can be used to robustly detect
the location of the head with high reliability. The resulting head-
location information can help to decide the manner in which an
airbag should be deployed.

Although the algorithms achieve a high success rate, both al-
gorithms suffer from certain limitations that should be resolved
through further research.

Stereo methods outperformed LWIR methods when the sub-
ject moved with a hat. Because the head-detection algorithm is
searching for elliptical objects, the detection rate decreases in
the LWIR case, because the hat changes the emissive proper-
ties of the subject’s head, making it less elliptical. Conversely,
in the stereo case, we compute edges based on the reflectance
data, in which the occupant head looks similarly elliptical with
or without a hat.

Stereo methods also outperformed LWIR methods when the
subject leans completely forward. This, however, is not a func-
tion of the occupant’s position, but rather due to the subject’s
head being turned from the camera so that only the back of the
head was visible. Naturally, the occupant’s hair does not have
the same temperature as the face and resulted in the low detec-
tion rates. This also was the case for the low results for the lean
right test for Male 1. This indicates that modeling only skin tem-
perature may not be enough and that other occupant properties,
such as hair and clothing, should be taken into account.

LWIR methods outperform stereo methods when dealing
with competing elliptical objects in the scene, especially hands.
This is because the skin temperature of the hands is usually
different enough from the face as not to confuse the LWIR

Four perspectives of the occupant inside LISA-M and the silhouettes generated from background subtraction with shadow removal.

detector. However, if the hands are of a similar size and depth
as the head, the stereo detector can give erroneous results.
Potential solutions include using subfacial cues to verify ellipse
candidates, as well as introducing more sophisticated body
modeling to account for hands and arms in the scene.

Despite the success of these initial tests, further testing is im-
perative. This test of the stereo and LWIR systems included only
three subjects at a particular time of day in fair weather. Clearly,
many different subjects need to be tested on the system. It is
still untested how well the algorithms will perform when sub-
jects have features such as facial hair, large hats, are eating or
drinking, are very large or very small, or are sitting in uncon-
ventional positions. The algorithms are also untested in driving
conditions other than a sunny day. Although an exhaustive test
of the permutations of subject type and driving condition is im-
practical, a much larger and extensive test of these variations is
necessary to deem the algorithms reliable enough for commer-
cial use.

B. Extension Using SFS Voxel Data

An extension to the problem of designing a reliable occu-
pant posture estimation system using vision-based techniques is
our investigation of using SFS voxel data with the multicamera
setup to extract occupant posture information. SFS is a tech-
nique that reconstructs the visual hull of the occupant from the
occupant’s silhouette images. Visual hull is the closest repro-
duction of an object’s actual volume using an arbitrary number
of silhouette images of the object [17]. Small [18] envisioned a
real-time algorithm for the computation of the visual hull using
volume elements or voxels.

Four images are collected from various perspectives around
the occupant inside the LISA-M test bed. These images are
shown in Fig. 18. Given camera-calibration parameters and the
silhouette images, the resulting voxel reconstruction of an occu-
pant is shown in Fig. 19. The space of the voxels are demarcated
by the IP, OOP, and COOP and voxels are colored green, yellow,
and red to illustrate which voxels are within these regions.

It is not difficult, however, to envision a decision scheme
based on occupancy information of the voxels alone to decide a
person to be IP. It furthers the case when head and torso posi-
tions are known. It has been shown that the head and torso can
be found from the voxel data of occupants of various sizes with
consistent regularity [19]. The key components for that voxel-
based occupant posture estimation system are camera place-
ment, camera calibration, silhouette generation, voxel recon-
struction, and body modeling from voxel data.
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ig. 19. Illustration of the boundaries based on IP, OOP, and COOP regions.

Currently, to generate silhouette images, a statistical back-
ground subtraction technique is employed. This technique with
no further modifications is an inadequate image-segmentation
method for inside the car. Alternatives are currently being in-
vestigated.

However, the uses of a full or even partial body can be un-
deniably far reaching. The potential applications goes beyond
occupant posture estimation for the purpose of “smart airbag”
deployment and enters driver fatigue analysis, driver attentive-
ness, and human—machine interfaces inside the car.

X. CONCLUSION

A new generation of airbags will incorporate information
about the position and posture of the occupant in making deploy
normally, deploy with limited power, or to suppress deployment
decisions. Development of vision-based systems for human
posture analysis in an accurate and robust manner within the
challenging constraints of speed and of the automobile interior
was the main research issue addressed in this paper. This paper
presented the systematic investigation, development, and eval-
uation of using thermal long-wavelength infrared, stereo, and
multicamera video-based real-time vision systems. This work
involved the design of several test beds, including instrumented
vehicles for systematic experimental studies that allow inde-
pendent and comparative system evaluation in automobiles.
Results of extensive experimental trials suggest basic feasibility
of video-based occupant position and posture analysis.
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