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Abstract—The large scale reflector array of programmable
metasurfaces is capable of increasing the power efficiency of
backscatter communications via passive beamforming and thus
has the potential to revolutionize the low-data-rate nature of
backscatter communications. In this paper, we propose to de-
sign the power-efficient higher-order constellation and reflection
pattern under the amplitude constraint brought by backscatter
communications. For the constellation design, we adopt the
amplitude and phase-shift keying (APSK) constellation and
optimize the parameters of APSK such as ring number, ring
radius, and inter-ring phase difference. Specifically, we derive
closed-form solutions to the optimal ring radius and inter-
ring phase difference for an arbitrary modulation order in
the decomposed subproblems. For the reflection pattern design,
we propose to optimize the passive beamforming vector by
solving a multi-objective optimization problem that maximizes
reflection power and guarantees beam homogenization within
the interested angle range. To solve the problem, we propose a
constant-modulus power iteration method, which is proven to be
monotonically increasing, to maximize the objective function in
each iteration. Numerical results show that the proposed APSK
constellation design and reflection pattern design outperform the
existing modulation and beam pattern designs in programmable
metasurface enabled backscatter communications.

Index terms— APSK, backscatter communications, constel-

lation, programmable metasurfaces, reflection pattern

I. INTRODUCTION

The rapid growth of Internet of Things (IoT), driven by

the development of ubiquitous computing, commodity sensors,

and 5G mobile communications, is envisioned to forge a

technological path into smart cities for human beings. A

major challenge of IoT is the design of energy-efficient and

low-hardware-cost communication module [1]. Backscatter

communication is a communication technique that allows

wireless system to transmit information without the aid of

bulky and power-hungry radio frequency (RF) components on

the transmitter [2], which offers a solution to low-cost and

energy-efficient wireless communications. Hence, backscatter
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communication is widely used in short range communication

scenarios such as radio-frequency identification (RFID), and

IoT sensors.

The recent progress of programmable metasurface, which

is characterized by the capacity of tailoring electromagnetic

waves, is revolutionizing the design paradigm of wireless com-

munications [3]–[13]. In [6]–[9], the programmable metasur-

face, a.k.a. intelligent reflecting surface (IRS)/reconfigurable

intelligent surface (RIS), is regarded as part of the wireless

channel, which empowers human beings to proactively change

radio propagation conditions. Given that the reflecting ele-

ment of IRS can be interpreted as an impedance-modulated

antenna, [10] shows that commercial RFID tags can be used

as building blocks for a wirelessly-controlled and battery-

free IRS implementation. In [11], free-space path loss models

for programmable metasurfaces-assisted wireless communi-

cations, which underpin the theoretical analysis of wireless

performance boost from RIS, are developed and then corrobo-

rated both analytically and experimentally. In [12], a massive

backscatter communication scheme based on the extreme sen-

sitivity of the perfect absorption condition is implemented with

a programmable metasurface in a rich-scattering environment

to achieve physical layer security. In [13], distributed semi-

passive programmable metasurfaces are deployed to the design

of an integrated sensing and communication system.

Other than being part of the radio propagation environment

to assist wireless communication, programmable metasurfaces

also play an important role in backscatter communications.

The large-scale reflector array has enabled more diverse ap-

plications of backscatter communications by increasing power

efficiency via passive beamforming. In [14], the pioneering

work has been done to validate the feasibility of backscat-

ter communications using large-scale programmable metasur-

faces, which are characterized by the large aperture and huge

degrees of freedom. Specifically, a secure ambient backscatter

communication system that leverages existing commodity 2.4

GHz Wi-Fi signals is designed and implemented, and the

prototype achieves the data rate on the order of hundreds

of Kbps. In [15]–[17], metasurface-based backscatter com-

munications with a dedicated single-tone sinusoidal source

are investigated. For backscatter communications powered by

a feed antenna, the information is encoded by modulating

the incident single-tone sinusoidal wave through varying the

impedance that determines the reflection coefficient [2], [18].

With a pre-designed impedance set, backscatter modulation
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can be realized by choosing the impedance according to the

input binary bits. In [15], the prototype of programmable

metasurface-based backscatter communication using quadra-

ture phase shift keying (QPSK) is implemented and evalu-

ated. In [16], [17], the non-linear harmonic designs of high-

order QAM modulations and multiple input multiple output

(MIMO) data transmissions using programmable metasurfaces

are proposed. The proposed harmonic control is effective in

tackling the coupling effects of the reflection amplitude and

phase responses of an unit cell [19], which is a promising

technique to enable decoupled and flexible amplitude and

phase control of metasurfaces. On the basis of the non-

linear harmonic designs, the advanced designs of high-order

modulation and beamforming techniques have become feasible

to be implemented in promgrammable metasurfaces. However,

as conventional backscatter communication suffers from short

transmission range and low data rate [1], [20], the energy

efficient design of higher-order backscatter modulations at-

tracts very limited research interests. Leveraging the large-

scale reflector array of programmable metasurfaces, passive

beamforming will significantly improve the effective radiation

power of backscatter communications [21]. Thus, the constel-

lation design of higher-order backscatter modulation becomes

essential. On the other hand, although beam pattern design has

been extensively investigated for conventional MIMO system

under different antenna structures, e.g., fully digital MIMO

[22], [23], analog MIMO [24], [25], and hybrid digital and

analog MIMO [26], [27]. The applicability of the precedent

designs to programmable metasurface enabled passive beam-

forming remains unexplored. It is noteworthy that the design

constraint of programmable metasurface enabled backscat-

ter communications is inherently different from conventional

MIMO system. Firstly, programmable metasurface reflects

power rather than generates power, thereby the reflection

coefficient vector does not comply to the sum power constraint

of beamforming vector in conventional MIMO beamforming.

Secondly, constrained by the electromagnetic properties of

the metamaterials, the reflectivity of the metasurface units is

constrained [3]. With the given incident signal emitted by the

feed antenna, the amplitude of the reflected signal is upper

bounded as a result of the constrained reflectivity.

To improve the power efficiency of directional backscatter

communications and provide design guidelines for the practi-

cal backscatter communication systems [14], [15], we propose

to design the constellation and the reflection pattern under

amplitude constraint. We firstly decompose the design of con-

stellation and reflection pattern into two sub-problems. With

respect to constellation design, we let the constellation follow

the form of amplitude and phase-shift keying (APSK) and then

propose to optimize the parameters of APSK under amplitude

constraint. With respect to reflection pattern design, we firstly

analyze the reflected power efficiency and then investigate the

comparability of off-the-shelves beam pattern designs under

sum power constraint with programmable metasurface enabled

passive beamforming. Based on the obtained analytical results,

we propose to optimize the reflection pattern under constant

modulus constraint, which is harsher than amplitude constrain.

The main contributions we have made in this paper are

summarized as follows:

• Following the criterion of maximizing minimum Eu-

clidean distance, we optimize ring number, ring radius,

and phase difference of inter-ring constellation points of

APSK. Specifically, we derive closed-form solutions to

the optimal ring radius and inter-ring phase difference

for an arbitrary modulation order. The generated APSK

constellation by our algorithm is superior to conventional

QAM and PSK with respect to the minimum Euclidean

distance under amplitude constraint.

• We analyze the reflected power efficiency of pro-

grammable metasurface under amplitude constraint, and

our analysis results show that the sum power of the

reflected signals in all directions is proportional to the

squared ℓ2 norm of the passive beamforming vector,

which indicates that the maximum sum reflected power

is achieved if and only if the passive beamforming vector

follows constant modulus constraint.

• For reflection pattern design, we propose a multi-

objective optimization problem to maximize reflection

power and guarantee beam homogenization within the

interested angle range. Specifically, we formulate a

max-min optimization problem under constant modulus

constraint. A constant-modulus power iteration method,

which is proven to be monotonically increasing, is pro-

posed to optimize the objective function in each iteration.

Through analyzing the ripple factor and power ratio of

the generated beam pattern, we validate the effectiveness

of our proposed design.

Numerical results show that the proposed APSK constellation

design and reflection pattern design outperform the existing

modulation schemes (e.g., QAM modulation) and the beam

pattern designs under the sum power constraint for pro-

grammable metasurface enabled backscatter communications.

The rest of the paper is organized as follows. Section II

introduces the system model. In Section III, we perform APSK

constellation design under amplitude constraint. In Section IV,

we perform reflection pattern design under constant modulus

constraint. In Section V, numerical results are presented.

Finally, in Section VI, we draw the conclusion.

Notations: Column vectors (matrices) are denoted by

bold-face lower (upper) case letters, (·)T and (·)H repre-

sent transpose and conjugate transpose operation, respectively,

gcd(a, b) stands for the greatest common divisor of the in-

tegers a and b, and lcm(a, b) stands for the least common

multiple of integers a and b.

II. SYSTEM MODEL

In this section, we introduce the system model of signal

constellation in programmable metasurface enabled directional

backscatter communications.

A. Amplitude Constraint of The Reflected Signal

Fig. 1 shows the working mechanism of programmable

metasurfaces. A dedicated incident signal Ei(t) impinges

on the metasurface, and the reflected signal Er(t) can be

configured by the controller via tuning the load impedance.
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Metasurface

unit
Air

Zl Z0

incident wave

reflected wave

Controller

Programmable metasurface

Zl: Variable load impedance

Z0: Impedance of air

Fig. 1. Illustration of programmable metasurface and its unit

Following [15], [16], the incident signal considered is emitted

by a dedicated power source and is a single-tone sinusoidal1,

i.e., Ei(t) = A cos(2πfct+ ϕ0), and thus the reflected signal

Er(t) is a single-tone carrier signal as well.

Applying phasor method in circuit analysis, we obtain the

relationship between the incident signal and the reflected

signal as follows

Er = Ei · Γ(ω) = A|Γ(ω)|ej(ϕ0+ϕΓ(ω)) (1)

where Ei = Aejϕ0 is the phasor-domain representation (in

exponential form) of the incident signal Ei(t), Er is the

phasor-domain representation of the reflected signal Er(t),
and Γ is the reflection coefficient that describes the fraction

of the electromagnetic wave reflected by an impedance dis-

continuity in the transmission medium [15], [28], [29], and

Γ(ω) = |Γ(ω)|ejϕΓ(ω) denotes the exact value of the reflection

coefficient when the angular frequency is ω = 2πfc. To be

concise, ω will be omitted in the following context. According

to [15], [29]–[31], the expression of the reflection coefficient

is given by

Γ =
Zl − Z0

Zl + Z0
(2)

where Zl is the equivalent load impedance of metasurface

unit, and Z0 is the impedance of air. Through tuning Zl,

the magnitude and phase of the reflection coefficient Γ can

be configured by the controller of programmable metasurface

[30], and the exact value of the load impedance Zl can be

derived via the well-known Smith chart.

Owing to the physical property of passive reflection, the

reflection coefficient Γ satisfies

|Γ| ≤ 1 (3)

To explore the theoretical performance upper bound of the

backscatter communications, we neglect the current hardware

constraints [16], [19] and assume that the amplitude and the

phase of the reflection coefficient can be tuned independently

1In accordance with [15], [16], we assume that the programmable metasur-
face is placed in the far field of the horn antenna. Thus, the incident signal
Ei(t) is identical for all the metasurface units.

and continuously under the constraint (3). Thus, the magnitude

of the reflected signal satisfies

|Er| ≤ A (4)

In the realm of telecommunications, Er is also referred to

as equivalent baseband signal of the reflected signal Er(t).
Thus, (4) indicates that the baseband signal of backscatter

modulation is amplitude constrained, which is different from

the power constraint imposed on the traditional communication

systems.

B. Backscatter Modulation

Backscatter modulation is realized by changing the reflec-

tion coefficient according to the input information. In order to

convey information, the reflection coefficient is configured as

Γ(t) =
M∑

m=1

Γ[m]h(t−mT ) (5)

where Γ[m] is selected from a pre-designed finite alphabet, i.e.,

Γ[m] ∈ {I1, I2, · · · , I|S|}, according to the input information

bits, h(t) is the rectangular pulse, and T is symbol duration.

Thus, the constellation alphabet of the equivalent baseband

signal Er is given by

S = {Aejϕ0I1, Ae
jϕ0I2, · · · , Ae

jϕ0I|S|} (6)

According to (4), the constellation of programmable metasur-

face enabled backscatter communications is under an ampli-

tude constraint, i.e.,

max
s∈S
|s| ≤ A (7)

Although the amplitude of the reflected signal can be

changed by controlling the transmit power of the horn an-

tenna to obey the conventional power constraint, this struc-

ture requires (1) the strict synchronization between the pro-

grammable metasurface and the horn antenna, (2) the ampli-

tude modulation capacity of the horn antenna, and (3) the lin-

ear wideband power amplifier for amplitude modulation at the

horn antenna side. Also, the amplitude of all the metasurface

units can only be controlled collectively. In a word, amplitude

control at horn antenna side is not cost-effective and does

not fully utilize the advantages of programmable metasurfaces.

Thus, we follow the structure proposed by [15], [16] in our

work and let the horn antenna simply provide an incident pure

carrier signal.

C. Passive Beamforming

A salient advantage of programmable metasurfaces over the

conventional backscatter antennas is its capability of direc-

tional beamforming, which is brought by the large number

of metasurface units. Concatenating the incident and reflected

signal of the N metasurface units, we have the vector-form

representation of (1) as

Er = Ei · f (8)
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where f is the reflection coefficient vector, and, according to

(3), f follows the amplitude constraint, i.e.,

f(i) ≤ 1, ∀n ∈ {1, .., N} (9)

When f = 1, the reflection pattern is omni-directional,

which is apparently energy inefficient. Since the intended

users of backscatter communications are usually distributed

in a constrained area, e.g., a plaza, a street block, a road

section, the ideal reflection pattern should be concentrated and

homogeneous within the interested area.

We assume that the metasurface units are arranged as an

Nx×Ny rectangular planar array, and the array response vector

of programmable metasurface is represented as

v(Ψx,Ψy) = v(Ψx)⊗ v(Ψy) (10)

and

v(Ψx) =
[

1, ejπΨx , · · · , ej(Nx−1)πΨx

]T

(11a)

v(Ψy) =
[

1, ejπΨy , · · · , ej(Ny−1)πΨy

]T

(11b)

where Ψx and Ψy are cosine of the angle of arrival/depature

(AoA/AoD), a.k.a. direction cosines, [32], [33]. To maximize

the reflected signal power within the interested angle range and

guarantee uniform signal strength, i.e., beam homogenization,

in the meantime, we propose the following design criteria.

Criterion 1: Maximized reflected power over the intended

angle range, namely

max
f

PDΨ (12)

Criterion 2: Minimized the ripple factor within the intended

angle range [θL, θU ), namely

min
f

VRipple

VMean

(13)

where

PDΨ =

‹

DΨ

f
H
v(Ψx,Ψy)v

H(Ψx,Ψy)f dΨxdΨy (14a)

VMean =
1

A(DΨ)

‹

DΨ

|vH(Ψx,Ψy)f | dΨxdΨy (14b)

VRipple

=

√

1

A(DΨ)

‹

DΨ

(|vH(Ψx,Ψy)f | − VMean)
2
dΨxdΨy

(14c)

and PDΨ is the power of the reflected signal within the

intended angle range DΨ, VMean is the mean voltage of the

reflected signal over the intended angle range DΨ, VRipple is

root mean square (RMS) of the ripple voltage,
VRipple

VMean
is the

ripple factor that measures the degree of fluctuations over the

intended angle range DΨ, and A(DΨ) is the area of DΨ.

D. Directional Backscatter Communications

Fig. 2 shows the working mechanism of signal modulation

in programmable metasurface enabled backscatter commu-

nications. A single-tone carrier signal Ei(t) impinges on

the programmable metasurface from a feed antenna. Signal

Controller

Programmable 

metasurface

Feed Antenna
Incident wave 

Information 

bits

Reflected wave 

APSK 

mapping 

Passive beamforming 

vector 

f

Γ(t) Γ

Fig. 2. Programmable metasurface enabled directional backscatter modulator
with a road section as the intended area

modulation is realized by collectively changing the reflec-

tion coefficients of programmable metasurface according to

the incoming information bits, and passive beamforming is

realized by imposing beamforming vector on the metasurface

units. Thus, the reflection coefficient of directional backscatter

communications can be represented as the product of the

information-bearing factor Γ(t) in (5) and the passive beam-

forming factor f (refer to (8)), i.e.,

Γ = Γ(t)f (15)

Note that Γ(t), which is decided by the incoming information

bits, is time-variant, and f , which determines the reflection

pattern, is pre-designed and time-invariant. For example, when

a programmable metasurface is deployed on a building, and

its intended receivers are the vehicles, the reflection pattern is

designed to cover the road section in front of the building as

shown in Fig. 2.

When the constellation of backscatter communications sat-

isfies the amplitude constraint in (7) and the passive beam-

forming vector f satisfies the amplitude constraint in (9),

the synthesized Γ will meet the amplitude constraint and

thus can be readily applied to realize directional backscatter

communications. Similar to the conventional MIMO with

precoding/beamforming [34], [35], where the design of trans-

mit signals fed to multiple antennas is disentangled into the

constellation design and the precoding/beamforming vector

design, the optimization of the reflection coefficient vector Γ

can be also decomposed into two independent sub-problems

of constellation design and passive beamforming design, given

that the amplitude constraint is satisfied by the two sub-

problems.

To summarize, in this paper, we will carry out (I) the design

of the constellation alphabet S under the amplitude constraint

(7) and (II) the design of the reflection pattern (namely, the

passive beamforming vector f ) under the amplitude constraint

(9) to optimize the performance of directional backscatter

communications using programmable metasurface.

III. APSK SIGNAL CONSTELLATION DESIGN UNDER

AMPLITUDE CONSTRAINT

In this section, we resolve the optimization problem of

APSK constellation design under amplitude constraint.
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1r

2r

(a) N1 = 8, N2 = 8

1r
2r

(b) N1 = 6, N2 = 10

Fig. 3. Constellation diagrams of the 2-ring APSK

A. Amplitude Phase Shift Keying

Owing to its design flexibility, APSK has been widely used

in practical communications systems, e.g., DVB-S2 [36], and

MIMO precoding design under constant envelope constraint

[37] to provide a power and spectral efficient solution. APSK

conveys information through changing both the amplitude

and the phase of the carrier signal. APSK with different

parameters can be used to represent PSK and QAM. Thus,

APSK can be regarded as a unified modulation scheme. In

this paper, we propose to optimize the constellation parameters

for APSK in programmable metasurface enabled backscatter

communications.

The constellation points of APSK are distributed in two or

more concentric rings. For example, 2-ring 16-APSK constel-

lation with N1 = 8 points in the outer ring and N2 = 8
points in the inner ring is shown in Fig. 3a and 2-ring 16-

APSK constellation with N1 = 10 points in the outer ring

and N2 = 6 points in the inner ring is shown in Fig. 3b. In

a general case, consider an L-ring APSK constellation, the

elements of which are represented as

s = rle
j(

2πkl
Nl

+ωl) (16)

where l ∈ {1, · · · , L} is the index of the ring, L is the

number of the rings, kl ∈ {0, · · · , Nl − 1} is the index of

the constellation points in the l-th ring, Nl is the number

of constellation points in the l-th ring, rl is the radius of

the l-th ring, and ωl ∈ [0, 2π
Nl

) is the phase of the reference

constellation point (i.e., kl = 0) in the l-th ring. For APSK,

the amplitude constraint (7) is rewritten as

rL = max
s∈S
|s| ≤ A (17)

The performance of signal constellation is dependent on the

minimum distance between any pairs of constellation points

[38], i.e.,

dmin , min
si,sj∈S
si 6=sj

|si − sj| (18)

Thus, combining (17) and (18), the design criterion of

APSK constellation in programmable metasurface enabled

backscatter communications is formulated as

P1 :







max
S

dmin

s.t. rL ≤ A
r1 < r2 < · · · < rL
∑L

l=1Nl = |S|

(19)

B. The Minimum Euclidean Distance for APSK

For APSK, the minimum Euclidean distance dmin in (18)

can be further represented as

dmin = min
{{
dmin intra(l), l ∈ {1, · · · , L}

}
∪

{
dmin inter(l, l̂), l 6= l̂ ∈ {1, · · · , L}

}}

(20)

where

dmin intra(l) =

√

2r2l − 2r2l cos
2π

Nl

(21)

is the intra-ring minimum Euclidean distance of the l-th ring,

and

dmin inter(l, l̂) =
√

r2l + r2
l̂
− 2rlrl̂ cosφl,l̂ (22)

is the inter-ring minimum Euclidean distance between the

constellation points in the l-th ring and the constellation points

in the l̂-th ring, where

φl,l̂ = arccos

(

max
kl,kl̂

cos
(

2π
( kl
Nl

−
kl̂
Nl̂

)
+ ωl − ωl̂

))

kl ∈ {0, · · · , Nl − 1}, kl̂ ∈ {0, · · · , Nl̂ − 1}
(23)

is the minimum phase difference between the constellation

points in the two rings.

C. Decomposition of the Constellation Design

With (21) and (22), P1 is rewritten by

P2 :







max
L,{rl},{ωl},{Nl}

dmin

s.t. rL ≤ A
r1 < r2 < · · · < rL
dmin intra(l) ≥ dmin, l ∈ {1, · · · , L}

dmin inter(l, l̂) ≥ dmin, l 6= l̂ ∈ {1, · · · , L}
∑L

l=1Nl = |S|

where the parameters L, {rl}, {ωl}, {Nl} are the variables to

be optimized. As the ranges of the integer variables L, {Nl}
are typically small, P2 can be resolved by firstly optimizing

{rl}, {ωl} with a given set of L, {Nl}, and then exhaustively

searching over the feasible region of L, {Nl}. In addition, as

the outermost ring corresponds to the best reflectivity, from an

energy-greedy perspective, the optimal radius of the outermost

ring is apparently r∗L = A. The constraint of inter-ring distance

is indeed a solvable linear constraint. However, the constraint

of intra-ring distance is non-trivial, which can be written in

quadratic form as follows

[
rl rl̂

]
[

1 − cosφl,l̂
− cosφl,l̂ 1

] [
rl
rl̂

]

≥ d2min (24)

Obviously, it is a non-convex quadratic constraint w.r.t.

[rl, rl̂]
T that renders P2 challenging.

To make P2 tractable, we make the assumption that the

minimum Euclidean distance is the assumptions that

(1) when N1 ≥ 2, the minimum Euclidean distance is

dmin = dmin intra(1) =

√

2− 2 cos
2π

N1
r1 (25)
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(2) when N1 = 1 (i.e., there is a constellation point in the

center of the ring), the minimum Euclidean distance is

dmin = min{dmin intra(2), dmin inter(1, 2)}

= min

{√

2− 2 cos
2π

N1
r2, r2

}

(26)

In addition, we can drop the constraint rL ≤ A to obtain a

set of intermediate radius parameters r̂l, and then normalize

the intermediate radius parameters as

rl = A
r̂l
r̂L
, ∀l ∈ {1, · · · , L} (27)

to meet the constraint. Without loss of generality, we can set

r̂1 = 1 (or r̂2 = 1 when N1 = 1).

Combining (25), (26) with (27), the objective of maximizing

dmin is reduced to minimizing r̂L. Thus, with a given set of

L and {Nl}, the optimization problem can be represented as

P3 :







min
{r̂l},{ωl}

r̂L

s.t. r̂1 < r̂2 < · · · < r̂L
dmin intra(l) ≥ dmin, l ∈ {1, · · · , L}

dmin inter(l, l̂) ≥ dmin, l 6= l̂ ∈ {1, · · · , L}
(25) or (26)

By decomposing P3 into L− 1 subproblems, i.e.,

P4 :







min
r̂l+1,ωl+1

r̂l+1

s.t. r̂l+1 > r̂l
dmin intra(l + 1) ≥ dmin

dmin inter(l, l+ 1) ≥ dmin

(25) or (26)

we can solve the problem in a recursive manner starting

from the innermost ring (l = 1) to the outermost ring

(l = L). Note that the inter-ring Euclidean distance constraint

is relaxed by neglecting dmin inter(l̂, l + 1) ≥ dmin, ∀l̂ < l,
as the inter-ring Euclidean distance between adjacent rings,

i.e., dmin inter(l, l + 1), is usually smaller than the inter-

ring Euclidean distance between non-adjacent rings, i.e.,

dmin inter(l̂, l + 1), where l̂ < l.

D. Solutions to P4

According to P4, ωl+1 merely relates to the inter-ring

Euclidean distance, while r̂∗l+1 is related to both the inter-

ring Euclidean distance and the intra-ring Euclidean distance.

Thus, we will optimize ωl+1 and r̂l+1, successively.

1) Optimization of the phase shift ωl+1: According to (23),

φl,l+1 is independent of rl and rl+1. Thus, we will firstly

maximize φl,l+1 through optimizing the phase shift ωl+1,

which is equivalently to optimize ∆ωl,l+1 , ωl+1 − ωl.

max
∆ωl,l+1

φl,l+1 (28)

The analytical expression of the optimal ∆ω∗
l,l+1 and its

corresponding φ∗l,l+1 are given in the following proposition.

Proposition 1. The optimal phase difference between two

adjacent rings is

∆ω∗
l,l+1 =

(1 + 2ν)π

lcm(Nl, Nl+1)
, ν is an integer (29)

and the corresponding minimum angle is

φl,l+1(∆ω
∗
l,l+1) =

π

lcm(Nl, Nl+1)
(30)

Proof. See Appendix A

2) Optimization of the radius r̂l+1: According to the con-

straints the inter-ring Euclidean distance constraint and the

intra-ring Euclidean distance constraint of P4, we derive the

range of rl+1 as

r̂l+1 ≥

√
√
√
√

d̂2min

2− 2 cos 2π
Nl+1

︸ ︷︷ ︸

B1

(31a)

r̂l+1 ≥ r̂l cosφ
∗
l,l+1 +

√

r̂2l cos
2(φ∗l,l+1)− r̂

2
l + d̂2min

︸ ︷︷ ︸

B2

(31b)

where the optimal φ∗l,l+1 is obtained by setting ω∗
l+1 = ωl +

∆ω∗
l,l+1. Apparently, the minimum radius is given by

r̂∗l+1 = max{B1, B2} (32)

E. The Algorithm for APSK Constellation Construction Under

Amplitude Constraint

With the solutions to P4, parameters of the optimal APSK

can be obtained by exhaustively searching over the feasible

set of L and {Nl}. To narrow down the search range, we add

the constraint N1 ≤ N2 ≤ · · · ≤ NL on {Nl}. To summarize,

the procedures of our proposed APSK constellation design are

summarized in Algorithm 1.

Algorithm 1: Construction of APSK constellation for

programmable metasurface enabled backscatter com-

munications

Input: Modulation order M , modulation order of PSK

in the 1-st ring N1.

Step 1. Find all the possible combinations of

{N1, · · · , NL} and L.

Step 2. For the k-th feasible combinations of

{N1, · · · , NL}
(k) and L(k)

(1) According to Proposition 1 and (32), find the

optimal phase shifts {ω1, · · · , ωL}(k) and the optimal

intermediate radii {r̂1, · · · , r̂L}(k).
(2) Normalize the intermediate radii {r̂1, · · · , r̂L}(k),

and obtain

r
(k)
l = A

r̂
(k)
l

r̂
(k)
L

, ∀l ∈ {1, · · · , L} (33)

(3) Record the minimum Euclidean distance d
(k)
min;

Go to (1), until all combinations of {N1, · · · , NL}
and L are exhaustively explored.

Step 3. Select the combination of {N1, · · · , NL}(k) and

L(k) which corresponds to the maximum d
(k)
min, and

output the corresponding {r1, · · · , rL}
(k) and

{ω1, · · · , ωL}(k)
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Remark 1. As the closed-form solution for the subproblem

P4 has already been derived, the complexity of the proposed

APSK constellation design mainly stems from the exhaustive

search for P4 conditioned on L and {N1, N2, · · · , NL} over

the feasible set of L and {N1, N2, · · · , NL}. Applying the

constraint N1 ≤ N2... ≤ NL, the search range of the candidate

{N1, N2, · · · , NL} is greatly reduced. In addition, as the

constellation is designed off-line and the derived constella-

tion coefficients are pre-stored for impendence selection, the

complexity of APSK constellation design is not a critical issue

for the real-time backscatter communication.

IV. REFLECTION PATTERN DESIGN

In this section, we firstly analyse the reflection power

efficiency of programmable metasurface enabled backscatter

communications and then carry out reflection pattern design.

A. Analysis of Reflection Power under Amplitude Constraint

We assume that the intended angle range is DΨ =
[ΨL

x ,Ψ
U
x )× [ΨL

y ,Ψ
U
y ), and thus the reflected power over DΨ

is represented as

PDΨ =

‹

DΨ

f
H
v(Ψx,Ψy)v

H(Ψx,Ψy)f dΨxdΨy

= f
H

(
ˆ ΨU

x

ΨL
x

ˆ ΨU
y

ΨL
y

v(Ψx,Ψy)v
H(Ψx,Ψy) dΨxdΨy

)

︸ ︷︷ ︸

VDΨ

f

(34)

According to the mixed-product property of Kronecker prod-

uct, the term VDΨ can be represented as

VDΨ =
(
ˆ ΨU

x

ΨL
x

v(Ψx)v
H(Ψx) dΨx

)

︸ ︷︷ ︸

VΨx

⊗

(
ˆ ΨU

y

ΨL
y

v(Ψy)v
H(Ψy) dΨy

)

︸ ︷︷ ︸

VΨy

(35)

With respect to VΨx
, its (ℓ, κ)-th entry is

VΨx
(ℓ, κ) =

ˆ ΨU
x

ΨL
x

ej(ℓ−1)πΨxe−j(κ−1)πΨxdΨx

=
ej(ℓ−κ)πΨx

j(ℓ− κ)π

∣
∣
∣
∣

ΨU
x

ΨL
x

which can be further represented as

VΨx
(ℓ, κ) =

{
ej(ℓ−κ)ΨU

x π

j(ℓ−κ)π − ej(ℓ−κ)ΨL
x π

j(ℓ−κ)π , ℓ 6= κ

ΨU
x −ΨL

x , ℓ = κ
(36)

Similarly, we derive the expression of the (ℓ, κ)-th entry of

VΨy
as

VΨy
(ℓ, κ) =

{

e
j(ℓ−κ)ΨU

y π

j(ℓ−κ)π − e
j(ℓ−κ)ΨL

y π

j(ℓ−κ)π , ℓ 6= κ

ΨU
y −ΨL

y , ℓ = κ
(37)

Proposition 2. The sum power of the reflected signals in all

directions ( i.e., DΨ = [−1, 1) × [−1, 1)) is proportional to

the squared ℓ2 norm of f , i.e., E[−1,1)×[−1,1) ∝ f
H
f .

Proof. See Appendix B

Remark 2. The maximum power of the radiated signal in

all directions for conventional beamforming can be achieved

by simply normalizing the beamforming vector as f
H
f = N

under sum power constraint, while passive beamforming under

amplitude constraint has to be of constant modulus, i.e.,

|f(i)| = 1, ∀n ∈ {1, · · · , N}, to achieve the maximum

reflection power in all directions.

B. Compatibility of Conventional Beam Pattern Designs Un-

der Sum Power Constraint With Programmable Metasurface

Enabled Passive Beamforming

We firstly review conventional beamforming techniques

under sum power constraint, including fully digital beamform-

ing, hybrid beamforming with multiple radio frequency (RF)

chains, and hybrid beamforming with a single RF chain, and

then discuss their compatibility with programmable metasur-

face enabled passive beamforming.

1) Fully digital beamforming

Review: Beam pattern design for fully digital beamforming

has been well investigated in array signal processing [22], [23].

Similar to the design of finite impulse response (FIR) filters

[39] [40], window-based method [22] and least-square (LS)

(or constrained least-square (CLS)) method [23], [26] can be

readily applied to beam pattern designs. To accommodate the

hardware structure, the length of the response needs to be

equal to the number of array elements.

Compatibility: Beamforming vectors, including fully digi-

tal case, can meet the amplitude constraint of programmable

metasurface enabled passive beamforming through normaliz-

ing f as follows

f ←
f

maxn |f(n)|
(38)

The normalized beamforming vector satisfies f
H
f =

N
maxn |f(n)|2 . According to Proposition 2, the sum power of the

reflected signals is restricted by maxn |f(n)|, and thus a very

large maxn |f(n)| will result in a power-inefficient reflection

pattern.

2) Hybrid beamforming with multiple RF chains

Review: Hybrid beamforming vector needs to be compatible

with the hybrid digital and analog hardware structure. The

key idea of beam pattern design for hybrid beamforming with

multiple RF chains is to regenerate the reference beamforming

vector, which is derived in fully digital case, under the hard-

ware constraint. In [26], the reference beam pattern is firstly

obtained through LS method and then approximated using

orthogonal matching pursuit (OMP) algorithm. In [27], the

reference beam pattern is firstly obtained through semidefinite

relaxation (SDR) technique and then perfectly regenerated

through vector decomposition.

Compatibility: As hybrid beamforming vector is an ap-

proximation of the desired digital beamforming vector (i.e.,
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reference beamforming vector), its extension to reflection

pattern design is the same as fully digital case.

3) Analog beamforming with a single RF chain

Review: Analog beamforming design with a single RF

chain is performed under constant modulus constraint, which

is brought by the analog phase shifter network. In [24],

[25], subarray based beamforming designs are carried out

for single-RF-chain array antenna. Through set partition, the

element antennas are grouped as subarrays, and then subarrays

with different directions are combined to synthesize beam

patterns with different beamwidths. However, beamwidth of

the subarray based method is confined to a few discrete values,

which inevitably introduces a mismatch between the desired

beamwidth and the actual beamwidth. In addition, half of

the array elements have to be deactivated to attain some

beamwidths using subarray based method.

Compatibility: The element of analog beamforming vector

is either of constant modulus or zero-valued (deactivated).

Analog beamforming vector can be readily applied to passive

beamforming. The subarray based method [24], [25] generates

two types of analog beamforming vectors. For Type 1, where

all the analog phase shifters are activated, the beamforming

vector satisfies fHf = N ; for Type 2, where half of the analog

phase shifters are deactivated, the beamforming vector satisfies

f
H
f = N

2 . Type 1 attains the maximum achievable reflection

power, while Type 2 attains only half of the maximum

achievable reflection power.

Remark 3. Although the aforementioned off-the-shelf meth-

ods can be readily applied to passive beamforming after the

normalization operation of (38), the cost of the inefficient

reflection power is prohibitively expensive for backscatter

communications.

C. Reflection Pattern Design Under Amplitude Constraint

To fully exploit the reflectivity of programmable metasur-

face and achieve the maximum reflection power, we tighten

the amplitude constraint |f(i)| ≤ 1, ∀n ∈ {1, .., N} and

incorporate the constant modulus constraint |f(i)| = 1, ∀n ∈
{1, .., N} to reflection pattern design.

In addition, the reflection pattern design also aims to achieve

the following two objectives.

Objective 1: Maximize the sum power of reflected signal

over the intended angle range

max
f

f
H
VDΨf

s.t. |f(i)| = 1, ∀n ∈ {1, .., N}

Objective 2: Maximize the minimum power of reflected

signal within the intended angle range

max
f

min
(Ψx,Ψy)∈G

f
H
v(Ψx,Ψy)v

H(Ψx,Ψy)f

s.t. |f(i)| = 1, ∀n ∈ {1, .., N}

where

G ,

{

(Ψx,Ψy)
∣
∣
∣ Ψx = ΨL

x +
2

Nx

nx,Ψy = ΨL
y +

2

Ny

ny,

nx = 0, · · · ,
⌊ΨU

x −ΨL
x

2/Nx

⌋
− 1, ny = 0, · · · ,

⌊ΨU
y −ΨL

y

2/Ny

⌋
− 1

}

is the discrete grid of (Ψx,Ψy) over the intended range

[ΨL
x ,Ψ

U
x )× [ΨL

y ,Ψ
U
y ) with the grid size ( 2

Nx
, 2
Ny

).
Note that Objective 1 and Objective 2 correspond to the

design criterion 1 and design criterion 2 in Section II. C,

respectively. To resolve the above multi-objective optimization

problem, we apply the weighted sum method [41]. Specifically,

we introduce a hyper-parameter α to combine Objective 1 and

Objective 2 and formulate the new research problem as follows

P5 :

{
max

f

min
(Ψx,Ψy)∈G

f
H
MΨx,Ψy

f

s.t. |f(i)| = 1, ∀n ∈ {1, .., N}
(39)

where MΨx,Ψy
, v(Ψx,Ψy)v

H(Ψx,Ψy) + αVDΨ .

For the angle range DΨ = [ΨL
x ,Ψ

U
x ) × [ΨL

y ,Ψ
U
y ), P5 can

be broken down into the subproblems w.r.t. Ψx and Ψy . W.r.t.

Ψx, the design problem is given as

P6 :

{

max
fx

min
Ψx∈Gx

f
H
x MΨx

fx

s.t. |fx(i)| = 1, ∀nx ∈ {1, .., Nx}
(40)

W.r.t Ψy, the component vector fy can be obtained in the

similar way. Then, the beamforming vector can be derived

as f = fx ⊗ fy .

D. Solution to P6

We firstly focus on maximizing a specific term f
H
x MΨx

fx

and then extend the method to the max-min problem [42].

1) Constant-Modulus Power Iteration Method (CMPIM) to

Maximize f
H
x MΨx

fx: The term f
H
x MΨx

fx can be maximized

through the following iterative process

f
(i)
x,temp = f

(i)
x + δMΨx

f
(i)
x (41a)

f
(i+1)
x = Df

(i)
x,temp (41b)

where δ ∈ (0,∞] is the step size, and

D = diag

{

1

|f
(i)
x,temp(1)|

, · · · ,
1

|f
(i)
x,temp(Nx)|

}

Proposition 3. The term f
H
x MΨx

fx in constant-modulus

power iteration method (namely, (41)) is monotonically in-

creasing, i.e.,

f
(i+1)
x

H
MΨx

f
(i+1)
x ≥ f

(i)
x

H
MΨx

f
(i)
x , ∀δ ∈ (0,∞] (42)

and the equality holds if and only if f
(i+1)
x = f

(i)
x .

Proof. See Appendix C.

Lemma 1. The constant-modulus power iteration method of

(41) is convergent.

Proof. According to monotone convergence theorem, a mono-

tone and bounded sequence is convergent. In Proposition 3,



9

f
(i)
x

H
MΨx

f
(i)
x is proven to be monotonically increasing. It is

also easy to find that fHx MΨx
fx is upper bounded by NxλM,1,

where λM,1 is the largest eigenvalue of MΨx
. Then, we can

conclude that the constant-modulus power iteration method is

convergent.

Remark 4. The ascent rate is controlled by the step size

δ. When δ → ∞, constant-modulus power iteration method

is merely different from the classical power iteration method

[43] in vector normalization. Constant-modulus power itera-

tion method applies amplitude normalization (namely, (41b)),

while the classical power iteration method applies power

normalization.

2) Algorithm to Resolve P6: On the basis of constant-

modulus power iteration method, P6 can be resolved through

iteratively updating fx to increase the value of the minimum

term min
Ψx∈Gx

f
H
x MΨx

fx in each iteration (Algorithm 2). How-

ever, the iteration might very likely to cause a sharp decrease

of other terms when the step size δ is very large. To this end, a

relatively small step size is desirable to guarantee convergence.

Algorithm 2: Algorithm to solve P6

Initialization: Set the step size δ and the error tolerance

ǫ. Randomly initialize f
(i)
x , (i = 0) under the constant

modulus constraint.

Step 1. Find the angle Ψ∗
x that corresponds to the

minimum level of power radiation, i.e.,

Ψ∗
x = argmin

Ψx∈Gx

f
(i)
x

H
MΨx

f
(i)
x (43)

Step 2. Apply constant-modulus power iteration method

to update fx, i.e.,

f
(i)
x,temp = f

(i)
x + δMΨx

f
(i)
x

f
(i+1)
x = Df

(i)
x,temp

where D = diag

{

1

|f
(i)
x,temp(1)|

, · · · , 1

|f
(i)
x,temp(Nx)|

}

.

Go to Step 1 until ‖f
(i)
x − f

(i+1)
x ‖ ≤ ǫ, and set i← i+ 1.

Remark 5. Due to the non-convexity of P6, the result of

Algorithm 2 might be a local optimum. To reduce the chance

of being trapped in local optimum, we need to run Algorithm

2 with random initial points for multiple times and choose the

best result.

Remark 6. In the LoS-dominant channel, the directional

backscatter communications achieve significantly better per-

formance than the non-directional backscatter communica-

tions. However, in the complex scattering environments with

substantial reflection, reverberation, multi-path, etc., the per-

formance gain brought by directional beamforming degrades.

V. NUMERICAL RESULTS

In this section, we present some numerical results to verify

the effectiveness of our proposed APSK constellation design

in programmable metasurface enabled backscatter communi-

cations.

TABLE I. The comparison of dmin for PSK, QAM and the optimal APSK
under amplitude constraint

Modulation Order PSK QAM APSK

M = 8 0.7654 0.6325 0.8678

M = 16 0.3902 0.4714 0.5411

M = 32 0.1960 0.3430 0.3606

M = 64 0.0981 0.2020 0.2446

TABLE II. The comparison of dmin for PSK, QAM and the optimal APSK
under power constraint

Modulation Order PSK QAM APSK

M = 8 0.7654 0.8165 0.9277

M = 16 0.3902 0.6325 0.6233

M = 32 0.1960 0.4472 0.4393

M = 64 0.0981 0.3086 0.3109

A. Numerical Study of Constellation Design

The minimum Euclidean distance between different con-

stellation points is a key performance indicator of the con-

stellation, which determines its symbol error rate (SER), bit

error rate (BER) and mutual information [44]. To this end,

we make comparisons of the minimum Euclidean distance

between the conventional QAM/PSK constellations and our

optimized APSK constellation. We firstly list the parameters

for the optimized APSK as follows and plot the constellations

in Fig. 4.

• When the modulation order is M = 8, the parameters

for the optimal APSK are L = 2, N1 = 1, N2 = 7,

r1 = 0, r2 = 1, and ω1 = 0, ω2 = 0.4488;

• When the modulation order is M = 16, the parameters

for the optimal APSK are L = 2, N1 = 5, N2 = 11,

r1 = 0.4603, r2 = 1, ω1 = 0, ω2 = 0.0571;

• When the modulation order is M = 32, the parameters

for the optimal APSK are L = 3, N1 = 5, N2 =
10, N3 = 17, r1 = 0.3068, r2 = 0.6397, r3 = 1,

ω1 = 0, ω2 = 0.3142, ω3 = 0.3326;

• When the modulation order is M = 64, the parameters

for the optimal APSK are L = 5, N1 = 1, N2 = 6, N3 =
13, N4 = 19, N5 = 25, r1 = 0, r2 = 0.2446, r3 =
0.5110, r4 = 0.7555, r5 = 1, ω1 = 0, ω2 = 0.5236, ω3 =
0.5639, ω4 = 0.5766, ω5 = 0.5832;

We present the comparisons of minimum Euclidean distance

dmin between APSK, PSK, and QAM under amplitude con-

straint in Table I, from which we can see that the optimized

APSK is superior to both PSK and QAM when M =
8, 16, 32, 64. QAM is a type of dense constellation that follows

the structure of Z
2 lattice [38], and in power-constrained

case, QAM usually achieves satisfying dmin performance.

For comparative purposes, we also list the dmin of the same

QAM, PSK and APSK constellations under power constraint

in Table II. As can be seen that, QAM outperforms APSK

when M = 16, 32 under power constraint. To conclude, Table

I and Table II jointly indicate that our proposed design for

APSK constellation is an efficient scheme under amplitude

constraint.

In Fig. 5, we study the BER of the optimized APSK in

additive white Gaussian noise (AWGN) channel, where the x-

axis represents Eb

N0
, i.e., energy per bit to noise power spectral

density ratio, and the y-axis represents BER. From the figure,
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Fig. 4. Constellation diagrams of the optimized APSK
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Fig. 5. BER comparisons between PSK, QAM and APSK for programmable
metasurface enabled backscatter communications

we can see that the optimized APSK achieves better BER

performance than both QAM and PSK when the modulation

order is M = 8, 16, 32, 64. Specifically, the performance

enhancement is approximately 1dB when M = 8, 16, 0.5dB

when M = 32, and 1.5dB when M = 64. It indicates that

when programmable metasurface enabled backscatter commu-

nications adopt high-order modulations, our proposed design

consumes 26%, 26%, 12%, and 40% less energy from the

incident power source.

B. Numerical Study of Reflection Pattern Design

Benchmark Schemes and Simulation Parameters: To study

the performance of our proposed CMPIM based method, we

make a comparison with three benchmark schemes [24], [26],

[27].

0
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(a) Normalized LS method
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(d) Our proposed CMPIM based method

Fig. 6. 1-D Beam patterns of the component passive beamforming vectors
(Black curve corresponds to the component passive beamforming vector fx

with the angle range [−0.5, 0.5), and red curve corresponds to the component
passive beamforming vector fy with the angle range [−0.25, 0.25))

Fig. 7. 2-D beam patterns of the passive beamforming vector fx,y

• In Benchmark 1 (termed as normalized LS method),

the passive beamforming vector is derived through LS

estimation of the ideal rectangular beam pattern, which

is similar to [26], and then normalized according to (38).

• In Benchmark 2 (termed as SDR based method), the

passive beamforming vector is derived by solving a

max-min optimization problem using SDR technique,

and different from the traditional sum power constraint

case [27], [45], the generated Gaussian randomizations is

normalized according to (38).

• Benchmark 3 (termed as subarray based method) follows

the design in [24].

As the beamwidth of the subarray based method is confined

to a few discrete values, we set the intended angle range in

the numerical study as DΨ = [−0.5, 0.5) × [−0.25, 0.25)
(which corresponds to AoD range ψx ∈ (60

◦

, 120
◦

], ψy ∈
(75.52

◦

, 104.48
◦

]) for fairness in comparisons. In addition, we

set the number of metasurface units as N = Nx×Ny = 16×16
and the inter-element spacing as half the wavelength.

In Fig. 6, the 1-D beam patterns of the component passive
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TABLE III. Power Ratio and Ripple Factor

❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤

Beam Pattern

Performance
Ripple Factor Power Ratio

Normalized LS method 0.1410 1.34%

SDR based method [27] 0.3299 27.50%

Subarray based method [24] 0.3184 42.78%

CMPIM based method 0.2259 81.45%

beamforming vectors fx and fy generated by different methods

are presented. In Fig. 7, the 2-D beam patterns of the passive

beamforming vector f generated by different methods are

presented. In Fig. 6 amplitude is proportional to the radial

distance from the center point and in Fig. 7 amplitude is repre-

sented by color scale (For illustrative purposes, sub-figures are

displayed with different scales). Based on the figures, beam

patterns generated by our method are more power efficient

and more flat in passband. To quantitatively validate the our

observations, we derive the ripple factor and power ratio of

the 2-D beam patterns in Table III, where ripple factor is

defined in (14c), and power factor is defined as the ratio of

E[−0.5,0.5)×[−0.25,0.25) to the maximum achievable reflection

power in all directions, i.e., Ef
H
f=N

[−1,1)×[−1,1) = 4N . We can

see that the normalized LS method achieves the smallest

ripple factor, followed by our proposed CMPIM based method,

while SDR based method and subarray based method are the

worst in ripple factor and experience drastic fluctuation in the

passband. It is noteworthy that, unlike the beam pattern design

under sum power constraint in [27], ripple factor of SDR

based method deteriorates significantly due to the amplitude

constraint. As for power ratio, our proposed CMPIM based

method is the most efficient in passive beamforming, which

achieves 81.45% of the maximum reflection power within

intended angle range, subarray based method achieves 42.78%
of the maximum reflection power, SDR based method achieves

27.50% of the maximum reflection power, and normalized LS

method achieves merely 1.34% of the maximum reflection

power. Although most of the reflection power falls into the

passband for the three benchmark designs, their power ratios

are still unsatisfying. It is because their generated passive

beamforming vectors satisfy f
H
f << N . Specifically, the

power inefficiency of SDR based method and normalized LS

method are caused by the amplitude normalization operation

(38), and subarray based method is due to the deactivation

of half of the metasurface units for the component passive

beamforming vector fy whose passband [−0.5, 0.5). In a

word, unlike traditional MIMO beamforming designs, the

programmable metasurface enabled passive beamforming has

to meet |f(i)| = 1, ∀n ∈ {1, .., N} to maximize the power

efficiency of signal reflection.

In Fig. 8, we numerically analyze the signal coverage of

different reflection patterns within the intended angle range

[−0.5, 0.5)×[−0.25, 0.25). The X-axis represents beam ampli-

tude in dB, i.e., 20 log10
Amp
10 , and the Y-axis represents the cu-

mulative distribution functions (CDF) of beam amplitude. The

CDF curves are derived by sampling over the independent uni-

form distributions Ψx ∼ U(−0.5, 0.5),Ψy ∼ U(−0.25, 0.25).
From the figure, we can see that the beam amplitude is

primarily within the range [-12.5dB, -4dB] for normalized
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Fig. 9. BER performance of directional backscatter communications

LS method, [-5dB, 13dB] for subarray based method, [-5dB,

14dB] for subarray based method, and [3dB, 15dB] for the

proposed CMPIM based method. It is noteworthy that the

8.5dB amplitude span, 18dB amplitude span, 19dB amplitude

span, and 12dB amplitude span of the four methods are in

accordance with their ripple factors in Table. III. The nar-

rower amplitude span means the better performance stability.

Besides, we can also find that 80% of the angles (Ψx,Ψy)
achieve greater than 10dB amplitude in our proposed CMPIM

based method, while in the best benchmark scheme, i.e.,

subarray based method, only 30% of the angles achieve greater

than 10dB amplitude.

C. Numerical Study of Directional Backscatter Communica-

tions

In Fig. 9, we study the BER performance of our proposed

APSK design and reflection pattern design as an integral in
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directional backscatter communications. For comparison, we

adopt three benchmark schemes by combining the traditional

constellation design and beam pattern design, i.e., normalized

LS method + QAM, subarray based method + QAM, and

SDR based method + QAM, and we set the modulation order

as 64 and receive antenna number as Nr = 1. The channel

response is h = hLoS +hNLoS , where hLoS = δ ·v(Ψx,Ψy)
and hNLoS ∼ CN (0, σ2

IN ). We further assume that Ψx ∼
U(−0.5, 0.5),Ψy ∼ U(−0.25, 0.25), the sum of reflection

loss and propagation loss of each channel realization is

−10 log10 |δ|
2 = 20dB, and the strength of Non-Line-of-Sight

(NLoS) component is 10dB less than Line-of-Sight (LoS)

component, i.e., 10 log10 σ
2 = 10 log10 |δ|

2 − 10 = −30dB.

By averaging over 10000 channel realizations, we obtain the

BER performance as in Fig. 9. It can be seen that, when

BER is 10−5, our proposed design is 7dB better than the

best benchmark scheme, i.e., subarray based method + QAM.

Recall that in Fig. 5 the performance enhancement (in terms of

BER) of 64-APSK over 64-QAM in AWGN is 1.5dB, which

indicates that the performance improvement (in terms of BER)

contributed by our proposed reflection pattern design is 5.5dB.

VI. CONCLUSION

In this paper, we have studied the design of power-efficient

higher-order constellation and reflection pattern under the

amplitude constraint. For constellation design, we adopt the

APSK constellation and propose to optimize the ring num-

ber, ring radius, and inter-ring phase difference of APSK.

For reflection pattern design, we propose to design the pas-

sive beamforming vector by solving a max-min optimization

problem under constant modulus constraint, and a constant-

modulus power iteration method is proposed to optimize the

objective function in each iteration. Numerical results show

that the proposed APSK constellation design and reflection

pattern design outperform the existing modulation and beam

pattern design in programmable metasurface enabled backscat-

ter communications.

APPENDIX A

PROOF OF PROPOSITION 1

Rewrite the term kl

Nl
− kl+1

Nl+1
in (49) as

kl
Nl

−
kl+1

Nl+1

=
1

lcm(Nl, Nl+1)

(
Nl+1kl

gcd(Nl, Nl+1)
−

Nlkl+1

gcd(Nl, Nl+1)

)

︸ ︷︷ ︸

Γ(kl,kl+1)

(45)

Without loss of generality, we set Γ = c, with c being an

integer and 0 ≤ c < NlNl+1, and relax the range of kl and

kl+1, i.e.,

Nl+1kl
gcd(Nl, Nl+1)

−
Nlkl+1

gcd(Nl, Nl+1)
= c (46)

Since the variables kl, kl+1 and the parameters Nl, Nl+1

are integers, (46) is a linear Diophantine equation. The

greatest common divisor of the coefficients
Nl+1

gcd(Nl,Nl+1)
and

− Nl

gcd(Nl,Nl+1)
is 1, and c in (46) is a multiple of the greatest

common divisor. According to the property of linear Diophan-

tine equation [46], (46) must have a solution (k̃l, k̃l+1). By

setting

kl = mod(k̃l, Nl)

kl+1 = mod(k̃l+1, Nl+1)
(47)

we have

2π

(
kl
Nl

−
kl+1

Nl+1

)

=
2π · c

lcm(Nl, Nl+1)
+ γ · 2π (48)

where γ is an integer.

Therefore, the feasible region of the term cosφl,l+1 is

written as
{

cos
( 2π · c

lcm(Nl, Nl+1)
+ ∆ωl,l+1

)

, 0 ≤ c < NlNl+1

}

(49)

The set of (49) consists of NlNl+1 discrete samplings of the

cosine function with the sample interval 2π
lcm(Nl,Nl+1)

. Due to

the cyclic property, the range of ∆ωl,l+1 can be narrowed

down to ∆ωl,l+1 ∈
[
0, 2π

lcm(Nl,Nl+1)

)
. When ∆ωl,l+1 = 0, the

largest element in the set of (49) is cos
(

0
lcm(Nl,Nl+1)

)
= 1 and

the second largest element is cos
(

2π
lcm(Nl,Nl+1)

)
. It is easy to

find that when ∆ωl,l+1 = π
lcm(Nl,Nl+1)

, the largest element

and second largest element become equal. Considering the

cyclic property, the optimal phase difference is represented

as

∆ω∗
l,l+1 =

(1 + 2ν)π

lcm(Nl, Nl+1)
, ν is an integer (50)

and the corresponding minimum angle is

φ∗l,l+1 =
π

lcm(Nl,Nl+1)
(51)

APPENDIX B

PROOF OF PROPOSITION 2

When [ΨL
x ,Ψ

U
x ) = [−1, 1), we have

VΨx
(ℓ, κ) =

j2 sin(π(ℓ − κ))

j(ℓ− κ)π
= 0, ℓ 6= κ (52a)

VΨx
(ℓ, κ) = 2, ℓ = κ (52b)

Namely, VΨx
= 2INx

. Similarly, when [ΨL
y ,Ψ

U
y ) = [−1, 1),

we have VΨy
= 2INy

.

Therefore,

VDΨ = VΨx
⊗VΨy

= 4INxNy
(53)

and

PDΨ = 4fHf (54)

APPENDIX C

PROOF OF PROPOSITION 3

Proof. Firstly, we prove that

|f (i+1)
x

H
MΨx

f
(i)
x | ≥ f

(i)
x

H
MΨx

f
(i)
x (55)
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The left-hand side term (55) satisfies

|f (i+1)
x

H
MΨx

f
(i)
x |

=|f (i+1)
x

H
(MΨx

+
1

δ
I)f (i)x −

1

δ
f
(i+1)
x

H
f
(i)
x |

≥
1

δ
|f (i+1)
x

H
f
(i)
x,temp| −

1

δ
|f (i+1)
x

H
f
(i)
x | (56a)

≥
1

δ
f
(i+1)
x

H
f
(i)
x,temp −

Nx

δ
(56b)

=
1

δ
‖f

(i)
x,temp‖1 −

Nx

δ
(56c)

where ‖ · ‖1 is ℓ1 norm. (56a) is obtained due

to triangle inequality, (56b) is obtained due to

|f
(i+1)
x

H
f
(i)
x | ≤ Nx, and (56c) is obtained as

f
(i+1)
x =

[
f
(i)
x,temp(1)

|f
(i)
x,temp(1)|

, · · · ,
f
(i)
x,temp(Nx)

|f
(i)
x,temp(Nx)|

]T

,

The right hand side term of (55) satisfies

f
(i)
x

H
MΨx

f
(i)
x

=f
(i)
x

H
(MΨx

+
1

δ
I)f (i)x −

1

δ
f
(i)
x

H
f
(i)
x

=
1

δ
f
(i)
x

H
f
(i)
x,temp

︸ ︷︷ ︸

real number

−
Nx

δ
(57a)

≤
1

δ
‖f

(i)
x,temp‖1 −

Nx

δ
(57b)

Since MΨx
+ 1

δ
I is a positive semi-definite matrix,

1
δ
f
(i)
x

H
f
(i)
x,temp is a real number. The equality of (57b) holds

if and only if f
(i+1)
x = f

(i)
x . Combining (56) and (57), (55) is

obtained.

According to the Cauchy-Schwarz inequality, we have

|f (i+1)
x

H
MΨx

f
(i)
x |

2 ≤
(

f
(i)
x

H
MΨx

f
(i)
x

)

·
(

f
(i+1)
x

H
MΨx

f
(i+1)
x

)

(58)

Based on (55) and (58), we have

f
(i+1)
x

H
MΨx

f
(i+1)
x ≥ f

(i)
x

H
MΨx

f
(i)
x (59)

and the equality holds if and only if f
(i+1)
x = f

(i)
x .
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