
1

Integrated Sensing, Computation, and
Communication: System Framework and

Performance Optimization
Yinghui He, Graduate Student Member, IEEE, Guanding Yu, Senior Member, IEEE,

Yunlong Cai, Senior Member, IEEE, and Haiyan Luo

Abstract—Integrated sensing, computation, and communica-
tion (ISCC) has been recently considered as a promising tech-
nique for beyond 5G systems. In ISCC systems, the competition
for communication and computation resources between sensing
tasks for ambient intelligence and computation tasks from mobile
devices becomes an increasingly challenging issue. To address it,
we first propose an efficient sensing framework with a novel
action detection module. In this module, a threshold is used
for detecting whether the sensing target is static and thus
the overhead can be reduced. Subsequently, we mathematically
analyze the sensing performance of the proposed framework and
theoretically prove its effectiveness with the help of the sampling
theorem. Based on sensing performance models, we formulate a
sensing performance maximization problem while guaranteeing
the quality-of-service (QoS) requirements of tasks. To solve it,
we propose an optimal resource allocation strategy, in which the
minimum resource is allocated to computation tasks, and the
rest is devoted to the sensing task. Besides, a threshold selection
policy is derived and the results further demonstrate the necessity
of the proposed sensing framework. Finally, a real-world test of
action recognition tasks based on USRP B210 is conducted to
verify the sensing performance analysis. Extensive experiments
demonstrate the performance improvement of our proposal by
comparing it with some benchmark schemes.

Index Terms—Integrated sensing and communication, mobile
edge computing, resource allocation, action recognition.

I. INTRODUCTION

The past decades have witnessed innovations in network
architecture and wireless technology for better communication
services, such as high data rate, massive device access, and
low latency. On the other hand, with artificial intelligence (AI)
showing its power in almost every field, the intelligent revolu-
tion has finally come to wireless networks [1]. Implementing
AI in wireless networks can provide diversified intelligent ser-
vices in cellular networks [2]. One representation among them
is to achieve ambient intelligence and smart environments [3]
based on a large amount of real-time sensing data. Compared
with vision-based sensing, radio-frequency (RF)-based sensing
is a more appealing approach for data collection since it can
work in non-line-of-sight scenarios, as well as it is light-
needless [4] and privacy-preserving [5]. Three key aspects are

Y. He, G. Yu, and Y. Cai are with the College of Information Science
and Electronic Engineering, Zhejiang University, Hangzhou 310027, China,
and also with Zhejiang Provincial Key Laboratory of Information Processing,
Communication and Networking (IPCAN), Hangzhou 310027, China (e-mail:
2014hyh@zju.edu.cn; yuguanding@zju.edu.cn; ylcai@zju.edu.cn).

H. Luo is with Lenovo Research, Shanghai 201210, China (e-mail: lu-
ohy7@lenovo.com).

necessary for enabling RF-based sensing in cellular networks,
i.e., spectrum resource, hardware, and computation resource.
The former two are used for transmitting and receiving sensing
signals, and the last one is used for running sensing algorithms.

Regarding the first and second aspects, directly allocating
extra spectrum and equipping individual hardware would in-
cur high overhead. To address this issue, integrated sensing
and communication (ISAC) has been recently proposed since
sensing and communication systems have a similar hardware
architecture and can work on the same spectrum [6]. ISAC
is expected to improve the spectral and energy efficiencies
with a low hardware cost by jointly designing the sensing
and communication functions [7]. To provide computation re-
source, a novel architecture, referred to mobile edge computing
(MEC), has been recently recognized as a core technology by
deploying edge servers with sufficient computation capacity at
cellular base stations (BSs) [8]. By offloading the computation
task to nearby edge servers, end-to-end latency can be signifi-
cantly reduced as compared to cloud computing [9]. Motivated
by this, integrated sensing, computation, and communication
(ISCC) has been recently proposed by combining ISAC with
MEC to achieve the goal of supporting ambient intelligence
and smart environments [10], [11].

A. Related Work

ISCC is one of the key technologies for the next generation
wireless networks and it will play a vital role in a wide range
of application scenarios, such as smart home scenarios [10],
internet of vehicle scenarios [12]–[14], and so on. ISAC and
MEC are fundamental technologies for ISCC. The studies of
ISAC have two stages, i.e., spectrum sharing and hardware
sharing. For spectrum sharing, radar devices and communica-
tion devices share the same spectrum, and the main goal is to
improve spectrum efficiency by jointly designing beamforming
matrices [15], [16]. For instance, a joint design of transmit
covariance matrix and radar sampling scheme has been pro-
posed in [15] to reduce the effective interference power at the
radar receiver. Moreover, since the sensing and communication
systems have a similar hardware design, hardware sharing
becomes possible to reduce the overhead. One way to realize
hardware sharing is to enable the sensing function within a
communication system [17]–[19]. For example, the work in
[17] utilized a commercial WiFi card with a modified driver to
realize the localization function. In addition, the other method

ar
X

iv
:2

21
1.

04
02

2v
3

 [
cs

.I
T

]
 6

 J
un

 2
02

3

2

is to design a dual-functional waveform that further exploits
the potential of ISAC [20]–[23]. For instance, the authors of
[20] proposed an optimal waveform toward a trade-off between
radar and communication performance.

However, the above works only focused on the processes
of transmitting and receiving sensing signals and have not
thoroughly studied the computation process of sensing data.
Note that for delay-sensitive sensing tasks, the computational
delay is non-negligible. Meanwhile, offloading sensing data
to cloud servers certainly incurs high communication latency.
MEC can be adopted to address this issue since it provides
computation ability to the edge network by equipping BSs
with edge servers. The studies of MEC mainly concentrate on
joint communication and computation resource allocation for
minimizing the total energy consumption [24], [25] or end-to-
end delay [26], [27].

Nevertheless, the design of resource allocation in MEC
has not considered sensing tasks and their features. As a
result, a major issue for ISCC is how to allocate the limited
available resources, taking into account both communication
and computation. Existing works [10], [11], [28], [29] have
proposed their solutions for different scenarios to address this
problem. The authors in [28] considered a general sensing
task and jointly optimized computation resource allocation and
MIMO precoding for radar waveforms and communication
symbols with the delay constraint and resource limitation in
ISCC systems. To reduce the interference between sensing and
communication, intelligent reflecting surface (IRS) is adopted
in [29] to suppress the interference between sensing and
communication. A joint resource allocation and beamforming
algorithm is proposed to minimize energy consumption. Dif-
ferently, literatures [10], [11] investigated AI-based sensing
tasks. Specifically, the training process of human motion
recognition tasks in a federated edge learning (FEEL) system
has been investigated in [10], and the resource allocation
problem of ISCC was addressed to accelerate the convergence
of FEEL. On the other hand, the authors of [11] studied
the inference process of AI-based sensing tasks where the
sensing accuracy is measured by an approximate but tractable
metric, i.e., discriminant gain. An optimal joint transmit
power and communication resource allocation strategy has
been proposed for maximizing the discriminant gain. However,
directly implementing AI-based sensing algorithms will bring
a high computational expense in ISCC systems since they are
computation-intensive. Meanwhile, in most scenarios, such as
smart home scenarios, the sensing target might be static for
an extended period1, or there may even be no sensing target.
Besides, existing works about RF-based sensing mainly focus
on generalization issue [30]–[32] and privacy issue [5], [33],
[34]. The former tries to improve the generalization ability of
the sensing algorithm for automatically adapting to new and
previously unseen sensing targets and environments, since RF
signals are sensitive to the environments and sensing targets.
The latter one aims to avoid the information leakage, since
RF signals are non-intrusive and can be transmitted through

1The static state means that the sensing scenario remains unchanged. For
example, a human (i.e., the sensing target) keeps the same posture, which
would not cause the variations of sensing signals over time.

the wall. Nevertheless, the computation overhead issue of
sensing tasks has not been studied before. Inspired by this,
we aim to propose a novel sensing framework to further
improve computational and communication efficiencies while
guaranteeing sensing performance.

B. Main Contributions

In this paper, we consider an ISCC system where a triple-
functional BS equipped with an edge server needs to per-
form a sensing task, i.e., action recognition, for the ambient
intelligence and also provide communication and computing
services in the cellular network. Specifically, the sensing task
serves the smart home scenarios where variations of wireless
signals could be employed to detect or recognize human daily
activities and thereby the BS can support diversified intelligent
services, such as fall detection and intelligent home control [6].
Since the sensing and computation tasks compete for the lim-
ited computation and communication resources, it is crucial to
design an effective framework and resource allocation strategy.
This work is mostly related to the prominent ISAC work [42].
It only focuses on the tradeoff between recognition accuracy
and communication rate. Moreover, a convolutional neural
network (CNN)-based sensing algorithm was directly used in
[42] for sensing tasks without considering the computation
resource waste for the static state. Motivated by this, we aim to
design an effective sensing framework and the corresponding
resource allocation strategy to further improve the sensing,
computation, and communication performance simultaneously.
In particular, we address three main challenges: 1) how to
design this sensing framework; 2) how to analyze the sensing
performance based on the proposed sensing framework; 3)
how to jointly allocate resources for maximizing the sensing
performance under the quality-of-service (QoS) requirements
of devices. The main contributions of this work are summa-
rized as follows.

• We propose a novel and effective sensing framework
where a key action detection module is placed before
the CNN module. In the action detection module, the
power of high-frequency components of sensing signals
is compared with a threshold for determining whether the
sensing target is static due to the fact that the action of
the target will cause the variations of sensing signals.

• We quantitatively analyze the overall sensing perfor-
mance of the proposed sensing framework, i.e., the sens-
ing accuracy and delay. Specifically, the sampling theo-
rem is applied to calculate the miss rate and false positive
rate for the action detection module. The accuracy is
modeled as a monotonically increasing function, and the
delay of the CNN module is proportional to the sampling
rate. Furthermore, we prove that our proposed sensing
framework can save unnecessary computation resource,
and the gain is positively related to the probability of the
occurrence of the static state.

• A sensing accuracy maximization problem is formulated
with the delay requirement of computation tasks. By
addressing this problem, we propose an optimal resource
allocation strategy in which the resource allocated to

3

Fig. 1. An ISCC system.

computation tasks is minimized and the remaining re-
source is allocated to the sensing task to maximize the
accuracy. Besides, an optimal threshold selection policy
is also derived.

• We conduct a real-world test of the action recognition
task using the USRP B210. The proposed mathematical
models are validated with the collected dataset. Further-
more, numerical results demonstrate that the proposed
sensing framework and algorithm outperform several
other benchmark schemes.

The rest of the paper is organized as follows. Section
II introduces the ISCC system model, the computation task
model, and the sensing framework. Section III analyzes the
sensing performance of the proposed framework and proves
its superiority. Section IV formulates a sensing performance
maximization problem and decomposes it into two subprob-
lems for developing an overall algorithm. Section V presents
the test results, and the whole paper is concluded in Section
VI.

II. SYSTEM MODEL AND SENSING FRAMEWORK

In this section, we introduce the ISCC system, the computa-
tion task model, and the proposed effective sensing framework.

A. ISCC System

As depicted in Fig. 1, we consider an ISCC system contain-
ing one triple-functional BS equipped with an edge server and
N mobile devices. The BS aims to conduct a sensing task and
provide communication and computing services. Each device
has its own computation task. Due to the limited computation
resource at the mobile device, all computation tasks need to be
offloaded to the edge server located at the BS via the wireless
links. Meanwhile, the BS needs to perform a sensing task,
i.e., an action recognition task. For this purpose, the wireless
sensing signal is transmitted towards the sensing area at the
sampling rate F s. The echo is collected at the triple-functional
BS and then fed back to the edge server for action recognition.
To sum up, the BS has three functions: 1) communication
function: mobile devices can offload their tasks to the BS via
wireless links; 2) sensing function: the BS can transmit sensing
signals; 3) computation function: the computation and sensing
tasks can be completed with the help of the edge server.

In this work, since the interference between sensing and
communication would seriously affect the sensing perfor-
mance, the BS adopts the time division multiple access

Fig. 2. Illustration of TDMA method at the triple-functional BS.

(TDMA) method to perform sensing and communication func-
tions, as shown in Fig. 2.2 Specifically, there are three types of
time slots: 1) sensing signal transmission slot for transmitting
the sensing signal; 2) guard slot for collecting sensing echoes;
3) communication slot for data offloading. Let τ s denote the
total proportion of one sensing signal transmission slot and
one guard slot, i.e., total duration per unit time. Moreover,
the BS transmits sensing signals at a sampling rate of F s,
which means there are F s sensing signal transmission slots
and F s guard slots per unit time. Thus, the total proportion of
communication resource occupied by the sensing task is τ sF s.
The proportion of communication resource allocated to device
n for offloading per unit time is denoted by τ c

n.3 Therefore,
we have τ sF s +

∑N
n=1 τ

c
n ≤ 1.4

B. Computation Task Model

The computation task of device n can be represented by a
tuple (Vn, Cn, T

max
n), where Vn (in bit) denotes the data size

of the task, Cn (in CPU cycle/bit) denotes the computation
intensity, i.e., the required number of CPU cycles for comput-
ing one bit, and Tmax

n (in s) denotes the delay limitation. The
computation task offloading of each device can be divided into
two main phases: 1) transmission phase, where each device
transmits its task to the BS with the allocated time slots; 2)
computation phase, where the edge server computes the task.
Note that the phase of returning the computation result can be
neglected because of the small data size [24].

In the transmission phase, let B denote the system band-
width and let σ2

c denote the channel noise power. Then, the
instantaneous data rate of device n is given by

Rn = B log2

(
1 +

|hn|2pn
σ2

c

)
, (1)

where hn is the channel gain between device n and the BS,
and pn is the transmit power of device n. Meanwhile, the
proportion of communication resource occupied by device n
is τ c

n, that is, the time slot available for transmission of device
n is τn per unit time. Thus, for device n, the transmitted data
size per unit time is τ cnRn, which means that the average data
rate of device n is τ cnRn. Thus, for device n, the delay of
transmission phase can be expressed as

T tran
n =

Vn

τ c
nRn

. (2)

2We should note that the whole system is under the control of the BS and
each device only can transmit data within the allocated time slots.

3The delay of computation tasks is not related to the sampling rate, and
thus we directly describe the proportion of communication resource allocated
to device n as τ c

n.
4Compared with the duration of the time slot for sensing and communica-

tion tasks, the duration of the controlling signal is much shorter and thus can
be ignored. This assumption has been widely adopted in similar works [10],
[11].

4

In the computation phase, let fn (in CPU cycle/s, i.e., Hz)
denote the computation resource of the edge server allocated
to device n. Then, according to [35], the delay of computation
phase for device n can be expressed as

T comp
n =

VnCn

fn
. (3)

Based on the above, the overall delay for device n to complete
its task is given by

Tn = T tran
n + T comp

n =
Vn

τ c
nRn

+
VnCn

fn
. (4)

C. Sensing Framework

For the sensing task of action recognition, the overall
sensing framework contains two phases, i.e., signal collection
phase at the BS and action recognition phase at the edge
server, as shown in Fig. 3. The former one is utilized for
collecting the radar echo signal, and the latter one is utilized
for processing the signal to obtain the action type.5

Fig. 3. The proposed sensing framework.

For the signal collection phase at the BS, we consider
an orthogonal frequency division multiplexing (OFDM) radar
[36] because it can be easily implemented in existing BSs.6

With the OFDM radar, the total system bandwidth B is divided
into K subcarriers. The baseband radar signal, denoted by xk

for subcarrier k, is transmitted via an RF chain after OFDM
modulation. After reflection and OFDM demodulation, the
baseband echo, denoted by yk for subcarrier k, is obtained. Fi-
nally, the processed OFDM radar signal for subcarrier k can be
calculated by gk =

yk
xk

, which can be regarded as the channel

state information (CSI) between the transmitting and receiving
antennas of the BS. To detect the action type of sensing target,
we need to collect the CSI samples over a period of time,
whose length is denoted by T s. With the sampling rate being

5In this paper, we adopt the CNN-based sensing algorithm since it is
one of the most popular solutions for the RF-based action recognition task
[37]. Moreover, our proposed method can also be extended to other sensing
algorithms.

6Our design can be extended to other radar types, such as frequency-
modulated continuous wave (FMCW) radar [38].

F s, the total collected CSI samples can construct a CSI matrix,
denoted by G = [gH

1 gH
2 · · · gH

K]H ∈ CK×(T sF s), where
gk = [gk[1] gk[2] · · · gk[T sF s]] ∈ C1×(T sF s) is the collected
CSI vector for subcarrier k over the period of T s, gk[m] is
the m-th CSI sample for subcarrier k, and (·)H denotes the
operation of conjugate transpose.

For the action recognition phase at the edge server, in
the conventional scheme, the collected CSI matrix is directly
input into the CNN module [39]. However, in some scenarios
(especially smart home scenarios), the target may not exist
in the sensing area, or the sensing target may be in a static
state. Thus, continuously employing CNN would result in high
cost of computation resource. Meanwhile, we should note the
fact that an action of a sensing target causes the CSI to vary
over time, which leads to an increase in the power of high-
frequency components. Motivated by this, we design an action
detection module placed before the CNN module, as shown in
Fig. 3. It is used for detecting whether the sensing target is in
a static state or an action state. To achieve it, we first pick the
CSI vector of the first subcarrier among the K subcarriers.7

Then, to obtain the power of high-frequency components, we
need to convert the CSI vector from the time domain to the
frequency domain. Thus, we adopt the fast Fourier transform
(FFT) to obtain the discrete Fourier transform (DFT) of the
CSI vector, as

D[l] =
1√
T sF s

T sF s∑
m=1

g1[m] exp

(
−j2πlm

T sF s

)
. (5)

Next, we need to calculate the power of high-frequency
components. Let [Fℓ, Fu] denote the range of high fre-
quency and then the corresponding range for DFT D[l] is
[⌊FℓT

s⌋, ⌈FuT
s⌉] according to [40]. The power of high-

frequency components can be calculated as the ratio of the
total energy in the range [FℓT

s, FuT
s] to the number of

samples, as

P =
1

T sF s

⌈FuT
s⌉∑

l=⌊FℓT s⌋

|D[l]|2 . (6)

Finally, by comparing the power P with a pre-set threshold,
denote by η, we can determine whether the sensing target is
in the static state or the action state. If it is in the action state,
the CSI matrix G is further input into the CNN module for
action recognition; otherwise, the result of the static state is
output.

The key to the proposed action detection module is the
threshold. If the threshold is set too high, it may cause a
large number of action state instances to be recognized as
the static state, which pulls down the average recognition
accuracy. If the threshold is set too low, a number of static
state instances may be detected as the action state, increasing
both the cost of computation resource and delay. Therefore,
it is important to select an appropriate threshold to reduce
both computation consumption and delay without sacrificing

7Here, we take the first subcarrier as an example. In fact, any of the K
subcarriers can be used for the action detection module. Moreover, all K
subcarriers can be used in the proposed action detection module with the
help of a voting classifier, which deserves future work.

5

accuracy. Moreover, the sampling rate also influences the
accuracy. With a higher sampling rate, it can intuitively be
seen that the accuracy becomes higher since more information
about the sensing target is collected. In the next section,
we will analyze the effect of threshold and sampling rate
on the average accuracy and delay of the proposed sensing
framework.

III. SENSING PERFORMANCE ANALYSIS

In this section, we first analyze the sensing accuracy and
delay of our proposed sensing framework and then prove its
effectiveness.

A. Sensing Accuracy

In our proposed sensing framework, the sensing accuracy is
jointly determined by two modules, i.e., the action detection
module and the CNN module. We assume that the action
recognition task has I recognition types and their set is
denoted by {1, 2, · · · , I}, where the first type is the static
state and {2, 3, · · · , I} is the set of action state types.8 For
the action detection module, we can describe its performance
in terms of miss rate and false positive rate. To be specific, the
miss rate for the i-th action type is defined as the proportion
of the i-th action instances that are detected as the static state,
i.e.,

poi =
M0

i

Mi
, i = 2, 3, · · · , I, (7)

where Mi is the total number of the i-th action type instances
and M0

i is the number of the i-th action type instances that
are recognized as the static state. The false positive rate is
defined as the proportion of the static state instances that are
recognized as the action state, i.e.,

pl =
M a

0

M0
, (8)

where M0 is the total number of static state instances and M a
0

is the number of static state instances that are recognized as
the action state. For the CNN module, recognition accuracy
is utilized to describe the performance, which is defined as
the ratio of the correctly recognized instances to the total
number of recognition instances. Although we have defined
performance metrics, they cannot be used for theoretical
analysis since they are based on statistical results. Thus, in
the following, we will theoretically model them with the help
of the sampling theorem.

First of all, we focus on the action detection module. As
we mentioned before, the key is the threshold. Moreover, the
sampling rate also affects poi and pl. To illustrate the effects
of the threshold and sampling rate, we collect some instances
and plot the power of high-frequency components in Fig. 4.
From the figure, we can observe that the power of the action
state is obviously higher than that of the static state, which
demonstrates the effectiveness of the proposed action detection

8The number of types, i.e., I , should be given in the prior design and
training processes for AI-based sensing tasks. The value of I is generally
determined according to specific scenarios and tasks. In the test part, we
consider 8 typical action types.

0 20 40 60 80 100

Instance

0

5

10

15

20

25

30

35

40

P
o

w
e

r
o

f
h

ig
h

-f
re

q
u

e
n

c
y

c
o

m
p

o
n

e
n

ts
 (

F
s
=

5
0

)

Action stateStatic state

(a) The sampling rate is 50 Hz.

0 20 40 60 80 100

Instance

0

2

4

6

8

10

P
o

w
e

r
o

f
h

ig
h

-f
re

q
u

e
n

c
y

c
o

m
p

o
n

e
n

ts
 (

F
s
=

1
0

0
0

)

Action stateStatic state

(b) The sampling rate is 1000 Hz.

Fig. 4. The power of high-frequency components for 100 instances under
different sampling rates. Specifically, for the first 50 instances, the target is
in the static state. For the last 50 instances, the target is in the action state.
The test setting and dataset are introduced in Section V-A.

module. Besides, as the sampling rate increases, the power gap
between the two states becomes higher, which further reduces
both the miss rate and the false positive rate. It is intuitively
reasonable since the sensing target becomes more informative,
and it is easier to distinguish between the static state and the
action state with a higher sampling rate. Recall that we aim to
optimize the sensing performance in this paper. The challenge,
however, is that the mathematical relationships among the
sampling rate, threshold, miss rate, and false positive rate are
unclear.

To model the effect of sampling rate, we need to consider
the continuous-time CSI of the first subcarrier in the time
domain, denoted by gc1(t). Then, the collected CSI can be
rewritten as the sample of the continuous-time CSI at sampling
rate F s, as

g1[m] = gc
1(t)|t=m/F s + w0[m] (9)

= gc
1

(m

F s

)
+ w0[m], m = 1, 2, · · · , T sF s, (10)

where w0[m] is the estimation error that can be modeled as the
Gaussian noise with mean being zero and variance being σ2.
Then, according to the sampling theorem [40], the relationship
between the DFT D[l] of g1[m] and the Fourier transform of
gc
1(t), denoted by Dc(F), can be expressed as

D[l] =
1√
T sF s

(
T sF s−1∑
m=0

gc
1

(m

F s

)
exp

(
−j2πlm

T sF s

)
(11)

6

+

T sF s−1∑
m=0

w0[m] exp

(
−j2πlm

T sF s

))

=

√
F s

T s

+∞∑
m=−∞

Dc
((

l

T sF s −m

)
F s
)
+W0[l], (12)

where W0[l] is the equivalent Gaussian noise in the frequency
domain with zero mean and variance σ2. Supposing Dc(F) =
0 when |F | > F s/2, we can further simplify (12) as

D[l] =

√
F s

T s D
c
(

l

T s

)
+W0[l]. (13)

Then, the power calculated in the proposed action detection
module can be rewritten as

P =
1

T sF s

⌈FuT
s⌉∑

l=⌊FℓT s⌋

∣∣∣∣∣
√

F s

T s D
c
(

l

T s

)
+W0[l]

∣∣∣∣∣
2

(14)

=
1

(T s)
2

⌈FuT
s⌉∑

l=⌊FℓT s⌋

∣∣∣∣∣Dc
(

l

T s

)
+

√
T s

F s W0[l]

∣∣∣∣∣
2

. (15)

Thus, P follows the noncentral chi-squared distribution with
the degree of freedom (DoF) of ⌈FuT

s⌉−⌊FℓT
s⌋+1. Since the

high frequency range is wide enough and T s is long enough,
e.g., Fℓ = 10 Hz and T s = 3 s, P approximately follows
the normal distribution according to [41] and its mean and
variance are given by

µP = λ+
r

T sF s , σ2
P = 4

σ2

T sF s λ+ 2
σ2

(T sF s)
2 r, (16)

respectively, where

λ =
1

(T s)
2

⌈FuT
s⌉∑

l=⌊FℓT s⌋

∣∣∣∣Dc
(

l

T s

)∣∣∣∣2 ,
r = σ2 (⌈FuT

s⌉ − ⌊FℓT
s⌋+ 1) .

(17)

Moreover, instances of the same action cannot be exactly the
same. For example, the target may not stand at the same
location when the target performs the same action. Therefore,
we add a constant, denoted by σ2

d, into the variance and it
describes the distinction of action instances. Therefore, the
revised variance is given by

σ2
P = 4

σ2

T sF s λ+ 2
σ2

(T sF s)
2 r + σ2

d. (18)

Based on the above analysis, we can mathematically model
the relationship among the sampling rate, threshold, miss rate,
and false positive rate, as shown in the following proposition.

Proposition 1: The miss rate for the i-th action is given by

poi = Q

(
µP,i − η

σP,i

)
, i = 2, 3, · · · , I, (19)

and the false positive rate for the static state is given by

pl = Q

(
η − µP,1

σP,1

)
, (20)

0 50 100 150 200 250 300 350 400

Fs

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
 (

%
)

Fig. 5. The relationship between the recognition accuracy and sampling rate.

where Q(·) is the Q-function9, µP,i = λi+
ri

T sF s , and σ2
P,i =

4
σ2

T sF s λi+2
σ2

(T sF s)
2 ri+σ2

d,i. λi, ri, and σ2
d,i are parameters

that can be obtained via fitting on the collected sensing dataset.
From Proposition 1, we can find that poi increases but pl

decreases with the threshold, which confirms the statement
we mentioned in Section II-C. Moreover, both the mean and
variance decrease with sampling rate, which is consistent with
Fig. 4.

Next, we need to model the accuracy of the CNN mod-
ule. According to [42], the accuracy is positively correlated
with the sampling rate. A higher sampling rate means more
information about the sensing target, and it is reasonable that
the CNN module can achieve higher accuracy. Thus, it can be
represented by a monotonically increasing function, denoted
by α(F s). To verify this, we collect a sensing dataset and
adopt one of the most well-known CNNs, ResNet50 [43].
After fully training until convergence, the relationship between
the accuracy and sampling rate is shown in Fig. 5. We can
observe that the accuracy is monotonically increasing with F s.

Based on the above analysis of two modules, we can
express the recognition accuracy of each type and show the
average recognition accuracy with the probability distribution
of recognition types. Specifically, the accuracy for the i-th
action type is (1− poi)α(F

s) with i ≥ 2 since instances
of the i-th type can be recognized correctly only after they
are not detected as the static state by the action detection
module. The accuracy for the static state is (1−pl)+plα(F s)
where (1 − pl) and plα(F s) represent the probabilities that
instances of the static state are correctly detected by the
action detection module, and incorrectly detected by the action
detection module but correctly detected by the CNN module,
respectively. Therefore, the average recognition accuracy of
the action recognition task is given by

A =

I∑
i=2

pmi (1− poi)α(F
s)+pm1

(
(1− pl) + plα(F s)

)
, (21)

where pmi =
Mi∑I
i=1 Mi

denotes the probability of the i-th type

with
∑I

i=1 p
m
i = 1.

B. Sensing Delay

The delay of the signal collection phase is constant, and
the cost of the action detection module is small enough to

9https://cnx.org/contents/hDU5uzaA@2/The-Q-function

7

be neglected since the main computation cost in the action
detection module is the FFT operation. Therefore, we focus
on the CNN module.10 Recall that the input of the CNN
module is matrix G and its size is K × (T sF s). Meanwhile,
the main part of the CNN is the convolutional layer, which
causes the major computation delay of the CNN. According
to [44], the computational complexity of convolutional layers
is proportional to the input matrix size, i.e., K×(T sF s). Thus,
the overall computational complexity of the CNN module is
O (KT sF s). Let f s denote the computation resource at the
edge sever allocated to the CNN module. The corresponding
delay can be modeled as

TCNN =
CsKT sF s

f s , (22)

where Cs is the computation cost of the CNN module per
element.

Since we have added the action detection module, not every
instance would pass through the CNN module. Thus, we utilize
the average delay to represent the performance of sensing
tasks. Based on the analysis in Section III-A, the probability
of an instance passing through the CNN module is

pCNN =

I∑
i=2

pmi (1− poi) + pm1 pl, (23)

where the first part is for action types and the second part is
for the static state. Combining the probability in (23) with the
delay in (22), the average delay of the sensing task is

T s =

(
I∑

i=2

pmi (1− poi) + pm1 pl

)
CsKT sF s

f s . (24)

C. Performance Comparison

With the above analysis, we can identify the performance
improvement of the proposed sensing framework by compar-
ing it with the conventional one where there is no action
detection module. The performance gain can be derived as
shown in the following theorem.

Theorem 1: Under the same recognition accuracy target and
delay requirement, the proposed sensing framework needs less
computation resource than the conventional scheme when the
following condition is satisfied

1−
I∑

i=2

pmi α(F s)σP,1

pm1 (1− α(F s))σP,i
exp

(
(µP,1)

2

2σ2
P,1

− (µP,i)
2

2σ2
P,i

)
> 0.

(25)
The performance gain, defined as the ratio of the saved
computation resource to the required computation resource in
the conventional framework, is

ρ = min

{
pm1 (1− pl)

A
|A=α(F s), 1− pCNN|η=ηu

}
, (26)

where ηu = min
i∈{2,··· ,I}

µP,i.

10For example, according to test results, when F s is 200 Hz and the
computation resource of the edge server is 2.64 GHz, the computation delay
of the action detection is around 2× 10−5 s while that of the CNN module
is around 0.75 s.

Proof: Please refer to Appendix A.
Remark 1: According to Theorem 1, we can verify the

performance gain, that is, the proposed sensing framework
can reduce the cost of computation resource without lowering
the recognition accuracy. In other words, compared with the
conventional framework, it can improve the accuracy with the
same computation resource. To understand (25), we can focus
on the probability distribution of action, i.e., {pmi }, and the
accuracy of the CNN module, i.e., α(F s). As the probability
of the static state pm1 becomes higher, the condition is easier to
be satisfied since the action detection module can avoid more
unnecessary computation cost. Meanwhile, as the accuracy of
the CNN module increases, the condition is more difficult
to satisfy, because more instances would be input into the
CNN module to achieve higher average recognition accuracy.
Based on the above analysis, the proposed sensing framework
is suitable for smart home scenarios, since the sensing target
(e.g., human) keeps in the static state most of the time. When
the condition is met, there are two cases. The performance
gain is 1 − pCNN|η=ηu

when the action detection module
can almost perfectly distinguish between action instances and

static instances, otherwise, it is
pm1 (1− pl)

A
. In the first case,

the performance gain is only determined by the probability
of passing through the CNN module, i.e., pCNN. Further-
more, the relationship between them is negatively correlated
since the computation cost increases with the probability of
passing through the CNN module. In the second case, the
performance gain is influenced by both the accuracy of the
CNN module and the probability of the static state. The
performance gain decreases because more instances are fed
into the CNN module to achieve higher overall accuracy as
the CNN accuracy increases. The performance gain increases
with the probability of the static state. It is because, as the
probability of the static state increases, the threshold in the
action detection module can be set higher without pulling
down the accuracy according to (21), and fewer instances
are input into the CNN module. This eventually reduces the
probability of computation. Besides, even in the worst case, the
proposed sensing framework maintains the same performance
as the conventional framework.

IV. SENSING ACCURACY MAXIMIZATION

In this section, we formulate a mathematical problem to
maximize the sensing accuracy and then decompose it into
two subproblems for achieving its solution.

A. Problem Formulation

Thus far, we have mathematically modeled the sensing
performance including the average recognition accuracy in
(21) and the average sensing delay in (24). In the following,
we aim to solve the third challenge mentioned before, i.e.,
maximizing the sensing performance. To be specific, we aim
to maximize the sensing accuracy under the delay requirement,
denoted by T s,max, by optimizing the threshold and sampling
rate. Meanwhile, we need to consider the delay requirement of
each computation task since the computation and communica-
tion resource is limited. Let f e denote the total computation

8

resource at the edge server. Then, we formulate the sensing
accuracy maximization problem, as

max
{F s,η,f s,τ c

n,fn}
A =

I∑
i=2

pmi (1− poi)α(F
s)

+ pm1
(
(1− pl) + plα(F s)

)
, (27a)

s.t. T s ≤ T s,max, (27b)
Tn ≤ Tmax

n , ∀n, (27c)

τ sF s +

N∑
n=1

τ c
n ≤ 1, (27d)

f s +

N∑
n=1

fn ≤ f e, (27e)

0 ≤ η ≤ ηu, (27f)
F s ∈ Z+, f s, τ c

n, fn ≥ 0, (27g)

where Z+ denotes the set of positive integers. In the above,
(27b) and (27c) are the delay constraints for the sensing
task and computation tasks, respectively, (27d) and (27e)
are the communication and computation resource limitation
constraints, respectively, and (27f) gives the range of the
threshold where the upper bound is ηu that is the minimum
power mean among all action types. The reason for setting
an upper bound is that the accuracy would drop rapidly if the
threshold is higher than ηu.

B. Problem Decomposition

By jointly considering (27a), (27b), and (27f), we can find
that the effect of sampling rate on the sensing accuracy is
quite complicated. Thus, we first give F s and then solve
the accuracy maximization problem (27) with a given F s.
After that, by performing an exhaustive search on F s, we
can find the optimal solution to problem (27). To solve the
accuracy maximization problem (27) with given F s, we can
find that the sensing and computation tasks compete for the
computation resource. Meanwhile, we aim to maximize the
sensing accuracy. Therefore, we can minimize the computation
resource required for the computation tasks while satisfying
their delay requirement, and allocate all remaining resource
to the sensing task. In this way, the accuracy maximization
problem (27) for a given F s can be intuitively decoupled
into two subproblems. The first one is a resource allocation
problem that minimizes the required computation resource by
optimizing τ c

n and fn, as

min
{fn,τ c

n}

N∑
n=1

fn, (28)

s.t. (27c), (27d), and (27g).

The second one is a threshold selection problem that maxi-
mizes the sensing accuracy by optimizing the threshold with
f s = f e −

∑N
n=1 fn, as

min
η

A, (29)

s.t. (27b) and (27f).

In the following, we will solve the two subproblems in turn.

C. Resource Allocation Strategy

First of all, we can prove that problem (28) is convex, as
shown in Lemma 1.

Lemma 1: Problem (28) is a convex optimization problem.
Proof: The objective function and constraints (27d) and

(27g) are linear, and constraint (27c) is a linear combination
of two convex functions, i.e., 1/τ c

n and 1/fn. As a result,
problem (28) is convex, which ends the proof.

Based on Lemma 1, we utilize the Lagrangian method to
solve problem (28) and the corresponding partial Lagrangian
function can be expressed as

L =

N∑
n=1

fn +

N∑
n=1

λn (Tn − Tmax
n)

+ µ

(
τ sF s +

N∑
n=1

τ c
n − 1

)
, (30)

where λn and µ are the Lagrange multipliers associated
with the constraints (27c) and (27d). Let {f⋆

n, τ
c,⋆
n } denote

the optimal solution to problem (28). Then, by applying the
Karush-Kuhn-Tucker (KKT) conditions, we can derive the
following theorem.

Theorem 2: The optimal solution to problem (28) can be
given by

τ c,⋆
n =

Vn

Tmax
n

(
1

Rn
+

√
Cn

µ⋆Rn

)
,

f⋆
n =

Vn

Tmax
n

(
Cn +

√
µ⋆Cn

Rn

)
,

n = 1, 2, · · · , N, (31)

where µ⋆ is the optimal Lagrange multiplier, as

µ⋆ =

∑N
n=1

Vn

Tmax
n

√
Cn

Rn(
1− τ sF s −

∑N
n=1

Vn

Tmax
n Rn

) . (32)

Proof: Please refer to Appendix B.
Remark 2: Theorem 2 gives the optimal resource allo-

cation strategy. The allocated amount of resource to each
computation task is negatively related to the data rate and is
positively related to the computation intensity and task size.
The computation resource decreases sublinearly with the data
rate exponentially by 1/2. Moreover, we should note that the
remaining computation resource is all allocated to the sensing
task. Thus, the computation resource for the sensing task
increases sublinearly with exponential 1/2 of the data rate.

D. Threshold Selection Policy

Now, we focus on problem (29). To solve it, we need to
explore the properties of the objective function and constraint
(27b), i.e., A and T s. T s decreases with η ∈ [0, ηu] since
poi monotonically increases with η and pl monotonically
decreases with η. Thus, delay constraint (27b) is equivalent
to η ≤ ηT , where ηT satisfies that T s = T s,max and can be
obtained via the exhaustive search algorithm. The computa-
tional complexity is O (log(ηu/ϵ)), where ϵ is the tolerance
of accuracy.

As for A, it is a concave function with η ∈ [µP,1, ηu] since
both pl and poi are convex with η ∈ [µP,1, ηu]. However,

9

when η ∈ [0, µP,1], A is not concave since pl is not convex,
and thus we cannot obtain the optimal solution directly. To
address it, we adopt piecewise linear approximation (PLA) for
pl. First of all, the set [0, µP,1] is divided into M subsets and

the m-th subset is
[
(m− 1)µP,1

M
,
mµP,1

M

]
. In each subset, pl

is approximated as a linear function. Then, A is a concave
function with η belonging to each subset since pl is linear and
poi is convex. Let ηA,m denote the threshold that maximizes
A within the m-th subset and it can be obtained via the
Golden-section search algorithm [46] with the computational
complexity of O (log(µP,1/M/ϵ)). Besides, the threshold that
maximizes A within [µP,1, ηu] is denoted by ηA,M+1. Then,
the threshold that maximizes A within [0, ηu], denoted by ηA,
is given by

ηA = max
m∈{1,··· ,M+1}

ηA,m. (33)

The computational complexity for calculating ηA is
O (M log(µP,1/M/ϵ) + log((ηu − µP,1)/ϵ) +M).

By jointly considering the objective function and delay
constraint, there are two cases.

• When ηA ≥ ηT , ηA is a feasible solution to problem (29)
and the maximum accuracy is achieved when η = ηA.

• When ηA < ηT , the delay requirement cannot be satisfied
when η = ηA and the accuracy decreases with η > ηA.
Thus, the maximum accuracy is achieved when η = ηT .

Combining the above two cases, the optimal solution to
problem (29) is shown in the following theorem.

Theorem 3: The optimal threshold selection policy is given
by

η⋆ = max
(
ηT , ηA

)
. (34)

Remark 3: From Theorem 3, the delay requirement may
limit the sensing accuracy. We should note that when the accu-
racy is limited by the delay constraint in the proposed sensing
framework, there is no feasible solution in the conventional
framework. This is because the proposed sensing framework
is equivalent to the conventional one when η = 0, and ηT

should be set higher than 0 to meet the delay constraint as T s

decreases with η ∈ [0, ηu]. Furthermore, the accuracy of the
proposed framework is higher than that of the conventional
one when the accuracy is not limited by the delay constraint.
As a result, the proposed framework performs better than the
conventional one.

E. Overall Algorithm

Before presenting the overall algorithm, we give an upper
bound of F s in the following.

Lemma 2: An upper bound of F s is given by

F s
u =

⌊
1

τs

(
1−

N min
n

Vnf
e/min

n
Rn

max
n

Tmax
n f e −N min

n
Vn min

n
Cn

)⌋
. (35)

Proof: Please refer to Appendix C.
Based on the above analysis, we can obtain the overall

algorithm to problem (27), as shown in Algorithm 1.
Specifically, we perform exhaustive searching on F s. In
each loop iteration, we solve problems (28) and (29)

Algorithm 1: Overall Algorithm for Solving Problem
(27).

1 Initialize the maximal error tolerance ϵ > 0 and the
maximal accuracy A⋆ = 0;

2 for F s ∈ {1, · · · , F s
u} do

3 % Resource allocation strategy;
4 Obtain the optimal resource allocation strategy

{τ c,⋆
n , f⋆

n} with Theorem 2;
5 % Threshold Selection Policy;
6 Obtain η⋆ with Theorem 3;
7 Calculate the overall accuracy A;
8 if A⋆ < A then
9 A⋆ = A;

10 end
11 end

with Theorems 2 and 3, respectively. By comparing
the accuracy under different F s, we can find the
maximal accuracy of problem (27), denoted by A⋆.
The computational complexity of each loop iteration is
O (N +M log(µP,1/M/ϵ) + log((ηu − µP,1)/ϵ) +M),
where the computational complexity for obtaining the optimal
resource allocation strategy is O (N). Since the number of
loop iterations is F s

u, the total computational complexity of
Algorithm 1 is

O (F s
u (N +M log(µP,1/M/ϵ) + log(ηu/ϵ) +M)) . (36)

Furthermore, Algorithm 1 is based on the exhaustive search
method. Meanwhile, each loop solves the resource allocation
problem (28) with Theorem 2 and the threshold selection
problem (29) with Theorem 3. Thus, the convergence of
Algorithm 1 can be guaranteed.

To tackle extreme scenarios where the computation abil-
ity of the BS is limited, we also introduce a low-
complexity algorithm. Specifically, in each loop, we can
set M = 1 for reducing the computational complexity of
solving the threshold selection policy optimization problem
to O (log(µP,1/ϵ) + log(ηu/ϵ)). Regarding the number of
loops, we observe the sensing accuracy generally increases
with the sampling rate according to Fig. 12 in Section V-C.
Thus, we heuristically seek to find the maximum sampling
rate that ensures there is a feasible solution to problem
(27) with binary search algorithm. As a result, the com-
putational complexity of the low-complexity algorithm is
O (log(F s

u) (N + log(µP,1/ϵ) + log(ηu/ϵ))).

V. TEST RESULTS

In this section, we conduct experiments to validate the
effectiveness of the proposed algorithm.

A. Test Parameters

The test settings are provided as follows unless other-
wise specified. We consider a triple-functional BS with a
radius of 300 m, and 15 devices are randomly located in
the coverage. According to the long term evolution (LTE)

10

(a) Real-world experiment scenario.

(b) Schematic diagram of the experiment scenario.
Fig. 6. The experiment setup for the sensing task.

standards [45], the system bandwidth is 4 MHz and the noise
spectral density is -174 dBm/Hz. The channel gain between
each device and the BS is generated by following the path
loss model: 128.1 + 37.6 log10 (d[km]), where d denotes the
distance between each device and the BS in kilometer and the
small-scale fading is set to Rayleigh distributed with uniform
variance. The transmit power of each device is set as 24 dBm.
The total computation resource at the edge server is set as
40 GHz. For the computation task at the device, the data
size and computation intensity follow the uniform distribution
with Vn ∈ [0.3, 1] Mbits and Cn ∈ [400, 1000] CPU cycles/s,
respectively, and the delay tolerance of all computation tasks
is 0.4 s [35].

For the sensing task, we consider an OFDM radar signal,
where the FFT number is 64 and the cyclic prefix length is 16.
The time of one sensing signal transmission slot is 128 us. The
experiment setup is shown in Fig. 6. Specifically, we use one
USRP B210 to generate OFDM radar signals and one USRP
B210 to collect radar echoes. Eight volunteers are invited to
perform eight different behaviors, i.e., standing still, kicking,
raising a hand, waving, bending down, walking, sitting down,
and standing up, where standing still refers to the static state.
We totally collect 3,200 CSI matrices as a dataset, where 2,560
CSI matrices are used for training and 640 CSI matrices are
used for testing. We adopt ResNet50 for the CNN module.
It is trained on a Linux server equipped with four NVIDIA
GeForce GTX 3080 GPUs and tested on a Linux personal
computer (PC) equipped with an Intel i7-8700K CPU, which
is regarded as the edge server.

The detailed procedures of the simulation and experiment
are presented in Fig. 7. Based on the sensing setting, we first
collect the sensing dataset with USRP B210. The dataset is
used for fitting λi, ri, and σ2

d,i mentioned in Proposition 1
and training the CNN module to obtain the accuracy function
α(F s). The results can verify the proposed sensing models.

Fig. 7. The detailed procedures of the simulation and experiment.

Next, under the communication setting, the performance of
the proposed Algorithm 1 can be confirmed with λi, ri, σ2

d,i,
and α(F s). Note that when there is no feasible solution, the
accuracy is set as 12.5% which is a lower bound of the action
recognition task and is achieved with the random guess.

B. Model Verification

In Section III, we have proposed two mathematical models:
one is a power model of high-frequency components, i.e., P ,
for describing the miss rate and false positive rate in the action
detection module, and the other is a delay model for the CNN
module. Here, we use the collected real-world sensing dataset
to verify both models. First of all, Fig. 8 shows the mean
and variance of P for eight types and the corresponding fitted
curves, respectively. The real mean and variance of each type
are calculated based on the collected CSI matrices, and the
corresponding fitted curves are obtained by following (16)
and (18), respectively. It can be observed that both the mean
and variance decrease with the sampling rate and the fitted
curves well match the real results under different sampling
rates. Furthermore, we also plot Fig. 9 to verify Proposition 1
and describe the relationship among miss rate, false positive
rate, sampling rate, and threshold. We only plot the miss rate
of one action type due to the page limit. The remaining action
types show similar results. It can be observed that the real-
world results match the theoretical results well, which further
proves the effectiveness of our proposed model for the action
detection module.

In Fig. 10, we show the real-world computation delay of the
CNN module with the Linux PC and the corresponding fitted
curves based on (22). It can be seen that the computation
delay increases with the sampling rate but decreases with the
allocated computation resource. Moreover, the fitted curves
match the real delay well. This verifies the effectiveness of
the proposed delay model for the CNN module.

C. Algorithm Investigation and Performance Comparison

First of all, we show the convergence behavior of Algorithm
1 and the low-complexity algorithm in Fig. 11. Since Algo-
rithm 1 is based on the exhaustive search algorithm, it requires
more than 1,000 iteration loops when the error tolerance (i.e.,
the step between two adjacent sampling rates) is set as 1. To
accelerate convergence, the tolerance can be set to 10, and the
number of loops is about 100. The final accuracy with the error
tolerance being 10 is almost the same as that with the error
tolerance being 1. Moreover, Algorithm 1 can be performed
in parallel. Specifically, in each loop of Algorithm 1, the
overall accuracy of different sampling rates can be calculated
in parallel. The edge server used in our test contains 6 CPU
cores and the number of loops can be reduced to about 30.
As for the low-complexity algorithm, it is based on the binary

11

0 500 1000 1500 2000

F
s

0

20

40

60

80

100
P

,i
Real results, #1

Fitted curve, #1

Real results, #2

Fitted curve, #2

Real results, #3

Fitted curve, #3

Real results, #4

Fitted curve, #4

Real results, #5

Fitted curve, #5

Real results, #6

Fitted curve, #6

Real results, #7

Fitted curve, #7

Real results, #8

Fitted curve, #8

(a) The fitted curves of the power mean
for eight types.

0 500 1000 1500 2000

F
s

0

50

100

150

200

250

300

350

2 P
,i

Real results, #1

Fitted curve, #1

Real results, #2

Fitted curve, #2

Real results, #3

Fitted curve, #3

Real results, #4

Fitted curve, #4

Real results, #5

Fitted curve, #5

Real results, #6

Fitted curve, #6

Real results, #7

Fitted curve, #7

Real results, #8

Fitted curve, #8

(b) The fitted curves of the power variance
for eight types.

Fig. 8. The verification of the mathematical model for the power of high-frequency components.

0 2 4 6 8 10 12
0

20

40

60

80

100

P
ro

b
a

b
ili

ty
 (

%
)

TFPR (F
s
=100)

RFPR (F
s
=100)

TFPR (F
s
=200)

RFPR (F
s
=200)

TFPR (F
s
=400)

RFPR (F
s
=400)

TMR (F
s
=100)

RMR (F
s
=100)

TMR (F
s
=200)

RMR (F
s
=200)

TMR (F
s
=400)

RMR (F
s
=400)

Fig. 9. The verification of miss rate and false
positive rate models in Proposition 1. “TFPR” rep-
resents the theoretical false positive rate. “RFPR”
represents the real-world false positive rate. “TMR”
represents the theoretical miss rate. “RMR” repre-
sents the real-world miss rate.

2 4 6 8 10 12 14 16 18

Computation resource (GHz)

0

0.2

0.4

0.6

0.8

1

1.2

C
o

m
p

u
ta

ti
o

n
 d

e
la

y
 (

s
)

Real results (F
s
=200Hz)

Fitted curve (F
s
=200Hz)

Real results (F
s
=100Hz)

Fitted curve (F
s
=100Hz)

Real results (F
s
=50Hz)

Fitted curve (F
s
=50Hz)

Real results (F
s
=25Hz)

Fitted curve (F
s
=25Hz)

Fig. 10. The real-world computation delay of
the CNN module with different sampling rates.

10
0

10
1

10
2

10
3

Number of iterations/loops

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y
 (

%
)

Algorithm 1 (tolerance=1)

Algorithm 1 (tolerance=10)

Algorithm 1 (tolerance=10, parallel)

Low-complexity (tolerance=1)

(a) Accuracy vs. number of iterations/loops.

10
0

10
1

10
2

10
3

Number of iterations/loops

0

10
0

10
1

10
2

10
3

R
e

s
id

u
a

l

Algorithm 1 (tolerance=1)

Algorithm 1 (tolerance=10)

Algorithm 1 (tolerance=10, parallel)

Low-complexity (tolerance=1)

(b) Residual vs. number of iterations/loops
Fig. 11. Convergence behavior of the proposed algorithms.

search algorithm and the number of iterations is about 10,
which verifies its high efficiency. Besides, the final accuracy
of the low-complexity algorithm is almost the same as that
of Algorithm 1, which verifies the high performance of the
low-complexity algorithm.

Next, we also plot the optimized sensing accuracy under
the given sampling rate, as shown in Fig. 12. From the figure,
the optimized sensing accuracy substantially increases with the
sampling rate. However, when the sampling rate is too high,
there is no feasible solution and the sensing accuracy is set
as 12.5% as we have mentioned before. This is because that
the delay requirement of the sensing task cannot be satisfied
when the sampling rate is too high.

To show the performance advantage of the sensing frame-
work and the proposed algorithm, we select the following
benchmark algorithms.

• Conventional scheme. The action detection module is not
adopted in this scheme and the CSI matrix is directly
input into the CNN module [42]. The resource allocation
strategy is similar to the proposed algorithm. To be
specific, it can be obtained by setting the threshold as
0 in Algorithm 1.

• Average computation resource scheme. The computation
resource is equally allocated to each device and sensing

task, i.e., fn =
f e

N + 1
,∀n and f s =

f e

N + 1
. The com-

munication resource allocation strategy and the threshold
selection policy are the same as those in the proposed
algorithm.

• Average communication resource scheme. The commu-

nication resource is equally allocated to each device

and sensing task, i.e., τ c
n =

1

N + 1
,∀n and F s =⌊

1

(N + 1)τ s

⌋
. The computation resource allocation strat-

egy and the threshold selection policy are the same as
those in the proposed algorithm.

Fig. 13 shows the effect of the average computation resource
at the edge server on the accuracy. From the figure, we can
observe that our proposed scheme provides the best perfor-
mance among four schemes. Specifically, when the overall
accuracy is 90%, our proposed scheme requires 2.58 GHz
average computation resource at the edge server, while the
conventional scheme requires 3.19 GHz average computation
resource. The proposed sensing framework saves about 19.1%
computation resource, and this gap becomes more remarkable
when accuracy is 95%. This verifies the effectiveness of the
proposed sensing framework. When the computation resource
is sufficient, the accuracy gap between the proposed scheme
and the conventional scheme becomes very small. In this case,
the accuracy of the CNN module is almost 100% and all
instances are input into the CNN module. Moreover, compared
with the average computation resource scheme, our proposed
scheme achieves higher performance when the computation
resource is insufficient and shows the similar performance
when the computation resource is sufficient. It demonstrates
the effectiveness of the proposed resource allocation strategy.
Besides, the average communication resource scheme achieves
much lower accuracy than the proposed scheme even if the
computation resource is sufficient since its sampling rate

12

0 200 400 600 800 1000 1200 1400

Fs

0

20

40

60

80

100
A

c
c
u

ra
c
y
 (

%
)

Fig. 12. The optimized accuracy under the given
sampling rate.

1.8 2.6 3.4 4.2 5 5.8 6.6

Average computation resource (GHz)

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
 (

%
) (2.58, 90) (3.19, 90)

(3.07, 95) (3.84, 95)

Fig. 13. Average computation resource vs. accu-
racy.

0 20 40 60 80 100

Probability of the static state (%)

30

40

50

60

70

80

90

A
c
c
u

ra
c
y
 (

%
)

Fig. 14. Probability of the static state vs. accuracy.

10 12 14 16 18 20

Number of devices

0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

Fig. 15. The number of devices vs. accuracy.

0 0.2 0.4 0.6 0.8 1

76

78

80

82

84

86

88

A
c
c
u

ra
c
y
 (

%
)

Fig. 16. The influence of the threshold.

0 0.1 0.2 0.3 0.4

Latency limitation of the sensing task (s)

20

30

40

50

60

70

80

90

A
c
c
u

ra
c
y
 (

%
)

Fig. 17. Delay requirement of sensing task vs.
accuracy.

is given and thus the accuracy is limited. Furthermore, the
performance of the proposed low-complexity algorithm is
close to that of Algorithm 1, which confirms that the low-
complexity algorithm can be used in the extreme scenario.

Fig. 14 shows the effect of the probability of the static
state on the accuracy. It can be seen that the proposed scheme
offers the same accuracy as the conventional scheme when the
probability is low. As we can imagine, the threshold should
be set close to 0 when the probability of the static state is
low; otherwise, a large number of action instances would be
detected as the static state, which reduces the recognition
accuracy. In this case, the impact of the action detection
module on the ISCC system is small. As the probability of the
static state increases, the threshold increases, and the action
detection module shows its impact, i.e., reducing the required
computation resource. Thus, more computation resource can
be allocated to computation tasks, and then more communica-
tion resource can be saved for sensing. It eventually gives rise
to an increase in sampling rate and accuracy improvement.
In the same way, the accuracy of the average communication
resource scheme and average computation resource scheme
also increases with the probability of the static state. The above
results demonstrate that the proposed sensing framework is
applicable for the scenario with a high probability of the static
state. This conclusion is consistent with Theorem 1, which
proves that the performance gain brought by the proposed
sensing framework is positively related to the probability of the
static state. Moreover, the performance of the proposed low-
complexity algorithm is worse than that of the conventional
scheme when the probability of the static state is low. It
is because the low-complexity is suboptimal and cannot be
applied in this case.

Fig. 15 shows the effect of the number of devices on the ac-

curacy. We can observe that the accuracy of the four analyzed
schemes all decreases with the number of devices. It is because
we need to meet the delay requirements of computation tasks,
and thus the communication and computation resources are
preferentially allocated to the devices. The remaining amount
of resource decreases with the number of devices, which
decreases the accuracy. When the number of devices is 10, the
computation resource at the edge server is abundant, and thus
the sampling rates of the four schemes are high enough, and
the sensing accuracy approaches the upper limit, i.e., 100%.
When the number of devices is 20, the computation resource
at the edge server is limited and thus the sampling rates of
the four schemes are low enough, and the sensing accuracy
approaches the lower limit, i.e., 12.5%. Besides, the accuracy
of the four schemes is almost the same when the number of
devices is 10 and 20. In contrast, the accuracy of the proposed
and conventional schemes drops more slowly than that of
the average communication/computation resource scheme. It
demonstrates that the proposed resource allocation strategy can
suppress the effect of the number of devices.

To show the effectiveness of the threshold selection policy,
we also compare the proposed scheme with the fixed threshold
scheme under different probabilities, as shown in Fig. 16. To
be specific, we consider that the ratio of threshold to its upper
limit ηu is constant in the fixed threshold scheme. From the
figure, our proposed scheme shows better performance since
the proposed threshold selection policy is optimal, in which
the threshold is adaptively selected based on the allocated
resource and the probability. Moreover, the threshold that
achieves the peak of the fixed threshold scheme increases with
the probability of the static state. This is consistent with the
explanation for Fig. 14, where the threshold increases with
the probability of the static state for reducing the unnecessary

13

computation resource cost.
Fig. 17 shows the effect of the delay requirement of the

sensing task on the accuracy of the four analyzed schemes.
From the figure, the impact of the delay requirement is tiny
when the delay requirement becomes loose. This result is
reasonable since the accuracy grows slowly when the sampling
rate is higher than 50 Hz, as shown in Fig. 5. In this case, the
decrease of the delay requirement may lead to a drop in the
sampling rate but would not lead to a decline in the accuracy.
As the delay requirement becomes strict, the sampling rate
becomes lower than 50 Hz. In this case, the accuracy drops
rapidly as the delay requirement decreases according to Fig.
5. Moreover, the performance of the proposed scheme drops
more slowly than the conventional scheme, further demonstrat-
ing the proposed scheme’s superiority.

VI. CONCLUSION

In this paper, we studied an ISCC system and developed an
effective sensing framework with an action detection module
to avoid unnecessary computation cost for the static state. The
sampling theorem was adopted for analyzing the performance
of the proposed sensing framework. Through analysis, we
identified that the performance gain brought by our proposal
is positively related to the probability of the static state.
Furthermore, a sensing accuracy maximization problem was
formulated with the delay constraints of the sensing task
and communication tasks. After analyzing the structure, the
original problem was decomposed into two subproblems. By
solving them, we proposed an optimal resource allocation
strategy and an optimal threshold selection policy and then
developed an overall algorithm to maximize the accuracy.
Finally, the analyses for the proposed sensing framework and
the proposed algorithm were validated by a real-world test,
which demonstrated the superiority of our proposals.

APPENDIX A
PROOF OF THEOREM 1

First of all, we should note that the proposed sensing
framework is the same as the conventional one when η = 0,
i.e., A = α(F s). To obtain the performance gain, we need
to find that pCNN should be less 1 with A ≥ α(F s). Since
pCNN decreases with η, it is equivalent to find an η > 0 that
satisfies A ≥ α(F s). A sufficient condition is that A increases

with η when η approaches 0, which means
∂A

∂η
|η=0 > 0. Thus,

we can obtain the condition in (25) with simple mathematical
calculations.

Next, we can calculate the performance gain in two different
cases.

1) Case 1: If A is always higher than α(F s) when η ∈
(0, ηu], η should be ηu for obtaining the highest performance
gain. Therefore, ρ is given by

ρ = 1− pCNN|η=ηu
. (37)

2) Case 2: If there is an η that satisfies A = α(F s) when
η ∈ (0, ηu], we have the following equation:

α(F s) = A =

I∑
i=2

pmi (1− poi)α(F
s)

+ pm1
(
(1− pl) + plα(F s)

)
. (38)

Then, ρ is given by

ρ = 1− pCNN = 1−

(
I∑

i=2

pmi (1− poi) + pm1 pl

)

= 1− A− pm1 (1− pl)

α(F s)
=

pm1 (1− pl)

A
. (39)

Combining both cases, the performance gain is given as
shown in (26), which ends the proof.

APPENDIX B
PROOF OF THEOREM 2

According to the KKT conditions, the necessary and suffi-
cient conditions of the optimal solution can be expressed as

∂L
∂τ c,⋆

n
= −λ⋆

n

Vn(
τ c,⋆
n

)2
Rn

+ µ⋆ =

{
= 0, τ c,⋆

n > 0,
≥ 0, τ c,⋆

n = 0,
(40)

∂L
∂f⋆

n

= 1− λ⋆
n

VnCn

(f⋆
n)

2 =

{
= 0, f⋆

n > 0,
≥ 0, f⋆

n = 0,
(41)

λ⋆
n (Tn − Tmax

n) = 0, λ⋆ ≥ 0, n = 1, 2, · · · , N, (42)

µ⋆

(
τ sF s +

N∑
n=1

τ c,⋆n − 1

)
= 0, µ⋆ ≥ 0. (43)

From constraint (27c), we can find that τ c,⋆
n > 0 and f⋆

n >
0. Combining (40) and (41), we can derive the relationship
between f⋆

n and τ c,⋆
n , as

f⋆
n = τ c,⋆

n

√
µ⋆RnCn, n = 1, 2, · · · , N, (44)

and we can find that µ⋆ > 0 and λ⋆
n > 0. Next, according to

(42), we have

τ c,⋆
n =

Vn

Tmax
n

(
1

Rn
+

√
Cn

µ⋆Rn

)
, n = 1, 2, · · · , N, (45)

where µ⋆ satisfies τ sF s+
∑N

n=1 τ
c,⋆
n = 1. Thus, we can derive

that

µ⋆ =

∑N
n=1

Vn

Tmax
n

√
Cn

Rn(
1− τ sF s −

∑N
n=1

Vn

Tmax
n Rn

) , (46)

which ends the proof.

APPENDIX C
PROOF OF LEMMA 2

We aim to find an upper bound of F s, which is equiv-
alent to find the lower bound of the required communi-
cation resource for computation tasks. Therefore, we con-
sider a special case where all devices have the highest data
rate, i.e., min

n
Rn, and the lowest computation load, i.e.,(

min
n

Vn,min
n

Cn,max
n

Tmax
n

)
, and all computation resource

is allocated to the devices. Then, according to (4), the devices
need less communication resource in this case compared with

14

the optimal solution. The corresponding required communica-
tion resource of computation tasks can be given by

N min
n

Vnf
e

min
n

Rn

(
max
n

Tmax
n f e −N min

n
Vn min

n
Cn

) . (47)

Thus, we can express an upper bound of F s as (35), which
ends the proof.

REFERENCES

[1] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of machine
learning in wireless networks: Key techniques and open issues,” IEEE
Commun. Surveys Tuts., vol. 21, no. 4, pp. 3072–3108, 4th Quart., 2019.

[2] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Towards an
intelligent edge: Wireless communication meets machine learning,” IEEE
Commun. Mag., vol. 58, no. 1, pp. 19–25, Jan. 2020.

[3] D. Korzun, E. Balandina, A. Kashevnik, S. Balandin, and F. Viola,
Ambient Intelligence Services in IoT Environments: Emerging Research
and Opportunities. Hershey, PA, USA: IGI Global, Jun. 2019.

[4] Y. Ma, G. Zhou, and S. Wang, “WiFi sensing with channel state
information: A survey,” ACM Comput. Surv., vol. 52, no. 3, pp. 1–36,
May 2020.

[5] J. Liu, C. Xiao, K. Cui, J. Han, X. Xu, and K. Ren, “Behavior privacy
preserving in RF sensing,” IEEE Trans. Depend. Sec. Comput., vol. 20,
no. 1, pp. 784–796, Jan.–Feb. 2023.

[6] Y. Cui, F. Liu, X. Jing, and J. Mu, “Integrating sensing and communi-
cations for ubiquitous IoT: Applications, trends, and challenges,” IEEE
Netw., vol. 35, no. 5, pp. 158–167, Sep. 2021.

[7] F. Liu et al., “Integrated sensing and communications: Towards dual-
functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas
Commun, vol. 40, no. 6, pp. 1728–1767, Jun. 2022.

[8] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tutor., vol. 19, no. 4, pp. 2322–2358, Aug. 2017.

[9] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge comput-
ing: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb.
2018.

[10] P. Liu, G. Zhu, S. Wang, W. Jiang, W. Luo, H. V. Poor, and S.
Cui, “Toward ambient intelligence: Federated edge learning with task-
oriented sensing, computation, and communication integration,” IEEE J.
Sel. Topics Signal Process., vol. 17, no. 1, pp. 158–172, Jan. 2023.

[11] D. Wen, P. Liu, G. Zhu, Y. Shi, J. Xu, Y. C. Eldar, and S. Cui, “Task-
oriented sensing, computation, and communication integration for multi-
device edge AI,” 2022, arXiv:2207.00969.

[12] W. Xu, Z. Yang, D. W. K. Ng, M. Levorato, Y. C. Eldar, and M. Debbah,
“Edge learning for B5G networks with distributed signal processing:
Semantic communication, edge computing, and wireless sensing,” IEEE
J. Sel. Top. Signal Process., vol. 17, no. 1, pp. 9–39, Jan. 2023.

[13] Q. Luo, C. Li, T. H. Luan, and W. Shi, “Minimizing the delay and cost
of computation offloading for vehicular edge computing,” IEEE Trans.
Serv. Comput., vol. 15, no. 5, pp. 2897–2909, Sep. 2022.

[14] Y. Fu, C. Li, F. R. Yu, T. H. Luan, and Y. Zhang, “A survey of driving
safety with sensing, vehicular communications, and artificial intelligence-
based collision avoidance,” IEEE Trans. Intell. Transp. Syst., vol. 23, no.
7, pp. 6142–6163, Jul. 2022.

[15] B. Li, A. P. Petropulu, and W. Trappe, “Optimum co-design for spectrum
sharing between matrix completion based MIMO radars and a MIMO
communication system,” IEEE Trans. Signal Process., vol. 64, no. 17,
pp. 4562–4575, Sep. 2016.

[16] Y. He, Y. Cai, H. Mao and G. Yu, “RIS-assisted communication radar
coexistence: Joint beamforming design and analysis,” IEEE J. Sel. Areas
Commun., vol. 40, no. 7, pp. 2131–2145, Jul. 2022.

[17] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “SpotFi: Decimeter level
localization using WiFi” ACM SIGCOMM Comput. Commun. Rev., vol.
45, no. 4, pp. 269–282, 2015.

[18] Y. Wang, K. Wu, and L. M. Ni, “WiFall: Device-free fall detection by
wireless networks,” IEEE Trans. Mob. Comput., vol. 16, no. 2, pp. 581–
594, Feb. 2017.

[19] Y. Xie, M. Li, J. Xiong, and K. Jamieson, “MD-Track: Leveraging multi-
dimensionality in passive indoor Wi-Fi tracking,” Proc. Annu. Int. Conf.
Mob. Comput. Netw. (MobiCom), Aug. 2019, pp. 1–16.

[20] F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “To-
ward dual-functional radar-communication systems: Optimal waveform
design,” IEEE Trans. Signal Process., vol. 66, no. 16, pp. 4264–4279,
Aug. 2018.

[21] F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, “Joint
radar and communication design: Applications, state-of-the-art, and the
road ahead,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3834–3862, Jun.
2020.

[22] F. Liu, C. Masouros, A. Li, H. Sun, and L. Hanzo, “MU-MIMO com-
munications with MIMO radar: From co-existence to joint transmission,”
IEEE Trans. Wireless Commun., vol. 17, no. 4, pp. 2755–2770, Apr. 2018.

[23] Y. He, Y. Cai, G. Yu, and K. -K. Wong, “Joint transceiver design for dual-
functional full-duplex relay aided radar-communication systems,” IEEE
Trans. Commun., vol. 70, no. 12, pp. 8355–8369, Dec. 2022.

[24] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[25] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J. Sel.
Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[26] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in Proc. IEEE Int.
Symp. Inf. Theory, Jul. 2016, pp. 1451–1455.

[27] J. Zhang et al., “Joint resource allocation for latency-sensitive services
over mobile edge computing networks with caching,” IEEE Internet
Things J., vol. 6, no. 3, pp. 4283–4294, Oct. 2018.

[28] C. Ding, J. Wang, H. Zhang, M. Lin, and G. Li, “Joint MIMO
precoding and computation resource allocation for dual-function radar and
communication systems with mobile edge computing,” IEEE J. Select.
Areas Commun., vol. 40, no. 7, pp. 2085–2102, Jul. 2022.

[29] N. Huang, T. Wang, Y. Wu, Q. Wu, and T. Q. S. Quek, “Integrated
sensing and communication assisted mobile edge computing: An energy
efficient design via intelligent reflecting surface,” IEEE Wireless Commun.
Lett., vol. 11, no. 10, pp. 2085–2089, Oct. 2022.

[30] R. Xiao, J. Liu, J. Han, and K. Ren, “OneFi: One-shot recognition for
unseen gesture via COTS Wi-Fi,” in Proc. Conf. Embed. Networked Sens.
(SenSys), Coimbra, Portugal, Nov. 2021, pp. 206–219.

[31] X. Wang, K. Sun, T. Zhao, W. Wang, and Q. Gu, “Dynamic speed warp-
ing: Similarity-sased one-shot learning for device-free gesture signals,” in
Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), Toronto, Canada,
2020, pp. 556–565.

[32] C. Feng, N. Wang, Y. Jiang, X. Zheng, K. Li, Z. Wang, and X.
Chen, “Wi-Learner: Towards one-shot learning for cross-domain Wi-Fi
based gesture recognition,” in Proc. ACM Interact., Mobile, Wearable
Ubiquitous Technol. (IMWUT), vol. 6, no. 3, pp. 1–27, Sep. 2022.

[33] M. Li, Y. Meng, J. Liu, H. Zhu, X. Liang, Y. Liu, and N. Ruan, “When
CSI meets public WiFi: Inferring your mobile phone password via WiFi
Signals,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS),
Oct. 2016, pp. 1068–1079.

[34] J. Liu, Y. He, C. Xiao, J. Han, L. Cheng, and K. Ren, “Physical-world
attack towards WiFi-based behavior recognition,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Honolulu, London, United Kingdom,
Jun. 2022, pp. 400–409.

[35] Y. He, J. Ren, G. Yu, and Y. Cai, “D2D communications meet mobile
edge computing for enhanced computation capacity in cellular networks,”
IEEE Trans. Wireless Commun., vol. 18, no. 3, pp. 1750–1763, Mar. 2019.

[36] C. B. Barneto, L. Anttila, M. Fleischer, and M. Valkama, “OFDM radar
with LTE waveform: Processing and performance,” in Proc. IEEE Radio
Wireless Symp. (RWS), Jan. 2019, pp. 1–4.

[37] S. Tan, Y. Ren, J. Yang, and Y. Chen, “Commodity WiFi sensing in
10 years: Status, challenges, and opportunities,” IEEE Internet Things J.,
vol. 9, no. 18, pp. 17832–17843, Sep. 2022.

[38] M. Jankiraman, FMCW Radar Design. Norwood, MA, USA: Artech
House, 2008.

[39] Y. Zheng, Y. Zhang, K. Qian, G. Zhang, Y. Liu, C. Wu, and Z. Yang,
“Zero-effort cross-domain gesture recognition with Wi-Fi,” in Proc. Annu.
Int. Conf. Mobile Syst. Appl. Services (MobiSys), New York, NY, USA,
2019, pp. 313–325.

[40] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems,
2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 1996.

[41] R. Seri, “A tight bound on the distance between a noncentral chi square
and a normal distribution,” IEEE Commun. Lett., vol. 19, no. 11, pp.
1877–1880, Nov. 2015.

[42] G. Li, S. Wang, J. Li, R. Wang, F. Liu, M. Zhang, X. Peng, and
T. X. Han. “Rethinking the tradeoff in integrated sensing and com-
munication: Recognition accuracy versus communication rate,” 2021,
arXiv:2107.09621.

15

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

[44] Y. He, J. Ren, G. Yu, and Y. Cai, “Optimizing the learning performance
in mobile augmented reality systems with CNN,” IEEE Trans. Wireless
Commun., vol. 19, no. 8, pp. 5333–5344, Aug. 2020.

[45] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical
Channels and Modulation (3GPP TS 36.211 Version 15.6.0 Release 15),
document TS 36 211 V15.6.0, 3GPP, Jul. 2019.

[46] J. Kiefer, “Sequential minimax search for a maximum,” in Proc. Amer.
Math. Soc. (AMS), 1953, pp. 502–506.

	Introduction
	Related Work
	Main Contributions

	System Model and Sensing Framework
	ISCC System
	Computation Task Model
	Sensing Framework

	Sensing Performance Analysis
	Sensing Accuracy
	Sensing Delay
	Performance Comparison

	Sensing Accuracy Maximization
	Problem Formulation
	Problem Decomposition
	Resource Allocation Strategy
	Threshold Selection Policy
	Overall Algorithm

	Test Results
	Test Parameters
	Model Verification
	Algorithm Investigation and Performance Comparison

	Conclusion
	Appendix A: Proof of Theorem 1
	Appendix B: Proof of Theorem 2
	Appendix C: Proof of Lemma 2
	References

