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Coverage Analysis of Multiuser Visible
Light Communication Networks

Liang Yin and Harald Haas, Senior Member, IEEE

Abstract— In this paper, a new mathematical framework for1

the coverage probability analysis of multiuser visible light com-2

munication (VLC) networks is presented. It takes into account the3

idle probability of access points (APs) that are not associated with4

any users and hence do not function as the source of interference.5

The idle probability of APs is evident especially in underloaded6

networks as well as general networks that operate with an AP7

sleep strategy to save energy and/or minimize the co-channel8

interference. Due to the absence of the “multipath fading”9

effect, the evaluation of the distribution function of the signal-10

to-interference-plus-noise ratio (SINR) is more challenging in11

VLC networks than in radio frequency-based cellular networks.12

By using the statistical-equivalent transformation of the SINR,13

analytical expressions for the coverage probability are derived14

and given in tractable forms. Comparing the derived results with15

extensive Monte Carlo simulations, we show that assuming a16

thinned homogeneous Poisson point process for modeling active17

APs is valid in general, and it gives close results to the exact ones18

when the density of users is no less than the density of APs in19

the network. Both analytical and simulation results show that,20

for typical receiver noise levels (∼−117 dBm), approximating the21

SINR by the signal-to-interference ratio is sufficiently accurate22

for the coverage analysis in VLC networks.23

Index Terms— Visible light communication, light-emitting24

diode, coverage probability, Poisson point process, stochastic25

geometry.26

I. INTRODUCTION27

CURRENT wireless networks are experiencing difficul-28

ties in keeping pace with the exponential growth of29

wireless devices that require higher data rate and seamless30

service coverage. Such imminent problems have motivated31

many industry partners and research communities to seek new32

technologies for wireless communication. Among many candi-33

date solutions, visible light communication (VLC) [1]–[3] has34

been acknowledged as a promising technology to address the35

scarcity of radio frequency (RF) spectra, due to its advantages36

in modulation bandwidth, data rate, frequency reuse factor37

and link security. Extensive studies on point-to-point VLC38
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transmission and reception techniques during the past decade 39

have also led to the recent standardization of VLC for short- 40

range applications: IEEE 802.15.7 [4]. A revision to the 41

current standard is also in progress. 42

Small-cell deployment for heterogeneous cellular networks 43

has proven to be effective in improving the network through- 44

put and spectral efficiency. The femtocell-like deployment of 45

VLC in indoor environments leads to the concept of optical 46

attocells [5], where each light-emitting diode (LED) acts as 47

an optical access point (AP) to serve multiple users within 48

its coverage. Since then, many research efforts have been 49

given to the design and analysis of multiuser VLC networks. 50

Topics include multiple-input multiple-output (MIMO) trans- 51

mission [6], transceiver design [7], precoder and equalizer 52

design [8], AP coordination [9], interference mitigation [10], 53

user scheduling [11] and resource allocation and optimiza- 54

tion [12], [13], to name just a few. 55

A. Related Work and Motivation 56

System-level performance of multiuser VLC networks is 57

typically evaluated with the aid of computer simulations. 58

They are often complicated, time-consuming and unable to 59

provide many insights into how the performance is affected 60

by various parameters in the network. The analytical eval- 61

uation, on the other hand, is generally not straightforward 62

due to the lack of accurate and at the same time analytically 63

tractable models. The most common approach for modeling 64

the location of optical APs is based on the grid model, 65

where LED lights are installed in the ceiling with a regular 66

pattern [1], [2], [6], [9], [13], [14]. The evaluation of the grid 67

based network is recognized to be analytically difficult and 68

hence is normally done with computer simulation, which 69

has also motivated the authors in [14] to use stochastic 70

models [15]–[18] for the performance evaluation. Compared 71

to the grid model, stochastic models are more mathematically 72

tractable. More importantly, the following observations indi- 73

cate that in some scenarios a stochastic model is required 74

in order to accurately characterize the performance of VLC 75

networks. Firstly, modern LED lights with built-in motion 76

detection sensors are widely deployed in public spaces to 77

reduce energy consumption. In this scenario, some of the 78

LED lights are temporarily switched off when they are not 79

required to provide illumination. Also, even when switched on, 80

some of the LEDs can turn off their wireless communication 81

functionality when no data traffic is demanded from them, for 82

1536-1276 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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example, relying on an AP sleep strategy. In these scenarios,83

the distribution of APs cannot be accurately modeled by the84

grid model. Instead, a stochastic thinning process built upon85

the grid-like deployment of LEDs is more accurate. However,86

modeling this stochastic thinning process requires full knowl-87

edge of the users’ movement and handover characteristics,88

which is not analytically tractable. Secondly, the distribution89

of active APs in a VLC network is generally variable, and it90

changes dynamically due to the random movement of users.91

Thirdly, the grid model is not applicable in scenarios where92

not only ceiling lights but also LED screens, reading lamps,93

and other “smart” lights are an integral part of the network94

architecture, in which the deployment of VLC APs appears to95

be more stochastic. For these reasons and in order to obtain96

analytically tractable results, the PPP model is of our focus in97

this work.98

To the best of authors’ knowledge, [14] is the only published99

work that reports on the performance of multiuser VLC net-100

works using the stochastic model. The distribution function of101

the signal-to-interference-plus-noise ratio (SINR) of a typical102

user in the network reported in [14] was given as a sum of103

Gamma densities, whose calculation requires Gram-Charlier104

series expansion with infinite terms and Laguerre polynomi-105

als. As a result, computing the distribution function of the106

SINR would involve complicated integrals and infinite sums.107

Motivated by this, we report in this paper a new and simpler108

method for the characterization of the density function of the109

SINR by exploring powerful mathematical tools from sto-110

chastic geometry [15]–[18]. Furthermore, the analysis in [14]111

overlooks the probability of empty cells, in which APs are112

idle and hence do not act as the source of interference. This is113

especially evident in underloaded networks as well as general114

networks that use an AP sleep strategy.115

Stochastic geometry has been widely used in cellular net-116

works for modeling the locations of base stations (BSs) as a117

point process, usually a Poisson point process (PPP) [16] due118

to its mathematical tractability. Recent advances and results119

on stochastic geometry modeling of heterogeneous cellular120

networks can be found in a recent survey [18] and the121

rich references therein. Due to many fundamental differences122

between RF communication and VLC [3], existing results123

obtained for RF-based cellular networks can not be directly124

applied to VLC networks. Among many significant differences125

between RF and VLC, a noticeable one is their channel126

characteristics. More specifically, because the wavelength of127

visible light is hundreds of nanometers and the detection area128

of a typical VLC receiver, for example, a photodiode (PD),129

is millions of square wavelengths. This spatial diversity essen-130

tially prevents the “multipath fading” effect in VLC, which131

in turn makes the calculation of the density function of the132

SINR more challenging. Furthermore, in cellular networks,133

the vertical distance of the communication link is generally134

much smaller than the horizontal distance. Therefore, a planar135

system model is typically used. However, the size of attocells136

in VLC networks is in the order of meters. As a result, a three-137

dimensional system model considering both horizontal and138

vertical distances of the communication link is required in139

VLC networks.140

B. Contributions 141

The contributions of this paper are summarized as follows. 142

1) We consider a three-dimensional attocell model and 143

introduce an analytical framework for the coverage prob- 144

ability analysis in multiuser VLC networks. Based on 145

the user-centric cell association, the proposed framework 146

takes into account the idle probability of APs that are 147

not associated with any users. Specifically, the analytical 148

results are derived as a function of the user density, 149

which is implicitly assumed to be infinity in the existing 150

works [13], [14]. 151

2) By assuming that the point process for the active APs in 152

the network is a thinned homogeneous PPP, we derive 153

an asymptotic result for the coverage probability in 154

the low SINR regime. With the statistical-equivalent 155

transformation, the exact coverage probability in the 156

high SINR regime is derived and given in a mathemat- 157

ically tractable form. A simple and closed-form upper 158

bound on the coverage probability is also provided. The 159

coverage performance is evaluated in detail with various 160

network parameters. We find that the homogeneous PPP 161

assumption for modeling the location of active APs is 162

generally valid, and it gives close results to the exact 163

ones when the density of users is no less than the density 164

of APs. 165

3) We investigate the effect of receiver noise on the 166

network coverage performance. It is shown that, with 167

typical receiver noise levels (∼ −117.0 dBm), the SINR 168

can be well approximated by the signal-to-interference 169

ratio (SIR) for the performance analysis. 170

C. Paper Organization 171

The remainder of this paper is organized as follows. 172

Section II describes the three-dimensional attocell model and 173

formulates the SINR metric. With user-centric cell association, 174

the idle probability of APs is derived in Section III. By assum- 175

ing that the point process of active APs is a homogeneous PPP, 176

analytical expressions for the coverage probability are derived 177

in Section IV. In Section V, we provide numerical examples 178

to validate the derived results and discuss the impact of 179

various network parameters and assumptions on the coverage 180

performance. Finally, Section VI gives the concluding remarks. 181

II. SYSTEM MODEL 182

We consider a downlink transmission scenario in a multi- 183

user VLC network, with full-frequency reuse, over a three- 184

dimensional indoor space, as depicted in Fig. 1. The VLC 185

APs are vertically fixed since they are attached to the room 186

ceiling while their horizontal locations are modeled by a two- 187

dimensional homogeneous PPP �a = {xi , i ∈ N} ⊂ R
2, with 188

node density λa, where xi is the horizontal distance between 189

AP i and the origin.1 Similarly, mobile users are also assumed 190

to be at a fixed height, for example, at the desktop level, and 191

1We define the room center as the origin and use both notions inter-
changeably throughout the paper since the room center has more geographical
meanings while the origin has more mathematical meanings in the theoretical
analysis.
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Fig. 1. Three-dimensional Voronoi cell formation in the VLC network assum-
ing the nearest AP association: APs are randomly distributed in the ceiling
following �a, while users are randomly distributed at a lower horizontal plane
following �u. For the nearest AP association, each user is assumed to be
served by the nearest AP in its vicinity.

their horizontal locations are modeled by another independent192

two-dimensional homogeneous PPP �u = {y j , j ∈ N} ⊂ R
2,193

with node density λu, where y j is the horizontal distance194

between user j and the origin. The vertical separation between195

�a and �u is denoted by L. After adding an additional196

user at the room center, the new point process for mobile197

users becomes �u ∪ {0}. According to Slivnyak’s theorem,198

adding a user into �u is equivalent to conditioning �u on199

the added point, and this does not change the distribution200

of original process �u [15]. The homogeneity and motion-201

invariant property of the PPP [15] allow us to focus on a202

typical user located at an arbitrary location, and the obtained203

result would remain the same since it represents the average204

performance of all users in the network. This is true for an205

infinite network. For a finite network, the obtained result also206

remains unchanged, as long as the typical user is far away207

from room boundaries. This is justified by the power scaling208

law, stating that the received power is inversely proportional209

to the link distance and therefore quickly diminishes as the210

interfering AP is moved further away from the receiver. The211

origin is usually selected for the location of the typical user212

due to its notational simplicity. Therefore, in the following213

analysis, we focused on a typical user located at the origin and214

discuss the effect of room boundaries in detail in Section V.215

Note that in a practical VLC network, not all of the APs216

transmit signals at the same time. Hence, APs that are not in217

the “communication” mode can either be turned off or operate218

in the “illumination” mode only, and therefore they do not act219

as the source of interference in the network. As a result, from220

the communication perspective, the actual point process of221

active APs is no longer the same as �a and can be determined222

by thinning PPP �a to a new process �̃a.223

The complete VLC channel between an AP and a224

user includes both the line-of-sight (LOS) link and225

non-line-of-sight (NLOS) links, that are caused by light226

reflections of interior surfaces in the indoor environment. 227

However, in a typical indoor environment, the signal power 228

of NLOS components is significantly lower than that of 229

the LOS link [1], [2], [6]. Therefore, we will only focus 230

on the LOS link in the following analysis in order to 231

obtain analytically tractable results and insights. Without 232

loss of generality, the VLC AP is assumed to follow the 233

Lambertian radiation profile, whose order can be calculated 234

from m = −1/ log2(cos(�1/2)), where �1/2 denotes the semi- 235

angle of the LED. The PD equipped at each user is assumed 236

to be facing vertically upwards with a field-of-view (FOV) 237

of �fov. For each VLC link, the direct current (DC) gain of 238

the channel is given by [19]: 239

h = (m + 1)Apdη

2πd2 cosm(θtx)Gf (θrx)Gc(θrx) cos(θrx), (1) 240

where d is the Euclidean distance between the transmitter and 241

receiver; Apd denotes the effective detection area of the PD; 242

η is the average responsivity of the PD in the white region; 243

θtx and θrx are the angle of irradiance and the angle of 244

incidence of the link, respectively; Gf(θrx) represents the gain 245

of the blue optical filter used at the receiver front end in order 246

to obtain an improved modulation bandwidth; and Gc(θrx) 247

represents the gain of the optical concentrator, given by [19]: 248

Gc(θrx) =

⎧
⎪⎨

⎪⎩

n2
c

sin2(�fov)
, 0 ≤ θrx ≤ �fov

0, θrx > �fov,

(2) 249

where nc is the reflective index of the optical concentrator, and 250

it is defined as the ratio of the speed of light in vacuum and 251

the phase velocity of light in the optical material. For visible 252

light, typical values for nc vary between 1 and 2. 253

Based on the geometric property [20] of the VLC link, 254

we can obtain di =
√

x2
i + L2, cos(θtx,i ) = L/

√

x2
i + L2 and 255

cos(θrx,i ) = L/
√

x2
i + L2. As a result, the VLC channel gain 256

from AP i to the typical user can be simplified to: 257

hi (xi ) = α(x2
i + L2)−

m+3
2 , (3) 258

where α = (m + 1)ApdηGf(θrx,i )Gc(θrx,i )Lm+1/2π . Denote 259

by x∗ the serving AP that gives the highest channel gain to 260

the typical user. We can write 261

x∗ = arg max
xi∈�a

hi (xi ) = x0, (4) 262

where x0 is the nearest AP in �a to the origin. It can be seen 263

from (4) that the highest channel gain association is equivalent 264

to the nearest AP association, resulting in coverage areas that 265

form the Voronoi tessellation, as depicted in Fig. 1. Therefore, 266

the thinned point process for active APs can be written as: 267

�̃a =
{

x̃i , x̃i = arg min
xi∈�a

||xi − y j ||2,∀y j ∈ �u

}

. (5) 268

Direct current biased orthogonal frequency division multi- 269

plexing (DCO-OFDM) is assumed as the modulation format, 270

in which the illumination provided by the LED depends on the 271

DC bias, not on the optical signal. Therefore, idle (inactive) 272

APs are the ones that do not transmit optical signals, but they 273

can be either on (DC bias only) or off, depending on the 274
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illumination requirement. Assume that all active APs transmit275

with the same signal power, that is Ptx. Before VLC signal276

transmission, the optical signal is clipped at both bottom277

and upper levels to fit into the linear dynamic range of278

typical LEDs. To facilitate quantifying the effect of clipping279

distortion, a parameter ξ is introduced, and it is defined as280

ξ = Popt/
√

Ptx, where Popt, set by the DC bias, is the required281

optical power to meet the illumination requirement. According282

to the three-sigma rule of thumb, ξ ≥ 3 ensures that at least283

99.7% of the optical signal remains unclipped [21]. To make284

the analysis tractable and, more importantly, to obtained higher285

SINR of the communication link, we assume in the paper that286

the signal power satisfies Ptx ≤ P2
opt/9 so that the effect of287

clipping distortion is negligible. Focusing on the typical user,288

its received interference power is the sum of received powers289

from all other active APs other than its serving AP. Also,290

we assume that there is no intra-cell interference, for example,291

due to the use of orthogonal multiuser access schemes within292

each Voronoi cell. Therefore, the SINR at the typical user is293

given by:294

SINR = Ptxα
2(x2

0 + L2)−(m+3)

∑

xi∈�̃a\{x0}
Ptxα2(x2

i + L2)−(m+3) + σ 2
, (6)295

where σ 2 is the receiver noise power including both shot noise296

and thermal noise. For such small-scaled VLC networks, user297

performance is typically limited by the interference cause by298

neighboring APs rather than the noise process at the receiver299

end. In this case, the SINR can be well approximated by300

the SIR:301

SIR = (x2
0 + L2)−(m+3)

∑

xi∈�̃a\{x0}
(x2

i + L2)−(m+3)
. (7)302

The goal of this paper is to evaluate the coverage prob-303

ability of a typical user in the network, which is equiva-304

lent to evaluating the complementary cumulative distribution305

function (CCDF) of the SINR (or SIR in the interference-306

limited case). The major difficulty resides in characterizing �̃a307

because the probability density function (PDF) of the Voronoi308

cell in PPP still remains unknown [15], [22]–[24]. With this309

in mind, we simplify the problem by making the following310

assumption.311

Assumption 1: The point process for active APs, �̃a,312

is a homogeneous PPP, whose intensity is given by313

λ̃a = (1 − pidle)λa, where pidle represents the idle probability314

of APs in the network that are not associated with any users.315

In the following, we calculate the idle probability of APs316

in Section III. In Section IV, we derive analytical results for317

the coverage probability based on Assumption 1. The accuracy318

of the obtained results built upon this assumption is later319

justified in Section V.320

III. IDLE PROBABILITY OF APS321

Consider a Voronoi cell A ⊂ R
2 generated from PPP �a.322

We are interested in finding the probability that there exist k323

users inside A: 324

P

⎡

⎣
∑

yi∈�u

1A(yi) = k

⎤

⎦ = EA

[
(λuμ(A))k

k! exp (−λuμ(A))

]

, 325

(8) 326

where μ(A) is the standard Lebesgue measure of A, and 1A(yi ) 327

is the random counting measure of A, defined as: 328

1A(yi ) =
{

1, yi ∈ A
0, otherwise

. (9) 329

Although the exact PDF of μ(A) is unknown, existing stud- 330

ies have reported that it can be well approximated with a 331

Gamma distribution μ(A) ∼ Gamma(β, βλa), whose PDF is 332

given by [22]: 333

fμ(A)(t) = (βλa)
β

�(β)
tβ−1 exp (−βλat), (10) 334

where �(·) is the gamma function, and the shape parameter 335

β = 3.5 [22] is obtain through curve fitting. With this 336

approximated PDF, (8) can be calculated as: 337

P

⎡

⎣
∑

yi∈�u

1A(yi ) = k

⎤

⎦ =
∫ ∞

0

(λut))k

k! exp (−λut) fμ(A)(t)dt 338

= 1

k!
�(β + k)

�(β)

(
β

β+ λu
λa

)β ( λu
λa

β+ λu
λa

)k

. 339

(11) 340

The idle probability of APs can be obtained by plugging k = 0 341

into (11), yielding: 342

pidle = P

⎡

⎣
∑

yi∈�u

1A(yi ) = 0

⎤

⎦ =
(

β

β + λu
λa

)β

. (12) 343

It can be seen from (12) that the idle probability of APs is 344

determined by the ratio of user density to AP density, but not 345

the exact value of user density or AP density. 346

Remark 1: By applying Jensen’s inequality, the idle 347

probability of APs is lower bounded by exp(−λu/λa). 348

This result follows from pidle = EA [exp(−λuμ(A))] ≥ 349

exp (−λuEA [μ(A)]) and EA [μ(A)] = λ−1
a . 350

IV. COVERAGE PROBABILITY ANALYSIS 351

In this section, we focus on the analysis of the coverage 352

probability of a typical user in the network. Since the distrib- 353

ution function of the SINR exhibits different behaviors at low 354

and high values, we separate the analysis into two regimes: 355

1) in the low SINR regime, where the SINR target is smaller 356

than one. 2) in the high SINR regime, where the SINR target 357

is larger than one. 358

A. Asymptotic Analysis of the Coverage Probability 359

in the Low SINR Regime 360

Assumption 2: The multiuser VLC network under consid- 361

eration is interference-limited so that the SINR can be well 362

approximated by the SIR. 363
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Remark 2: Assumption 2 plays an important role in simpli-364

fying the analysis of the coverage probability in Section IV-A.365

The validation of Assumption 2 is later justified in Section V366

through simulation results. However, note that Assumption 2 is367

not explicitly made when we evaluate the coverage probability368

in the high SINR regime in Section IV-B.369

With Assumption 2, we first study the distribution of the370

interference-to-signal ratio (ISR) at the typical user, given by371

ISR = SIR−1. The Laplace transform of the ISR is given in372

the following theorem.373

Theorem 1: The Laplace transform of the ISR of a typical374

user is given by:375

LISR(s) = 1
1

m+3 E m+4
m+3

(s) + �
(

m+2
m+3

)
s

1
m+3

exp

[

− πλ̃a L2
376

×
(

−1 + 1

m + 3
E m+4

m+3
(s) + �

(
m + 2

m + 3

)

s
1

m+3

)]

,377

(13)378

where En(z) = ∫∞
1 exp(−zt)t−ndt is the exponential integral379

function [25].380

Proof: Please refer to Appendix A.381

The denominator of the Laplace transform of the ISR is a382

strictly increasing function with respect to s because its first383

order derivative is positive:384

∂(1+W (s))

∂s
=− 1

m+3
E 1

m+3
(s)+ 1

m+3
�

(
m+2

m+3

)

s− m+2
m+3 >0,385

(14)386

in which function W (s) is defined in (32). Furthermore,387

the denominator of LISR(s) also satisfies 1+W (0) = 1. Hence,388

it is shown that the denominator of the Laplace transform of389

the ISR has only a single root s∗ so that 1 + W (s∗) = 0. The390

region of convergence (ROC) of the Laplace transform of the391

ISR is therefore �(s) > �(s∗), where �(s) denotes the real392

part of s. From (32), it can be seen that the denominator of393

the Laplace transform is dependent on the Lambertian order of394

the AP. In other words, the pole of Laplace transform of ISR395

changes as the Lambertian order of the AP changes. Although396

a symbolic expression for s∗ is not available, its numerical397

value can be efficiently calculated using standard mathematical398

software packages. In Fig. 2, the denominator of LISR(s) is399

plotted against different values of s. It is verified that the400

denominator of the Laplace transform is a strictly increasing401

function of s, and it has a single root on the negative real402

axis. The numerical value of the pole of LISR(s) is found to403

be −2.173, −1.847 and −1.658 when the semi-angle of the404

AP is set to 45◦, 60◦ and 75◦, respectively.405

From the Laplace transform, the coverage probability of a406

typical user can be obtained by means of the inverse Laplace407

transform as follows:408

P
[
ISR > T

] = 1 − L−1
{

LISR(s)

s

}

(ISR)

∣
∣
∣
∣
ISR=T

. (15)409

Since LISR(s)/s is a nonstandard Laplace function, the exact410

expression of its inverse, and hence the coverage probabil-411

ity, is hard to obtain. However, its asymptotic property can412

Fig. 2. The denominator of the Laplace transform of the ISR as a
function of s.

be utilized to calculate the coverage probability in the low 413

SIR regime. This is stated in the following corollary. 414

Corollary 1: The coverage probability of a typical user in 415

the low SIR regime, i.e., T < 1, can be approximated by: 416

P
[
SIR > T

] ≈ 1 − exp

(
s∗

T

)

, (16) 417

in which s∗ is the pole of the Laplace transform of the ISR 418

given in (13). 419

Proof: The coverage probability can be rewritten as 420

P
[
SIR > T

] = P
[
ISR < 1/T

]
. Since s∗ is a pole of LISR(s), 421

and the abscissa of convergence of the Laplace transform is 422

negative finite, we have the following result from [26]: 423

lim
T →0+ T log

(

P

[

ISR >
1

T

])

= s∗. (17) 424

For small values of the ISR, (16) can be obtained by rewriting 425

the result in (17). 426

Remark 3: The pole of the Laplace transform of the ISR 427

does not depend on the parameter L, and therefore the 428

coverage probability of the typical user does not depend on L. 429

The exponential approximation of the coverage probabil- 430

ity in (16) is only valid in the low SIR regime. When 431

T > 1, new results for the coverage probability are derived 432

in Section IV-B. 433

B. Analysis of the Coverage Probability in the 434

High SINR Regime 435

In this subsection, we focus on evaluating the coverage 436

probability in the high SINR regime. Different from the analy- 437

sis presented in Section IV-A, here we present more general 438

and exact analysis on the coverage probability by considering 439

both interference and noise in the system model. The derived 440

result complements the result presented in Section IV-A in 441

that it applies to the computation of the coverage probability 442

when T > 1, which is a more realistic scenario for practical 443

VLC systems. 444
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From (6), the SINR of a typical user can be simplified to:445

SINR = (x2
0 + L2)−(m+3)

∑

xi∈�̃a\{x0}
(x2

i + L2)−(m+3) + σ̄ 2
, (18)446

where the noise power has been normalized to σ̄ 2 = σ 2/Ptxα
2.447

Definition 1: Consider two stochastic point processes �1448

and �2 for modeling horizontal locations of APs in the449

VLC network. The SINR models used for �1 and �2 are450

SINR1 and SINR2, respectively. �1 (with SINR1) is said451

to be statistically equivalent [27] to �2 (with SINR2) if452

the distribution of the SINR at the typical user is the same453

for �1 and �2, i.e., P[SINR1 > T ] = P[SINR2 > T ].454

Mathematically, we denote �1
s.e.= �2 and SINR1

s.e.= SINR2.455

Remark 4: For �1
s.e.= �2, it is sufficient but not necessary456

that �1 = �2. However, for �1 = �2, it is necessary but not457

sufficient that �1
s.e.= �2.458

Since the evaluation of the coverage probability is not459

straightforward with �̃a and the SINR model given in (18),460

with Definition 1, we can now focus on analyzing another461

point process with a more tractable SINR model, as long as462

both point processes are statistically equivalent.463

Theorem 2: The two-dimensional homogeneous PPP �̃a,464

with density λ̃a and the SINR model given in (18), is statisti-465

cally equivalent to another one-dimensional point process �̃eq,466

whose density function is:467

λ̃eq(x) = πλ̃a

�
(

1
m+3

) x
1

m+3 −1, (19)468

for x > L2(m+3), and zero otherwise. The equivalent469

SINR model for �̃eq is:470

SINReq = g0x−1
0

∑

xi∈�̃eq\{x0}
gi x

−1
i + σ̄ 2

, (20)471

where gi , i = 0, 1, · · · , are auxiliary random variables that are472

exponentially distributed with unity mean, i.e., gi ∼ exp(1).473

Proof: Please refer to Appendix B.474

Remark 5: For the original SINR model given in (18),475

xi , for i = 0, 1, · · · , takes values between interval [0,∞].476

However, for the equivalent SINR model given in (20), xi , for477

i = 0, 1, · · · , takes values between interval
[
L2(m+3),∞].478

This should be treated carefully when using the density479

function (19).480

Remark 6: Other distributions can also be assumed for481

auxiliary random variables gi . However, this requires a recal-482

culation of the density function λ̃eq(x) in order to maintain483

the statistical equivalence.484

Although Theorem 2 transforms the original homogeneous485

two-dimensional PPP �̃a into an inhomogeneous PPP �̃eq,486

it also transforms the original SINR expression in (18)487

with a Euclidean distance path-loss model into a new488

SINR expression in (20) with a planar distance path-loss489

model, multiplied by auxiliary random variables gi , which490

mimics the small-scale fading effect in RF based cellular491

networks. It will be shown in the following analysis that this492

statistical-equivalent transformation can significantly simplify 493

the calculation of the coverage probability in VLC networks. 494

Specifically, with exponentially distributed auxiliary random 495

variables gi , the calculation of the coverage probability can 496

now be expressed as a function of exponential terms, which 497

was not possible for the no-fading case in (18). 498

Based on the statistical-equivalent SINR model given 499

in (20), we have the following result for the coverage proba- 500

bility of a typical user in the network. 501

Theorem 3: When the SINR target is greater than one, 502

i.e., T > 1, the coverage probability of a typical user in the 503

network is given by: 504

P
[
SINR>T

]=
∫ ∞

L2(m+3)

πλ̃a

�
(

1
m+3

) x
1

m+3 −1 exp
(
−T σ̄ 2x

)
505

× exp

⎡

⎣− πλ̃a

m + 2

L−2(m+2)

�
(

m+4
m+3

) T x 506

× 2 F1

(

1,
m+2

m+3
; 2m+5

m+3
; −L−2(m+3)T x

)
⎤

⎦dx, 507

(21) 508

where 2 F1(·, ·; ·; ·) denotes the Gauss hypergeometric 509

function [25]. 510

Proof: Please refer to Appendix C. 511

When the SINR threshold does not satisfy T > 1, (21) 512

does not hold because P[SINR > T ] <
∑∞

i=0 P[SINRi > T ]. 513

In this case, the analytical expression derived in (21) serves as 514

an upper bound on the coverage probability of a typical user. 515

Due to the involved Gauss hypergeometric function, a closed- 516

form expression for the coverage probability is not available. 517

However, the coverage probability can still be computed using 518

numerical methods. In Appendix D, we provide a numerical 519

method for efficient computation of (21). 520

Remark 7: When L = 0, (21) can not be applied. However, 521

in this case, Theorem 3 still holds, and the coverage probability 522

of a typical user can be calculated by limL→0 P[SINR > T ]. 523

In fact, when L = 0, another simpler expression for the 524

coverage probability is available: 525

P
[
SINR>T

] =
∫ ∞

0

πλ̃a

�
(

1
m+3

) x
1

m+3 −1 exp
(
−T σ̄ 2x

)
526

× exp

[

−πλ̃a�

(
m+2

m+3

)

(T x)
1

m+3

]

dx . (22) 527

Furthermore, significant simplification is possible for the 528

interference-limit case, i.e., when σ̄ 2 = 0. The simplified result 529

for this case is given in the following corollary. 530

Corollary 2: When L = 0, the coverage probability in 531

the interference-limited scenario follows a power-law decay 532

profile: 533

P
[
SINR > T

] = 1

�
(

m+2
m+3

)
�
(

m+4
m+3

)T − 1
m+3 . (23) 534

Proof: This result follows directly from (22) after setting 535

σ̄ 2 = 0. 536
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C. An Upper Bound on the Coverage Probability537

Considering the SINR model given in (18), the coverage538

probability of a typical user can also be calculated in a539

brute-force way:540

P
[
SINR > T

]
541

=
∫

· · ·
∫ ∫

D(T )
fx0,x1,··· ,xn (x0, x1, · · · , xn)dx0dx1 · · · dxn,542

(24)543

where D(T ), as a function of the SINR target T , is the domain544

of integration formed by the n + 1 variables according to545

the inequality SINR > T , and fx0,x1,··· ,xn (x0, x1, · · · , xn)546

is the joint distance distribution of the nearest n + 1 APs547

in the PPP [28]. Since the domain of integration is highly548

coupled by x0, x1, · · · , xn , it is typically hard to compute549

the coverage probability directly with (24). To simplify the550

problem, we consider only the serving AP x0 and the nearest551

interfering AP to the typical user, i.e., x1. The obtained result552

therefore serves as an upper bound on the coverage probability553

since it ignores the effect of receiver noise and underestimates554

the interference level and hence overestimates the SINR. This555

result is stated in the following proposition.556

Proposition 1: An upper bound on the coverage probability557

of a typical user is:558

P
[
SINR > T

] ≤ T − 1
m+3 exp

(
−πλ̃a L2

(
T

1
m+3 − 1

))
. (25)559

Proof: Based on the SINR expression given in (18),560

we have SINR ≤ (x2
0 + L2)−(m+3)/(x2

1 + L2)−(m+3)
561

after ignoring the power of interference generated from562

�̃a\{x0, x1}. It immediately follows that P[SINR >563

T ] ≤ P
[
(x2

0 + L2)−(m+3)/(x2
1 + L2)−(m+3) > T

] =564

P

[

x1 >

√

T
1

m+3 (x2
0 + L2) − L2

]

. Given that the joint PDF of565

x0 and x1 is fx0,x1(x0, x1) = exp(−πλ̃ax2
1 )(2πλ̃a)

2x0x1 [28],566

we have:567

P

[

x1 >

√

T
1

m+3 (x2
0 + L2) − L2

]

568

=
∫ ∞

0

∫ ∞
√

T
1

m+3 (x2
0+L2)−L2

fx0,x1(x0, x1)dx1dx0. (26)569

Calculating the double integral in (26) yields the upper bound570

expression given in (25).571

Remark 8: The derivation of this upper bound does not572

necessarily require T > 1. However, it is not meaningful to573

apply this upper bound to low SINR regimes since for T ≤ 1574

it is definite that T − 1
m+3 exp

(
−πλ̃a L2

(
T

1
m+3 − 1

))
≥ 1.575

V. SIMULATION RESULTS AND DISCUSSIONS576

Monte Carlo simulation results are presented in this section577

to validate the theoretical results derived in the previous578

section. The impacts of previously made assumptions on the579

accuracy of the results are also discussed. An indoor office of580

size 18×14×3.5 m3 is considered, as depicted in Fig. 1. If not581

otherwise specified, the following parameters are used for the582

simulation setup. The VLC APs have a semi-angle of 60◦, and583

all active APs transmit at the same power level, that is 1 W.584

Fig. 3. Idle probability of the AP in the VLC network. λa = 0.1.

The PD used at the receiver side has 90◦ FOV, an effective 585

detection area of 1 cm2, and a responsivity of 0.4 A/W. 586

Despite the bandwidth limitation of commercially available 587

white LEDs, current works have shown that using a blue 588

optical filter at the receiver front end can achieve an increased 589

modulation bandwidth of up to 20 MHz [29], [30]. Therefore, 590

a modulation bandwidth of 20 MHz and a noise power spectral 591

density of 10−22 A2/Hz (after blue filtering) [1], [2], [6] is 592

assumed in the simulation. The typical value of the receiver 593

noise power is therefore −117.0 dBm. At the receiver front 594

end, the optical concentrator has a reflective index of 1.5, and 595

the optical filter has a unity gain. 596

First, based on the highest channel gain association, the idle 597

probability of APs in a typical Voronoi cell is evaluated and 598

the results are shown in Fig. 3. The procedure of calculating 599

the idle probability of the AP using Monte Carlo simulations 600

can be summarized as follows. First, based on the PPP model, 601

generate one realization of independent random locations of 602

APs and users. Second, for each random user, find the AP 603

that gives the highest channel gain based on (4). If, on rare 604

occasions, there are multiple solutions to (4), choose one of the 605

optimal APs randomly. Third, after all users have connected 606

to their optimal APs, count the number of APs that are 607

not connected to any user. The idle probability is therefore 608

calculated as the ratio between the number of unconnected 609

APs and the total number of APs. Finally, generate a large 610

number of realizations, and then calculate the average of the 611

idle probability. It can be seen that analytical results agree 612

well with simulation results, and the exponential lower bound 613

on the idle probability is reasonably accurate, especially when 614

λu/λa is small. Fig. 3 also shows that, with given simulation 615

parameters, the idle probability of the AP is nonzero unless 616

λu > 10λa. Specifically, when the density of users in the 617

network is smaller than the density of APs, i.e., λu/λa ≤ 1, 618

the idle probability is above 0.4. For an underloaded network, 619

e.g., λu/λa = 0.1, the AP idle probability can be as large 620

as 0.9. Therefore, results in Fig. 3 indicate that considering all 621

of the APs in the network as interfering nodes is inaccurate 622
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Fig. 4. Outage probability of a typical user in the low SINR regime.
λ̃a = 0.15 and L = 2 m.

when λu < 10λa, and this will lead to the underestimation of623

the coverage performance of users in the network. On the other624

hand, in an overloaded network where the density of users625

is about ten times larger than the density of APs, the idle626

probability of APs can be ignored since its average value627

approaches zero.628

A. Results Based on Assumption 1629

In this subsection, we assume that the active APs are a630

thinned PPP with density λ̃a = (1 − pidle)λa (Assumption 1),631

and discuss the effect of various network parameters on the632

coverage performance. In Fig. 4, the outage probability2 of a633

typical user in the low SINR regime is evaluated. It can be seen634

that the derived asymptotic expression accurately captures the635

SINR characteristics when SINR is nearly zero. As the SINR636

target approaches one, the asymptotic result becomes less637

accurate. Fig. 4 also shows that using APs with a smaller semi-638

angle gives better coverage performance at the typical user.639

This is contradictory to indoor lighting requirements since640

more uniform illumination would require to install APs with a641

larger semi-angle. However, this finding is not surprising and642

can be explained as follows. Although APs with a smaller643

semi-angle generate more directional light beams, hence less644

light coverage per AP, they improve the achievable SINR at a645

typical user because higher signal power and less interference646

is generated.647

Compared to the asymptotic result shown in Fig. 4,648

the SINR distribution in the high SINR region is typically of649

more interest. It is shown in Fig. 5 that the derived analytical650

expression for the coverage probability of a typical user in651

the high SINR regime is well matched with simulation results.652

When L = 0, the three-dimensional network model reduces to653

a two-dimensional planar model, and the coverage probability654

is found to follow a power-law decay profile. When L �= 0,655

2The outage probability is the complement of the coverage probability.
We plot outage probability in Fig. 4 because the coverage probability is less
distinguishable when the SINR target is low.

Fig. 5. Coverage probability of a typical user in the high SINR regime.
λ̃a = 0.1.

Fig. 6. Coverage probability of a typical user for different densities of the
VLC APs. L = 1 m.

the coverage probability decay is more involved and it does 656

not follow the power law any more. In fact, the decay is shown 657

to be more rapid at the beginning and steady at the tail. 658

The impact of the density of APs on the coverage proba- 659

bility of a typical user is evaluated in Fig. 6. As expected, 660

results confirm that, without efficient interference mitigation 661

techniques, the coverage probability reduces as the density of 662

APs increases. This is because that the legitimate user is served 663

by the nearest AP while the increasing number of APs brings 664

an increment of the interference power. However, the decay 665

rate of the coverage probability reduces as the density of active 666

APs increases. 667

Fig. 7 compares the exact and asymptotic expressions for the 668

coverage probability as a function of parameter L. In general, 669

the coverage probability at a typical user decreases as L 670

increases. The decay of the coverage probability is observed to 671

be steady at small values of L and rapid for large values of L. 672
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Fig. 7. Coverage probability of a typical user for different values of L .
λ̃a = 0.1.

Fig. 8. The impact of noise power on the coverage probability of a typical
user. λ̃a = 0.1 and L = 1 m.

The derived analytical expression agrees well with simulation673

results while the asymptotic expression exhibits a positive674

gap from the exact one. This gap is caused by underesti-675

mating the interference power at the typical user, as stated676

in Proposition 1. For larger values of T , the gap between the677

asymptotic result and the exact one becomes tighter. Despite678

the accuracy of the asymptotic upper bound, it is extremely679

simple to compute. However, when T = 0 dB, this asymptotic680

upper bound becomes a constant unity bound.681

B. Is Assumption 2 Valid?682

The asymptotic result shown in Fig. 4 did not consider the683

effect of receiver noise, but is shown to be reasonably accurate.684

The analytical results shown in Figs. 5 to 7 did consider the685

effect of receiver noise, at the cost of being more computation-686

ally expensive. So the question is, can the receiver noise be687

ignored for the coverage analysis in VLC networks (Assump-688

tion 2)? To answer this question, in Fig. 8 we evaluate the689

Fig. 9. Probability mass function of �a and �̃a.

coverage probability of a typical user with different values of 690

the receiver noise power. It can be seen that, in our simulation 691

setup, the coverage probability is not affected by the receiver 692

noise process, as long as the noise power is below −110 dBm. 693

However, when the power of receiver noise exceeds this 694

threshold, the effect of receiver noise can no longer be ignored, 695

and it starts to deteriorate the coverage performance of a 696

typical user. Fig. 8 also shows that the effect of receiver 697

noise is more dominant when T is small and less dominant 698

when T is large. Nevertheless, the derived analytical result 699

is applicable to the general case with arbitrary noise levels. 700

For typical receiver noise of power −117.0 dBm [1], [6], 701

it is safe to assume that the VLC network is interference- 702

limited, as stated in Assumption 2, and to study the coverage 703

performance using the SIR rather than the SINR. 704

C. Is Assumption 1 Valid? 705

In Fig. 3, the derived idle probability of VLC APs is shown 706

to be accurate. However, it does not confirm that the thinned 707

process �̃a is a homogeneous PPP. Therefore, the second 708

question to ask is, is Assumption 1 valid? In order to answer 709

this question, two aspects, namely PPP and homogeneity, need 710

to be studied. In Figs. 9 and 10, we compute the PMF of 711

active APs and compare the exact result with the analytical 712

one (based on Assumption 1). It is shown in Fig. 9 that the 713

number of active APs is not necessarily Poisson-distributed. 714

Specifically, when λa = 0.1 and λu = 0.01, the PMF of active 715

APs does follow the Poisson distribution, whose intensity is 716

λ̃a = (1 − pidle)λa. Mathematically, it is given by: 717

P

⎡

⎣
∑

xi∈�̃a

1A(xi ) = n

⎤

⎦ = (λ̃aμ(A))n

n! exp
(
−λ̃aμ(A)

)
, (27) 718

for n = 0, 1, · · · , and zero otherwise. To evaluate the PMF 719

of active APs in the network, A should be set to the entire 720

(horizontal) area of the indoor environment, so that its standard 721

Lebesgue measure is μ(A) = 18 × 14 m2. The Poisson 722

assumption is also valid when λa = 0.1 and λu = 1. 723
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Fig. 10. Gaussian curve fitting for the probability mass function of �̃a.
λa = 0.1.

TABLE I

GAUSSIAN COEFFICIENTS OBTAINED FROM CURVE FITTING

In fact, in this case the PMF of active APs is identical to724

the PMF of all APs in the network since the idle probability725

is now approximately zero. However, when λa = λu = 0.1,726

it is shown that the number of active APs does not follow727

the PPP anymore, although the actual process and the thinned728

PPP model have the same mean. Based on these observations,729

we can conclude from Fig. 9 that the PPP assumption is730

accurate only when APs and users have distinctive node731

intensities, or equivalently speaking, when the idle probability732

of APs is either approximately zero or approximately one.733

As a rule of thumb, we can say that the PPP assump-734

tion is valid when λu/λa ≤ 0.1 or λu/λa ≥ 10, which735

corresponds to pidle ≥ 0.91 or pidle ≤ 0.01, respectively736

(see Fig. 3).737

Fig. 9 has showed that the PMF of active APs doe not follow738

the PPP when λa and λu are of similar values. To investigate739

further, we plot in Fig. 10 the PMF of the active APs when740

λa = 0.1 and λu = 0.03, 0.1, 0.3. This corresponds to741

λu/λa = 0.3, 1, 3, respectively. It can be seen from Fig. 10742

that number of active APs can be well modeled by the discrete743

Gaussian distribution, whose PMF is:744

P

⎡

⎣
∑

xi∈�̃a

1A(xi ) = n

⎤

⎦ = aG exp

(

−
(

n − bG

cG

)2
)

, (28)745

where aG, bG, cG are the coefficients obtained from Gaussian746

curve fitting, that are related to λa, λu and also the Lebesgue747

measure of A. For the considered indoor environment,748

the fitted Gaussian coefficients are summarized in Table I.749

Fig. 11. Coverage probability comparison between the thinned PPP model
and the exact results. λa = 0.1 and L = 2 m.

Although the exact expressions for coefficients aG and cG 750

are still unclear, the expression for coefficient bG can be 751

approximated by bG = (1 − pidle)λaμ(A). This result follows 752

directly from the fact that the Poisson approximation and the 753

Gaussian approximation of the PMF of �̃a have the same 754

mean (see Figs. 9 and 10). 755

To investigate the homogeneity assumption for �̃a, we show 756

in Fig. 11 the coverage probability of a typical user, comparing 757

the exact result obtained from simulations with the result 758

obtained based on Assumption 1. It is interesting to note that, 759

for a low density of users, the distribution of active APs can 760

be approximated as the PPP, but not a homogeneous one. 761

In fact, a homogeneous PPP assumption will underestimate 762

the coverage probability of a typical user in the network. 763

When the density of users and the density of APs are similar, 764

modeling the active APs in the network as a homogeneous 765

PPP is acceptable since this model only brings small errors to 766

the coverage probability result. When the density of users is 767

larger than the density of APs, for example, in an overloaded 768

network, the homogeneous PPP assumption is found to be 769

very accurate because the idle probability of APs in an over- 770

loaded network is approximately zero. Moreover, compared 771

to previous works that do not consider the idleness of APs, 772

e.g., [14], the proposed analytical framework is shown to 773

better capture the characteristics of underloaded networks 774

and certain networks that operate with an AP sleep strategy 775

to save energy and/or minimize the co-channel interference. 776

For overloaded networks, in which the effect of AP idleness 777

can be ignored, the results derived in [14] can also be 778

obtained from the proposed framework by setting λu towards 779

infinity. 780

D. Effect on Room Boundaries 781

To facilitate analytically tractable derivations, the VLC 782

network is assumed to extend towards infinity, as if there are 783

no boundaries. This assumption does not affect the coverage 784

performance of users located at the cell center. However, this 785
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Fig. 12. Coverage probability of a typical user at different locations. λ̃a = 0.1
and L = 2 m.

assumption is not valid for users located at the room bound-786

aries, as they generally receive less interference. We show787

in Fig. 12 that after certain adjustments, the derived analytical788

expressions are also applicable to users at room boundaries.789

In particular, the coverage probability of a typical user located790

at the room edge can still be calculated from Theorem 3 after791

replacing λ̃a with λ̃a/2. Similarly, the coverage probability of792

a typical user located at the room corner can be calculated793

by replacing λ̃a with λ̃a/4. It can be seen from Fig. 12 that794

after adjustment the proposed analytical framework is still795

accurate.796

VI. CONCLUSIONS797

In this paper, we provide a new analytical framework for798

the coverage analysis of multiuser VLC networks, taking into799

account the idle probability of APs that is evident especially in800

underloaded networks as well as general networks that operate801

with an AP sleep strategy to save energy and/or minimize802

the co-channel interference. By using mathematical tools from803

stochastic geometry and statistical-equivalent transformation,804

analytical expressions for the coverage probability are derived805

and given in tractable forms. Based on the derived results, it is806

shown that not only the density of APs, but also the density of807

users, has a significant impact on the coverage performance.808

The homogeneous PPP assumption for active APs is shown809

to be valid in general and gives close coverage results to the810

exact ones when the density of users is no smaller than the811

density of APs. We also show that, for typical receiver noise812

levels (∼ −117.0 dBm), the SINR can be well approximated813

by the SIR for simplified coverage performance analysis in814

multiuser VLC networks.815

A detailed evaluation of the applicability of the PPP model816

to VLC networks can be our future work. Further exten-817

sions of this work could include more realistic channel818

and blockage models. It is also of interest to general-819

ize the proposed analytical framework to incorporate cell820

coordinations.821

APPENDIX 822

A. Proof of Theorem 1 823

The Laplace transform of the ISR is formulated as: 824

LISR(s) = E
[
exp(−sISR)

]
825

= E

⎡

⎣
∏

xi∈�̃a\{x0}
exp

⎛

⎝−s

(
x2

i + L2

x2
0 + L2

)−(m+3)
⎞

⎠

⎤

⎦ 826

= Ex0

⎡

⎣E�̃a

⎡

⎣
∏

xi∈�̃a\{x0}
ω(xi )

∣
∣
∣
∣
∣
∣

x0

⎤

⎦

⎤

⎦, (29) 827

in which function ω(xi ) is defined as ω(xi ) = 828

exp
(
−s
(
(x2

i + L2)/(x2
0 + L2)

)−(m+3)
)

. With the use of 829

the probability generating functional (PGFL) of the PPP [15], 830

the inner expectation of (29) can be calculated as: 831

E�̃a

⎡

⎣
∏

xi∈�̃a\{x0}
ω(xi )

∣
∣
∣
∣
∣
∣

x0

⎤

⎦ 832

= exp

(

−2πλ̃a

∫ ∞

x0

x (1 − ω(x)) dx

)

833

= exp

(

−πλ̃a

∫ ∞

1
(x2

0 + L2)
(

1 − exp
(
−sz−(m+3)

))
dz

)

, 834

(30) 835

where the last step follows from the change of variable 836

z = (x2 + L2)/(x2
0 + L2). Plugging (30) into (29) yields: 837

LISR(s) = 2πλ̃a

∫ ∞

0
x0 exp

[

− πλ̃ax2
0 − πλ̃a

∫ ∞

1
(x2

0 + L2) 838

×
(

1 − exp
(
−sz−(m+3)

))
dz

]

dx0 839

= 2πλ̃a

∫ ∞

0
x0 exp

(
−πλ̃ax2

0(1 + W (s))
)

dx0 840

× exp
(
−πλ̃a L2W (s)

)
, (31) 841

where function W (s) is defined as: 842

W (s) =
∫ ∞

1

(
1 − exp

(
−sz−(m+3)

))
dz 843

= z

(

1 − 1

m + 3
E m+4

m+3

(
sz−(m+3)

))∣∣
∣
∣

∞

z=1
844

= −1 + 1

m + 3
E m+4

m+3
(s) + �

(
m + 2

m + 3

)

s
1

m+3 . (32) 845

Furthermore, the integration (31) can be simplified to: 846

2πλ̃a

∫ ∞

0
x0 exp

(
−πλ̃ax2

0(1 + W (s))
)

dx0 847

= − 1

1 + W (s)
exp
(
−πλ̃ax2

0 (1 + W (s))
)∣∣
∣
∣

∞

x0=0
848

= 1

1 + W (s)
. (33) 849

Combining (31) – (33), (13) is obtained. 850
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B. Proof of Theorem 2851

Observe from (18) that the SINR model of interest is a852

function of the distance between the typical user and APs853

only, but not a function of the azimuth. Therefore, the two-854

dimensional homogeneous PPP �̃a, which models the horizon-855

tal distance between the typical user and the AP, is statistically856

equivalent to another one-dimensional inhomogeneous Poisson857

process �̃eq1 = {xi , i ∈ N} ⊂ R
1, with density function858

λ̃eq1(x) = ∫ 2π
0 λ̃axdθ = 2πλ̃ax . The SINR model for �̃eq1859

is the same as the one for �̃a, i.e., SINReq1 = SINR. Define860

a path loss function �(x) = (x2 + L2)m+3, whose inverse can861

be calculated as �−1(x) = (x1/(m+3) − L2
)1/2

. Since the path-862

loss function � has a continuous inverse, this newly mapped863

process �̃eq2 = {�i , i ∈ N} ⊂ R
1 is also a PPP, generally an864

inhomogeneous one, according to the mapping theorem [17].865

The density function of �̃eq2, denoted by λ̃eq2(�), can be866

calculated from the statistical equivalence:867

E�̃eq2

⎡

⎢
⎣
∑

�i∈�̃eq2

1[�,�̄](�i )

⎤

⎥
⎦ = E�̃eq1

⎡

⎢
⎣
∑

xi∈�̃eq1

1[x,x̄](xi )

⎤

⎥
⎦, (34)868

where [�, �̄], with L2(m+3) ≤ � ≤ �̄, is an arbitrary869

but nonempty interval forming a subset of �̃eq2, x =870
(
�1/(m+3) − L2

)1/2
and x̄ = (�̄1/(m+3) − L2

)1/2
. Rewrit-871

ing (34) in terms of the density function for both processes872

yields:873

∫ �̄

�
λ̃eq2(�)d� =

∫ x̄

x
λ̃eq1(x)dx874

=
∫ �̄

�
λ̃eq1

(√

�
1

m+3 − L2

)
1

m + 3

�
1

m+3 −1

2

√

�
1

m+3 − L2

d�. (35)875

From (35), λ̃eq2(�) can be obtained as:876

λ̃eq2(�) = πλ̃a

m + 3
�

1
m+3 −1, (36)877

for � > L2(m+3) and zero otherwise. Since the density of878

�̃eq2 is found to be a varying function of the distance, it is879

indeed an inhomogeneous process. Because of the mapping880

from x to �, the SINR model for �̃eq2 should be changed881

accordingly to:882

SINReq2 = �−1
0

∑

�i∈�̃eq2\{�0}
�−1

i + σ̄ 2
. (37)883

By letting �−1 = gx−1, we arrive at the SINR model shown884

in (20). Again, using the mapping theorem [17], we have the885

following result based on the statistical equivalence property886

between �̃eq2 and �̃eq:887

E�̃eq2

⎡

⎢
⎣
∑

�i∈�̃eq2

1[�,�̄](�i )

⎤

⎥
⎦ = Eg,�̃eq

⎡

⎢
⎣
∑

xi∈�̃eq

1[x,x̄](xi )

⎤

⎥
⎦, (38)888

where x = g� and x̄ = g�̄. Furthermore, (38) can be rewritten 889

in the integral form: 890

∫ �̄

�
λ̃eq2(�)d� = Eg

[∫ x̄

x
λ̃eq(x)dx

]

891

=
∫ �̄

�
Eg

[
gλ̃eq(g�)

]
d� 892

=
∫ �̄

�

∫ ∞

0
gλ̃eq(g�) exp(−g)dgd�. (39) 893

After plugging (36) into (39) and using integral equality 894

∫∞
0 g

1
m+3 exp(−g)dg = �

(
m+4
m+3

)
, we have: 895

∫ ∞

0
gλ̃eq(g�) exp(−g)dg 896

=
∫ ∞

0

πλ̃a

m + 3

1

�
(

m+4
m+3

)�
1

m+3 −1g
1

m+3 exp(−g)dg. (40) 897

With some simplifications, λ̃eq(g�) can be obtained as: 898

λ̃eq(g�) = πλ̃a

m + 3

1

�
(

m+4
m+3

) (g�)
1

m+3 −1, (41) 899

which is equivalent to (19). To this end, Theorem 2 is proved. 900

C. Proof of Theorem 3 901

Based on the statistical equivalence between �̃a and �̃eq, 902

the coverage probability can alternatively be calculated as: 903

P
[
SINR > T

]
904

= P
[
SINReq > T

]
905

= P

⎡

⎢
⎢
⎣

g0 x−1
0

∑

xi ∈�̃eq\{x0}
gi x

−1
i + σ̄ 2

> T

⎤

⎥
⎥
⎦ 906

= Eg,�̃eq

⎡

⎢
⎣P

⎡

⎢
⎣g0 > T x0

⎛

⎜
⎝
∑

xi∈�̃eq\{x0}
gi x

−1
i + σ̄ 2

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

x0

⎤

⎥
⎦

⎤

⎥
⎦ 907

= Eg,�̃eq

⎡

⎢
⎣exp
(
−T σ̄ 2x0

) ∏

xi∈�̃eq\{x0}
exp
(
−T gi x

−1
i x0

)

⎤

⎥
⎦, 908

(42) 909

where the last step is obtained from the exponential distri- 910

bution characteristic of the introduced auxiliary variable g0. 911

Based on Slivnyak’s theorem [15], the calculation of (42) can 912

be simplified by first conditioning on x0 and then averaging 913

the result with respect to x0, since conditioning on x0 does 914

not change the distribution of xi ∈ �̃eq\{x0}. Also, due to the 915

i.i.d. property of gi and its further independence from �̃eq, 916

the coverage probability of the typical user can be calculated 917
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with the use of PGFL of the PPP:918

P
[
SINR > T

] = Ex0

[

exp
(
−T σ̄ 2 x0

)
exp

[

−
∫ ∞

L2(m+3)
λ̃eq(x)919

×
(

1 − Eg

[
exp
(
−T gx−1x0

)])
dx

]]

,920

(43)921

in which the inner expectation with respect to the auxiliary922

variable is found to be:923

Eg

[
exp
(
−T gx−1x0

)]
=
∫ ∞

0
exp
(
−T gx−1x0

)
exp(−g)dg924

= 1

1 + T x−1x0
. (44)925

Plugging (19) and (44) into (43) yields:926

P
[
SINR>T

] = Ex0

⎡

⎣exp
(
−T σ̄ 2x0

)
exp

⎡

⎣− πλ̃a

�
(

1
m+3

)927

×
∫ ∞

L2(m+3)
x

1
m+3 −1
(

1− 1

1+T x−1x0

)

dx

⎤

⎦

⎤

⎦,928

(45)929

in which the inner integration can be calculated as:930

∫ ∞

L2(m+3)
x

1
m+3 −1

(

1 − 1

1 + T x−1x0

)

dx931

= m+3

m+2
L−2(m+2)T x02 F1

(

1,
m+2

m+3
;2m+5

m+3
;−L−2(m+3)T x0

)

.932

(46)933

With a slight abuse of notation, we denote by SINRi the934

SINR achieved at the typical user when it receives informa-935

tion signal from AP i and interference from all other APs.936

It has been shown in (5) that the typical user is associ-937

ated with the nearest AP in its vicinity. Therefore, we have938

SINR = SINR0. Since x0 ≤ x1 ≤ · · · holds by defini-939

tion, it is straightforward that for i = 1, 2, · · · , SINRi =940

(x2
i + L2)−(m+3)

/(∑
x j∈�̃a\{xi }(x2

j + L2)−(m+3) + σ̄ 2
)

< 1.941

This is equivalent to P[SINRi > 1] = 0. As a result, when942

T > 1, the coverage probability can now be expressed as943

P[SINR > T ] = P[SINR0 > T ] = ∑∞
i=0 P[SINRi > T ],944

which gives:945

P
[
SINR > T

]
946

= E�̃eq

⎡

⎢
⎣
∑

x∈�̃eq

exp
(
−T σ̄ 2x

)
exp

⎡

⎣− πλ̃a

m + 2

L−2(m+2)

�
(

m+4
m+3

) T x947

× 2 F1

(

1,
m + 2

m + 3
; 2m + 5

m + 3
; −L−2(m+3)T x

)
⎤

⎦

⎤

⎦ . (47)948

After applying Campbell’s Theorem [15] and inserting (19)949

into (47), (21) is obtained.950

D. Numerical Computation of the Coverage 951

Probability in (21) 952

Using the Gauss-Chebyshev Quadrature (GCQ) rule [31], 953

the integration in (21) can be numerically calculated as a finite 954

sum with NGCQ terms: 955

P
[
SINR>T

] ≈
NGCQ∑

u=1

w(u)
πλ̃a

�
(

1
m+3

) x
1

m+3 −1
(u) exp

(
−T σ̄ 2x(u)

)
956

× exp

⎡

⎣− πλ̃a

m+2

L−2(m+2)

�
(

m+4
m+3

) T x(u)SNtol (x(u))

⎤

⎦, 957

(48) 958

where w(u) and x(u), for u = 1, 2, · · · , NGCQ, are weights 959

and abscissas of the quadrature, respectively [31]. SNtol (x(u)) 960

is the numerical value of the Gauss hypergeometric function 961

evaluated at x = x(u), and it can be computed as follows. 962

From basic Taylor series expansion, the Gauss hypergeometric 963

function at x(u) can be written as [32]: 964

2 F1

(

1,
m + 2

m + 3
; 2m + 5

m + 3
; −L−2(m+3)T x(u)

)

965

=
∞∑

q=0

(1)q

(
m+2
m+3

)

q
(

2m+5
m+3

)

q

1

q!
(
−L−2(m+3)T x(u)

)q
, (49) 966

where (z)q is the rising Pochhammer symbol, defined as: 967

(z)q =
{

1, q = 0,

z(z + 1) · · · (z + q − 1), q = 1, 2, · · · , .
(50) 968

The summation of the first q terms of (49), denoted 969

by Sq(x(u)), can be computed through following steps: 970

S0(x(u)) = 1, 971

S1(x(u)) = m + 2

2m + 5

(
−L−2(m+3)T x(u)

)
, 972

q = 2, 973

Do bq = q(m + 3) − 1

(q + 1)(m + 3) − 1
, 974

Sq(x(u)) = Sq−1(x(u)) + (Sq−1(x(u)) − Sq−2(x(u))) 975

×bq

(
−L−2(m+3)T x(u)

)
, 976

q = q + 1, 977

Until
|SNtol+1(x(u)) − SNtol (x(u))|

|SNtol (x(u))| ≤ tol & 978

|SNtol (x(u)) − SNtol−1(x(u))|
|SNtol−1(x(u))| ≤ tol & 979

|SNtol−1(x(u)) − SNtol−2(x(u))|
|SNtol−2(x(u))| ≤ tol, 980

where tol is some tolerance, and SNtol (x(u)) is the returned 981

numerical solution for 2 F1

(
1, m+2

m+3 ; 2m+5
m+3 ; −L−2(m+3)T x(u)

)
. 982

Note that the maximum number of iterations required 983

for calculating (49) is not fixed. For typical values of 984

T (0 ≤ T ≤ 100), 200 recursions of q are found to be 985

sufficient for the computation of the coverage probability. 986
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Coverage Analysis of Multiuser Visible
Light Communication Networks

Liang Yin and Harald Haas, Senior Member, IEEE

Abstract— In this paper, a new mathematical framework for1

the coverage probability analysis of multiuser visible light com-2

munication (VLC) networks is presented. It takes into account the3

idle probability of access points (APs) that are not associated with4

any users and hence do not function as the source of interference.5

The idle probability of APs is evident especially in underloaded6

networks as well as general networks that operate with an AP7

sleep strategy to save energy and/or minimize the co-channel8

interference. Due to the absence of the “multipath fading”9

effect, the evaluation of the distribution function of the signal-10

to-interference-plus-noise ratio (SINR) is more challenging in11

VLC networks than in radio frequency-based cellular networks.12

By using the statistical-equivalent transformation of the SINR,13

analytical expressions for the coverage probability are derived14

and given in tractable forms. Comparing the derived results with15

extensive Monte Carlo simulations, we show that assuming a16

thinned homogeneous Poisson point process for modeling active17

APs is valid in general, and it gives close results to the exact ones18

when the density of users is no less than the density of APs in19

the network. Both analytical and simulation results show that,20

for typical receiver noise levels (∼−117 dBm), approximating the21

SINR by the signal-to-interference ratio is sufficiently accurate22

for the coverage analysis in VLC networks.23

Index Terms— Visible light communication, light-emitting24

diode, coverage probability, Poisson point process, stochastic25

geometry.26

I. INTRODUCTION27

CURRENT wireless networks are experiencing difficul-28

ties in keeping pace with the exponential growth of29

wireless devices that require higher data rate and seamless30

service coverage. Such imminent problems have motivated31

many industry partners and research communities to seek new32

technologies for wireless communication. Among many candi-33

date solutions, visible light communication (VLC) [1]–[3] has34

been acknowledged as a promising technology to address the35

scarcity of radio frequency (RF) spectra, due to its advantages36

in modulation bandwidth, data rate, frequency reuse factor37

and link security. Extensive studies on point-to-point VLC38
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transmission and reception techniques during the past decade 39

have also led to the recent standardization of VLC for short- 40

range applications: IEEE 802.15.7 [4]. A revision to the 41

current standard is also in progress. 42

Small-cell deployment for heterogeneous cellular networks 43

has proven to be effective in improving the network through- 44

put and spectral efficiency. The femtocell-like deployment of 45

VLC in indoor environments leads to the concept of optical 46

attocells [5], where each light-emitting diode (LED) acts as 47

an optical access point (AP) to serve multiple users within 48

its coverage. Since then, many research efforts have been 49

given to the design and analysis of multiuser VLC networks. 50

Topics include multiple-input multiple-output (MIMO) trans- 51

mission [6], transceiver design [7], precoder and equalizer 52

design [8], AP coordination [9], interference mitigation [10], 53

user scheduling [11] and resource allocation and optimiza- 54

tion [12], [13], to name just a few. 55

A. Related Work and Motivation 56

System-level performance of multiuser VLC networks is 57

typically evaluated with the aid of computer simulations. 58

They are often complicated, time-consuming and unable to 59

provide many insights into how the performance is affected 60

by various parameters in the network. The analytical eval- 61

uation, on the other hand, is generally not straightforward 62

due to the lack of accurate and at the same time analytically 63

tractable models. The most common approach for modeling 64

the location of optical APs is based on the grid model, 65

where LED lights are installed in the ceiling with a regular 66

pattern [1], [2], [6], [9], [13], [14]. The evaluation of the grid 67

based network is recognized to be analytically difficult and 68

hence is normally done with computer simulation, which 69

has also motivated the authors in [14] to use stochastic 70

models [15]–[18] for the performance evaluation. Compared 71

to the grid model, stochastic models are more mathematically 72

tractable. More importantly, the following observations indi- 73

cate that in some scenarios a stochastic model is required 74

in order to accurately characterize the performance of VLC 75

networks. Firstly, modern LED lights with built-in motion 76

detection sensors are widely deployed in public spaces to 77

reduce energy consumption. In this scenario, some of the 78

LED lights are temporarily switched off when they are not 79

required to provide illumination. Also, even when switched on, 80

some of the LEDs can turn off their wireless communication 81

functionality when no data traffic is demanded from them, for 82

1536-1276 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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example, relying on an AP sleep strategy. In these scenarios,83

the distribution of APs cannot be accurately modeled by the84

grid model. Instead, a stochastic thinning process built upon85

the grid-like deployment of LEDs is more accurate. However,86

modeling this stochastic thinning process requires full knowl-87

edge of the users’ movement and handover characteristics,88

which is not analytically tractable. Secondly, the distribution89

of active APs in a VLC network is generally variable, and it90

changes dynamically due to the random movement of users.91

Thirdly, the grid model is not applicable in scenarios where92

not only ceiling lights but also LED screens, reading lamps,93

and other “smart” lights are an integral part of the network94

architecture, in which the deployment of VLC APs appears to95

be more stochastic. For these reasons and in order to obtain96

analytically tractable results, the PPP model is of our focus in97

this work.98

To the best of authors’ knowledge, [14] is the only published99

work that reports on the performance of multiuser VLC net-100

works using the stochastic model. The distribution function of101

the signal-to-interference-plus-noise ratio (SINR) of a typical102

user in the network reported in [14] was given as a sum of103

Gamma densities, whose calculation requires Gram-Charlier104

series expansion with infinite terms and Laguerre polynomi-105

als. As a result, computing the distribution function of the106

SINR would involve complicated integrals and infinite sums.107

Motivated by this, we report in this paper a new and simpler108

method for the characterization of the density function of the109

SINR by exploring powerful mathematical tools from sto-110

chastic geometry [15]–[18]. Furthermore, the analysis in [14]111

overlooks the probability of empty cells, in which APs are112

idle and hence do not act as the source of interference. This is113

especially evident in underloaded networks as well as general114

networks that use an AP sleep strategy.115

Stochastic geometry has been widely used in cellular net-116

works for modeling the locations of base stations (BSs) as a117

point process, usually a Poisson point process (PPP) [16] due118

to its mathematical tractability. Recent advances and results119

on stochastic geometry modeling of heterogeneous cellular120

networks can be found in a recent survey [18] and the121

rich references therein. Due to many fundamental differences122

between RF communication and VLC [3], existing results123

obtained for RF-based cellular networks can not be directly124

applied to VLC networks. Among many significant differences125

between RF and VLC, a noticeable one is their channel126

characteristics. More specifically, because the wavelength of127

visible light is hundreds of nanometers and the detection area128

of a typical VLC receiver, for example, a photodiode (PD),129

is millions of square wavelengths. This spatial diversity essen-130

tially prevents the “multipath fading” effect in VLC, which131

in turn makes the calculation of the density function of the132

SINR more challenging. Furthermore, in cellular networks,133

the vertical distance of the communication link is generally134

much smaller than the horizontal distance. Therefore, a planar135

system model is typically used. However, the size of attocells136

in VLC networks is in the order of meters. As a result, a three-137

dimensional system model considering both horizontal and138

vertical distances of the communication link is required in139

VLC networks.140

B. Contributions 141

The contributions of this paper are summarized as follows. 142

1) We consider a three-dimensional attocell model and 143

introduce an analytical framework for the coverage prob- 144

ability analysis in multiuser VLC networks. Based on 145

the user-centric cell association, the proposed framework 146

takes into account the idle probability of APs that are 147

not associated with any users. Specifically, the analytical 148

results are derived as a function of the user density, 149

which is implicitly assumed to be infinity in the existing 150

works [13], [14]. 151

2) By assuming that the point process for the active APs in 152

the network is a thinned homogeneous PPP, we derive 153

an asymptotic result for the coverage probability in 154

the low SINR regime. With the statistical-equivalent 155

transformation, the exact coverage probability in the 156

high SINR regime is derived and given in a mathemat- 157

ically tractable form. A simple and closed-form upper 158

bound on the coverage probability is also provided. The 159

coverage performance is evaluated in detail with various 160

network parameters. We find that the homogeneous PPP 161

assumption for modeling the location of active APs is 162

generally valid, and it gives close results to the exact 163

ones when the density of users is no less than the density 164

of APs. 165

3) We investigate the effect of receiver noise on the 166

network coverage performance. It is shown that, with 167

typical receiver noise levels (∼ −117.0 dBm), the SINR 168

can be well approximated by the signal-to-interference 169

ratio (SIR) for the performance analysis. 170

C. Paper Organization 171

The remainder of this paper is organized as follows. 172

Section II describes the three-dimensional attocell model and 173

formulates the SINR metric. With user-centric cell association, 174

the idle probability of APs is derived in Section III. By assum- 175

ing that the point process of active APs is a homogeneous PPP, 176

analytical expressions for the coverage probability are derived 177

in Section IV. In Section V, we provide numerical examples 178

to validate the derived results and discuss the impact of 179

various network parameters and assumptions on the coverage 180

performance. Finally, Section VI gives the concluding remarks. 181

II. SYSTEM MODEL 182

We consider a downlink transmission scenario in a multi- 183

user VLC network, with full-frequency reuse, over a three- 184

dimensional indoor space, as depicted in Fig. 1. The VLC 185

APs are vertically fixed since they are attached to the room 186

ceiling while their horizontal locations are modeled by a two- 187

dimensional homogeneous PPP �a = {xi , i ∈ N} ⊂ R
2, with 188

node density λa, where xi is the horizontal distance between 189

AP i and the origin.1 Similarly, mobile users are also assumed 190

to be at a fixed height, for example, at the desktop level, and 191

1We define the room center as the origin and use both notions inter-
changeably throughout the paper since the room center has more geographical
meanings while the origin has more mathematical meanings in the theoretical
analysis.
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Fig. 1. Three-dimensional Voronoi cell formation in the VLC network assum-
ing the nearest AP association: APs are randomly distributed in the ceiling
following �a, while users are randomly distributed at a lower horizontal plane
following �u. For the nearest AP association, each user is assumed to be
served by the nearest AP in its vicinity.

their horizontal locations are modeled by another independent192

two-dimensional homogeneous PPP �u = {y j , j ∈ N} ⊂ R
2,193

with node density λu, where y j is the horizontal distance194

between user j and the origin. The vertical separation between195

�a and �u is denoted by L. After adding an additional196

user at the room center, the new point process for mobile197

users becomes �u ∪ {0}. According to Slivnyak’s theorem,198

adding a user into �u is equivalent to conditioning �u on199

the added point, and this does not change the distribution200

of original process �u [15]. The homogeneity and motion-201

invariant property of the PPP [15] allow us to focus on a202

typical user located at an arbitrary location, and the obtained203

result would remain the same since it represents the average204

performance of all users in the network. This is true for an205

infinite network. For a finite network, the obtained result also206

remains unchanged, as long as the typical user is far away207

from room boundaries. This is justified by the power scaling208

law, stating that the received power is inversely proportional209

to the link distance and therefore quickly diminishes as the210

interfering AP is moved further away from the receiver. The211

origin is usually selected for the location of the typical user212

due to its notational simplicity. Therefore, in the following213

analysis, we focused on a typical user located at the origin and214

discuss the effect of room boundaries in detail in Section V.215

Note that in a practical VLC network, not all of the APs216

transmit signals at the same time. Hence, APs that are not in217

the “communication” mode can either be turned off or operate218

in the “illumination” mode only, and therefore they do not act219

as the source of interference in the network. As a result, from220

the communication perspective, the actual point process of221

active APs is no longer the same as �a and can be determined222

by thinning PPP �a to a new process �̃a.223

The complete VLC channel between an AP and a224

user includes both the line-of-sight (LOS) link and225

non-line-of-sight (NLOS) links, that are caused by light226

reflections of interior surfaces in the indoor environment. 227

However, in a typical indoor environment, the signal power 228

of NLOS components is significantly lower than that of 229

the LOS link [1], [2], [6]. Therefore, we will only focus 230

on the LOS link in the following analysis in order to 231

obtain analytically tractable results and insights. Without 232

loss of generality, the VLC AP is assumed to follow the 233

Lambertian radiation profile, whose order can be calculated 234

from m = −1/ log2(cos(�1/2)), where �1/2 denotes the semi- 235

angle of the LED. The PD equipped at each user is assumed 236

to be facing vertically upwards with a field-of-view (FOV) 237

of �fov. For each VLC link, the direct current (DC) gain of 238

the channel is given by [19]: 239

h = (m + 1)Apdη

2πd2 cosm(θtx)Gf (θrx)Gc(θrx) cos(θrx), (1) 240

where d is the Euclidean distance between the transmitter and 241

receiver; Apd denotes the effective detection area of the PD; 242

η is the average responsivity of the PD in the white region; 243

θtx and θrx are the angle of irradiance and the angle of 244

incidence of the link, respectively; Gf(θrx) represents the gain 245

of the blue optical filter used at the receiver front end in order 246

to obtain an improved modulation bandwidth; and Gc(θrx) 247

represents the gain of the optical concentrator, given by [19]: 248

Gc(θrx) =

⎧
⎪⎨

⎪⎩

n2
c

sin2(�fov)
, 0 ≤ θrx ≤ �fov

0, θrx > �fov,

(2) 249

where nc is the reflective index of the optical concentrator, and 250

it is defined as the ratio of the speed of light in vacuum and 251

the phase velocity of light in the optical material. For visible 252

light, typical values for nc vary between 1 and 2. 253

Based on the geometric property [20] of the VLC link, 254

we can obtain di =
√

x2
i + L2, cos(θtx,i ) = L/

√

x2
i + L2 and 255

cos(θrx,i ) = L/
√

x2
i + L2. As a result, the VLC channel gain 256

from AP i to the typical user can be simplified to: 257

hi (xi ) = α(x2
i + L2)−

m+3
2 , (3) 258

where α = (m + 1)ApdηGf(θrx,i )Gc(θrx,i )Lm+1/2π . Denote 259

by x∗ the serving AP that gives the highest channel gain to 260

the typical user. We can write 261

x∗ = arg max
xi∈�a

hi (xi ) = x0, (4) 262

where x0 is the nearest AP in �a to the origin. It can be seen 263

from (4) that the highest channel gain association is equivalent 264

to the nearest AP association, resulting in coverage areas that 265

form the Voronoi tessellation, as depicted in Fig. 1. Therefore, 266

the thinned point process for active APs can be written as: 267

�̃a =
{

x̃i , x̃i = arg min
xi∈�a

||xi − y j ||2,∀y j ∈ �u

}

. (5) 268

Direct current biased orthogonal frequency division multi- 269

plexing (DCO-OFDM) is assumed as the modulation format, 270

in which the illumination provided by the LED depends on the 271

DC bias, not on the optical signal. Therefore, idle (inactive) 272

APs are the ones that do not transmit optical signals, but they 273

can be either on (DC bias only) or off, depending on the 274
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illumination requirement. Assume that all active APs transmit275

with the same signal power, that is Ptx. Before VLC signal276

transmission, the optical signal is clipped at both bottom277

and upper levels to fit into the linear dynamic range of278

typical LEDs. To facilitate quantifying the effect of clipping279

distortion, a parameter ξ is introduced, and it is defined as280

ξ = Popt/
√

Ptx, where Popt, set by the DC bias, is the required281

optical power to meet the illumination requirement. According282

to the three-sigma rule of thumb, ξ ≥ 3 ensures that at least283

99.7% of the optical signal remains unclipped [21]. To make284

the analysis tractable and, more importantly, to obtained higher285

SINR of the communication link, we assume in the paper that286

the signal power satisfies Ptx ≤ P2
opt/9 so that the effect of287

clipping distortion is negligible. Focusing on the typical user,288

its received interference power is the sum of received powers289

from all other active APs other than its serving AP. Also,290

we assume that there is no intra-cell interference, for example,291

due to the use of orthogonal multiuser access schemes within292

each Voronoi cell. Therefore, the SINR at the typical user is293

given by:294

SINR = Ptxα
2(x2

0 + L2)−(m+3)

∑

xi∈�̃a\{x0}
Ptxα2(x2

i + L2)−(m+3) + σ 2
, (6)295

where σ 2 is the receiver noise power including both shot noise296

and thermal noise. For such small-scaled VLC networks, user297

performance is typically limited by the interference cause by298

neighboring APs rather than the noise process at the receiver299

end. In this case, the SINR can be well approximated by300

the SIR:301

SIR = (x2
0 + L2)−(m+3)

∑

xi∈�̃a\{x0}
(x2

i + L2)−(m+3)
. (7)302

The goal of this paper is to evaluate the coverage prob-303

ability of a typical user in the network, which is equiva-304

lent to evaluating the complementary cumulative distribution305

function (CCDF) of the SINR (or SIR in the interference-306

limited case). The major difficulty resides in characterizing �̃a307

because the probability density function (PDF) of the Voronoi308

cell in PPP still remains unknown [15], [22]–[24]. With this309

in mind, we simplify the problem by making the following310

assumption.311

Assumption 1: The point process for active APs, �̃a,312

is a homogeneous PPP, whose intensity is given by313

λ̃a = (1 − pidle)λa, where pidle represents the idle probability314

of APs in the network that are not associated with any users.315

In the following, we calculate the idle probability of APs316

in Section III. In Section IV, we derive analytical results for317

the coverage probability based on Assumption 1. The accuracy318

of the obtained results built upon this assumption is later319

justified in Section V.320

III. IDLE PROBABILITY OF APS321

Consider a Voronoi cell A ⊂ R
2 generated from PPP �a.322

We are interested in finding the probability that there exist k323

users inside A: 324

P

⎡

⎣
∑

yi∈�u

1A(yi) = k

⎤

⎦ = EA

[
(λuμ(A))k

k! exp (−λuμ(A))

]

, 325

(8) 326

where μ(A) is the standard Lebesgue measure of A, and 1A(yi ) 327

is the random counting measure of A, defined as: 328

1A(yi ) =
{

1, yi ∈ A
0, otherwise

. (9) 329

Although the exact PDF of μ(A) is unknown, existing stud- 330

ies have reported that it can be well approximated with a 331

Gamma distribution μ(A) ∼ Gamma(β, βλa), whose PDF is 332

given by [22]: 333

fμ(A)(t) = (βλa)
β

�(β)
tβ−1 exp (−βλat), (10) 334

where �(·) is the gamma function, and the shape parameter 335

β = 3.5 [22] is obtain through curve fitting. With this 336

approximated PDF, (8) can be calculated as: 337

P

⎡

⎣
∑

yi∈�u

1A(yi ) = k

⎤

⎦ =
∫ ∞

0

(λut))k

k! exp (−λut) fμ(A)(t)dt 338

= 1

k!
�(β + k)

�(β)

(
β

β+ λu
λa

)β ( λu
λa

β+ λu
λa

)k

. 339

(11) 340

The idle probability of APs can be obtained by plugging k = 0 341

into (11), yielding: 342

pidle = P

⎡

⎣
∑

yi∈�u

1A(yi ) = 0

⎤

⎦ =
(

β

β + λu
λa

)β

. (12) 343

It can be seen from (12) that the idle probability of APs is 344

determined by the ratio of user density to AP density, but not 345

the exact value of user density or AP density. 346

Remark 1: By applying Jensen’s inequality, the idle 347

probability of APs is lower bounded by exp(−λu/λa). 348

This result follows from pidle = EA [exp(−λuμ(A))] ≥ 349

exp (−λuEA [μ(A)]) and EA [μ(A)] = λ−1
a . 350

IV. COVERAGE PROBABILITY ANALYSIS 351

In this section, we focus on the analysis of the coverage 352

probability of a typical user in the network. Since the distrib- 353

ution function of the SINR exhibits different behaviors at low 354

and high values, we separate the analysis into two regimes: 355

1) in the low SINR regime, where the SINR target is smaller 356

than one. 2) in the high SINR regime, where the SINR target 357

is larger than one. 358

A. Asymptotic Analysis of the Coverage Probability 359

in the Low SINR Regime 360

Assumption 2: The multiuser VLC network under consid- 361

eration is interference-limited so that the SINR can be well 362

approximated by the SIR. 363
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Remark 2: Assumption 2 plays an important role in simpli-364

fying the analysis of the coverage probability in Section IV-A.365

The validation of Assumption 2 is later justified in Section V366

through simulation results. However, note that Assumption 2 is367

not explicitly made when we evaluate the coverage probability368

in the high SINR regime in Section IV-B.369

With Assumption 2, we first study the distribution of the370

interference-to-signal ratio (ISR) at the typical user, given by371

ISR = SIR−1. The Laplace transform of the ISR is given in372

the following theorem.373

Theorem 1: The Laplace transform of the ISR of a typical374

user is given by:375

LISR(s) = 1
1

m+3 E m+4
m+3

(s) + �
(

m+2
m+3

)
s

1
m+3

exp

[

− πλ̃a L2
376

×
(

−1 + 1

m + 3
E m+4

m+3
(s) + �

(
m + 2

m + 3

)

s
1

m+3

)]

,377

(13)378

where En(z) = ∫∞
1 exp(−zt)t−ndt is the exponential integral379

function [25].380

Proof: Please refer to Appendix A.381

The denominator of the Laplace transform of the ISR is a382

strictly increasing function with respect to s because its first383

order derivative is positive:384

∂(1+W (s))

∂s
=− 1

m+3
E 1

m+3
(s)+ 1

m+3
�

(
m+2

m+3

)

s− m+2
m+3 >0,385

(14)386

in which function W (s) is defined in (32). Furthermore,387

the denominator of LISR(s) also satisfies 1+W (0) = 1. Hence,388

it is shown that the denominator of the Laplace transform of389

the ISR has only a single root s∗ so that 1 + W (s∗) = 0. The390

region of convergence (ROC) of the Laplace transform of the391

ISR is therefore �(s) > �(s∗), where �(s) denotes the real392

part of s. From (32), it can be seen that the denominator of393

the Laplace transform is dependent on the Lambertian order of394

the AP. In other words, the pole of Laplace transform of ISR395

changes as the Lambertian order of the AP changes. Although396

a symbolic expression for s∗ is not available, its numerical397

value can be efficiently calculated using standard mathematical398

software packages. In Fig. 2, the denominator of LISR(s) is399

plotted against different values of s. It is verified that the400

denominator of the Laplace transform is a strictly increasing401

function of s, and it has a single root on the negative real402

axis. The numerical value of the pole of LISR(s) is found to403

be −2.173, −1.847 and −1.658 when the semi-angle of the404

AP is set to 45◦, 60◦ and 75◦, respectively.405

From the Laplace transform, the coverage probability of a406

typical user can be obtained by means of the inverse Laplace407

transform as follows:408

P
[
ISR > T

] = 1 − L−1
{

LISR(s)

s

}

(ISR)

∣
∣
∣
∣
ISR=T

. (15)409

Since LISR(s)/s is a nonstandard Laplace function, the exact410

expression of its inverse, and hence the coverage probabil-411

ity, is hard to obtain. However, its asymptotic property can412

Fig. 2. The denominator of the Laplace transform of the ISR as a
function of s.

be utilized to calculate the coverage probability in the low 413

SIR regime. This is stated in the following corollary. 414

Corollary 1: The coverage probability of a typical user in 415

the low SIR regime, i.e., T < 1, can be approximated by: 416

P
[
SIR > T

] ≈ 1 − exp

(
s∗

T

)

, (16) 417

in which s∗ is the pole of the Laplace transform of the ISR 418

given in (13). 419

Proof: The coverage probability can be rewritten as 420

P
[
SIR > T

] = P
[
ISR < 1/T

]
. Since s∗ is a pole of LISR(s), 421

and the abscissa of convergence of the Laplace transform is 422

negative finite, we have the following result from [26]: 423

lim
T →0+ T log

(

P

[

ISR >
1

T

])

= s∗. (17) 424

For small values of the ISR, (16) can be obtained by rewriting 425

the result in (17). 426

Remark 3: The pole of the Laplace transform of the ISR 427

does not depend on the parameter L, and therefore the 428

coverage probability of the typical user does not depend on L. 429

The exponential approximation of the coverage probabil- 430

ity in (16) is only valid in the low SIR regime. When 431

T > 1, new results for the coverage probability are derived 432

in Section IV-B. 433

B. Analysis of the Coverage Probability in the 434

High SINR Regime 435

In this subsection, we focus on evaluating the coverage 436

probability in the high SINR regime. Different from the analy- 437

sis presented in Section IV-A, here we present more general 438

and exact analysis on the coverage probability by considering 439

both interference and noise in the system model. The derived 440

result complements the result presented in Section IV-A in 441

that it applies to the computation of the coverage probability 442

when T > 1, which is a more realistic scenario for practical 443

VLC systems. 444
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From (6), the SINR of a typical user can be simplified to:445

SINR = (x2
0 + L2)−(m+3)

∑

xi∈�̃a\{x0}
(x2

i + L2)−(m+3) + σ̄ 2
, (18)446

where the noise power has been normalized to σ̄ 2 = σ 2/Ptxα
2.447

Definition 1: Consider two stochastic point processes �1448

and �2 for modeling horizontal locations of APs in the449

VLC network. The SINR models used for �1 and �2 are450

SINR1 and SINR2, respectively. �1 (with SINR1) is said451

to be statistically equivalent [27] to �2 (with SINR2) if452

the distribution of the SINR at the typical user is the same453

for �1 and �2, i.e., P[SINR1 > T ] = P[SINR2 > T ].454

Mathematically, we denote �1
s.e.= �2 and SINR1

s.e.= SINR2.455

Remark 4: For �1
s.e.= �2, it is sufficient but not necessary456

that �1 = �2. However, for �1 = �2, it is necessary but not457

sufficient that �1
s.e.= �2.458

Since the evaluation of the coverage probability is not459

straightforward with �̃a and the SINR model given in (18),460

with Definition 1, we can now focus on analyzing another461

point process with a more tractable SINR model, as long as462

both point processes are statistically equivalent.463

Theorem 2: The two-dimensional homogeneous PPP �̃a,464

with density λ̃a and the SINR model given in (18), is statisti-465

cally equivalent to another one-dimensional point process �̃eq,466

whose density function is:467

λ̃eq(x) = πλ̃a

�
(

1
m+3

) x
1

m+3 −1, (19)468

for x > L2(m+3), and zero otherwise. The equivalent469

SINR model for �̃eq is:470

SINReq = g0x−1
0

∑

xi∈�̃eq\{x0}
gi x

−1
i + σ̄ 2

, (20)471

where gi , i = 0, 1, · · · , are auxiliary random variables that are472

exponentially distributed with unity mean, i.e., gi ∼ exp(1).473

Proof: Please refer to Appendix B.474

Remark 5: For the original SINR model given in (18),475

xi , for i = 0, 1, · · · , takes values between interval [0,∞].476

However, for the equivalent SINR model given in (20), xi , for477

i = 0, 1, · · · , takes values between interval
[
L2(m+3),∞].478

This should be treated carefully when using the density479

function (19).480

Remark 6: Other distributions can also be assumed for481

auxiliary random variables gi . However, this requires a recal-482

culation of the density function λ̃eq(x) in order to maintain483

the statistical equivalence.484

Although Theorem 2 transforms the original homogeneous485

two-dimensional PPP �̃a into an inhomogeneous PPP �̃eq,486

it also transforms the original SINR expression in (18)487

with a Euclidean distance path-loss model into a new488

SINR expression in (20) with a planar distance path-loss489

model, multiplied by auxiliary random variables gi , which490

mimics the small-scale fading effect in RF based cellular491

networks. It will be shown in the following analysis that this492

statistical-equivalent transformation can significantly simplify 493

the calculation of the coverage probability in VLC networks. 494

Specifically, with exponentially distributed auxiliary random 495

variables gi , the calculation of the coverage probability can 496

now be expressed as a function of exponential terms, which 497

was not possible for the no-fading case in (18). 498

Based on the statistical-equivalent SINR model given 499

in (20), we have the following result for the coverage proba- 500

bility of a typical user in the network. 501

Theorem 3: When the SINR target is greater than one, 502

i.e., T > 1, the coverage probability of a typical user in the 503

network is given by: 504

P
[
SINR>T

]=
∫ ∞

L2(m+3)

πλ̃a

�
(

1
m+3

) x
1

m+3 −1 exp
(
−T σ̄ 2x

)
505

× exp

⎡

⎣− πλ̃a

m + 2

L−2(m+2)

�
(

m+4
m+3

) T x 506

× 2 F1

(

1,
m+2

m+3
; 2m+5

m+3
; −L−2(m+3)T x

)
⎤

⎦dx, 507

(21) 508

where 2 F1(·, ·; ·; ·) denotes the Gauss hypergeometric 509

function [25]. 510

Proof: Please refer to Appendix C. 511

When the SINR threshold does not satisfy T > 1, (21) 512

does not hold because P[SINR > T ] <
∑∞

i=0 P[SINRi > T ]. 513

In this case, the analytical expression derived in (21) serves as 514

an upper bound on the coverage probability of a typical user. 515

Due to the involved Gauss hypergeometric function, a closed- 516

form expression for the coverage probability is not available. 517

However, the coverage probability can still be computed using 518

numerical methods. In Appendix D, we provide a numerical 519

method for efficient computation of (21). 520

Remark 7: When L = 0, (21) can not be applied. However, 521

in this case, Theorem 3 still holds, and the coverage probability 522

of a typical user can be calculated by limL→0 P[SINR > T ]. 523

In fact, when L = 0, another simpler expression for the 524

coverage probability is available: 525

P
[
SINR>T

] =
∫ ∞

0

πλ̃a

�
(

1
m+3

) x
1

m+3 −1 exp
(
−T σ̄ 2x

)
526

× exp

[

−πλ̃a�

(
m+2

m+3

)

(T x)
1

m+3

]

dx . (22) 527

Furthermore, significant simplification is possible for the 528

interference-limit case, i.e., when σ̄ 2 = 0. The simplified result 529

for this case is given in the following corollary. 530

Corollary 2: When L = 0, the coverage probability in 531

the interference-limited scenario follows a power-law decay 532

profile: 533

P
[
SINR > T

] = 1

�
(

m+2
m+3

)
�
(

m+4
m+3

)T − 1
m+3 . (23) 534

Proof: This result follows directly from (22) after setting 535

σ̄ 2 = 0. 536



IEE
E P

ro
of

YIN AND HAAS: COVERAGE ANALYSIS OF MULTIUSER VISIBLE LIGHT COMMUNICATION NETWORKS 7

C. An Upper Bound on the Coverage Probability537

Considering the SINR model given in (18), the coverage538

probability of a typical user can also be calculated in a539

brute-force way:540

P
[
SINR > T

]
541

=
∫

· · ·
∫ ∫

D(T )
fx0,x1,··· ,xn (x0, x1, · · · , xn)dx0dx1 · · · dxn,542

(24)543

where D(T ), as a function of the SINR target T , is the domain544

of integration formed by the n + 1 variables according to545

the inequality SINR > T , and fx0,x1,··· ,xn (x0, x1, · · · , xn)546

is the joint distance distribution of the nearest n + 1 APs547

in the PPP [28]. Since the domain of integration is highly548

coupled by x0, x1, · · · , xn , it is typically hard to compute549

the coverage probability directly with (24). To simplify the550

problem, we consider only the serving AP x0 and the nearest551

interfering AP to the typical user, i.e., x1. The obtained result552

therefore serves as an upper bound on the coverage probability553

since it ignores the effect of receiver noise and underestimates554

the interference level and hence overestimates the SINR. This555

result is stated in the following proposition.556

Proposition 1: An upper bound on the coverage probability557

of a typical user is:558

P
[
SINR > T

] ≤ T − 1
m+3 exp

(
−πλ̃a L2

(
T

1
m+3 − 1

))
. (25)559

Proof: Based on the SINR expression given in (18),560

we have SINR ≤ (x2
0 + L2)−(m+3)/(x2

1 + L2)−(m+3)
561

after ignoring the power of interference generated from562

�̃a\{x0, x1}. It immediately follows that P[SINR >563

T ] ≤ P
[
(x2

0 + L2)−(m+3)/(x2
1 + L2)−(m+3) > T

] =564

P

[

x1 >

√

T
1

m+3 (x2
0 + L2) − L2

]

. Given that the joint PDF of565

x0 and x1 is fx0,x1(x0, x1) = exp(−πλ̃ax2
1 )(2πλ̃a)

2x0x1 [28],566

we have:567

P

[

x1 >

√

T
1

m+3 (x2
0 + L2) − L2

]

568

=
∫ ∞

0

∫ ∞
√

T
1

m+3 (x2
0+L2)−L2

fx0,x1(x0, x1)dx1dx0. (26)569

Calculating the double integral in (26) yields the upper bound570

expression given in (25).571

Remark 8: The derivation of this upper bound does not572

necessarily require T > 1. However, it is not meaningful to573

apply this upper bound to low SINR regimes since for T ≤ 1574

it is definite that T − 1
m+3 exp

(
−πλ̃a L2

(
T

1
m+3 − 1

))
≥ 1.575

V. SIMULATION RESULTS AND DISCUSSIONS576

Monte Carlo simulation results are presented in this section577

to validate the theoretical results derived in the previous578

section. The impacts of previously made assumptions on the579

accuracy of the results are also discussed. An indoor office of580

size 18×14×3.5 m3 is considered, as depicted in Fig. 1. If not581

otherwise specified, the following parameters are used for the582

simulation setup. The VLC APs have a semi-angle of 60◦, and583

all active APs transmit at the same power level, that is 1 W.584

Fig. 3. Idle probability of the AP in the VLC network. λa = 0.1.

The PD used at the receiver side has 90◦ FOV, an effective 585

detection area of 1 cm2, and a responsivity of 0.4 A/W. 586

Despite the bandwidth limitation of commercially available 587

white LEDs, current works have shown that using a blue 588

optical filter at the receiver front end can achieve an increased 589

modulation bandwidth of up to 20 MHz [29], [30]. Therefore, 590

a modulation bandwidth of 20 MHz and a noise power spectral 591

density of 10−22 A2/Hz (after blue filtering) [1], [2], [6] is 592

assumed in the simulation. The typical value of the receiver 593

noise power is therefore −117.0 dBm. At the receiver front 594

end, the optical concentrator has a reflective index of 1.5, and 595

the optical filter has a unity gain. 596

First, based on the highest channel gain association, the idle 597

probability of APs in a typical Voronoi cell is evaluated and 598

the results are shown in Fig. 3. The procedure of calculating 599

the idle probability of the AP using Monte Carlo simulations 600

can be summarized as follows. First, based on the PPP model, 601

generate one realization of independent random locations of 602

APs and users. Second, for each random user, find the AP 603

that gives the highest channel gain based on (4). If, on rare 604

occasions, there are multiple solutions to (4), choose one of the 605

optimal APs randomly. Third, after all users have connected 606

to their optimal APs, count the number of APs that are 607

not connected to any user. The idle probability is therefore 608

calculated as the ratio between the number of unconnected 609

APs and the total number of APs. Finally, generate a large 610

number of realizations, and then calculate the average of the 611

idle probability. It can be seen that analytical results agree 612

well with simulation results, and the exponential lower bound 613

on the idle probability is reasonably accurate, especially when 614

λu/λa is small. Fig. 3 also shows that, with given simulation 615

parameters, the idle probability of the AP is nonzero unless 616

λu > 10λa. Specifically, when the density of users in the 617

network is smaller than the density of APs, i.e., λu/λa ≤ 1, 618

the idle probability is above 0.4. For an underloaded network, 619

e.g., λu/λa = 0.1, the AP idle probability can be as large 620

as 0.9. Therefore, results in Fig. 3 indicate that considering all 621

of the APs in the network as interfering nodes is inaccurate 622
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Fig. 4. Outage probability of a typical user in the low SINR regime.
λ̃a = 0.15 and L = 2 m.

when λu < 10λa, and this will lead to the underestimation of623

the coverage performance of users in the network. On the other624

hand, in an overloaded network where the density of users625

is about ten times larger than the density of APs, the idle626

probability of APs can be ignored since its average value627

approaches zero.628

A. Results Based on Assumption 1629

In this subsection, we assume that the active APs are a630

thinned PPP with density λ̃a = (1 − pidle)λa (Assumption 1),631

and discuss the effect of various network parameters on the632

coverage performance. In Fig. 4, the outage probability2 of a633

typical user in the low SINR regime is evaluated. It can be seen634

that the derived asymptotic expression accurately captures the635

SINR characteristics when SINR is nearly zero. As the SINR636

target approaches one, the asymptotic result becomes less637

accurate. Fig. 4 also shows that using APs with a smaller semi-638

angle gives better coverage performance at the typical user.639

This is contradictory to indoor lighting requirements since640

more uniform illumination would require to install APs with a641

larger semi-angle. However, this finding is not surprising and642

can be explained as follows. Although APs with a smaller643

semi-angle generate more directional light beams, hence less644

light coverage per AP, they improve the achievable SINR at a645

typical user because higher signal power and less interference646

is generated.647

Compared to the asymptotic result shown in Fig. 4,648

the SINR distribution in the high SINR region is typically of649

more interest. It is shown in Fig. 5 that the derived analytical650

expression for the coverage probability of a typical user in651

the high SINR regime is well matched with simulation results.652

When L = 0, the three-dimensional network model reduces to653

a two-dimensional planar model, and the coverage probability654

is found to follow a power-law decay profile. When L �= 0,655

2The outage probability is the complement of the coverage probability.
We plot outage probability in Fig. 4 because the coverage probability is less
distinguishable when the SINR target is low.

Fig. 5. Coverage probability of a typical user in the high SINR regime.
λ̃a = 0.1.

Fig. 6. Coverage probability of a typical user for different densities of the
VLC APs. L = 1 m.

the coverage probability decay is more involved and it does 656

not follow the power law any more. In fact, the decay is shown 657

to be more rapid at the beginning and steady at the tail. 658

The impact of the density of APs on the coverage proba- 659

bility of a typical user is evaluated in Fig. 6. As expected, 660

results confirm that, without efficient interference mitigation 661

techniques, the coverage probability reduces as the density of 662

APs increases. This is because that the legitimate user is served 663

by the nearest AP while the increasing number of APs brings 664

an increment of the interference power. However, the decay 665

rate of the coverage probability reduces as the density of active 666

APs increases. 667

Fig. 7 compares the exact and asymptotic expressions for the 668

coverage probability as a function of parameter L. In general, 669

the coverage probability at a typical user decreases as L 670

increases. The decay of the coverage probability is observed to 671

be steady at small values of L and rapid for large values of L. 672
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Fig. 7. Coverage probability of a typical user for different values of L .
λ̃a = 0.1.

Fig. 8. The impact of noise power on the coverage probability of a typical
user. λ̃a = 0.1 and L = 1 m.

The derived analytical expression agrees well with simulation673

results while the asymptotic expression exhibits a positive674

gap from the exact one. This gap is caused by underesti-675

mating the interference power at the typical user, as stated676

in Proposition 1. For larger values of T , the gap between the677

asymptotic result and the exact one becomes tighter. Despite678

the accuracy of the asymptotic upper bound, it is extremely679

simple to compute. However, when T = 0 dB, this asymptotic680

upper bound becomes a constant unity bound.681

B. Is Assumption 2 Valid?682

The asymptotic result shown in Fig. 4 did not consider the683

effect of receiver noise, but is shown to be reasonably accurate.684

The analytical results shown in Figs. 5 to 7 did consider the685

effect of receiver noise, at the cost of being more computation-686

ally expensive. So the question is, can the receiver noise be687

ignored for the coverage analysis in VLC networks (Assump-688

tion 2)? To answer this question, in Fig. 8 we evaluate the689

Fig. 9. Probability mass function of �a and �̃a.

coverage probability of a typical user with different values of 690

the receiver noise power. It can be seen that, in our simulation 691

setup, the coverage probability is not affected by the receiver 692

noise process, as long as the noise power is below −110 dBm. 693

However, when the power of receiver noise exceeds this 694

threshold, the effect of receiver noise can no longer be ignored, 695

and it starts to deteriorate the coverage performance of a 696

typical user. Fig. 8 also shows that the effect of receiver 697

noise is more dominant when T is small and less dominant 698

when T is large. Nevertheless, the derived analytical result 699

is applicable to the general case with arbitrary noise levels. 700

For typical receiver noise of power −117.0 dBm [1], [6], 701

it is safe to assume that the VLC network is interference- 702

limited, as stated in Assumption 2, and to study the coverage 703

performance using the SIR rather than the SINR. 704

C. Is Assumption 1 Valid? 705

In Fig. 3, the derived idle probability of VLC APs is shown 706

to be accurate. However, it does not confirm that the thinned 707

process �̃a is a homogeneous PPP. Therefore, the second 708

question to ask is, is Assumption 1 valid? In order to answer 709

this question, two aspects, namely PPP and homogeneity, need 710

to be studied. In Figs. 9 and 10, we compute the PMF of 711

active APs and compare the exact result with the analytical 712

one (based on Assumption 1). It is shown in Fig. 9 that the 713

number of active APs is not necessarily Poisson-distributed. 714

Specifically, when λa = 0.1 and λu = 0.01, the PMF of active 715

APs does follow the Poisson distribution, whose intensity is 716

λ̃a = (1 − pidle)λa. Mathematically, it is given by: 717

P

⎡

⎣
∑

xi∈�̃a

1A(xi ) = n

⎤

⎦ = (λ̃aμ(A))n

n! exp
(
−λ̃aμ(A)

)
, (27) 718

for n = 0, 1, · · · , and zero otherwise. To evaluate the PMF 719

of active APs in the network, A should be set to the entire 720

(horizontal) area of the indoor environment, so that its standard 721

Lebesgue measure is μ(A) = 18 × 14 m2. The Poisson 722

assumption is also valid when λa = 0.1 and λu = 1. 723
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Fig. 10. Gaussian curve fitting for the probability mass function of �̃a.
λa = 0.1.

TABLE I

GAUSSIAN COEFFICIENTS OBTAINED FROM CURVE FITTING

In fact, in this case the PMF of active APs is identical to724

the PMF of all APs in the network since the idle probability725

is now approximately zero. However, when λa = λu = 0.1,726

it is shown that the number of active APs does not follow727

the PPP anymore, although the actual process and the thinned728

PPP model have the same mean. Based on these observations,729

we can conclude from Fig. 9 that the PPP assumption is730

accurate only when APs and users have distinctive node731

intensities, or equivalently speaking, when the idle probability732

of APs is either approximately zero or approximately one.733

As a rule of thumb, we can say that the PPP assump-734

tion is valid when λu/λa ≤ 0.1 or λu/λa ≥ 10, which735

corresponds to pidle ≥ 0.91 or pidle ≤ 0.01, respectively736

(see Fig. 3).737

Fig. 9 has showed that the PMF of active APs doe not follow738

the PPP when λa and λu are of similar values. To investigate739

further, we plot in Fig. 10 the PMF of the active APs when740

λa = 0.1 and λu = 0.03, 0.1, 0.3. This corresponds to741

λu/λa = 0.3, 1, 3, respectively. It can be seen from Fig. 10742

that number of active APs can be well modeled by the discrete743

Gaussian distribution, whose PMF is:744

P

⎡

⎣
∑

xi∈�̃a

1A(xi ) = n

⎤

⎦ = aG exp

(

−
(

n − bG

cG

)2
)

, (28)745

where aG, bG, cG are the coefficients obtained from Gaussian746

curve fitting, that are related to λa, λu and also the Lebesgue747

measure of A. For the considered indoor environment,748

the fitted Gaussian coefficients are summarized in Table I.749

Fig. 11. Coverage probability comparison between the thinned PPP model
and the exact results. λa = 0.1 and L = 2 m.

Although the exact expressions for coefficients aG and cG 750

are still unclear, the expression for coefficient bG can be 751

approximated by bG = (1 − pidle)λaμ(A). This result follows 752

directly from the fact that the Poisson approximation and the 753

Gaussian approximation of the PMF of �̃a have the same 754

mean (see Figs. 9 and 10). 755

To investigate the homogeneity assumption for �̃a, we show 756

in Fig. 11 the coverage probability of a typical user, comparing 757

the exact result obtained from simulations with the result 758

obtained based on Assumption 1. It is interesting to note that, 759

for a low density of users, the distribution of active APs can 760

be approximated as the PPP, but not a homogeneous one. 761

In fact, a homogeneous PPP assumption will underestimate 762

the coverage probability of a typical user in the network. 763

When the density of users and the density of APs are similar, 764

modeling the active APs in the network as a homogeneous 765

PPP is acceptable since this model only brings small errors to 766

the coverage probability result. When the density of users is 767

larger than the density of APs, for example, in an overloaded 768

network, the homogeneous PPP assumption is found to be 769

very accurate because the idle probability of APs in an over- 770

loaded network is approximately zero. Moreover, compared 771

to previous works that do not consider the idleness of APs, 772

e.g., [14], the proposed analytical framework is shown to 773

better capture the characteristics of underloaded networks 774

and certain networks that operate with an AP sleep strategy 775

to save energy and/or minimize the co-channel interference. 776

For overloaded networks, in which the effect of AP idleness 777

can be ignored, the results derived in [14] can also be 778

obtained from the proposed framework by setting λu towards 779

infinity. 780

D. Effect on Room Boundaries 781

To facilitate analytically tractable derivations, the VLC 782

network is assumed to extend towards infinity, as if there are 783

no boundaries. This assumption does not affect the coverage 784

performance of users located at the cell center. However, this 785
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Fig. 12. Coverage probability of a typical user at different locations. λ̃a = 0.1
and L = 2 m.

assumption is not valid for users located at the room bound-786

aries, as they generally receive less interference. We show787

in Fig. 12 that after certain adjustments, the derived analytical788

expressions are also applicable to users at room boundaries.789

In particular, the coverage probability of a typical user located790

at the room edge can still be calculated from Theorem 3 after791

replacing λ̃a with λ̃a/2. Similarly, the coverage probability of792

a typical user located at the room corner can be calculated793

by replacing λ̃a with λ̃a/4. It can be seen from Fig. 12 that794

after adjustment the proposed analytical framework is still795

accurate.796

VI. CONCLUSIONS797

In this paper, we provide a new analytical framework for798

the coverage analysis of multiuser VLC networks, taking into799

account the idle probability of APs that is evident especially in800

underloaded networks as well as general networks that operate801

with an AP sleep strategy to save energy and/or minimize802

the co-channel interference. By using mathematical tools from803

stochastic geometry and statistical-equivalent transformation,804

analytical expressions for the coverage probability are derived805

and given in tractable forms. Based on the derived results, it is806

shown that not only the density of APs, but also the density of807

users, has a significant impact on the coverage performance.808

The homogeneous PPP assumption for active APs is shown809

to be valid in general and gives close coverage results to the810

exact ones when the density of users is no smaller than the811

density of APs. We also show that, for typical receiver noise812

levels (∼ −117.0 dBm), the SINR can be well approximated813

by the SIR for simplified coverage performance analysis in814

multiuser VLC networks.815

A detailed evaluation of the applicability of the PPP model816

to VLC networks can be our future work. Further exten-817

sions of this work could include more realistic channel818

and blockage models. It is also of interest to general-819

ize the proposed analytical framework to incorporate cell820

coordinations.821

APPENDIX 822

A. Proof of Theorem 1 823

The Laplace transform of the ISR is formulated as: 824

LISR(s) = E
[
exp(−sISR)

]
825

= E

⎡

⎣
∏

xi∈�̃a\{x0}
exp

⎛

⎝−s

(
x2

i + L2

x2
0 + L2

)−(m+3)
⎞

⎠

⎤

⎦ 826

= Ex0

⎡

⎣E�̃a

⎡

⎣
∏

xi∈�̃a\{x0}
ω(xi )

∣
∣
∣
∣
∣
∣

x0

⎤

⎦

⎤

⎦, (29) 827

in which function ω(xi ) is defined as ω(xi ) = 828

exp
(
−s
(
(x2

i + L2)/(x2
0 + L2)

)−(m+3)
)

. With the use of 829

the probability generating functional (PGFL) of the PPP [15], 830

the inner expectation of (29) can be calculated as: 831

E�̃a

⎡

⎣
∏

xi∈�̃a\{x0}
ω(xi )

∣
∣
∣
∣
∣
∣

x0

⎤

⎦ 832

= exp

(

−2πλ̃a

∫ ∞

x0

x (1 − ω(x)) dx

)

833

= exp

(

−πλ̃a

∫ ∞

1
(x2

0 + L2)
(

1 − exp
(
−sz−(m+3)

))
dz

)

, 834

(30) 835

where the last step follows from the change of variable 836

z = (x2 + L2)/(x2
0 + L2). Plugging (30) into (29) yields: 837

LISR(s) = 2πλ̃a

∫ ∞

0
x0 exp

[

− πλ̃ax2
0 − πλ̃a

∫ ∞

1
(x2

0 + L2) 838

×
(

1 − exp
(
−sz−(m+3)

))
dz

]

dx0 839

= 2πλ̃a

∫ ∞

0
x0 exp

(
−πλ̃ax2

0(1 + W (s))
)

dx0 840

× exp
(
−πλ̃a L2W (s)

)
, (31) 841

where function W (s) is defined as: 842

W (s) =
∫ ∞

1

(
1 − exp

(
−sz−(m+3)

))
dz 843

= z

(

1 − 1

m + 3
E m+4

m+3

(
sz−(m+3)

))∣∣
∣
∣

∞

z=1
844

= −1 + 1

m + 3
E m+4

m+3
(s) + �

(
m + 2

m + 3

)

s
1

m+3 . (32) 845

Furthermore, the integration (31) can be simplified to: 846

2πλ̃a

∫ ∞

0
x0 exp

(
−πλ̃ax2

0(1 + W (s))
)

dx0 847

= − 1

1 + W (s)
exp
(
−πλ̃ax2

0 (1 + W (s))
)∣∣
∣
∣

∞

x0=0
848

= 1

1 + W (s)
. (33) 849

Combining (31) – (33), (13) is obtained. 850
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B. Proof of Theorem 2851

Observe from (18) that the SINR model of interest is a852

function of the distance between the typical user and APs853

only, but not a function of the azimuth. Therefore, the two-854

dimensional homogeneous PPP �̃a, which models the horizon-855

tal distance between the typical user and the AP, is statistically856

equivalent to another one-dimensional inhomogeneous Poisson857

process �̃eq1 = {xi , i ∈ N} ⊂ R
1, with density function858

λ̃eq1(x) = ∫ 2π
0 λ̃axdθ = 2πλ̃ax . The SINR model for �̃eq1859

is the same as the one for �̃a, i.e., SINReq1 = SINR. Define860

a path loss function �(x) = (x2 + L2)m+3, whose inverse can861

be calculated as �−1(x) = (x1/(m+3) − L2
)1/2

. Since the path-862

loss function � has a continuous inverse, this newly mapped863

process �̃eq2 = {�i , i ∈ N} ⊂ R
1 is also a PPP, generally an864

inhomogeneous one, according to the mapping theorem [17].865

The density function of �̃eq2, denoted by λ̃eq2(�), can be866

calculated from the statistical equivalence:867

E�̃eq2

⎡

⎢
⎣
∑

�i∈�̃eq2

1[�,�̄](�i )

⎤

⎥
⎦ = E�̃eq1

⎡

⎢
⎣
∑

xi∈�̃eq1

1[x,x̄](xi )

⎤

⎥
⎦, (34)868

where [�, �̄], with L2(m+3) ≤ � ≤ �̄, is an arbitrary869

but nonempty interval forming a subset of �̃eq2, x =870
(
�1/(m+3) − L2

)1/2
and x̄ = (�̄1/(m+3) − L2

)1/2
. Rewrit-871

ing (34) in terms of the density function for both processes872

yields:873

∫ �̄

�
λ̃eq2(�)d� =

∫ x̄

x
λ̃eq1(x)dx874

=
∫ �̄

�
λ̃eq1

(√

�
1

m+3 − L2

)
1

m + 3

�
1

m+3 −1

2

√

�
1

m+3 − L2

d�. (35)875

From (35), λ̃eq2(�) can be obtained as:876

λ̃eq2(�) = πλ̃a

m + 3
�

1
m+3 −1, (36)877

for � > L2(m+3) and zero otherwise. Since the density of878

�̃eq2 is found to be a varying function of the distance, it is879

indeed an inhomogeneous process. Because of the mapping880

from x to �, the SINR model for �̃eq2 should be changed881

accordingly to:882

SINReq2 = �−1
0

∑

�i∈�̃eq2\{�0}
�−1

i + σ̄ 2
. (37)883

By letting �−1 = gx−1, we arrive at the SINR model shown884

in (20). Again, using the mapping theorem [17], we have the885

following result based on the statistical equivalence property886

between �̃eq2 and �̃eq:887

E�̃eq2

⎡

⎢
⎣
∑

�i∈�̃eq2

1[�,�̄](�i )

⎤

⎥
⎦ = Eg,�̃eq

⎡

⎢
⎣
∑

xi∈�̃eq

1[x,x̄](xi )

⎤

⎥
⎦, (38)888

where x = g� and x̄ = g�̄. Furthermore, (38) can be rewritten 889

in the integral form: 890

∫ �̄

�
λ̃eq2(�)d� = Eg

[∫ x̄

x
λ̃eq(x)dx

]

891

=
∫ �̄

�
Eg

[
gλ̃eq(g�)

]
d� 892

=
∫ �̄

�

∫ ∞

0
gλ̃eq(g�) exp(−g)dgd�. (39) 893

After plugging (36) into (39) and using integral equality 894

∫∞
0 g

1
m+3 exp(−g)dg = �

(
m+4
m+3

)
, we have: 895

∫ ∞

0
gλ̃eq(g�) exp(−g)dg 896

=
∫ ∞

0

πλ̃a

m + 3

1

�
(

m+4
m+3

)�
1

m+3 −1g
1

m+3 exp(−g)dg. (40) 897

With some simplifications, λ̃eq(g�) can be obtained as: 898

λ̃eq(g�) = πλ̃a

m + 3

1

�
(

m+4
m+3

) (g�)
1

m+3 −1, (41) 899

which is equivalent to (19). To this end, Theorem 2 is proved. 900

C. Proof of Theorem 3 901

Based on the statistical equivalence between �̃a and �̃eq, 902

the coverage probability can alternatively be calculated as: 903

P
[
SINR > T

]
904

= P
[
SINReq > T

]
905

= P

⎡

⎢
⎢
⎣

g0 x−1
0

∑

xi ∈�̃eq\{x0}
gi x

−1
i + σ̄ 2

> T

⎤

⎥
⎥
⎦ 906

= Eg,�̃eq

⎡

⎢
⎣P

⎡

⎢
⎣g0 > T x0

⎛

⎜
⎝
∑

xi∈�̃eq\{x0}
gi x

−1
i + σ̄ 2

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

x0

⎤

⎥
⎦

⎤

⎥
⎦ 907

= Eg,�̃eq

⎡

⎢
⎣exp
(
−T σ̄ 2x0

) ∏

xi∈�̃eq\{x0}
exp
(
−T gi x

−1
i x0

)

⎤

⎥
⎦, 908

(42) 909

where the last step is obtained from the exponential distri- 910

bution characteristic of the introduced auxiliary variable g0. 911

Based on Slivnyak’s theorem [15], the calculation of (42) can 912

be simplified by first conditioning on x0 and then averaging 913

the result with respect to x0, since conditioning on x0 does 914

not change the distribution of xi ∈ �̃eq\{x0}. Also, due to the 915

i.i.d. property of gi and its further independence from �̃eq, 916

the coverage probability of the typical user can be calculated 917
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with the use of PGFL of the PPP:918

P
[
SINR > T

] = Ex0

[

exp
(
−T σ̄ 2 x0

)
exp

[

−
∫ ∞

L2(m+3)
λ̃eq(x)919

×
(

1 − Eg

[
exp
(
−T gx−1x0

)])
dx

]]

,920

(43)921

in which the inner expectation with respect to the auxiliary922

variable is found to be:923

Eg

[
exp
(
−T gx−1x0

)]
=
∫ ∞

0
exp
(
−T gx−1x0

)
exp(−g)dg924

= 1

1 + T x−1x0
. (44)925

Plugging (19) and (44) into (43) yields:926

P
[
SINR>T

] = Ex0

⎡

⎣exp
(
−T σ̄ 2x0

)
exp

⎡

⎣− πλ̃a

�
(

1
m+3

)927

×
∫ ∞

L2(m+3)
x

1
m+3 −1
(

1− 1

1+T x−1x0

)

dx

⎤

⎦

⎤

⎦,928

(45)929

in which the inner integration can be calculated as:930

∫ ∞

L2(m+3)
x

1
m+3 −1

(

1 − 1

1 + T x−1x0

)

dx931

= m+3

m+2
L−2(m+2)T x02 F1

(

1,
m+2

m+3
;2m+5

m+3
;−L−2(m+3)T x0

)

.932

(46)933

With a slight abuse of notation, we denote by SINRi the934

SINR achieved at the typical user when it receives informa-935

tion signal from AP i and interference from all other APs.936

It has been shown in (5) that the typical user is associ-937

ated with the nearest AP in its vicinity. Therefore, we have938

SINR = SINR0. Since x0 ≤ x1 ≤ · · · holds by defini-939

tion, it is straightforward that for i = 1, 2, · · · , SINRi =940

(x2
i + L2)−(m+3)

/(∑
x j∈�̃a\{xi }(x2

j + L2)−(m+3) + σ̄ 2
)

< 1.941

This is equivalent to P[SINRi > 1] = 0. As a result, when942

T > 1, the coverage probability can now be expressed as943

P[SINR > T ] = P[SINR0 > T ] = ∑∞
i=0 P[SINRi > T ],944

which gives:945

P
[
SINR > T

]
946

= E�̃eq

⎡

⎢
⎣
∑

x∈�̃eq

exp
(
−T σ̄ 2x

)
exp

⎡

⎣− πλ̃a

m + 2

L−2(m+2)

�
(

m+4
m+3

) T x947

× 2 F1

(

1,
m + 2

m + 3
; 2m + 5

m + 3
; −L−2(m+3)T x

)
⎤

⎦

⎤

⎦ . (47)948

After applying Campbell’s Theorem [15] and inserting (19)949

into (47), (21) is obtained.950

D. Numerical Computation of the Coverage 951

Probability in (21) 952

Using the Gauss-Chebyshev Quadrature (GCQ) rule [31], 953

the integration in (21) can be numerically calculated as a finite 954

sum with NGCQ terms: 955

P
[
SINR>T

] ≈
NGCQ∑

u=1

w(u)
πλ̃a

�
(

1
m+3

) x
1

m+3 −1
(u) exp

(
−T σ̄ 2x(u)

)
956

× exp

⎡

⎣− πλ̃a

m+2

L−2(m+2)

�
(

m+4
m+3

) T x(u)SNtol (x(u))

⎤

⎦, 957

(48) 958

where w(u) and x(u), for u = 1, 2, · · · , NGCQ, are weights 959

and abscissas of the quadrature, respectively [31]. SNtol (x(u)) 960

is the numerical value of the Gauss hypergeometric function 961

evaluated at x = x(u), and it can be computed as follows. 962

From basic Taylor series expansion, the Gauss hypergeometric 963

function at x(u) can be written as [32]: 964

2 F1

(

1,
m + 2

m + 3
; 2m + 5

m + 3
; −L−2(m+3)T x(u)

)

965

=
∞∑

q=0

(1)q

(
m+2
m+3

)

q
(

2m+5
m+3

)

q

1

q!
(
−L−2(m+3)T x(u)

)q
, (49) 966

where (z)q is the rising Pochhammer symbol, defined as: 967

(z)q =
{

1, q = 0,

z(z + 1) · · · (z + q − 1), q = 1, 2, · · · , .
(50) 968

The summation of the first q terms of (49), denoted 969

by Sq(x(u)), can be computed through following steps: 970

S0(x(u)) = 1, 971

S1(x(u)) = m + 2

2m + 5

(
−L−2(m+3)T x(u)

)
, 972

q = 2, 973

Do bq = q(m + 3) − 1

(q + 1)(m + 3) − 1
, 974

Sq(x(u)) = Sq−1(x(u)) + (Sq−1(x(u)) − Sq−2(x(u))) 975

×bq

(
−L−2(m+3)T x(u)

)
, 976

q = q + 1, 977

Until
|SNtol+1(x(u)) − SNtol (x(u))|

|SNtol (x(u))| ≤ tol & 978

|SNtol (x(u)) − SNtol−1(x(u))|
|SNtol−1(x(u))| ≤ tol & 979

|SNtol−1(x(u)) − SNtol−2(x(u))|
|SNtol−2(x(u))| ≤ tol, 980

where tol is some tolerance, and SNtol (x(u)) is the returned 981

numerical solution for 2 F1

(
1, m+2

m+3 ; 2m+5
m+3 ; −L−2(m+3)T x(u)

)
. 982

Note that the maximum number of iterations required 983

for calculating (49) is not fixed. For typical values of 984

T (0 ≤ T ≤ 100), 200 recursions of q are found to be 985

sufficient for the computation of the coverage probability. 986
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