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Abstract

This paper investigates an intelligent reflecting surface (IRS) enabled multiuser integrated sensing

and communications (ISAC) system, which consists of one multi-antenna base station (BS), one IRS,

multiple single-antenna communication users (CUs), and one target at the non-line-of-sight (NLoS)

region of the BS. The IRS is deployed to not only assist the communication from the BS to the CUs,

but also enable the BS’s NLoS target sensing based on the echo signals from the BS-IRS-target-IRS-BS

link. We consider two types of targets, namely the extended and point targets, for which the BS aims

to estimate the complete target response matrix and the target direction-of-arrival (DoA) with respect

to the IRS, respectively. To provide full degrees of freedom for sensing, we consider that the BS sends

dedicated sensing signals in addition to the communication signals. Accordingly, we model two types

of CU receivers, namely Type-I and Type-II CU receivers, which do not have and have the capability of

canceling the interference from the sensing signals, respectively. Under each setup, we jointly optimize

the transmit beamforming at the BS and the reflective beamforming at the IRS to minimize the Cramér-

Rao bound (CRB) for target estimation, subject to the minimum signal-to-interference-plus-noise ratio

(SINR) constraints at the CUs and the maximum transmit power constraint at the BS. We present efficient

algorithms to solve the highly non-convex SINR-constrained CRB minimization problems, by using the
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techniques of alternating optimization, semi-definite relaxation, and successive convex approximation.

Numerical results show that the proposed design achieves lower estimation CRB than other benchmark

schemes, and the sensing signal interference cancellation at Type-II CU receivers is beneficial when the

number of CUs is greater than one.

Index Terms

Intelligent reflecting surface (IRS), integrated sensing and communications (ISAC), Cramér-Rao

bound (CRB), joint transmit and reflective beamforming.

I. INTRODUCTION

Integrated sensing and communications (ISAC) has been recognized as one of the key technolo-

gies for the future sixth-generation (6G) wireless networks, in which base station (BS) infrastruc-

tures and spectrum resources are used to provide ubiquitous sensing and communication services

at the same time (see, e.g., [2], [3] and the references therein). In practice, the performance of

ISAC networks is highly dependent on the wireless propagation environment. For instance, the

wireless sensing generally relies on the line-of-sight (LoS) links for realizing the estimation of

target angles and ranges [4], and the wireless communications demand strong communication

channels and weak interference for meeting the quality-of-service (QoS) or signal-to-interference-

plus-noise ratio (SINR) requirements. However, due to the obstacles such as buildings/trees in

outdoor scenarios and furniture/walls in indoor scenarios, the signal propagation links between

BSs and sensing targets/communication users (CUs) may be significantly attenuated or even

blocked, thus severely degrading the sensing and/or communication performance.

Recently, intelligent reflecting surface (IRS) [5], [6], also known as reconfigurable intelligent

surface (RIS) [7], has emerged as a promising technology to resolve the above issues by

reconfiguring the wireless propagation environment via properly adjusting the phase shifts of

incident signals by controlling the reflecting elements. On one hand, IRSs can improve the

communication performance by, e.g., enhancing the received signal strength at CUs, refining

channel ranks by providing more signal paths, and suppressing the co-channel interference [6].

On the other hand, IRSs can also enhance the wireless sensing performance via creating new

virtual LoS links for the targets located in the blocked region [8] and providing additional sensing

angles for the targets in the LoS region [9]. Therefore, IRS-enabled ISAC has received growing

interests recently [10]–[19].



3

Despite its appealing benefits, IRS-enabled ISAC brings new challenges to be dealt with.

First, as compared to the conventional ISAC system without IRSs, the reflective beamforming

at IRSs (via controlling the reflection phase shifts) introduces a new design degrees of freedom

(DoFs) for enhancing the ISAC performance. However, the design of reflective beamforming is

challenging due to the large number of reflection phase shifts that need to be jointly optimized

and their resultant unit-modulus constraints on the reflection coefficients [5]. Next, as sensing

and communication tasks coexist in the ISAC system, it is important to properly manage their co-

channel interference and balance their performance tradeoff via the joint transmit and reflective

beamforming design. This, however, is also challenging, as the resultant optimization problems

are highly non-convex and involve complicated coupling between the transmit and reflective

beamformers.

In the literature, prior works have investigated IRS-enabled ISAC under different setups (see,

e.g., [10]–[19]). For example, the authors in [12] considered an IRS-enabled ISAC system

with multiple targets at the non-LoS (NLoS) region of the BS and one CU, in which the

minimum sensing beampattern gain (or worst-case target illumination power) for target sensing

was maximized while ensuring the signal-to-noise ratio (SNR) requirement at the CU. The

authors in [13] studied a double-IRS-enabled ISAC system with multiple CUs, where one IRS

was deployed to help the CUs’ communications and the other IRS was equipped to assist the

target sensing. The authors studied two problems of minimizing the sensing cost function and

maximizing the worst-case target illumination power, respectively, while ensuring the minimum

SINR requirements at individual CUs. The authors in [14] deployed dedicated sensing receivers

at the IRS and specialized transmitters near the IRS, such that the target direction-of-arrival

(DoA) estimation is performed at the IRS receivers based on echo signals from the transmitter-

target-IRS receivers and the transmitter-IRS-target-IRS receivers link. The authors maximized the

average received signals power through the specialized transmitters-IRS-target-IRS receivers and

transmitter-target-IRS receivers links at the IRS by reflective beamforming design. The authors

in [15] considered the IRS-enabled ISAC system by utilizing both the direct BS-target-BS and

the reflected BS-IRS-target-IRS-BS links for target sensing, in which the joint beamforming was

optimized to maximize the sensing SINR subject to the QoS requirements for communications,

by considering different design principles based on zero-forcing (ZF), minimum mean square

error (MMSE), and constructive interference (CI), respectively. The authors in [16] considered a

double-IRS-assisted communication-radar coexistence system, in which one IRS is placed close
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to the BS transmitter and the other is near the CU receiver for assisting communication only.

Under this setup, the communication SINR was maximized while guaranteeing the sensing SINR.

Besides using the target illumination power and the sensing SINR as the sensing performance

metrics in [12]–[16], there has been another line of works on IRS-enabled ISAC that adopted the

Cramér-Rao bound (CRB) as the sensing performance metric for estimating target parameters

(e.g., target locations and angles) [17]–[19]. The CRB provides a lower bound on the variance

of any unbiased parameter estimators, which serves as the fundamental performance limits for

parameter estimation [20]–[23]. For example, prior works [17], [18] considered the IRS-enabled

ISAC systems with IRSs deployed for assisting communications only, in which the sensing

is performed at the BS based on the BS-target-BS links. In this case, the authors optimized

the communication performance (in terms of multi-user interference minimization or sum rate

maximization), subject to the maximum CRB constraint for target DoA estimation at the BS.

The authors in [19] considered another type of semi-passive IRS sensing, in which dedicated

sensing receivers were deployed at the IRS, such that the sensing is performed at IRS based on

the BS-IRS-target-IRS links. Under this setup, the authors minimized the CRB for target DoA

estimation at the IRS, subject to the minimum SINR requirements at multiple CUs.

Different from the above prior works that considered IRS-enabled ISAC with BS LoS target

sensing [17], [18] and semi-passive IRS sensing [19], in this paper we focus on the CRB

minimization in an IRS-enabled ISAC system with passive IRS sensing (i.e., the IRS is not

equipped with dedicated sensing receivers for cost consideration), such that the NLoS target

sensing is performed at the BS based on the BS-IRS-target-IRS-BS link [8]. More specifically,

we consider an IRS-enabled multiuser ISAC system with one BS, one IRS, multiple CUs, and

a target at the NLoS region of the BS. The IRS is deployed to not only assist the wireless

communication from the BS to the CUs, but also create a virtual LoS channel over the BS-

IRS-target-IRS-BS link to facilitate the target sensing at the BS. First, we consider two types of

targets according to the spatial extent of target, namely the extended and point targets, respectively

[8], [22]–[26]. For the extended target, the BS estimates the complete target response matrix

with respect to (w.r.t.) the IRS (or equivalently the cascaded IRS-target-IRS channel matrix)

as unknown parameters. In contrast, for the point target, the BS estimates the target DoA and

channel coefficient w.r.t. the IRS as unknown parameters. Moreover, in order to achieve full

DoFs for target sensing, we consider that the BS transmits dedicated sensing signals in addition

to the communication signals [22], [27], [28]. The dedicated sensing signals are pseudorandom
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or deterministic sequences, which are unknown/known to the CUs, respectively. As a result, we

model two types of CU receivers, namely Type-I and Type-II CU receivers, which do not have

and have the capability of canceling the interference from the sensing signals, respectively.

Under the above two target models and two types of CU receivers, we aim to minimize the

CRB for estimating the parameters of interest (i.e., the target response matrix in the extended

target model and the target DoA in the point target model), by jointly optimizing the transmit

beamforming at the BS and the reflective beamforming at the IRS, subject to the minimum SINR

requirements at individual CUs. The formulated SINR-constrained CRB minimization problems

are highly non-convex due to the non-convex CRB objective functions, the unit-modulus con-

straints on reflective beamforming, and the coupled relation between the transmit and reflective

beamforming. To solve such non-convex SINR-constrained CRB minimization problems, we

present efficient algorithms to obtain converged solutions via alternating optimization, semi-

definite relaxation (SDR), and successive convex approximation (SCA). Finally, numerical results

show that the proposed design achieves improved sensing performance in terms of minimized

CRB, as compared to other benchmark schemes with transmit beamforming only and random

IRS phase shifts, and a separate communication and sensing design. Furthermore, it is shown

that if there is only one CU, then Type-II CU receiver achieves the same performance as Type-I

CU receiver, as the dedicated sensing signals are not needed in this case. In contrast, if there

are more than one CUs, then Type-II CU receiver leads to significant performance gains over

Type-I CU receiver, thus validating the benefit of sensing signal interference cancellation in this

case.

Notations: Boldface letters refer to vectors (lower case) or matrices (upper case). For a square

matrix S, tr(S) and S−1 denote its trace and inverse, respectively, and S ⪰ 0 means that S is

positive semi-definite. For an arbitrary-size matrix M, rank(M), M∗, MT , and MH denote its

rank, conjugate, transpose, and conjugate transpose, respectively. We use CN (0,Σ) to denote the

distribution of a circularly symmetric complex Gaussian (CSCG) random vector with mean vector

0 and covariance matrix Σ, and ∼ to denote “distributed as”. The spaces of x×y complex and real

matrices are denoted by Cx×y and Rx×y, respectively. The real and imaginary parts of a complex

number are denoted by Re{·} and Im{·}, respectively. The symbol E(·) denotes the statistical

expectation, ∥ · ∥ denotes the Euclidean norm, | · | denotes the magnitude of a complex number,

diag(a1, · · · , aN) denotes a diagonal matrix with diagonal elements a1, · · · , aN , ⊗ denotes the

Kronecker product, vec(·) denotes the vectorization operator, and arg(x) denotes a vector with
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Figure 1. System model of IRS-enabled multiuser ISAC.

each element being the phase of the corresponding element in x.

II. SYSTEM MODEL

We consider an IRS-enabled ISAC system as shown in Fig. 1, which consists of one BS with

M > 1 antennas, one IRS with N > 1 uniform linear array (ULA) reflecting elements, K ≥ 1

single-antenna CUs, and one sensing target (i.e., extended target in Fig. 1a and point target in

Fig. 1b) at the NLoS region of the BS (i.e., the LoS path between the target and the BS is

severely blocked). Let K = {1, · · · , K} denote the set of CUs, and N = {1, · · · , N} denote the

set of reflecting elements at the IRS.

We consider one particular ISAC transmission block consisting of T symbols. Let T =

{1, · · · , T} denote the set of symbols. To achieve full DoFs for sensing, we assume that the

BS sends both communication/information signals and dedicated sensing signals for ISAC [22],

[27], [28]. Let sk(t) denote the transmit communication signal for CU k at symbol t, and

wk denote the corresponding transmit beamforming vector. Here, sk(t)’s are assumed to be

independent and identically distributed (i.i.d.) random variables with zero mean and unit variance.

Let x0(t) ∈ CM×1 denote the dedicated sensing signal vector at symbol t, which is generated

independently from the communication signals sk(t)’s. The sample covariance matrix of x0(t)

is

R0 ≜
1

T

∑
t∈T

x0(t)x
H
0 (t) ⪰ 0. (1)

Suppose that rank(R0) = l0, l0 ≤ min(T,M) and the eigenvalue decomposition (EVD) of

R0 is given by R0 = UΛUH , where Λ = diag(λ1, · · · , λM) and U = [u1, · · · ,uM ] with



7

UUH = UHU = IM . Accordingly, we have λ1 ≥ · · · ≥ λl0 > λl0+1 = · · · = λM = 0. This

means that there are a number of l0 sensing beams transmitted by the BS, each of which is

denoted by
√
λiui, i ∈ {1, · · · , l0}. Then the transmitted signal by the BS at symbol t ∈ T is

expressed as

x(t) =
∑
k∈K

wksk(t) + x0(t). (2)

By assuming T to be sufficiently large, we consider that the sample covariance matrix of the

transmitted signal x(t) is same as its statistical covariance matrix, i.e.,

Rx ≜
1

T

∑
t∈T

x(t)xH(t) ≈ E(x(t)xH(t)) =
∑
k∈K

wkw
H
k +R0. (3)

Let P0 denote the maximum transmit power at the BS. We thus have

E(∥x(t)∥2) =
∑
k∈K

∥wk∥2 + tr(R0) ≤ P0. (4)

Furthermore, we consider that the IRS employs the reflective beamforming to facilitate the

ISAC operation. In particular, the IRS can adjust the phase shifts at the reflecting elements with

unit amplitudes [5]. Let v = [ejϕ1 , · · · , ejϕN ]T denote the vector collecting the N reflecting

coefficients at the IRS, where ϕn ∈ (0, 2π] being the phase shift of each element. Furthermore,

let Φ = diag(v) denote the corresponding reflection matrix.

A. Communication Model

First, we consider the wireless communication from the BS to the CUs. Let hH
d,k ∈ C1×M and

hH
r,k ∈ C1×N denote the channel vectors from the BS and the IRS to CU k, respectively. Let

G ∈ CN×M denote the channel matrix from the BS to the IRS. We assume that the BS knows

the perfect channel state information (CSI) via proper channel estimation methods [29]. This

assumption is made in order to characterize the fundamental ISAC performance. The received

signal by CU k ∈ K at symbol t ∈ T is

yk(t) = (hH
d,k + hH

r,kΦG)x(t) + nk(t)

= (hH
d,k + hH

r,kΦG)wksk(t)︸ ︷︷ ︸
desired information signal

+(hH
d,k + hH

r,kΦG)
∑

i∈K,i ̸=k

wisi(t)︸ ︷︷ ︸
inter-user interference

+(hH
d,k + hH

r,kΦG)x0(t)︸ ︷︷ ︸
sensing signal interference

+nk(t), (5)

where nk(t) ∼ CN (0, σ2
k) denotes the noise at the receiver of CU k, which may include the

background interference. Note that the dedicated sensing signals x0(t)’s are pseudorandom or

deterministic sequences that are assumed to be unknown/known to the CUs, respectively. As a
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result, we consider two types of CU receivers, namely Type-I and Type-II CU receivers, which

cannot cancel and can cancel the pseudorandom/deterministic interference caused by the sensing

signals x0(t), respectively [22], [27], [28]. For the cases with Type-I and Type-II CU receivers,

the corresponding SINRs at CU k ∈ K are respectively given by

γI
k =

|(hH
d,k + hH

r,kΦG)wk|2∑
i∈K,i ̸=k |(hH

d,k + hH
r,kΦG)wi|2 + (hH

d,k + hH
r,kΦG)R0(hd,k +GHΦHhr,k) + σ2

k

, (6)

γII
k =

|(hH
d,k + hH

r,kΦG)wk|2∑
i∈K,i ̸=k |(hH

d,k + hH
r,kΦG)wi|2 + σ2

k

. (7)

B. Sensing Model

Next, we consider the target sensing. Let HTRM denote the target response matrix w.r.t. the

IRS (i.e., the cascaded channel over the IRS-target-IRS link). The received echo signal by the

BS at symbol t ∈ T is

y(t) = GTΦTHTRMΦGx(t) + nR(t), (8)

where nR(t) ∼ CN (0, σ2
RIM) denotes the noise at the BS receiver, which may include the clutter

from environment. We stack the transmitted signals, the received signals, and the noise over the

radar dwell time as X = [x(1), . . . ,x(T )], Y = [y(1), . . . ,y(T )], and N = [n(1), . . . ,n(T )],

respectively. Then, we have

Y = GTΦTHTRMΦGX+N. (9)

In particular, we consider two different target models according to the spatial extent of target

[8], [22]–[26].

1) Extended Target Case: When the sensing target consists of multiple point-like scatterers

in an extended region of space, the echo signals reflected by the target consist of multiple paths

from different angles. Normally, the BS has no prior knowledge about the distribution of the

scatterers. As a result, the BS first estimates the complete target response matrix HTRM, and

then extracts the target parameters from the estimated HTRM using well-established estimation

algorithms such as multiple signal classification (MUSIC) [30]. As such, we use the CRB for

estimating the complete target response matrix HTRM as the sensing performance metric. We

define h = vec(HTRM) ∈ CN2×1, and accordingly denote ζ = [Re(hT ), Im(hT )]T ∈ R2N2×1 as

the vector of unknown real parameters to be estimated. By vectorizing the stacked echo signal

in (9), we have

ŷ = vec(Y) = û+ n̂, (10)
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where û = vec(GTΦTHTRMΦGX) = (XTGTΦT⊗GTΦT )h and n̂ = vec(N) ∼ CN (0, σ2
RIMT ).

Let F̂ ∈ R2N2×2N2 denote the Fisher information matrix (FIM) for estimating ζ from (10), each

element of which is given by

F̂i,j =
2

σ2
R
Re

{
∂ûH

∂ζi

∂û

∂ζj

}
, i, j ∈ {1, · · · , 2N2}. (11)

The FIM for estimating ζ is [8]

F̂ =

F̂hRhR F̂hRhI

F̂hIhR F̂hIhI

 , (12)

where

F̂hRhR = F̂hIhI =
2T

σ2
R
Re
{(

Φ∗G∗RT
xG

TΦT
)
⊗
(
Φ∗G∗GTΦT

)}
, (13)

F̂hIhR = −F̂hRhI =
2T

σ2
R
Im
{(

Φ∗G∗RT
xG

TΦT
)
⊗
(
Φ∗G∗GTΦT

)}
. (14)

We consider the CRB for estimating ζ or HTRM as the trace-inverse of the Fisher information

matrix F̂ [8], i.e.,

CRB1(HTRM) =tr
(
F̂−1

)
=

σ2
R

T
tr
((

ΦGRxG
HΦH

)−1
)
tr
((

ΦGGHΦH
)−1
)

(a)
=
σ2

R

T
tr
((

GRxG
H
)−1
)
tr
((

GGH
)−1
)
,

(15)

where equality (a) holds due to the fact that ΦΦH = IN . Note that in the extended target case,

HTRM is estimable only when rank(G) = N and rank(Rx) ≥ N , since otherwise we have

CRB1(HTRM) → ∞ [8].

2) Point Target Case: The point sensing target is modeled as a single scatterer with small

spatial extent, and the reflected echo signals only consist of a single path. In this case, the target

response matrix HTRM is modeled as

HTRM = αa(θ)aT (θ), (16)

where α ∈ C denotes the complex-valued channel coefficient that depends on the target radar

cross section (RCS) and the round-trip path loss of the IRS-target-IRS link, and a(θ) denotes

the steering vector at the IRS with angle θ, i.e.,

a(θ) =
[
1, ej2π

dIRS sin θ

λ , · · · , ej2π
(N−1)dIRS sin θ

λ

]T
, (17)

with θ denoting the target DoA w.r.t. the IRS. In (17), dIRS denotes the spacing between

adjacent reflecting elements at the IRS, and λ denotes the carrier wavelength. In this case,
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ξ = [θ,Re{α}, Im{α}]T ∈ R3×1 denotes the vector of three unknown real parameters to be

estimated. Let B = bbT with b = GTΦTa(θ). By vectorizing the stacked echo signal in (9),

we have

ỹ = vec(Y) = ũ+ ñ, (18)

where ũ = αvec(BX) and ñ = vec(N) ∼ CN (0, σ2
RIMT ). Let F̃ ∈ R3×3 denote the FIM for

estimating ξ from (18). Each element of F̃ is given by

F̃i,j =
2

σ2
R
Re

{
∂ũH

∂ξi

∂ũ

∂ξj

}
, i, j ∈ {1, 2, 3}. (19)

Let ḃ and Ḃ = ḃbT + bḃT denote the partial derivative of b and B w.r.t. θ, respectively. The

FIM for estimating ξ is [8]

F̃ =

F̃θθ F̃θα̃

F̃T
θα̃ F̃α̃α̃

 , (20)

where

F̃θθ =
2T |α|2

σ2
R

tr
(
ḂRxḂ

H
)
, F̃θα̃ =

2T

σ2
R
Re
{
α∗tr

(
BRxḂ

H
)
[1, j]

}
, F̃α̃α̃ =

2T

σ2
R

tr
(
BRxB

H
)
I2.

(21)

In the point target case, we are interested in estimating the target DoA θ. This is due to the fact

that it is difficult to extract the target information from the channel coefficient α, as it depends

on both the target RCS and the distance-dependent path loss of the IRS-target-IRS link, which

are usually unknown [8], [22], [23]. The CRB for estimating the target DoA θ equals to the first

diagonal element of F̃−1 [8], i.e.,

CRB2(θ) =[F̃−1]1,1=[F̃θθ − F̃θα̃F̃
−1
α̃α̃F̃

T
θα̃]

−1 =
σ2

R

2T |α|2
(
tr
(
ḂRxḂH

)
− |tr(BRxḂH)|2

tr(BRxBH)

) (22a)

=
σ2

Rλ
2/ (8T |α|2π2d2IRS cos

2(θ))

vHR2v
(
vHDR1Dv − |vHDR1v|2

vHR1v

)
+ vHR1v

(
vHDR2Dv − |vHDR2v|2

vHR2v

) , (22b)

where R1 = diag
(
aH(θ)

)
G∗GTdiag (a(θ)), R2 = diag

(
aH(θ)

)
G∗R∗

xG
Tdiag (a(θ)), and

D = diag(0, 1, · · · , N − 1). Note that the CRB formulas in (22a) and (22b) are expressed in

different forms to facilitate the transmit beamforming and reflective beamforming optimization,

respectively.
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C. Problem Formulation

We aim to minimize the CRB for target estimation (i.e., CRB1(HTRM) for the extended target

case and CRB2(θ) for the point target case), by jointly optimizing the transmit beamformers {wk}

and R0 at the BS and the reflective beamformer v or Φ at the IRS, subject to the minimum

SINR constraints at individual CUs and the maximum transmit power constraint at the BS.

1) Problem Formulation with Extended Target: For the extended target case, we use CRB1(HTRM)

in (15) as the sensing performance metric. Based on the CRB given in (15), minimizing CRB1(HTRM)

is equivalent to minimizing tr
((

G
(∑

k∈K wkw
H
k +R0

)
GH
)−1
)

. As a result, the SINR-constrained

CRB minimization problems with Type-I and Type-II CU receivers are formulated as (P1) and

(P2), respectively.

(P1) : min
{wk},R0,Φ

tr

(G(∑
k∈K

wkw
H
k +R0

)
GH

)−1


s.t.
|(hH

d,k + hH
r,kΦG)wk|2∑

i∈K,i ̸=k|(hH
d,k+hH

r,kΦG)wi|2 + (hH
d,k+hH

r,kΦG)R0(hd,k+GHΦHhr,k) + σ2
k

≥ Γk,∀k ∈K

(23a)∑
k∈K

∥wk∥2 + tr(R0) ≤ P0 (23b)

R0 ⪰ 0 (23c)

|Φn,n| = 1,∀n ∈ N . (23d)

(P2) : min
{wk},R0,Φ

tr

(G(∑
k∈K

wkw
H
k +R0

)
GH

)−1


s.t.
|(hH

d,k + hH
r,kΦG)wk|2∑

i∈K,i ̸=k |(hH
d,k + hH

r,kΦG)wi|2 + σ2
k

≥ Γk,∀k ∈ K (24)

(23b), (23c), and (23d).

Notice that in problems (P1) and (P2), the SINR constraints in (23a) and (24) as well as the

unit-modulus constraints on the reflecting coefficients in (23d) are non-convex, and the transmit

and reflective beamformers are coupled. Therefore, problems (P1) and (P2) are non-convex and

thus challenging to solve. We will address these two problems in Section III. Furthermore, by

comparing problems (P1) versus (P2), it is clear that the optimal CRB value of (P2) serves as
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a lower bound on that of (P1), which is due to the fact that every feasible solution to (P1) is

also feasible for (P2) but not vice versa. This shows the benefit of sensing signal interference

cancellation at Type-II CU receivers.

2) Problem Formulation with Point Target: For the point target case, we use CRB2(θ) in (22)

as the sensing performance metric. We assume that the BS roughly knows the information of θ

to implement the joint beamforming design, which corresponds to the target tracking scenario in

practice. As a result, the SINR-constrained CRB minimization problems with Type-I and Type-II

CU receivers are formulated as (P3) and (P4), respectively.

(P3) : min
{wk},R0,Φ

σ2
R

2T |α|2
(
tr
(
Ḃ
(∑

k∈K wkwH
k +R0

)
ḂH
)
− |tr(B(∑k∈K wkw

H
k +R0)ḂH)|2

tr(B(
∑

k∈K wkw
H
k +R0)BH)

)
s.t. (23a), (23b), (23c), and (23d).

(P4) : min
{wk},R0,Φ

σ2
R

2T |α|2
(
tr
(
Ḃ
(∑

k∈K wkwH
k +R0

)
ḂH
)
− |tr(B(∑k∈K wkw

H
k +R0)ḂH)|2

tr(B(
∑

k∈K wkw
H
k +R0)BH)

)
s.t. (24), (23b), (23c), and (23d).

Notice that in problems (P3) and (P4), besides the non-convex constraints in (23a), (24), and

(23d), the objective functions are both non-convex. Therefore, problems (P3) and (P4) are non-

convex and more difficult to solve than (P1) and (P2). We will address these two problems in

Section IV. Similarly as for (P1) and (P2), thanks to the sensing signal interference cancellation

at Type-II CU receivers, the optimal CRB value of problem (P4) is a lower bound of that of

(P3).

III. JOINT BEAMFORMING SOLUTIONS TO (P1) AND (P2) WITH EXTENDED TARGET

In this section, we develop efficient algorithms based on the alternating optimization technique

to solve the non-convex SINR-constrained CRB minimization problems (P1) and (P2) with

extended target, in which the transmit beamformers {wk} and R0 at the BS and the reflective

beamformer Φ at the IRS are iteratively optimized by using optimization techniques such as SDR.

As problems (P1) and (P2) have similar structures, we first focus on solving (P1) in Section III-

A, and then discuss the solution to (P2) in Section III-B by addressing its difference from (P1).

To gain more insights, Section III-C further analyzes the solution structures of problems (P1)

and (P2).
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A. Proposed Solution to (P1) with Type-I CU Receivers

1) Transmit Beamforming Optimization for (P1): First, we optimize the transmit beamformers

{wk} and R0 in (P1) under any given reflective beamformer Φ. The transmit beamforming

optimization problem is formulated as

(P1.1) : min
{wk},R0

tr

(G(∑
k∈K

wkw
H
k +R0

)
GH

)−1


s.t. (23a), (23b), and (23c).

We use the SDR technique to obtain the optimal solution to problem (P1.1). Define Wk =

wkw
H
k , with Wk ⪰ 0 and rank(Wk) ≤ 1,∀k ∈ K. Let hk = hd,k + GHΦHhr,k denote the

combined channel vector from the BS to CU k. By defining Hk = hkh
H
k ,∀k ∈ K, problem

(P1.1) is equivalently reformulated as

(P1.2) : min
{Wk},R0

tr

(G(∑
k∈K

Wk +R0

)
GH

)−1


s.t. (1 +
1

Γk

)tr(HkWk)− tr

(
Hk

(∑
k∈K

Wk +R0

))
≥ σ2

k, ∀k ∈ K (25a)

∑
k∈K

tr(Wk) + tr(R0) ≤ P0 (25b)

R0 ⪰ 0,Wk ⪰ 0,∀k ∈ K (25c)

rank(Wk) ≤ 1, ∀k ∈ K. (25d)

Next, we drop the rank-one constraints in (25d) to get the SDR version of (P1.2), denoted by

(SDR1.2), which is a convex semi-definite program (SDP) and thus can be optimally solved by

convex solvers such as CVX [31]. Let {W⋆
k} and R⋆

0 denote the optimal solution to (SDR1.2).

We then have the following proposition.

Proposition 1: The SDR of (P1.2) or equivalently (P1.1) is tight, i.e., problems (P1.1), (P1.2),

and (SDR1.2) have the same optimal value. Given the optimal solution {W⋆
k} and R⋆

0 to

(SDR1.2), the optimal solution to (P1.1) is

wopt,I
k = (hH

k W
⋆
khk)

−1/2W⋆
khk,∀k ∈ K, (26)

Ropt,I
0 = R⋆

0 +
∑
k∈K

W⋆
k −

∑
k∈K

wopt,I
k (wopt,I

k )H . (27)

Proof: See Appendix A.
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Therefore, the optimal solution to the transmit beamforming problem (P1.1) is obtained. To gain

more insights, we further present the following proposition, which shows the solution structure

of (SDR1.2).

Proposition 2: There exists one optimal solution to problem (SDR2.1), such that R⋆
0 = 0.

Proof: See Appendix B.

However, the property in Proposition 2 may not hold for problem (P1.2) or (P1.1), i.e., there

may not exist one optimal solution for them with Ropt,I
0 = 0 based on (27). In particular, when

the number of CUs K is less than N , we have rank
(∑

k∈K wkw
H
k

)
< N , and as a result, we

need the dedicated sensing signal with non-zero Ropt,I
0 to ensure rank(Rx) ≥ N for making the

extended target estimation feasible or making CRB1(HTRM) finite. This thus shows the solution

structure differences between problems (P1.1) or (P1.2) versus (SDR1.2).

2) Reflective Beamforming Optimization for (P1): Next, we optimize the reflective beam-

former Φ in (P1) under any given transmit beamformers {wk} and R0. As CRB1(HTRM) in (15)

is independent of the reflective beamformer Φ, (P1) is simplified as the following feasibility

problem.

(P1.3) : Find Φ

s.t. (23a) and (23d).

Motivated by the design in [5], we further transform (P1.3) into the following optimization

problem (P1.4) with an explicit objective for increasing the SINR at all CUs. This is expected

to help achieve a better converged solution.

(P1.4) : max
Φ,{βk}

∑
k∈K

βk

s.t. |(hH
d,k + hH

r,kΦG)wk|2 − Γk

∑
i∈K,i ̸=k

|(hH
d,k + hH

r,kΦG)wi|2

− Γk(h
H
d,k + hH

r,kΦG)R0(hd,k +GHΦHhr,k)− Γkσ
2
k ≥ βk,∀k ∈ K (28a)

βk ≥ 0,∀k ∈ K (28b)

|Φn,n| = 1,∀n ∈ N . (28c)

Note that (P1.4) has a similar structure as the reflective beamforming design problem in [5, (48)]

for IRS-assisted wireless communications, which can be solved by using the SDR technique

together with Gaussian randomization [5], for which the details are omitted for brevity.
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Table I

PROPOSED ALGORITHM FOR SOLVING PROBLEM (P1)

Algorithm 1

a) Set iteration index l = 1 and initialize Φ(l) randomly.

b) Repeat:

1) Under given Φ(l), solve problem (SDR1.2) to obtain the optimal solution as {W⋆(l)
k } and R

⋆(l)
0 .

2) Construct the optimal rank-one solution {w(l)
k } and R

(l)
0 to (P1.1) based on {W⋆(l)

k } and R
⋆(l)
0 by using Proposition 1.

3) Under given {w(l)
k } and R

(l)
0 , solve problem (P1.4) to obtain the reflective beamformer Φ(l+1).

4) Update l← l + 1.

c) Until the convergence criterion is met or the maximum number of outer iterations is reached.

3) Complete Algorithm for Solving (P1): By combining the transmit and reflective beam-

forming designs in Sections III-A-(1) and III-A-(2), together with the alternating optimization,

we have the complete algorithm to solve (P1), which is summarized as Algorithm 1 in Table I.

Notice that in each iteration of Algorithm 1, (P1.1) is optimally solved, which leads to a non-

increasing CRB value, and (P1.4) does not change the CRB value but leads to a larger feasible

set for the transmit beamforming design. As a result, the convergence of Algorithm 1 for solving

problem (P1) is ensured.

B. Proposed Solution to Problem (P2) with Type-II CU Receivers

In this subsection, we consider problem (P2) with Type-II CU receivers, which can be solved

similarly as Algorithm 1 for (P1) based on alternating optimization. Therefore, we present the

transmit and reflective beamforming design in the following briefly.

First, we optimize the transmit beamformers {wk} and R0 in (P2) with any given reflective

beamformer Φ, which is given by

(P2.1) : min
{wk},R0

tr

(G(∑
k∈K

wkw
H
k +R0

)
GH

)−1


s.t. (24), (23b), and (23c).

Problem (P2.1) can be optimally solved by using SDR similarly as for (P1.1). Towards this end,

we express the SDR of (P2.1) (by introducing Wk = wkw
H
k ,∀k ∈ K and dropping the rank-one

constraints on {Wk}) as (SDR2.1), which is a convex SDP that can be optimally solved via
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CVX.

(SDR2.1) : min
{Wk},R0

tr

(G(∑
k∈K

Wk +R0

)
GH

)−1


s.t.
1

Γk

tr(HkWk)−
∑

i∈K,i ̸=k

tr(HkWi) ≥ σ2
k,∀k ∈ K (29)

(25b) and (25c).

Let {W⋆⋆
k } and R⋆⋆

0 denote the optimal solution to (SDR2.1). We have the following proposition.

Proposition 3: The SDR of (P2.1) is tight, i.e., problems (P2.1) and (SDR2.1) have the same

optimal value. Given the optimal solution {W⋆⋆
k } and R⋆⋆

0 to (SDR2.1), the optimal solution to

(P2.1) is

wopt,II
k = (hH

k W
⋆⋆
k hk)

−1/2W⋆⋆
k hk,∀k ∈ K, (30)

Ropt,II
0 = R⋆⋆

0 +
∑
k∈K

W⋆⋆
k −

∑
k∈K

wopt,II
k (wopt,II

k )H . (31)

Proof: See Appendix C.

It is worth noting that at the optimality, it generally holds that R⋆⋆
0 ̸= 0 for problem (SDR2.1)

and Ropt,II
0 ̸= 0 for problem (P2.1). This is different from problem (SDR1.2) and means that the

dedicated sensing signals are generally needed when Type-II CU receivers are considered.

Next, we optimize the reflective beamformer Φ in (P2) with any given transmit beamformers

{wk} and R0, for which the optimization problem becomes

(P2.2) : Find Φ

s.t. (24) and (23d).

As problem (P2.2) has a similar structure as (P1.3), it can be solved similarly by using the

algorithm in Section III-A-(2), for which the details are omitted. Therefore, by combining the

solutions to (P2.1) and (P2.2) together with alternating optimization, problem (P2) is finally

solved.

C. Solution Structure

In this subsection, we analyze the solution structures of problems (P1) and (P2) to gain more

insights. First, we consider the special case with one single CU. In this case, we have the

following two propositions.
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Proposition 4: At the optimality of (P1) with Type-I CU receivers, when K = 1, the dedicated

sensing beamformers should lie in the null space of the channel vector h1 from the BS to the

CU, i.e., hH
1 R

opt,I
0 h1 = 0.

Proof: This proposition follows directly from Proposition 1 and Proposition 2.

Proposition 5: When K = 1, problems (P1) and (P2) become identical.

Proof: Based on Proposition 4, at the optimality with Type-I CU receiver, the dedicated

sensing signals with covariance matrix R0 will not introduce interference towards the CU. As

such, the interference cancellation by Type-II CU receiver cannot provide any SINR gain over

the Type-I CU receiver. Thus, (P1.1) and (P2.1) have the same optimal objective value under

any identical reflective beamformer Φ. As a result, problems (P1) and (P2) become identical.

Propositions 4 and 5 show that for the special case with one single CU, Type-II CU receivers

do not provide any performance gain over their Type-I counterparts.

Next, we discuss the solution structure of R0 for problems (P1) and (P2). Notice that based

on (15), in order for the CRB1(HTRM) to be bounded from above, it must follow that

rank (Rx) = rank

(∑
k∈K

wkw
H
k +R0

)
≥ N. (32)

As a result, if K < N , then R0 should be non-zero as the dedicated sensing signal is needed

to ensure the CRB to be bounded from above. By contrast, when K ≥ N , it is observed from

extensive simulations that Ropt,I
0 = 0 occurs for problem (P1) but Ropt,II

0 ̸= 0 occurs for problem

(P2). This shows that dedicated sensing signals are useful only for Type-II CU receivers when

the sensing signal interference cancellation is implemented.

IV. JOINT BEAMFORMING SOLUTIONS TO (P3) AND (P4) WITH POINT TARGET

In this section, we develop efficient algorithms based on the alternating optimization technique

to solve the non-convex SINR-constrained CRB minimization problems (P3) and (P4) with point

target, in which the transmit beamformers {wk} and R0 at the BS and the reflective beamformer

v at the IRS are iteratively optimized by using optimization techniques including SDR and SCA.

As problems (P3) and (P4) have similar structures, we first consider solving (P3) in Section IV-

A, and then discuss the solution to (P4) in Section IV-B by highlighting its difference from (P3).

To gain more insights, Section IV-C further analyzes the solution structures of problems (P3)

and (P4).
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A. Proposed Solution to (P3) with Type-I Receivers

1) Transmit Beamforming Optimization for (P3): First, we optimize the transmit beamformers

R0 and {wk} in (P3) under any given reflective beamformer v, in which the CRB expression

in (22a) is used. In this case, the transmit beamforming optimization problem is formulated as

(P3.1) : max
{wk},R0

tr

(
Ḃ

(∑
k∈K

wkw
H
k +R0

)
ḂH

)
−

∣∣∣tr(B (∑k∈K wkw
H
k +R0

)
ḂH
)∣∣∣2

tr
(
B
(∑

k∈K wkwH
k +R0

)
BH
)

s.t. (23a), (23b), and (23c).

By introducing an auxiliary variable u and using the Schur’s complement, problem (P3.1) is

reformulated as

(P3.2) : max
{wk},R0,u

u

s.t.

tr(Ḃ (∑k∈K wkw
H
k +R0

)
ḂH
)
− u tr

(
B
(∑

k∈K wkw
H
k +R0

)
ḂH
)

tr
(
Ḃ
(∑

k∈K wkw
H
k +R0

)
BH
)

tr
(
B
(∑

k∈K wkw
H
k +R0

)
BH
)
 ⪰ 0 (33)

(23a), (23b), and (23c).

Next, we use the SDR technique to obtain the optimal solution to problem (P3.2). We first

define Wk = wkw
H
k with Wk ⪰ 0 and rank(Wk) ≤ 1, and also define Hk = hkh

H
k ,∀k ∈ K.

Then, problem (P3.2) is equivalently reformulated as

(P3.3) : max
{Wk},R0,u

u

s.t.

tr(Ḃ (∑k∈K Wk +R0

)
ḂH
)
− u tr

(
B
(∑

k∈K Wk +R0

)
ḂH
)

tr
(
Ḃ
(∑

k∈K Wk +R0

)
BH
)

tr
(
B
(∑

k∈K Wk +R0

)
BH
)
 ⪰ 0 (34a)

(1 +
1

Γk

)tr(HkWk)− tr

(
Hk

(∑
k∈K

Wk +R0

))
≥ σ2

k,∀k ∈ K (34b)

∑
k∈K

tr(Wk) + tr(R0) ≤ P0 (34c)

R0 ⪰ 0,Wk ⪰ 0,∀k ∈ K (34d)

rank(Wk) ≤ 1,∀k ∈ K. (34e)

Then, we drop the rank-one constraints in (34e) to get the SDR version of (P3.3), denoted by

(SDR3.3), which is a convex SDP and thus can be optimally solved by CVX. Let {W⋆
k} and

R⋆
0 denote the optimal solution to (SDR3.3). We then have the following proposition.
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Proposition 6: The SDR of (P3.3) or equivalently (P3.1) is tight, i.e., problems (P3.1), (P3.2),

(P3.3), and (SDR3.3) have the same optimal value. Given the optimal solution {W⋆
k} and R⋆

0

to (SDR3.3), the optimal solution to (P3.1) is

wopt,I
k = (hH

k W
⋆
khk)

−1/2W⋆
khk,∀k ∈ K, (35)

Ropt,I
0 = R⋆

0 +
∑
k∈K

W⋆
k −

∑
k∈K

wopt,I
k (wopt,I

k )H . (36)

Proof: The proof is similar to that of Proposition 1 and thus is omitted for brevity.

Furthermore, we have the following proposition, which shows the solution structure of (SDR3.3).

Proposition 7: There exists one optimal solution to problem (SDR3.3), such that R⋆
0 = 0.

Proof: The proof is similar to that of Proposition 2 and thus is omitted for brevity.

However, the property in Proposition 7 may not hold for problem (P3.3), (P3.2), or (P3.1), i.e.,

there may not exist any optimal solution for them with Ropt,I
0 = 0 based on (36).

2) Reflective Beamforming Optimization for (P3): Then, we optimize the reflective beam-

former v in (P3) under any given transmit beamformers R0 and {wk}, in which the CRB

expression in (22b) is used. By letting G̃k = diag(hH
r,k)G, we have hH

r,kΦG = vT G̃k,∀k ∈ K.

The SINR in (6) is thus rewritten as

γI
k=

(vT G̃k + hH
d,k)Wk(G̃

H
k v

∗ + hd,k)∑
i∈K,i ̸=k(v

T G̃k + hH
d,k)Wi(G̃H

k v
∗ + hd,k)+(vT G̃k + hH

d,k)R0(G̃H
k v

∗ + hd,k) + σ2
k

. (37)

Then, the SINR constraints in (23a) are equivalent to ṽHQI
kṽ ≥ Γkσ

2
k,∀k ∈ K with

QI
k =

 G̃∗
k

hT
d,k

(W∗
k − Γ

( ∑
i∈K,i ̸=k

W∗
i +R∗

0

))[
G̃T

k h∗
d,k

]
and ṽ =

 v

1

 . (38)

After that, the reflective beamforming optimization problem is formulated as

(P3.4) : max
v

vHR2v

(
vHDR1Dv − |vHDR1v|2

vHR1v

)
+ vHR1v

(
vHDR2Dv − |vHDR2v|2

vHR2v

)
s.t. ṽHQI

kṽ ≥ Γkσ
2
k,∀k ∈ K (39a)

|vn| = 1, ∀n ∈ N . (39b)

Problem (P3.4) is non-convex due to the non-concavity of the objective function and the unit-

modulus constraint in (39b). To resolve this issue, we first deal with the unit-modulus constraint

(39b) based on SDR, and then use the SCA to approximate the relaxed problem. We define

Ṽ = ṽṽH with Ṽ ⪰ 0 and rank(Ṽ) = 1,

R̃1 =

 R1 0N×1

01×N 0

 , R̃2 =

 R2 0N×1

01×N 0

 , and D̃ =

 D 0N×1

01×N 0

 . (40)
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After that, problem (P3.4) is equivalently reformulated as

(P3.5) : max
Ṽ

tr(R̃2Ṽ)tr(D̃R̃1D̃Ṽ)− tr(R̃2Ṽ)
|tr(D̃R̃1Ṽ)|2

tr(R̃1Ṽ)

+ tr(R̃1Ṽ)tr(D̃R̃2D̃Ṽ)− tr(R̃1Ṽ)
|tr(D̃R̃2Ṽ)|2

tr(R̃2Ṽ)

s.t. tr
(
QI

kṼ
)
≥ Γkσ

2
k,∀k ∈ K (41a)

Ṽn,n = 1,∀n ∈ {1, · · · , N + 1} (41b)

Ṽ ⪰ 0 (41c)

rank(Ṽ) = 1. (41d)

By relaxing the rank-one constraint in (41d), the SDR version of problem (P3.5) is obtained

as (SDR3.5). Then, by introducing two auxiliary variables t1 and t2 and using the Schur’s

complement, problem (SDR3.5) is equivalently re-expressed as

(SDR3.6) : max
Ṽ,t1,t2

tr(R̃2Ṽ)tr(D̃R̃1D̃V)− tr(R̃2Ṽ)t1 + tr(R̃1Ṽ)tr(D̃R̃2D̃Ṽ)− tr(R̃1Ṽ)t2

s.t.

 t1 tr(D̃R̃1Ṽ)

tr(ṼHR̃H
1 D̃

H) tr(R̃1Ṽ)

 ⪰ 0 (42a)

 t1 tr(D̃R̃2Ṽ)

tr(ṼHR̃H
2 D̃

H) tr(R̃2Ṽ)

 ⪰ 0 (42b)

(41a), (41b), and (41c).

To deal with the non-concave objective function in (SDR3.6), we first reformulate the objective

function as f1(Ṽ, t1, t2) + f2(Ṽ, t1, t2) with

f1(Ṽ, t1, t2) =
1

4

(
tr((R̃2 + D̃R̃1D̃)Ṽ)

)2
+

1

4

(
tr(R̃2Ṽ)− t1

)2
+

1

4

(
tr((R̃1 + D̃R̃2D̃)Ṽ)

)2
+

1

4

(
tr(R̃1Ṽ)− t2

)2
,

(43)

f2(Ṽ, t1, t2) =− 1

4

(
tr((R̃2 − D̃R̃1D̃)Ṽ)

)2
− 1

4

(
tr(R̃2Ṽ) + t1

)2
− 1

4

(
tr((R̃1 − D̃R̃2D̃)Ṽ)

)2
− 1

4

(
tr(R̃1Ṽ) + t2

)2
.

(44)

Here in, f1(Ṽ, t1, t2) and f2(Ṽ, t1, t2) are convex and concave functions, respectively. Then, we

use SCA to approximate the non-concave function f1(Ṽ, t1, t2) in an iterative manner. In each
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inner iteration r, with local point V(r), t
(r)
1 , t

(r)
2 , we obtain a global linear lower bound function

f̂
(r)
1 (Ṽ, t1, t2) for f1(Ṽ, t1, t2) using its first-order Taylor expansion, i.e.,

f1(Ṽ, t1, t2) ≥f1(Ṽ
(r), t

(r)
1 , t

(r)
2 ) +

1

2
tr((R̃2 + D̃R̃1D̃)Ṽ(r))tr((R̃2+D̃R̃1D̃)(Ṽ − Ṽ(r)))

+
1

2
tr((R̃1 + D̃R̃2D̃)Ṽ(r))tr((R̃1 + D̃R̃2D̃)(Ṽ − Ṽ(r)))

+
1

2
t
(r)
1 (t1 − t

(r)
1 ) +

1

2
t
(r)
2 (t2 − t

(r)
2 ) +

1

2
tr(R̃2Ṽ

(r))tr(R̃2(Ṽ − Ṽ(r)))

+
1

2
tr(R̃1Ṽ

(r))tr(R̃1(Ṽ − Ṽ(r)))− 1

2
tr(R̃2(Ṽ − Ṽ(r)))t

(r)
1

− 1

2
tr(R̃1(Ṽ − Ṽ(r)))t

(r)
2 − 1

2
tr(R̃2Ṽ

(r))(t1 − t
(r)
1 )− 1

2
tr(R̃1Ṽ

(r))(t2 − t
(r)
2 )

≜f̂
(r)
1 (Ṽ, t1, t2).

(45)

Replacing f1(Ṽ, t1, t2) by f̂
(r)
1 (Ṽ, t1, t2), problem (SDR3.6) is approximated as the following

convex form in inner iteration r:

(SDR3.6.r) : max
Ṽ,t1,t2

f̂
(r)
1 (Ṽ, t1, t2) + f2(Ṽ, t1, t2)

s.t. (42a), (42b), (41a), (41b), and (41c).

Problem (SDR3.6.r) is convex and thus can be optimally solved by CVX. Let Ṽ(r,⋆), t(r,⋆)1 , and

t
(r,⋆)
2 denote the optimal solution to problem (SDR3.6.r), which is then updated to be the local

point Ṽ(r+1), t
(r+1)
1 , and t

(r+1)
2 for the next inner iteration r + 1. Since f̂

(r)
1 (Ṽ, t1, t2) serves

as a lower bound of f1(Ṽ, t1, t2), we have f1(Ṽ
(r+1), t

(r+1)
1 , t

(r+1)
2 ) + f2(Ṽ

(r+1), t
(r+1)
1 , t

(r+1)
2 ) ≥

f̂
(r)
1 (Ṽ(r), t

(r)
1 , t

(r)
2 ) + f2(Ṽ

(r), t
(r)
1 , t

(r)
2 ) = f1(Ṽ

(r), t
(r)
1 , t

(r)
2 ) + f2(Ṽ

(r), t
(r)
1 , t

(r)
2 ). Thus, the inner

iteration leads to a non-decreasing objective value for problem (SDR3.6). Therefore, the conver-

gence of SCA for solving problem (SDR3.6) is ensured. Let Ṽ⋆, t⋆1, and t⋆2 denote the obtained

converged solution to problem (SDR3.6) using SCA, where rank(Ṽ⋆) > 1 holds in general.

Finally, Gaussian randomization is used to construct an approximate rank-one solution of

Ṽ to problem (P3.5). Motivated by that in [8], we first generate a number of randomizations

r ∼ CN (0, Ṽ⋆), and accordingly construct a series of candidate solutions as v = e
jarg([ r

rN+1
](1:N)).

By independently generating Gaussian random vector r multiple times, we obtain the solution

of (P3.5) as the one achieving the maximum objective value of (P3.5) while satisfying the SINR

constraints among all these random realizations.
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Table II

PROPOSED ALGORITHM FOR SOLVING PROBLEM (P3)

Algorithm 2

a) Set outer iteration index l = 1 and initialize the reflective beamformer with random phase shifts as v(l).

b) Repeat:

1) Under given reflective beamformer v(l), solve problem (SDR3.3) to obtain the optimal solution as R
⋆(l)
0 , {w⋆(l)

k }.

2) Construct the optimal rank-one solution {w(l)
k } and R

(l)
0 to (P3.1) based on {W⋆(l)

k } and R
⋆(l)
0 by using Proposition 6.

3) Set inner iteration index r = 1, Ṽ(r) = ṽ(l)(ṽ(l))H , t(r)1 = |tr(D̃R̃1(θ)Ṽ)|2

tr(R̃1(θ)Ṽ)
, and t

(r)
2 = |tr(D̃R̃2(θ)Ṽ)|2

tr(R̃2(θ)Ṽ)
.

4) Repeat:

i) Construct function f̂
(r)
1 (Ṽ, t1, t2) using Ṽ(r), t(r)1 , and t

(r)
2 .

ii) Solve problem (P3.6.r) under given R
(l)
0 , {w(l)

k } to obtain the optimal solution as Ṽ(r+1), t(r+1)
1 , and t

(r+1)
2 .

iii) Update r = r + 1.

5) Until the convergence criterion is met or the maximum number of inner iterations is reached.

6) Construct an approximate rank-one solution v(l+1) to problem (P3.5) via Gaussian randomization.

7) Update l = l + 1.

c) Until the convergence criterion is met or the maximum number of outer iterations is reached.

3) Complete Algorithm for Solving (P3): By combining the transmit and reflective beam-

forming designs in Sections IV-A-(1) and IV-A-(2), together with the alternating optimization,

we have the complete algorithm to solve (P3), which is summarized as Algorithm 2 in Table II.

Notice that in each iteration of Algorithm 2, (P3.1) is optimally solved, which leads to a non-

increasing CRB value. With sufficient number of Gaussian randomizations, the SDR approach

achieves at least π
4
-approximation of the optimal objective value of (P3.5) [32], thus leading to a

monotonically non-increasing CRB value in general. Otherwise, the outer iteration is terminated.

As a result, the convergence of Algorithm 2 for solving (P3) is ensured.

B. Proposed Solution to Problem (P4) with Type-II CU Receivers

In this subsection, we consider problem (P4) with Type-II CU receivers, which can be solved

similarly as Algorithm 2 for (P3) based on alternating optimization. Therefore, we present the

transmit and reflective beamforming solution in the following briefly.

First, we optimize the transmit beamformers {wk} and R0 in (P4) with any given reflective

beamformer v, which is given by

(P4.1) : max
{wk},R0

tr

(
Ḃ

(∑
k∈K

wkw
H
k +R0

)
ḂH

)
−

∣∣∣tr(B (∑k∈K wkw
H
k +R0

)
ḂH
)∣∣∣2

tr
(
B
(∑

k∈K wkwH
k +R0

)
BH
)

s.t. (24), (23b), and (23c).



23

By introducing an auxiliary variable u, using the Schur’s complement, and defining Wk = wkw
H
k

with Wk ⪰ 0 and rank(Wk) ≤ 1,∀k ∈ K, (P4.1) is reformulated as

(P4.2) : max
{Wk},R0,u

u

s.t.
1

Γk

tr(HkWk)−
∑

i∈K,i ̸=k

tr(HkWi) ≥ σ2
k,∀k ∈ K (46)

(34a), (34c), (34d), and (34e).

We drop the rank-one constraints in (34e) and accordingly express the SDR of (P4.2) as (SDR4.2),

which is a convex SDP that can be optimally solved via CVX. Let {W⋆⋆
k } and R⋆⋆

0 denote the

optimal solution to (SDR4.2). We then have the following proposition.

Proposition 8: The SDR of (P4.2) or equivalently (P4.1) is tight, i.e., problems (P4.1), (P4.2),

and (SDR4.2) have the same optimal value. Given the optimal solution {W⋆⋆
k } and R⋆⋆

0 to

(SDR4.2), the optimal solution to (P4.1) is

wopt,II
k = (hH

k W
⋆⋆
k hk)

−1/2W⋆⋆
k hk,∀k ∈ K, (47)

Ropt,II
0 = R⋆⋆

0 +
∑
k∈K

W⋆⋆
k −

∑
k∈K

wopt,II
k (wopt,II

k )H . (48)

Proof: The proof is similar to that of Proposition 3 and thus is omitted for brevity.

It is worth noting that at the optimality, it generally holds that R⋆⋆
0 ̸= 0 for problem (SDR4.2)

and Ropt,II
0 ̸= 0 for problem (P4.1). This is different from problem (SDR3.3) and means that

the dedicated sensing signals are generally needed when Type-II CU receivers are considered,

similarly as for problem (SDR2.1).

Next, we optimize the reflective beamformer v in (P4) with any given transmit beamformers

{wk} and R0, for which the optimization problem becomes

(P4.3) : max
v

vHR2v

(
vHDR1Dv − |vHDR1v|2

vHR1v

)
+ vHR1v

(
vHDR2Dv − |vHDR2v|2

vHR2v

)
s.t. ṽHQII

k ṽ ≥ Γkσ
2
k, ∀k ∈ K (49a)

|vn| = 1, ∀n ∈ N , (49b)

where

QII
k =

 G̃∗
k

hT
d,k

(W∗
k − Γ

∑
i∈K,i ̸=k

W∗
i

)[
G̃T

k h∗
d,k

]
and ṽ =

 v

1

 . (50)

As problem (P4.3) has a similar structure as (P3.4), it can be solved similarly by using the

algorithm in Section IV-A-(2), for which the details are omitted. Therefore, by combining the
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solutions to (P4.1) and (P4.3) together with alternating optimization, problem (P4) is finally

solved.

C. Solution Structure

In this subsection, we analyze the solution structures of problems (P3) and (P4) to gain more

insights. First, we consider the special case with one single CU. In this case, we have the

following proposition, which is similar as Propositions 4 and 5, an thus its proof are omitted.

Proposition 9: At the optimality of (P3) with Type-I CU receivers, when K = 1, the dedicated

sensing beamformers should lie in the null space of the channel vector h1 from the BS to the

CU, i.e., hH
1 R

opt,I
0 h1 = 0. In this case, problems (P3) and (P4) become identical.

Propositions 9 shows that for the special case with one single CU, Type-II CU receivers do

not provide any performance gain over their Type-I counterparts.

Next, we discuss the solution structure of R0 for problems (P3) and (P4). It is observed from

extensive simulations that when K ≥ 2, Ropt,I
0 = 0 occurs for problem (P3) but Ropt,II

0 ̸= 0 occurs

for problem (P4). This shows that dedicated sensing signals are necessary only for Type-II CU

receivers in the case of point target. This is consistent with the result with extended target in

Section III.

V. NUMERICAL RESULTS

In this section, we provide numerical results to validate the performance of our proposed joint

transmit and reflective beamforming design. We consider the distance-dependent path loss model,

i.e., L(d) = K0

(
d
d0

)−α0

, where K0 = −30 dB is the pathloss at the reference distance d0 = 1 m

and α0 is the path loss exponent. We set α0 as 2.2, 2.2, and 3.0 for the BS-IRS, IRS-CU, and

BS-CU links, respectively. We consider the Rician fading for the BS-IRS, IRS-CU, and BS-CU

links with the Rician factor being 0.5. Also, additional shadow fading is considered for the

BS-CU links, with a standard deviation of 10 dB. The BS and the IRS are located at coordinate

(0 m, 0 m) and (4 m, 5 m), respectively. The CUs are randomly located at a rectangular grid with

corners (40 m, 0 m), (40 m,−10 m), (50 m,−10 m), and (50 m, 0 m). For the point target case,

the target is located at coordinate (4 m, 1 m) (i.e., the target DoA is θ = 0 w.r.t. the IRS), with a

unit RCS. Without loss of generality, we assume that all CUs have the same SINR requirements,

i.e., Γk = Γ,∀k ∈ K. We set M = 8, N = 8, T = 256, P0 = 30 dBm, σ2
R = −110 dBm,
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Figure 2. The CRB for target response matrix estimation

versus the SINR threshold Γ with extended target, where

K = 1.
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Figure 3. The CRB for target response matrix estimation

versus the SINR threshold Γ with extended target, where

K = 4.

and σ2
k = −80 dBm,∀k ∈ K. In the simulation, the results are obtained by averaging over 50

independent realizations of the fading channel with different user locations.

For performance comparison, we consider the following benchmark schemes.

1) Transmit beamforming only with random IRS phase shifts (Transmit BF only): This scheme

optimizes the transmit beamformers {wk} and R0 at the BS under given random phase shifts

at IRS.

2) Separate communication and sensing beamforming design (Separate BF design): This

scheme optimizes the transmit communication and sensing beamformers separately. First, we

optimize the transmit communication beamformers {w̄k} and the reflective beamformer Φ to

minimize the transmit power while ensuring the SINR constraints at the CUs [5], and accordingly

set wk = ᾱw̄k, ∀k ∈ K, with ᾱ ≥ 1 being an optimization variable to be decided. Then, we

optimize the transmit sensing beamformer R0 together with ᾱ to minimize the estimation CRB,

subject to the minimum SINR constraints at individual CUs and the maximum transmit power

constraint at the BS.

First, we evaluate the ISAC performance with extended target. Fig. 2 and Fig. 3 show the

estimation CRB versus the SINR threshold Γ when K = 1 and K = 4, respectively. It is

observed in Fig. 2 that with K = 1, the proposed design (or the transmit BF only) with Type-I CU

receivers achieves the same CRB as that with Type-II CU receivers. This can be explained based

on Propositions 4 and 5. It is also observed that for both types of receivers, the proposed designs

outperform other benchmark schemes, which shows the benefit of our proposed designs with
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by the proposed designs versus the SINR threshold Γ with

extended target.
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Figure 5. The CRB for DoA estimation versus the SINR

threshold Γ with point target, where K = 1.

jointly optimized communication and sensing beamformers as well as IRS reflective beamformer.

When the SINR threshold Γ is sufficiently small, the estimation CRB of the benchmark schemes

is close to that of the proposed designs. This is because that in this case, the SINR requirements

at the CU receivers are easily satisfied, and thus the beamforming design is sensing oriented,

and the CRB for target response matrix estimation only depends on the transmit beamforming.

When the SINR threshold Γ is sufficiently large, the transmit BF only design is inferior to the

separate BF design or even infeasible, as the communication SINR becomes the performance

bottleneck. It is also observed that with moderate values of Γ, the transmit BF only outperforms

the separate BF design. This is due to the fact that the estimation CRB only depends on the

transmit beamforming, which is thus more important in this case.

Fig. 4 shows the estimation CRB achieved by the proposed designs versus the SINR threshold

Γ under different values of K with extended target. Besides the similar observations as for Figs. 2

and 3, it is observed that when K becomes large, the performance gap between the two types

of CU receivers becomes more significant in the regime of moderate Γ. Furthermore, when Γ is

sufficiently high, their performance gap is observed to become marginal. This is because in this

case, most power should be allocated to communication signals to ensure the SINR constraints

at CU receivers, thus the sensing signal power and the resultant interference become negligible.

Next, we evaluate the ISAC performance with point target. Fig. 5 and Fig. 6 show the

estimation CRB versus the SINR threshold Γ when K = 1 and K = 4, respectively. It is

observed that the proposed designs outperform other benchmark schemes significantly, which
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by the proposed designs versus the SINR threshold Γ with

point target.

shows the benefit of our proposed joint beamforming designs. It is also observed that when the

SINR threshold Γ is sufficiently large, the transmit BF only design is infeasible.

Fig. 7 shows the estimation CRB achieved by the proposed designs versus the SINR threshold

Γ under different values of K with point target. It is also observed that the CRB performance

of Type-II CU receivers is identical with that with Type-II CU receivers when K = 1, and

outperforms that with Type-II CU receivers when K > 1. This is consistent with Proposition 9

and shows the benefit of Type-II CU receivers when there are more than one CUs. Furthermore,

it is observed that the performance gap becomes marginal when Γ is sufficiently low or high,

and the gap becomes significant for the moderate values of Γ. This observation can be similarly

explained as for Fig. 4.

VI. CONCLUSION

This paper studied the joint transmit and reflective beamforming design in an IRS-enabled

single-target multi-CUs ISAC system, by considering two types of targets, namely extended

and point targets. We considered that the BS sends dedicated sensing signals in addition to the

communication signals, and accordingly considered two types of CU receivers without and with

the sensing signal interference cancellation capability, respectively. Under the different target

models and different CU receiver types, we proposed to minimize the estimation CRB by jointly

optimizing the transmit and reflective beamforming, subject to the minimum SINR constraints

at individual CUs and maximum transmit power constraint at the BS. Numerical results showed
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that the joint beamforming design can significantly enhance the ISAC performance in terms of

minimized CRB as compared to other benchmark schemes without joint optimization, while the

dedicated sensing signals and sensing signal interference cancellation at CU receivers are crucial

for performance improvement when the number of CUs is greater than one.

APPENDIX

A. Proof of Proposition 1

Define Wopt,I
k = wopt,I

k (wopt,I
k )H ⪰ 0,∀k ∈ K. We prove this proposition by showing that

{Wopt,I
k } (of rank one) and Ropt,I

0 are also optimal for (SDR1.2). It follows from (27) that∑
k∈K Wopt,I

k +Ropt,I
0 =

∑
k∈K W⋆

k +R⋆
0. As a result, the objective value and transmit power ob-

tained by {Wopt,I
k } and Ropt,I

0 remains the same for (SDR1.2). It can be verified that tr(HkW
opt,I
k ) =

tr(HkW
⋆
k),∀k ∈ K. Therefore, the SINR constraints in (25a) are met. Furthermore, for any

y ∈ CM×1, it holds that

yH(W⋆
k −Wopt,I

k )y = yHW⋆
ky − |yHW⋆

khk|2(hH
k W

⋆
khk)

−1. (51)

According to the Cauchy-Schwarz inequality, we have (yHW⋆
ky)(h

H
k W

⋆
khk) ≥ |yHW⋆

khk|2, and

thus it follows that yH(W⋆
k −Wopt,I

k )y ≥ 0. Accordingly, we have W⋆
k −Wopt,I

k ⪰ 0,∀k ∈ K.

It follows from (27) that Ropt,I
0 ⪰ 0. Hence, {Wopt,I

k } and Ropt,I
0 are optimal for (SDR1.2).

Proposition 1 is thus proved.

B. Proof of Proposition 2

Let {Ŵ⋆
k} and R̂⋆

0 denote the optimal solution of (SDR1.2), where R̂⋆
0 is non-zero in general.

Then, we choose arbitrary i⋆ ∈ K, and reconstruct an alternative solution as R⋆
0 = 0 and

W⋆
k =

Ŵ⋆
k + R̂⋆

0 k = i⋆,

Ŵ⋆
k k ̸= i⋆.

(52)

It is easy to show that
∑

k∈K W⋆
k +R⋆

0 =
∑

k∈K Ŵ⋆
k + R̂⋆

0 and

tr(HkW
⋆
k) =

 tr(HkŴ
⋆
k) + tr(HkR̂

⋆
0) ≥ tr(HkŴ

⋆
k) k = i⋆,

tr(HkŴ
⋆
k) k ̸= i⋆.

(53)

Therefore, the alternative solution {W⋆
k} and R⋆

0 satisfy all the constraints and achieve the same

objective value for (SDR1.2) as that by {Ŵ⋆
k} and R̂⋆

0. As a result, the reconstructed solotion

{W⋆
k} and R⋆

0 = 0 are optimal for (SDR1.2). Proposition 2 is thus proved.
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C. Proof of Proposition 3

Define Wopt,II
k = wopt,II

k (wopt,II
k )H ⪰ 0,∀k ∈ K. We prove this proposition by showing that

{Wopt,II
k } (of rank one) and Ropt,II

0 are also optimal for (SDR2.1). Similar to (SDR1.2), under

the reconstructed solution, the objective value remains the same and the constraints in (25b)

and (25c) are met. We have tr(HkW
opt,II
k ) = tr(HkW

⋆⋆
k ) and W⋆⋆

k −Wopt,II
k ⪰ 0, k ∈ K, such

that

1

Γk

tr(HkW
opt,II
k )−

∑
i∈K,i ̸=k

tr(HkW
opt,II
i ) ≥ 1

Γk

tr(HkW
⋆⋆
k )−

∑
i∈K,i ̸=k

tr(HkW
⋆⋆
i ) ≥ σ2

k. (54)

Then {Wopt,II
k } and Ropt,II

0 also satisfy the SINR constraints in (29), and thus are optimal for

(SDR2.1). Proposition 3 is thus proved.
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