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Abstract—Power side-channel attacks exploit the dynamic
power consumption of cryptographic operations to leak sensitive
information of encryption hardware. Therefore, it is necessary
to conduct power side-channel analysis for assessing the suscep-
tibility of cryptographic systems and mitigating potential risks.
Existing power side-channel analysis primarily focuses on post-
silicon implementations, which are inflexible in addressing design
flaws, leading to costly and time-consuming post-fabrication
design re-spins. Hence, pre-silicon power side-channel analysis is
required for early detection of vulnerabilities to improve design
robustness. In this paper, we introduce SCAR, a novel pre-silicon
power side-channel analysis framework based on Graph Neural
Networks (GNN). SCAR converts register-transfer level (RTL)
designs of encryption hardware into control-data flow graphs
and use that to detect the design modules susceptible to side-
channel leakage. Furthermore, we incorporate a deep learning-
based explainer in SCAR to generate quantifiable and human-
accessible explanation of our detection and localization decisions.
We have also developed a fortification component as a part of
SCAR that uses large-language models (LLM) to automatically
generate and insert additional design code at the localized zone
to shore up the side-channel leakage. When evaluated on popular
encryption algorithms like AES, RSA, and PRESENT, and post-
quantum cryptography algorithms like Saber and CRYSTALS-
Kyber, SCAR, achieves up to 94.49% localization accuracy, 100%
precision, and 90.48% recall. Additionally, through explainability
analysis, SCAR reduces features for GNN model training by
57% while maintaining comparable accuracy. We believe that
SCAR will transform the security-critical hardware design cycle,
resulting in faster design closure at a reduced design cost.

Index Terms—Power Side-Channel Attack, Register-Transfer
Level, Graph Neural Network, Large Language Model.

I. INTRODUCTION

Power side-channel (PSC) attacks leverage variations in the
dynamic power consumption exhibited during cryptographic
operations to extract confidential data from the underlying
encryption hardware. These attacks have become a significant
concern for the security of hardware-based cryptographic sys-
tems, including smart cards, secure microcontrollers, and other
embedded systems. Moreover, the attacks are effective against
a broad range of cryptographic algorithms, including symmet-
ric and asymmetric key algorithms, hash functions, and digital
signature schemes [1]. Therefore, it is necessary to conduct
PSC analysis for assessing the susceptibility of cryptographic
systems to such attacks and mitigating the potential risks.
PSC analysis focuses on the power consumption exhibited by
cryptographic encryption algorithms during computationally
intensive operations, including bitwise operations such as XOR,

Fig. 1: Power side-channel attack flow. Attacker observes
and analyzes dynamic power consumption profile of security-
critical hardware devices to reconstruct secrets such as encryp-
tion keys.

AND, and OR [2]. By examining the power consumption pat-
tern, PSC analysis can be used to infer information about such
operations, leading to side-channel leakage. Figure 1 illustrates
the scenario of how an attacker can obtain information about
the encryption key by monitoring the power consumption of
the system during encryption.

Typically, PSC analysis is performed by measuring the
power consumption of the target device during its operation.
The attacker uses a power probe to measure the device power
consumption during different cryptographic operations. The
analysis can be performed using various techniques such as
differential power analysis (DPA) or simple power analysis
(SPA) [3]. One major drawback of PSC analysis at the post-
silicon level is that it is nearly impossible to retrofit security
measures onto existing devices leading to costly device re-
spins. On the contrary, pre-silicon PSC analysis provides two
significant advantages – i) it can significantly improve the
system’s robustness and reduce the cost since it enables early
detection of vulnerabilities in the design process and ii) it
enables easy and relatively cheaper design changes than post-
silicon. Previous research proposed pre-silicon analysis at both
the layout and IC chip power modeling levels to evaluate PSC
leakage, which is inflexible [4], [5].

At the pre-silicon level, the RTL design can be segmented
into individual registers and the combinational logic which
transmits the data and carries out functionalities. This ab-
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straction can provide the designer with vital information on
power consumption patterns during cryptographic operations,
facilitating the identification of potential side-channel leakage
regarding the encryption key. Moreover, it allows the designer
to conduct necessary enhancements on the vulnerable modules
with less cost since the analysis is done in the pre-silicon de-
sign phase. Existing research demonstrates PSC analysis at the
RTL level by estimation of power profiles [6]–[8]. However,
the process is computationally intensive and time-consuming
due to the need for simulating power traces and using complex
power estimation models, particularly for complex designs.
Moreover, the approach employs only modular-level analysis
of the RTL designs and do not incorporate any strategies for
fortification for the designs.

In this paper, we propose a deep-learning-aided frame-
work to enhance the security and robustness of cryptographic
hardware against power-side channel attacks by preemptively
identifying PSC leakage-prone locations and fortifying the
design RTL. By transforming RTL into a control-data flow
graph (CDFG), we can classify the leakage-prone module
through a node-level classification task using a Graph Neu-
ral Network (GNN) model. By identifying vulnerable (i.e.,
“leaky”) design modules, we can utilize the GNN model
to capture the influence of neighboring nodes and the local
structure of the module compared to the “non-leaky” modules.
Additionally, we employ a source code analysis approach
to pinpoint and isolate the vulnerable locations of the de-
sign, precisely identifying the specific lines within the RTL
code that are susceptible to PSC leakage. Furthermore, we
fortify cryptographic hardware designs against PSC attacks
by augmenting vulnerable design locations with additional
protective codes generated using a pre-trained large-language
model (LLM).

Our proposed framework, SCAR, utilizes the RTL design
of the encryption algorithm as the input and predicts the
locations vulnerable to PSC attacks in the design. SCAR can
be employed as an effective measure to prevent PSC attacks
by predicting and fortifying the vulnerable locations during
the design phase. The major contributions are as follows:

• We propose SCAR, a novel RTL-level PSC analysis
technique which utilizes CDFGs extracted from the en-
cryption hardware RTL and deep learning on such graph
to identify RTL locations susceptible to PSC attacks.

• SCAR includes an explainer to generate quantifiable and
human-accessible explanations of SCAR’s predictions
by constructing a annotated subgraph from the CDFG
annotated with each feature’s (information obtained from
each node) importance in the prediction.

• We enhance the detection granularity of our framework
by identifying specific lines within the vulnerable RTL
modules that can cause the PSC leakage, through a source
code analysis-based approach.

• We utilize a LLM to automatically generate and insert
mitigation codes to mask PSC leakage of the vulnerable
lines.

• When compared with post synthesis results, our evalua-
tion demonstrates a high degree of accuracy. Our iden-
tified vulnerabilities have been shown to induce fluctua-

tions in dynamic power, further affirming the reliability
of our approach.

• When evaluated on previously unobserved AES imple-
mentations, and encryption algorithms like RSA and
PRESENT, not present in the training data, SCAR
achieves up to 94.49% accuracy, 100% precision, and
97.88% recall in identifying the vulnerabilities. Addi-
tionally, when applied to lattice-based Post Quantum
Cryptography (PQC) algorithms Saber and CRYSTALS-
Kyber, the framework achieves up to 91.84% accuracy,
85.94% precision, and 94.62% recall.

• Lastly, by incorporating explainability analysis, the
framework also reduces the required number of features
for GNN model training by 57% while maintaining
comparable accuracy, enhancing its efficiency and inter-
pretability.

The rest of the paper is organized as follows. Section
II provides the background on PSC analysis, graph neural
networks and large language models. Section III describes
the proposed methodology. Section IV evaluates our proposed
approach. Lastly, the paper is concluded in Section VI.

II. BACKGROUND AND RELATED WORK

A. Power Side-Channel Analysis

PSC analysis targets unauthorized information leakage via
variation in power consumption during cryptographic algo-
rithm execution. Techniques include differential power analy-
sis, simple power analysis, and correlation power analysis [9],
[10]. Prior works involve pre-silicon layout-based power-noise
side-channel leakage analysis [4]. However, layout analysis
can be time-consuming and less flexible. Another work focuses
on power analysis in hardware designs, aiming to identify
potential PSC leakage using test pattern generation [8]. At
the post-silicon level, existing research presents a hardware
implementation of a secure key exchange protocol, leveraging
ring-LWE, and fortified against PSC attacks through masking
and randomization [11]. An alternative study proposes a real-
time PSC attack detection technique using on-chip sensors
based on a thorough analysis [12].

B. Graph Neural Network

Graph neural networks (GNNs) are a class of neural net-
works that operate on graph-structured data, such as social
networks, molecular structures, and knowledge graphs [13].
GNNs have have become popular for analyzing and processing
graph-structured data in a wide range of tasks, including node
classification, link prediction and graph classification [14].
GNN models are capable of learning and encoding the local
structure of the graph around each node [15]. The GNN-
Explainer generates explanations for the predictions made by
GNNs [16]. It works by assigning importance scores to the
input features and using them to construct a local subgraph
around the output node. Recently, GNNs have demonstrated
their applicability in addressing various challenging Electronic
Design Automation (EDA) problems [17]. Existing research
focuses on autonomously learning operation pattern mappings
within the context of high-level synthesis [18]. Another study
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Fig. 2: SCAR Framework: the red and green blocks indicate
the input and output to the framework, respectively. The blue
blocks highlight the three main stages which perform the PSC
leakage localization. Lastly, the yellow blocks represent the
intermediate steps required by the framework.

proposes the use of a GNN to extract structural characteristics
from gate-level netlists and predict metrics associated with soft
error propagation [19].

C. GOLDMINE: A static analyzer for hardware designs

GoldMine is a multifaceted tool designed for hardware
(RTL) design analysis tasks [20] such as assertion generation,
static analysis, etc. GOLDMINE utilizes lightweight source
code analysis and machine learning (ML) to generate design
assertions. GOLDMINE generates high-quality assertions that
capture important design behavior in an easy-to-understand
manner. GOLDMINE also induces a rank among generated
assertions by analyzing the importance and complexity of the
captured design behavior.

D. Large Language Models

Large language models (LLMs), built upon the Trans-
former architecture, represent a transformative breakthrough
in natural language processing [21]. These models, pretrained
on vast text corpora, have shown remarkable capabilities in
understanding and generating human-like text across various
applications [22], [23]. Recently, LLMs have been used for
code generation, which is the task of automatically generating
executable code from natural language specifications [24].
There have been various techniques and applications of code
generation with LLMs, such as self-planning and Verilog code
generation [25], [26].

III. PROPOSED SCAR METHODOLOGY

Our framework, SCAR, predicts vulnerable PSC locations
in encryption hardware RTL using a GNN, where we represent
RTL as a CDFG for input. Figure 2 demonstrates an overview
of our proposed approach. The GNN model identifies leaky
nodes within the CDFG, which correspond to vulnerable mod-
ules. Furthermore, we conduct source code analysis on these
identified modules, assigning leakage scores to the lines in the

vulnerable modules. We then compare the high-scoring lines
to leaky nodes and propose automatic masking to enhance
security against PSC attacks.

A. Module Identification

1) Control-Data Flow Graph Generation: We use GOLD-
MINE to generate the RTL design CDFG and to analyze
it to gain design insights [20]. Note that any other CDFG
generation tools can also be used for the same. In order to
identify the leaky modules in a design, knowledge about the
power consumption of each component is essential. When
an input graph, which includes variables affecting dynamic
power, is provided, it can yield substantial insights from
the dataset. In this context, leveraging the CDFG of the
design allows us to gain valuable information about module
connectivity and the data encapsulated within each module.
The nodes in the CDFG correspond to basic blocks of the
RTL - sequential groups of instructions lacking branching or
jumping operations. Each node gives information about the
module name, line number, and the node type, which is crucial
for comprehending the control and data flow within the design,
aiding in the extraction of input features required for the
GNN model to predict vulnerable PSC locations in encryption
hardware RTL. The edges in the graph depict the control
flow between these basic blocks, which could be attributed to
conditional statements, loops, or case statements. Such usage
facilitates the invocation of a specific module, as well as
the signals employed within the corresponding location. The
CDFG provides valuable insights into the interconnectivity of
modules and sub-modules, as well as the precise location of
variables within the design.

2) Node Preprocessing: In this section, we present a de-
tailed methodology to extract pivotal node features from the
CDFG of RTL designs. These features are selected based on
their influence on dynamic power consumption and potential
vulnerabilities to PSC attacks. By incorporating these features
into our analysis, we aim to provide a comprehensive and
detailed assessment of the power characteristics and security
vulnerabilities of the RTL designs. Following this, we high-
light the features we examine for each node in the CDFG.
These features are essential in generating the feature set for
the GNN.

Number of vulnerable paths: If there is a strong correla-
tion between the encryption key and a variable in the RTL,
it can make the variable a potential source of leakage. This
is because an attacker can observe the variable’s value and
use it to deduce information about the secret key. In order to
prevent the disclosure of the sensitive variable (i.e., the key in
case of encryption algorithms), we predict, for each node in
the CDFG (which corresponds to a basic design block in the
RTL), its connection to the encryption key. For capturing these
links between variables and the sensitive variable, we utilize
a variable dependency graph. A variable dependency graph
visually represents the interdependencies between variables in
an algorithm. In this graph, nodes represent variables in the
RTL, and edges signify their dependencies, indicating how
changes to one variable might impact others.
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Fig. 3: Variable Dependency Graph Example for a node
labelled ‘AES Comp DEC.539:AS’ in the CDFG for the RTL
Source Code of AES Comp Design. Here, a1, b1, b0 and y
represent variables in the design. Kin represents the encryption
key for AES Comp benchmark.

For every node in the CDFG, we can extract the variable
stored at that location in the RTL design and then check
the dependency of this variable on the key. For instance, if
the extracted signal for a node in the CDFG is ‘BSY’, and
the encryption key is the variable ‘Kin’. These terms have
corresponding nodes in the variable dependency graph. A
snippet of the variable dependency graph has been shown in
Figure 3 (a). It can be seen that it contains both the encryption
key (labeled as ‘Kin’) and the signal BSY as its nodes. In
order to determine the connection of the node having its data
as BSY, with the key, we perform Depth First Search (DFS) to
calculate all the possible paths between this node and the key
[27]. Figures 3 (b) and (c) show the possible paths obtained
through DFS, where the yellow nodes highlight a path from
‘Kin’ to ‘BSY’. All these paths are susceptible to information
leakage since they have a connection to the encryption key.
Moreover, the greater the number of such paths a node has,
the greater the chances of it being leaky.

Degree of each node: The node degree provides infor-
mation about the number of connections for each node. The
greater the number of connections, i.e., the number of edges
stemming in and out from a node, the higher the chances
of it being connected to a leaky neighbor. A leaky neighbor
corresponds to an adjacent node which is associated with a
vulnerable module. If a node has more neighbors, it has a
higher probability of being connected to a neighbor that is
compromised or vulnerable to a PSC attack.

Hamming Distance: The Hamming distance serves as a
metric for comparing two binary data strings. For a precise
assessment of dynamic power consumption, it is imperative
to consider the number of bit-flips, given that they denote
the energy expenditure of a digital circuit amidst its transi-
tions between logic states [28]. The Hamming distance links
dynamic power to bit-flips in RTL designs. Each time a bit
in a signal toggles, it corresponds to a state change in the
circuit, which is associated with power consumption from
the charging and discharging of capacitors at transistor gates.
Using the Hamming distance, which signifies the count of
differing positions between two consecutive signal states, we
bypass complex power estimation models [6] and negate the
need for dynamic simulations. Our model is trained on features
tied to dynamic power, requiring only the RTL design input.

To calculate the Hamming distance, the RTL design of the
encryption algorithm is simulated and results are stored in a
Value Change Dump (VCD) file. This simulation is conducted
using Icarus Verilog. The VCD file chronologically logs binary
representations of all variable changes. The total Hamming
distance is derived by evaluating consecutive signal states
and selecting the maximum observed value. Given a series
of N signal states denoted by S, where S = (s1, s2...sn), the
Hamming distance between two consecutive signal states si
and si+1 is given by equation 1.

HDi(sig) = Count ones(si−1 ⊕ si) (1)

Here, HDi(sig) represents the hamming distance of signal
sig, at ith and (i−1)th state. Count ones is the function that
counts the number of ones in a binary string. In Equation 1,
two consecutive state values of sig are XOR-ed to find
differing bit values, fr om which the number of ones give the
hamming distance travelled by sig while going from (i−1)th

state to ith state.
In order to accurately capture all the bit-flips that occur

during the simulation, the count value for the corresponding
register is incremented each time a bit-flip occurs. This process
can be illustrated using Equation 2 for the example signal, sig.

HDtotal(sig) =

N∑
i=1

|HDi(sig)| (2)

Here, HDtotal(sig) represents the total hamming distance
travelled by signal, sig and N refers to the total number
of states for sig. This method effectively captures signal
value changes and utilizes them to assess the differential
power consumption between signals. Bit-flips serve as clear
indicators of dynamic power consumption when comparing
one signal to another.

Operation Type: To extract information regarding dynamic
power consumption, we consider logical operations (AND, OR,
XOR, and MUX) that contribute to the bit flipping of signals.
The arithmetic operations performed on signals also contribute
to bit flips and thus can lead to power consumption. The
gate operations XOR, OR, AND contribute to the change in
the Hamming distance of the signals. Moreover, a multiplexer
(MUX) is a form of conditional assignment to the signal and
contributes to power consumption as well. For each node
in the CDFG, we determine the presence of either of these
operations by a binary encoded vector. The values of these
vectors indicate the presence (value 1) or absence (value 0)
of each of the following operations: XOR, OR, AND, MUX,
indicating dynamic power consumption in the particular node.

3) Graph Neural Network Model: Figure 4 illustrates the
process flow of our proposed GNN model. It can be observed
that only the RTL designs of the encryption algorithms are
utilized as our input dataset. In order to train the GNN model,
we utilize the AES Comp design, which is a composite field
implementation of the Advance Encryption Standard (AES)
encryption algorithm [29]. The selection of AES for training
the model is motivated by its established usage in the domain
of PSC attack detection such as [30]. Moreover, AES Comp
was selected for training the GNN model, as it exhibited the
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highest number of nodes in the CDFG, compared to other
benchmarks, like, AES PPRM1, etc., mentioned in detail in
Section IV-A.

In this particular AES implementation, Sboxes are im-
plemented based on the composite field. The AES Comp
cipher consists of the Mixcolumns module, the Sbox module,
Subbytes, Encryption and Decryption modules. Out of these
modules, it is already known from prior research that Sbox and
Mixcolumns modules are vulnerable to PSC attacks [31], [32].
The MixColumns operation involves multiplying each column
of the state matrix by a fixed matrix of coefficients. These
multiplication operations can potentially introduce power vari-
ations that correlate with the key. An attacker can use this
variation in power consumption to deduce information about
the key used in the MixColumns operation. Moreover, the
Sbox operation in AES is closely related to the encryption
key which makes it vulnerable to PSC attacks.

Therefore, we label the nodes belonging to the Sbox and
Mixcolumns modules as leaky for our training dataset. The
rest of the nodes in CDFG will be labeled as non-leaky. It
can be observed from Figure 4 that the CDFG produced by
utilizing the method, is used as the input graph to the GNN
model. The feature set for the model comprises the node-level
attributes – node degrees, Hamming distance, vulnerable paths,
operations AND, OR, XOR, and MUX.

In the architecture of the GNN model, the input layer
comprises seven neurons, one neuron for each feature. There
are two graph convolutional layers in this architecture, namely,
GCN1 and GCN2, as shown in Figure 4. Each of these
layers is composed of two hidden layers. Each graph con-
volutional layer takes a tuple of three elements as input:
node representations, edges, and edge weights, each of which
represent the node features, the edges between nodes, and
the weights of each edge, respectively. The weights for each
edge are assigned as one in this model, since all connections
are considered equally important. The output layer of the
network is a fully connected feedforward neural network layer.
This layer takes the final node representations from the GNN
and applies a linear transformation, followed by a non-linear
activation function to produce the final output. This output
consists of a single neuron with a sigmoid activation function,
indicating that the problem is binary classification, with the
output representing the probability of the input graph belong-

ing to the leaky or non-leaky class. The GNN model generates
predictions for each node in the test dataset, categorizing them
into leaky or non-leaky class.

B. Explainability of the GNN model

In the domain of detecting vulnerabilities within encryption
designs, ensuring accurate predictions is of paramount impor-
tance. However, it is equally critical to ascertain the underlying
reasons for these predictions since they provide insights into
the model’s decision-making mechanism. It facilitates the
identification of the most relevant features contributing to the
model’s decisions. Consequently, features with negligible con-
tributions can be efficiently identified and eliminated, leading
to a reduction in computational overhead.

In this section, our primary objective is to provide meaning-
ful interpretations for the predictions generated by our GNN
model for leaky module detection. To achieve this goal ef-
fectively, we have leveraged a perturbation-based explanation
technique, specifically GNN-Explainer, due to its suitability
for addressing our specific problem [16]. Importantly, we
emphasize that while we employ GNN-Explainer in our anal-
ysis, our framework remains versatile and adaptable to other
explanation techniques as well. This explainability analysis
is performed in order to construct a subgraph Gs ⊆ G (the
CDFG) and associated node features Xs = {xi|vi ⊆ Gs},
that are critical in terms of their contribution to the node’s
classification. Once the GNN model is trained, it is used to
generate forecasts for sets of nodes that were not encountered
during the training process. To elucidate a specific prediction,
the GNN-Explainer is provided with the model, a target
node, and the entire nodeset with its features and edges. The
Explainer subsequently generates feature importance scores
and a corresponding subgraph, delineating whether a node is
classified as leaky or non-leaky. Individual node explanations
contribute to creating a global feature importance map for the
entire GNN model. By assessing and ranking these individual
scores, we discern the top-ranked features’ significance and
their impact on the model’s performance. This information is
fed back for improving the proposed GNN-based vulnerable
module detection methodology.

C. Vulnerability Localization
Following the determination of leaky modules evaluated by

our GNN model in Section III-A, we shift our focus towards
localizing the precise lines of code within the encryption
modules which induces leakiness. The localization process in
question takes place at the RTL source code level. This process
assumes a pivotal role in the precise determination of the
specific locations where leakage phenomena manifest within
the previously identified modules, resulting in vulnerabilities.
Consequently, in this section, we establish a methodology for
identifying such vulnerabilities at the RTL source-code level.
This process of correlating the leaky nodes identified by the
GNN model to specific lines in the RTL code for encryption
modules involves several key steps, which are subsequently
outlined, as shown in Figure 5.
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1) Node to RTL Line Mapping: Each node within the GNN
is assigned a unique identifier that connects the GNN nodes
to specific lines of code within RTL modules, including sub-
modules. This one-to-one mapping establishes a direct link
between GNN nodes and the corresponding lines of RTL code,
enabling precise pinpointing of vulnerable code segments.
This mapping acts as a crucial bridge between the GNN’s
predictions of vulnerable modules, and the exact lines of code
evoking these vulnerabilities in the identified modules. As a
result, it significantly enhances the framework’s capability to
detect and address potential PSC vulnerabilities at the RTL
line-level within the encryption algorithm.

2) Leaky Node Identification: The GNN model is trained
to categorize nodes as either ‘leaky’ or ‘non-leaky’, based
on previously computed features. Once the ‘leaky’ nodes are
identified, as described in Section III-A, we proceed to collect
the lines stored in these nodes, using the procedure mentioned
in Section III-C1. The rationale underpinning the aggregation
of nodes in the ‘leaky’ category resides in their inherent
capability to establish direct associations with the susceptible
RTL lines, thereby facilitating the process of localization of
potential PSC leakage sources with a high degree of precision.

3) Frequency Analysis: Following the aggregation of the
‘leaky’ nodes in the previous step, an analysis is conducted to
determine the frequency of association between each line of
code and the ‘leaky’ nodes. For each line of code identified
as vulnerable, we count the number of ‘leaky’ nodes that are
pointing to it. This step provides a frequency distribution of
leakiness for each line, thus delineating the lines of code that
exhibit a higher incidence of being directed to by ‘leaky’
nodes. Consequently, these lines are accorded a elevated
vulnerability status.

4) Vulnerability Ranking: By utilizing the frequency dis-
tribution, we rank each line of the RTL source code. The
ranking is necessary to determine the lines contributing the
greatest to PSC leakage, thereby eliciting the highest degree
of vulnerability. The ranking is determined by the number of
leaky nodes that are correlated to each line. Lines with higher
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Fig. 5: Each block refers to a step in the vulnerability localiza-
tion methodology. It can be observed that the process begins
by associating the GNN nodes with the lines in the RTL source
code, culminating in the identification of the vulnerability-
prone lines.

frequencies of leaky nodes are assigned higher ranks, implying
they are more likely to be sources of PSC leakage and should
be prioritized during implementing mitigation strategies. This
is because these lines are more frequently called upon by
the encryption algorithm to perform highly power consuming
calculations.

5) Source Code Analysis: In order to validate the rankings
obtained using the GNN predictions, we need to compare
them with the quantitative evaluation of the RTL code’s
susceptibility to PSC leakage. In order to perform this eval-
uation, we assign a leakage score to each line in the RTL
code of the identified vulnerable modules. This steps aids
in assessing the impact of each line on the PSC leakage.
The leakage score is calculated by summing the individual
scores of the metrics considered for the analysis of lines. The
following metrics (conditional dependency, bit manipulation,
function calls, dependency depth) are utilized in our method
for identifying leaky lines of code in cryptographic modules:

• Conditional Dependency: The presence of conditional
statements like if-else and case can introduce different
signal transitions and higher switching activity. This
varying behavior increases the potential for side-channel
attacks that exploit timing or power consumption varia-
tions.
1 if (secret_key == input) then output = 1;

else output = 0;

In this example, the code line contains an if-else state-
ment that depends on secret data (secret key). Therefore,
the presence of one condition checking statement will
contribute a score of one to the total leakage score.

• Bit Manipulation: Operations involving bit manipulation,
such as bitwise AND, OR, XOR, shifts and rotations,
can lead to increased dynamic power consumption. The
more bit manipulation operations in a line, the higher the
potential for leakiness.
1 assign new_val = (old_val << 4) ˆ (old_val >>

2);

In this example, the line contains two shifts and an XOR
operation, thereby making the contribution due to the
operations as three in the total leakage score.

• Function Calls: The presence of function calls within
a line could potentially introduce additional PSC vul-
nerabilities, depending on the nature of the functions
being called. The leakiness of the function itself would
contribute to the leakiness score of the line making the
call. For example, if a function accesses a lookup table,
the actual computational cost or operations occur during
the function’s execution (when it is called), not during
its definition. Therefore, the function calling line inherits
the underlying operational and data-handling properties
of the function.
1 output = Encrypt(input, key);

The example shows that the line contains a function call
to Encrypt, thereby, adding a score of one to the total
leakage score.

• Dependency Depth: Each line’s dependency on other
lines contributes to its ‘depth’. The greater the number
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of lines a given line depends on, either through direct or
indirect data flow, the more complex the behavior and
thus potentially higher the leakiness.

1 assign z = x + y; assign w = z * 2;

In this case, the second assignment line (assign w = z *
2) is dependent on the first (assign z = x + y), thereby
having a dependency depth of 1.

Now, let us consider the following RTL code in order to
determine the value of each metric and calculate the total
leakiness score:

1 if (private_data == flag) begin
2 assign bit_transform = (data_val >> 3) | (

data_val << 5);
3 result = Decrypt(bit_transform, secret);
4 assign sum = a + b;
5 assign product = sum * c;
6 end

In this sample, a conditional check against private data
incurs a Conditional Dependency score of one. Bit manip-
ulations on data val result in a Bit Manipulation score of
three due to two shifts and an OR operation. The Decrypt
function contributes a score of one for Function Calls. Finally,
a Dependency Depth score of one is noted, as the product
relies on the sum derived from a and b. We assume that all the
metrics have equal weight, the calculated overall leakage score
for this block would be six, the sum of all these individual
scores.

6) Correlation with Source Code Analysis: After obtaining
the ranking from the GNN, as mentioned in Section III-C4, we
compare this information with the leakiness scores obtained
from source code analysis in Section III-C5, as it aides in
validating the predictions made by the GNN. For instance, if
a line in the leaky MixColumns module had a high leakiness
score in source analysis and also ranked high utilizing the
results furnished by the GNN model, then its vulnerability is
strongly corroborated. Therefore, by correlating the leakiness
scores of all the lines with their respective rankings, we obtain
the vulnerable lines from the encryption designs.

Overall, the significance of this localization process indi-
cates that lines with more leaky nodes rank higher in vulner-
ability, as they play a crucial role in encryption computations.
Lines with a greater number of leaky nodes are more fre-
quently implicated in the calculations integral to the encryption
algorithm. This elevated usage and importance makes such
lines more susceptible to PSC attacks. By evaluating lines
against their leaky node associations, we discern the most
vulnerable segments of the RTL code. Detailed results of this
method have been discussed in Section IV-C.

D. Fortification

Masking is essential in encryption algorithms to prevent
adversaries from deducing sensitive cryptographic keys or
data. This is because analyzing observable PSC information
can inadvertently leak confidential information during en-
cryption operations. Our framework leverages a pre-trained
LLM, capable of understanding and manipulating complex
code structures, in order to automatically perform masking

on the vulnerable locations. In this section, we highlight the
dataset utilized for training the model and its outcomes.

A commonly used approach to protect implementations of
AES against power side channel attacks is Boolean masking
where the goal is to randomize all intermediate results that
occur during the computation of the algorithm [33]. In this
masking technique, cryptographic computations are fortified
against PSC attacks by introducing a layer of obfuscation to
the sensitive operations. At the beginning of each operation, a
random masking value is chosen. This mask remains constant
for the entirety of the operation to maintain consistency.
Each sensitive operand is concealed by XORing it with this
random mask, effectively masking the original data during
the computational process. After executing the cryptographic
operations on these masked operands, the resultant output un-
dergoes an “unmasking” process, achieved by again XORing
it with the same random mask. This ensures that the final
outcome matches what would have been achieved without the
masking process, while the intermediate steps remain shielded
from potential exploits. By segmenting the computation into
multiple masked stages, this technique bolsters security by
making it challenging for adversaries to discern the original
data from observable operations.

The following example highlights our Boolean masking
process.

1 \\Original expression
2 assign y = xˆz;
3

4 \\masked counterpart
5 assign mask = $random;
6 assign y = (xˆmask)ˆ(zˆmask);

As seen in this example, each sensitive operation is random-
ized by splitting it into multiple masked operations, thereby
obfuscating the data being processed. First, a random mask is
generated and the operands x and z are individually XORed
with this random mask, effectively masking or “hiding” their
original values. This way of masking is effective and gener-
alizable since it does not depend on the previous instances of
the variables present in the line and only on the current time
operation being performed.

1) Large Language Model: Cryptographic algorithms, de-
spite their mathematical robustness, often become susceptible
to vulnerabilities when translated into real-world designs.
Manually identifying and rectifying these vulnerabilities, es-
pecially in complex RTL designs, is not only time-consuming
but also prone to human error. The specialized knowledge
required to identify and rectify the vulnerabilities is both
scarce and expensive. LLMs, with their ability to process
vast amounts of information and recognize intricate patterns,
present an efficient alternative. Their automated nature ensures
consistency, reducing human error and offering a scalable
solution to bolster cryptographic security

Our methodology employs a Large Language Model (LLM),
specifically a pre-trained Falcon-7B model, to enhance the se-
curity of cryptographic algorithms. Falcon LLM is a generative
open-source LLM developed by the Technology Innovation
Institute (TII). Falcon-7B is a 7B parameters causal decoder-
only model built by TII and trained on 1,500B tokens of
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RefinedWeb data enhanced with curated corpora [34]. We be-
gin with a curated dataset containing pre-identified vulnerable
lines from various RTL designs. The model is then fine-tuned
on this dataset to learn how to transform these vulnerable lines
into their secure, masked counterparts. The training process
involves encoding both the masked and original lines of code,
aiming to teach the model how to predict the masked versions
of lines effectively. Upon successful validation, the model
is integrated into the test benchmarks. During deployment,
it takes the pre-identified vulnerable lines as input and au-
tonomously replaces them with secure, masked lines generated
during training. This automated methodology substantially
improves the resilience of cryptographic designs, eliminating
the need for manual code revisions, thereby providing a robust
and efficient security solution.

2) Dataset Generation: Our fortification strategy involves
the generation of a dataset that will be required to train
the LLM model. The dataset contains vulnerable lines from
various AES benchmarks utilized from Trusthub [35]. It
also consists of synthetic examples manually generated to
copy the behaviour of the lines that can pose potential risks
to PSC attacks. Therefore, the synthetically generated data
replicates operations and statements found in the Trusthub
designs, ensuring its relevance and resemblance to real-world
designs. We use synthetic data due to the limited number
of designs in Trusthub that are contributing to PSC attacks,
namely, AES-T300, AES-T1300, AES-T1400, AES-T1500,
AES-T600, AES-T2000 and AES-T2100 [36]. After the se-
lection of susceptible lines from the benchmarks, we proceed
to generate their masked counterparts.

IV. EXPERIMENTAL RESULTS

In this section, we will describe the evaluation of our pro-
posed technique, SCAR, using popular encryption algorithms.

A. Experimental Setup

Model Architecture and Hyperparameters: As mentioned
in Section III-A3, the GNN architecture consists of an input
layer of seven neurons, which accounts for each unique
feature in the data. Furthermore, there are two pivotal graph
convolutional layers, termed GCN1 and GCN2, as shown in
Figure 4. The output is a fully connected feedforward neural
network layer and undertakes a linear transformation on the
derived node representations. The output is a single neuron
facilitated by the sigmoid activation function. Furthermore, hy-
perparameter tuning was performed to achieve optimal model
performance on the test dataset. The learning rate was set to
0.01, in order to guide the optimization process. Data was
processed in batches of 20, optimizing resource utilization.
A dropout rate of 0.3 was employed to enhance robustness,
ensuring a random 30% of nodes were excluded during each
iteration for balanced learning. The training of the model was
conducted over 32 epochs, ensuring thorough iteration over
the dataset.

Description of AES benchmarks: We conduct an evalua-
tion of our proposed approach, SCAR, using side-channel vul-
nerabilities in three distinct implementations of the Advanced

Encryption Standard (AES), namely AES TBL, AES PPRM1,
and AES PPRM3 [29]. The generated CDFGs for each of
these benchmarks consist of 63, 62 and 423 nodes, respec-
tively, providing comprehensive coverage for our analysis.
Details about training the model using the AES Comp bench-
mark, whose CDFG consists of 703 nodes, have already been
mentioned in Section III-A3. By testing the model on a diverse
set of AES implementations, it becomes exposed to a wider
range of architectural and implementation variations. This
helps us verify whether the model can effectively identify
vulnerable modules regardless of the specific implementation
details or architectural variances.

Description of other benchmarks: To demonstrate the
feasibility of our proposed approach, we evaluated our model
on encryption algorithms unknown to the framework, like
RSA and PRESENT, which were not present in the training
set, utilizing the RSA1024 RAM and PRESENT benchmarks,
respectively. The CDFGs generated for these benchmarks
comprised 436 and 158 nodes, respectively. Please note that
our model was trained using only the AES Comp benchmark.
In the RSA algorithm, the Modular Exponentiation operation
is susceptible to PSC leakage [37]. Modular exponentiation is
a critical operation in the RSA encryption algorithm, used to
compute the ciphertext from the plaintext and the public key.
The operation involves computing the remainder of a large
number raised to a power, divided by another large number.
The power is determined by the public key, and the remainder
is the ciphertext. This operation is vulnerable to PSC attacks
since it involves multiple conditional branches, which depend
on the bits of the key. As a result, the power operation may
consume different amounts of power depending on the specific
value of the key.

For the PRESENT encryption scheme, it is known that the
Sbox is most vulnerable to PSC attacks for secret key leakage
[38]. During the encryption process, the plaintext undergoes
Sboxes to produce ciphertext bits, with the output determined
by plaintext and key bits. Observing power consumption
patterns, an attacker can deduce the input and consequently,
the key value.

Furthermore, we evaluate our framework on two lattice-
based Post Quantum Cryptography (PQC) algorithms: Saber
and CRYSTALS-Kyber. Both of these algorithms have
achieved finalist status in the PQC Standardization process
conducted by NIST. Polynomial multiplication, a crucial oper-
ation in these algorithms, is susceptible to PSC attacks due to
its computationally-intensive nature. An attacker can exploit
this to produce variable power consumption patterns and
can potentially uncover secret operands [39]. Consequently,
modules executing these multiplications in RTL designs risk
PSC leakage [40].

Next, we will describe each of the open source benchmark
designs in detail utilized for the evaluation of our framework.

• AES TBL [29]: This implementation of AES utilizes
look-up tables to compute the substitution box (Sbox)
output. The AES TBL cipher comprises the following
modules: an Encryption module, a SubBytes module, four
MixColumns modules, and four Sbox modules.
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• AES PPRM1 [29]: In this particular implementation of
AES, the Sboxes are implemented based on Arithmetic
Normal Form (ANF), which is a mathematical expression
used to represent Boolean functions. The benchmark
consists of four Mixcolumns modules, four Sbox modules,
a Subbytes module and an Encryption module.

• AES PPRM3 [29]: With respect to this AES implemen-
tation, the Sboxes are implemented based on the 3-stage
Perfect Power Reduction Method (PPRM), which is a
mathematical technique used to minimize the implemen-
tation complexity of Boolean functions. The benchmark
consists of four Mixcolumns modules, four Sbox modules,
a Subbytes module and an Encryption module.

• RSA1024 RAM [29]: This implementation of RSA
encryption algorithm involves several interconnected
modules, including Memory, SequencerBlock, Mod-
ExpSequencer, MontMultSequencer, MontRedcSequencer,
InvNSequencer, CpSequencer, LoopController, Memo-
ryAddressController, MultiplicationBlock, and ArithCore.
These modules work together to perform operations such
as modular exponentiation, multiplication, and address
management, among others.

• PRESENT [38]:This implementation of the PRESENT
cipher utilizes three key modules: the Pbox (permutation
box) module, the Sbox (substitution box) module, and
the Sboxkey module. These modules collaborate to ensure
robust and efficient encryption. The Pbox handles data
permutation, the Sbox manages data substitution, and
the Sboxkey operates as a specialized Sbox, generating
a lookup table using a secret key.

• SABER [41]: The Saber implementation executes 256-
bit polynomial multiplication in parallel, using power-
of-two moduli to bypass modular reduction. The pri-
mary module, wrapper top, embeds ComputeCore3
and shift registers. Within ComputeCore3 are essen-
tial SABER components like AddRound, AddPack, and
BS2POLVEC. The design also integrates Binomial-
Sampler, Vector Polynomial Multiplier, Unpack, Copy-
Words, and for polynomial multiplication, it employs
VectorMul wrapper, poly mul256 parallel in2, paral-
lel Mults1, and small alu1.

• KYBER [42]: The benchmark offers a hardware
implementation for polynomial multiplication in the
CRYSTALS-Kyber PQC scheme. The main module, Ky-
berHPM1PE top, incorporates KyberHPM1PE, memory
modules (BRAM and BROM), an addressgenerator for
memory, and butterfly for polynomial tasks. Stages are
managed by dt0 to dt3. Arithmetic operations utilize
intmul for multiplication and other modules like modadd,
modred, modmul, modsub. Lastly, shiftreg handles data
shifting.

B. Evaluation of the Identified Vulnerable Modules

We perform RTL line-level analysis on the benchmarks
to identify the leaky locations in their respective RTL-level
encryption designs. First, the GNN model performs node-level
binary classification to label each node. Afterwards, the nodes

TABLE I: Benchmark evaluation results on predicting the vul-
nerable modules of the encryption algorithms by the proposed
framework.

Benchmark Encryption
Algorithm

Accuracy
(%)

Precision
(%)

Recall
(%)

AES PPRM1
AES

94.49 100 90.48
AES PPRM3 93.38 99.22 93.85

AES TBL 90.48 97.36 88.90
RSA1024 RAM RSA 90.62 91.82 97.88

PRESENT PRESENT 90.50 86.36 96.20
SABER SABER 91.84 85.94 94.62
KYBER KYBER 88.89 95.38 91.20

belonging to the “leaky” class are identified as vulnerable. The
GNN model was first trained on the AES Comp benchmark
and furnished 98% accuracy, due to reasons mentioned in
Section III. We assign training labels to each of the nodes in
the generated CDFG for the benchmark. We assign the label
“leaky” to all the nodes belonging to the Sbox Modules (SB0,
SB1, SB2, SB3) and MixColumns Modules (MX0, MX1,
MX2, MX3).

On evaluation, the GNN model predicts the vulnerable
modules in the RTL designs for AES, RSA and PRESENT
benchmarks and obtains promising results. The performance
for each of the benchmarks is outlined in Table I. Column 1 of
the table provides details about the benchmarks used. Column
2 refers to the encryption algorithm for each benchmark. The
third column and fourth column refer to the accuracy and
precision achieved for the benchmarks, respectively. Finally,
the fifth column corresponds to the recall obtained by the GNN
model. The proposed approach, when evaluated on previously
unseen AES implementations which were not included in the
training data, furnishes up to 94.49% accuracy, 100% preci-
sion, and 97.88% recall. Moreover, the generalizability of the
approach is evident when it is applied to unfamiliar encryption
algorithms, such as RSA, PRESENT, SABER and KYBER
which possess distinct designs and functionalities compared
to AES. Despite not being observed during the training phase,
our framework successfully identified the vulnerabilities in
these designs’ leaky modules. This detection was achieved
by leveraging the GNN model’s ability to learn the distinctive
feature patterns associated with the leaky nodes. In these cases,
the model achieves promising results with an accuracy of up
to 90.62%, recall of 91.82%, and precision of 97.88%. This
indicates the potential adaptability of our approach to diverse
encryption techniques, encompassing various architectures and
implementations. For each of the benchmarks, the proposed
GNN model successfully predicts the “leaky” node and thus,
their corresponding leaky modules.

For the AES PPRM1, AES PPRM3 and AES TBL bench-
marks, the four Sbox modules (SB0, SB1, SB2, SB3) and
MixColumns modules (MX0, MX1, MX2, MX3) were iden-
tified as “leaky”. The lines highlighted in the second column
of Table II are responsible for their leakiness. Similarly, for
the RSA1024 RAM benchmark, the ModExpSequencer and
MultiplicationBlock were identified as the vulnerable modules,
which are prone to PSC leakage. The ModExpSequencer mod-
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TABLE II: Summary of RTL Line-level Localization and Fortification Results. The table highlights the lines with the highest
PSC leakage in the vulnerable modules of each benchmark. To achieve the fortified counterpart, Boolean masking has been
applied on the vulnerable line using LLM.

Benchmark Vulnerable Module Functional Statement No. Vulnerable Line Masked Implementation

AES PPRM1 SBOX 1

assign y[0] =
x[0] & x[2] & x[3] & x[4] & x[5] & x[6] & x[7]
ˆx[0] & x[1] & x[2] & x[4] & x[5] & x[6] & x[7]
// ...
ˆx[0]
ˆ1’b1;

assign y[0] =
x[0] & x[2] & x[3] & x[4] & x[5] & x[6] & x[7]
ˆx[0] & x[1] & x[2] & x[4] & x[5] & x[6] & x[7]
// ...
ˆx[0]
ˆ1’b1
ˆmask;

Mixcolumns 3

assign y = a2[7]ˆb1[7]ˆb3[6], a2[6]ˆb1[6]ˆb3[5],
// ..
a1[1]ˆb3[1]ˆb0[0]ˆb0[7], a1[0]ˆb3[0]ˆb0[7];

assign y = a2[7]ˆb1[7]ˆb3[6]ˆmask, a2[6]ˆb1[6]ˆb3[5]ˆmask,
// ..
a1[1]ˆb3[1]ˆb0[0]ˆb0[7]ˆmask, a1[0]ˆb3[0]ˆb0[7]ˆmask;

AES PPRM3 SBOX 14

assign y[4] = (d[3] & a[1])ˆ(d[1] & a[3])ˆ(a[0] & d[0])
ˆ(b[3] & d[3])
// ...
ˆ(b[0] & d[0]);

assign y[4] = (d[3] & a[1])ˆ(d[1] & a[3])ˆ(a[0] & d[0])
ˆ(b[3] & d[3])
// ...
ˆ(b[0] & d[0])ˆmask;

Mixcolumns 5

assign y = a2[7]ˆb1[7]ˆb3[6], a2[6]ˆb1[6]ˆb3[5],
// ..
a1[1]ˆb3[1]ˆb0[0]ˆb0[7], a1[0]ˆb3[0]ˆb0[7];

assign y = a2[7]ˆb1[7]ˆb3[6]ˆmask, a2[6]ˆb1[6]ˆb3[5]ˆmask,
// ..
a1[1]ˆb3[1]ˆb0[0]ˆb0[7]ˆmask, a1[0]ˆb3[0]ˆb0[7]ˆmask;

AES TBL SBOX 1

case (x)
0: S = 99;
1: S = 124;
2: S = 119;
// ...
255: S = 22;
endcase

case (x)
0: S = 99ˆmask;
1: S = 124ˆmask;
2: S = 119ˆmask;
// ...
255: S = 22ˆmask;
endcase

MixColumns 5

assign y = a2[7]ˆb1[7]ˆb3[6],
a2[6]ˆb1[6]ˆb3[5],
a2[4]ˆb1[4]ˆb3[3]ˆb3[7],
//...

assign y = a2[7]ˆb1[7]ˆb3[6]ˆmask,
a2[6]ˆb1[6]ˆb3[5]ˆmask,
a2[4]ˆb1[4]ˆb3[3]ˆb3[7]ˆmask,
//...

RSA1024 RAM ModExpSequencer 1 if (Msb == 1) pc <= pc[10:0],1’b0; if (Msbˆmask == 1) pc <= pc[10:0], 1’b0;

MultiplicationBlock 5 assign regy in =
assign exor[i] = d[i]ˆInv; assign exor[i] = d[i]ˆmaskˆInv;

PRESENT SBOX 1

always @(idat)
case (idat)
4’h0 : odat = 4’hC;
4’h1 : odat = 4’h5;
// ...
endcase

always @(idatˆmask)
case (idatˆmask)
4’h0 : odat = odatˆmaskˆ4’hC;
4’h1 : odat = odatˆmaskˆ4’h5;
// ...
endcase

SABER
poly mul256 parallel in2 6 secret <= {s vec 64, secret[1023:64]}; secret <= {s vec 64ˆmask, secret[1023:64]ˆmask};

poly mul256 parallel in2 6 secret <= {secret[1019:0], secret[1023:1020]ˆ4’b1000}; secret <= {secret[1019:0] ˆ mask, (secret[1023:1020] ˆ 4’b1000) ˆ
mask};

small alu1 2 wire [12:0] result = s[3] ? Ri - a mul s : Ri + a mul s; wire [12:0] result = (s[3] ? (Riˆmask - a mul sˆmask) : (Riˆmask
+ a mul sˆmask));

KYBER intmul 1 always @* P DSP = A*B;
assign P = P DSP;

always @* P DSP = (Aˆmask)*(Bˆmask);
assign P = P DSP;

ule is responsible for controlling the sequence of operations
in modular exponentiation, which involves a large number of
modular multiplications and modular reductions. Similarly, the
MultiplicationBlock module was responsible for executing the
modular multiplication operation. As mentioned previously, in
RSA modular exponentiation is a critical operation susceptible
to power-side channel attacks. For the PRESENT benchmark,
we observed that the module vulnerable to PSC attacks is
Sbox. As mentioned previously, the Sbox module of PRESENT
cipher, in particular, is susceptible to PSC attacks because it
involves a large number of computations that can cause varia-
tions in power consumption. By carefully measuring the power
consumption of the device during the encryption or decryption
process, an attacker can potentially obtain information about
the secret key used in Sbox.

In the case of the SABER benchmark, it was observed
that multiplication-related modules are especially vulnerable
to PSC attacks. Specifically, poly mul256 parallel in2 mod-
ule, which handles 256-bit polynomial multiplication and
the small alu1 module which performs the arithmetic and
accumulation operations for polynomial, contributed to the
vulnerability of the design. Due to the computational intensity
of these multiplication operations, there are notable variations
in power consumption. This makes them susceptible targets

for attackers aiming to exploit PSC weaknesses to obtain
unauthorized information. For KYBER, the intmul module
was identified as leaky. The intmul module performs integer
multiplication, which is utilized as a sub-module in modular
multiplication, which is often targeted in power analysis at-
tacks. It is also utilized in the butterfly module which performs
the main finite field arithmetic operations in the design. These
operations are sensitive as their power consumption can leak
information about the data being processed.

Our experiment hypothesized that certain modules within
cryptographic designs, due to their computational nature, are
inherently more susceptible to PSC attacks. Our findings
crystallized this in two key insights. First, it became apparent
that modules handling complex mathematical tasks were es-
pecially susceptible to PSC leakage. Secondly, it underscored
the importance of early detection and mitigation of the vul-
nerabilities.

C. RTL Line-Level Analysis and Fortification Results

This is followed by the RTL line-level analysis of the identi-
fied vulnerable modules. Table II presents a concise overview
of identified susceptible lines in the benchmark modules. The
first column specifies the benchmark name, followed by the
second column indicating the module predicted as vulnerable
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by the GNN. The third column highlights the specific line
number within the module susceptible to PSC attacks, referred
to as functional statement number, since it comprises of blocks
performing assignments, conditional statements as well as
functions. The fourth column presents the content of the iden-
tified vulnerable line within the functional statement block.
Lastly, the fifth column displays the masked version of the
vulnerable line, processed by the LLM. For brevity purposes,
we have not displayed the full lines from the RTL source
codes of the designs. In summary, this table offers insights into
vulnerabilities within various designs while also presenting the
corresponding protected implementations achieved through the
LLM model. The masked implementations were achieved by
applying Boolean masking to the sensitive variables in the
identified vulnerable lines. Consequently, our framework not
only identifies but also effectively mitigates the vulnerabilities,
streamlining the path to a more robust design.

D. Analyzing GNN predictions

As explained in Section III-B, we incorporate explainability
analysis into the decision processes of the trained GNN model.
To this end, we employ a perturbation-based explanation tech-
nique GNN-Explainer for furnishing explanations for model
predictions [16]. The GNN-Explainer is able to detect con-
densed subgraph structures and node characteristics that are
extremely important for individual predictions of the model.
For instance, Figure 6 (a) depicts the generated subgraph
for a random node from the PRESENT benchmark, and the
corresponding feature importance scores are demonstrated in
Figure 6 (b). In the context of instance-wise explanations,
the subgraph focuses on the neighborhood and connections
surrounding the node. It captures the subset of nodes and
edges that directly influence the prediction of the GNN model.
The features “Degree”, “Hamming distance”, and “Paths” are
observed to have the most contribution with the highest score,
signifying their criticality for the prediction.

In order to analyze the significance of the various node
features for the model behavior as a whole, we aggregate
and average the feature importance scores and their overall
rankings for all the node explanations. As illustrated in Figure
7, it can be observed that the features “Paths”, “Degree”,
and “Hamming distance” are ranked as the most essential
features. These top three features have similar average feature
scores as well. On the other hand, the remaining four features
are shown to have negligible significance in terms of lower
average feature scores and thus higher average rankings. We
exploit these insights provided by the GNN-Explainer to select
the most important node features and modify the dataset by
removing features with negligible contribution to the model
predictions, which in turn simplifies the model as well as
reduces the computation overhead without compromising the
model accuracy. The performance of the model when trained
with only 3 features, for all the benchmarks has been shown
in Figure 8. It can be observed that in the case of the
AES PPRM1 benchmark, there is a minute change in the
accuracy of the GNN model. It decreases slightly from 94.49%
(when trained with all seven node features) to 93.81% when
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Fig. 6: (a) Subgraph for the instance-wise explanation, which
illustrates a portion of the GNN’s internal connectivity, which
is relevant for understanding how the model made a specific
prediction for a given instance or input. (b) Feature importance
scores for a sample predicted by the GNN model, which
provides information about the importance of different features
in the GNN’s decision-making process for that particular
prediction.

Fig. 7: Graph showing the aggregated feature ranking of
instance-wise explanations, showcasing the key features’ sig-
nificance.

trained only with the top-3 essential features. These three sig-
nificant features when selected from the set of seven features,
result in 57% reduction of the feature set. This demonstrates
that model explanation techniques not only provide insights
into node classification but also provide valuable feedback,
that are useful for optimizing the model.

E. Comparison with Post Synthesis Experiments

In this section, our objective is to compute the dynamic
power consumption of the RTL locations identified as vul-
nerable through our framework, SCAR. We intend to es-
tablish a comparative analysis by contrasting our prediction
results with the quantitative dynamic power figures obtained
post-synthesis, following the transformation of RTL designs
into netlists. For our post synthesis experiments, we utilize
industry-scale tools from Synopsys: Synopsys VCS for sim-
ulation and Synopsys Design Vision for synthesis. Initially,
we simulate our designs to ensure their functional correct-
ness and performance. This is accomplished using designated
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Fig. 8: Graph showing the performance of all the benchmarks,
when the GNN is trained with all 7 features vs only with the
top-3 features.

test benches, which allow us to comprehensively verify the
design’s behavior under a variety of test cases. Following the
successful simulation, we generate VCD files using Synopsys
VCS. The subsequent phase is design synthesis using Synopsys
Design Vision. The tool transforms the RTL-level design de-
scription into gate-level representations, while accounting for
critical factors such as timing, area, and power. The final result
of this process is the generation of a netlist, a comprehensive
representation of the entire design in terms of hardware
primitives such as gates and flip-flops. Following the synthesis
process, we analyze the number of gates synthesized in the
netlist and the dynamic power consumption for each of the
lines in the identified vulnerable modules. It is observed that
the vulnerable lines predicted by our framework correspond to
the highest number of gates and hence highest dynamic power
amongst all other lines in the RTL design.

Figure 9 provides a comprehensive overview of the post-
synthesis reports for each of the benchmarks. Within these
visual representations, the x-axis corresponds to the lines
in the vulnerable modules of the RTL design, referred to
as functional statements, since they compromise of various
blocks for performing assignments, conditional statements
such as if-else constructs, always blocks, case statements, and
functions. Meanwhile, the y-axes represent both the number of
gates present in the netlist and the associated dynamic power
consumption. Please note that in the PRESENT benchmark,
only the Sbox module was vulnerable, which contains just
one functional statement and therefore, it has not been visu-
alized. Similarly, for the KYBER benchmark, the identified
intmul module also had only one functional statement. It
was observed that the peak in dynamic power consumption
occurs at the functional statements identified as ‘leaky’ by our
framework, as detailed in Table II. It is noticeable that the
functional statements which lead to highest dynamic power
consumption, also have the highest number of gates in the
netlist of the design. In the figures, we have represented the
functional statement numbers, these numbers as well as their
content is elaborated in Table II.

Our results align with existing research for accurately
identifying vulnerable modules susceptible to PSC leakage in

encryption algorithms [6]. While conventional approaches rely
on complex power modeling for module-level identification,
we have adopted a much simpler machine learning model.
Furthermore, our approach also performs analysis at the RTL
line-level, whose results have been verified with dynamic
simulation on synthesized netlists. Through these results, it is
evident that the locations pinpointed by SCAR in the design
are associated with elevated dynamic power consumption.
Notably, even when working with RTL designs, SCAR can
produce highly accurate localizations early in the design phase,
at par with those from post-synthesis netlist-based analysis.
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VI. CONCLUSION

This paper proposes SCAR, a novel GNN-based approach
to detect leaky modules and lines in encryption hardware RTL,
which are vulnerable to PSC attacks. A notable limitation
of existing post-silicon level PSC analysis approach lies in
the potential impracticability of retrofitting security measures
onto pre-existing devices, necessitating re-spins, and thus,
increasing production cost. In contrast, SCAR, by leveraging
the control data flow graph extracted from the encryption
designs as well as an explainable GNN-based modeling, is
able to capture the intricate relationships and dependencies
between nodes (corresponding to design blocks in the RTL),
enabling accurate identification of modules susceptible to
PSC leakage in the pre-silicon RTL. Our proposed approach
achieved up to 93.54% accuracy, 100% precision and 90.48%
recall, respectively, when evaluated on unseen AES imple-
mentations as well as unseen encryption algorithms, including
Post-Quantum Cryptography algorithms. Furthermore, SCAR
includes a robust source code analysis-based technique to pin-
point these vulnerabilities at a more granular RTL line-level.
Subsequently, we employ an automated approach, leveraging
a LLM, to effectively mitigate these identified vulnerabilities.
We substantiate the accuracy of our findings by conducting
a rigorous comparison with post-synthesis experiments. The
proposed SCAR framework presents designers with an ef-
fective and proactive approach to mitigate the inherent risks
associated with PSC attacks. Through the precise anticipation
of vulnerable design blocks in advance, SCAR not only
fortifies security measures but also yields substantial cost-
savings.
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