
Guardians of DNS Integrity: A Remote Method for
Identifying DNSSEC Validators Across the Internet

Yevheniya Nosyk, Maciej Korczyński, Andrzej Duda
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

Email: firstname.lastname@univ-grenoble-alpes.fr

Abstract—DNS Security Extensions (DNSSEC) provide the
most effective way to fight DNS cache poisoning attacks. Yet, very
few DNS resolvers perform DNSSEC validation. Identifying such
systems is non-trivial and the existing methods are not suitable for
Internet-scale measurements. In this paper, we propose a novel
remote technique for identifying DNSSEC-validating resolvers.
The proposed method consists of two steps. In the first step,
we identify open resolvers by scanning 3.1 billion end hosts and
request every non-forwarder to resolve one correct and seven
deliberately misconfigured domains. We then build a classifier
that discriminates validators from non-validators based on query
patterns and DNS response codes. We find that while most open
resolvers are DNSSEC-enabled, less than 18% in IPv4 (38% in
IPv6) validate received responses. In the second step, we remotely
identify closed non-forwarders in networks that do not have
inbound Source Address Validation (SAV) in place. Using the
classifier built in step one, we identify 37.4% IPv4 (42.9% IPv6)
closed DNSSEC validators and cross-validate the results using
RIPE Atlas probes. Finally, we show that the discovered (non)-
validators actively send requests to DNS root servers, suggesting
that we deal with operational recursive resolvers rather than
misconfigured machines.

Index Terms—DNS, DNSSEC, cache poisoning.

I. INTRODUCTION

All communications on the Internet rely on the Domain
Name System (DNS) that maps IP addresses to domain
names, which are further used to access various resources on
the Internet. The original DNS implementation [1] was not
designed with security in mind and did not provide any means
for data authentication. So, DNS resolvers cannot guarantee
that the received responses are genuine.

The DNS cache poisoning attack [2]–[11] leverages this
vulnerability. An attacker injects a bogus DNS entry into the
recursive resolver’s cache before the genuine reply arrives
from the authoritative nameserver. Once cached, it will be
returned in response to future client requests directly. The
reasons for an attacker to poison the cache may include
modifying the glue records associated with a domain name
or redirecting traffic from a legitimate domain by inserting a
CNAME record [3]. When launched remotely, cache poisoning
can only target open resolvers. However, recent studies showed
that closed resolvers can also be reached from outside the
trusted range of IP addresses if the source IP of the attacker
packet is forged [12]–[14]. While cache poisoning may be
the final goal of an attacker, it may also be an intermediate
step towards other attacks or various forms of DNS manipu-
lations [15].

One way to address the problem of cache poisoning is
to perform source port and query ID randomization [16].
However, a more comprehensive approach is to deploy DNS
Security Extensions (DNSSEC) [17] that support data authen-
tication and integrity using public-key cryptography. The DNS
zone administrator generates public/private key pairs to digi-
tally sign the resource records and adds the signatures, along
with the public keys and their fingerprints, to the zone files
using new resource records: RRSIG, DNSKEY, NSEC(3) and
DS [18]. The validating recursive resolver (or just validator)
retrieves and analyzes the DNSSEC-related resource records
to verify the integrity of the received query response [19].

For DNSSEC to be effective, it needs to be widely deployed:
DNS zones have to be correctly signed and recursive resolvers
have to validate all the query responses they receive. Previous
work has shown that the authoritative nameserver side of
DNSSEC is highly mismanaged and the population of signed
domains is relatively low [20]. Only a few registrars attempted
to facilitate DNSSEC deployment for their customers [21].

While measuring the extent of DNSSEC deployment is
possible through inspection of relevant records, enumerating
validating DNS resolvers remains a huge challenge. Several
researchers proposed a few methods such as sending requests
to controlled domains from geographically distributed vantage
points [20], triggering clients to resolve certain domains [22]–
[24], and passively analyzing logs on authoritative name-
servers of top-level domains (.jp, .org) [25], [26]. However,
the proposed approaches do not scale for the measurements
of the global Internet, require paid services, or access to
privileged data.

In this paper, we propose a novel active method for identi-
fying DNS resolvers that perform DNSSEC validation in the
IPv4 and IPv6 address spaces at the scale of the Internet. It
overcomes the two greatest challenges involved in trying to
discover validating DNS resolvers out there: it does not require
access to any remote vantage points nor to restricted data.
The proposed method consists of two steps. We first actively
enumerate open resolvers by scanning the whole routable IPv4
space [27] and a targeted list of IPv6 addresses [28]. We
send requests to 3.1B target IP addresses to resolve unique
domain names under our control. Then, we probe every non-
forwarding open resolver with a set of eight domains: one with
correct DNSSEC configuration and seven others deliberately
misconfigured. We analyze query patterns of open resolvers
on our two-level signed authoritative DNS zone infrastructure

ar
X

iv
:2

40
5.

19
85

1v
1

 [
cs

.C
R

]
 3

0
M

ay
 2

02
4

example.com.

example.com. DNSKEY ZSK
example.com. DNSKEY KSK

example.com. A 1.2.3.4
example.com. A 5.6.7.8

RRSIG

subdomain.example.com. DS #
 RRSIG

example.com. AAAA 2001::1
example.com. AAAA 2001::2

RRSIG

RRSIG

Fig. 1. Zone structure of a signed domain example.com. Each rectangle
represents a resource record set (RRset). Three of them (A,AAAA, and DS)
are signed with a Zone Signing Key (ZSK), while DNSKEY RRset is signed
with a Key Signing Key (KSK). Note that the DS record was generated by
the subdomain of example.com.

and the responses received on our scanner to build a classifier
that effectively distinguishes validating from not validating
resolvers. The second step extends the technique proposed
by Korczyński et al. [12] to identify closed resolvers. More
specifically, we again probe 3.1B hosts with unique domain
names under our control and observe the requests on our
authoritative nameservers (as we spoof source addresses, we
cannot receive the responses returned by the closed resolvers).
By classifying the query patterns of closed resolvers using the
models build in the first step, we identify the closed resolvers
as DNSSEC validators only based on the request pattern on
our authoritative nameservers.

Our Internet-wide scans reveal 6.9M open and closed
IPv4/IPv6 DNS resolvers - several times more than the num-
bers obtained by previous work. As we narrowed down our
analysis to DNSSEC-enabled non-forwarders only, we eval-
uated DNSSEC validation policies of 32.2K open and 400K
closed resolvers, all originating from 224 countries and 21.9K
organizations (31.2% of all the routable autonomous systems).
In particular, we found that while most of the tested non-
forwarding open resolvers (78.8% IPv4 and 92.6% IPv6) claim
to be DNSSEC-enabled (by setting the DO bit), less than 18%
in IPv4 and 38% in IPv6 of them actually validate received
responses. Interestingly, significantly more closed resolvers
are revealed to be validators - 37.4% IPv4 and 42.9% IPv6.
We obtained the ground truth data for 123 of those resolvers
using RIPE Atlas measurement network [29] and confirmed
that our passive technique correctly classified 91% of them.
Finally, we inspected around 301B queries on the DNS root
servers and found that 7% of them (more than 21B) were
initiated by resolvers that we identified. It suggests that those
are operational recursive resolvers with end clients/systems
behind them. The presented classification model was created
as a result of active measurements but it can also be used “in
the wild” on passive traces from authoritative nameservers.

The rest of the paper is organized as follows. Section II
provides the background on DNSSEC and analyzes related
work on evaluating DNSSEC validation. In Section III, we
test several DNS server implementations and show how they
handle DNSSEC-related queries. Section IV describes the first

example.com.

example.com. A 1.2.3.4

example.com. A RRSIG

example.com. DNSKEY ZSK

example.com. DNSKEY RRSIG

example.com. DNSKEY KSK

com.

example.com. DS #

com. DS RRSIG

com. DNSKEY ZSK

com. DNSKEY RRSIG

com. DNSKEY KSK

com. DS #

. DS RRSIG

. DNSKEY ZSK

. DNSKEY RRSIG

. DNSKEY KSK

.

Fig. 2. A sequence of queries performed by a validating recursive resolver. It
forms a chain of trust from the initially queried A record of example.com
up until the trust anchor (KSK of the root).

step of the method and presents the results of identifying open
validating resolvers. Section V introduces the second step of
the method to find validating closed resolvers. We analyze
the ethical impact of our study in Section VI. Section VII
concludes the paper and gives some thoughts for future work.

II. BACKGROUND ON DNSSEC AND RELATED WORK

This section provides the background on DNSSEC and
describes related work on the state of DNSSEC validation.

A. Background on DNSSEC

RFC 4033, 4034, and 4035 [17]–[19] define the DNSSEC
operation. Two key concepts are zone signing and response
validation.

A DNS zone is cryptographically signed using a private /
public key pair. Figure 1 presents an example of a signed
zone (example.com). Although not strictly required by the
standard, each zone usually has two key pairs: the Key
Signing Key (KSK) and the Zone Signing Key (ZSK). The
corresponding public keys are added to the zone in the form
of the DNSKEY resource records. The private KSK signs the
DNSKEY resource record set (RRset) and generates the RRSIG

signature. The RRsets containing other names in the zone are
similarly signed with the private ZSK key. The DS record is
published to the parent zone of the signed domain and contains
the digest of the KSK public key. Zone signing and publishing
all necessary records enable integrity validation but it is up to
recursive resolvers to check the signatures and validate all the
received responses.

Authoritative nameservers serving signed zones should in-
clude signatures and keys in query responses if they fit the
packet size. However, they significantly increase the response
size and total resolution overhead. Recursive resolvers ex-
plicitly declare their support for DNSSEC by setting the
“DNSSEC OK” (DO) bit. Authoritative nameservers only in-
clude DNSSEC-related records in response to the queries with
the DO bit set.

DNSSEC-validating recursive resolvers should computa-
tionally prove that the received signatures are valid using
public keys and hashes published in zones. They also verify
the keys by establishing the chain of trust from the trust
anchor to a given zone. Figure 2 shows the sequence of DNS
requests generated by a validating recursive resolver. Once the
resolver receives the response to its initial query along with

TABLE I
EXISTING METHODS ON IDENTIFYING DNSSEC VALIDATORS

Method Remote Paid Uses privileged data Duration Coverage

Chung et al. [20] No Yes No 13 days 59,513 resolvers / 403,355 end clients
Lian et al. [22] Yes Yes No 7 days 35,010 resolvers / 529,294 end clients
Wander and Weis [23] Yes No No 7 months 98,179 end clients
Yu et al. [24] Yes No No 36 days 49,488 resolvers
Guðmundsson and Crocker [25] Yes No Yes 50 / 50 minutes 676,599 / 573,773 resolvers
Fukuda et al. [26] Yes No Yes 2 / 2 / 2 days 2,150,958 / 2,081,826 / 1,904,610 resolvers
Our method Yes No No 15 days 6,880,023 resolvers

the signature, it requests the public ZSK key of example.com
to verify the signature validity. It then contacts the parent zone
(.com) and retrieves the DS record of example.com, a hash
of the example.com public KSK key. This process continues
up the domain name tree until the recursive resolver reaches
the root zone. Every validating resolver is configured with
one or more trust anchors. By default, it refers to the root
zone’s KSK or its hash. The validator compares its configured
trust anchors with those returned by the root. If they match,
validation ends successfully and the client receives the query
response with the Authenticated Data (AD) bit set. Should the
validation fail for some reason, the resolver returns a generic
SERVFAIL error. Querying a resolver with a set of correctly
signed and misconfigured domains, combined with examining
the response codes, gives an insight into whether the tested
resolver is DNSSEC-validating.

B. DNSSEC Validation
Researchers elaborated various methods to test whether

recursive resolvers validate the received responses. Table I
summarizes related work in the field. Each method can be
characterized in different ways: remote techniques do not need
vantage points to reach resolvers, paid methods require, for
example, purchasing an ad space, privileged data may refer
to query traces from TLD nameservers, not available to the
general public. Finally, we take into account the duration of
the experiment and the coverage in terms of recursive resolvers
or end clients.

Chung et al. [20] deployed one correctly signed and sev-
eral misconfigured domains and leveraged the paid Luminati
HTTP/S proxy service to study the client-side DNSSEC be-
havior. Out of 59.5K tested resolvers with 403K clients behind,
only 543 resolvers detected all the misconfigurations. The
method uses a paid service and requires vantage points limited
to the geographical locations of Luminati servers.

Lian et al. [22] used an online advertisement network with a
specifically crafted advertisement that retrieves images hosted
on controlled domains. They found that only less than 3% of
clients were protected from bogus DNS zones. Wander and
Weis [23] deployed their client-side tests in several places,
including autosurf websites. They found a slightly higher ratio
of validating clients (around 4.8%). These two methods, once
again, rely on paid services to analyze resolvers used by end
clients.

Yu et al. [24] leveraged the Web Proxy Auto-Discovery
(WPAD) protocol to collect browser-initiated DNS queries.

They relied on the observation that whenever one of the
authoritative nameservers returns a bogus reply, a validating
client attempts to contact another nameserver. Such repeated
queries indicate that the contacting resolver is likely to be
validating. They analyzed 49.5K unique resolvers of which
2.4K were validators. This method does not actively probe
DNS resolvers and is thus, limited in coverage.

Guðmundsson and Crocker [25] analyzed queries traced at
the .org zone. They considered passively observed DNSSEC-
related queries as evidence that the contacting resolver is a
validator but have not systematically analyzed and proven this
hypothesis. The analysis of two groups of query logs detected
4.7K and 5.6K validators. Fukuda et al. [26] computed the
ratio of the passively observed DS queries to all the queries
arriving from a given IP address to the .jp zone. They
acquired the ground truth by actively querying open resolvers
and observing the query patterns. The number of potential
validators varied significantly in each of the three datasets.
Such passive methods only have a limited view of the DNS
resolver landscape, as the analysis is restricted to several
nameserver traces.

In our experiments, we have analyzed 6.9M recursive re-
solvers - several times more than in previous methods. Our
approach is entirely remote, it does not require access to
privileged data (such as query traces from TLD nameservers)
or any paid service. We have actively queried 3.1B IPv4
and IPv6 addresses. Therefore, the coverage is much more
extended compared, for example, to examining query traces
limited in time.

III. EVALUATING COMPLIANCE WITH THE DNSSEC RFCS

We start with preliminary experiments to choose the right
DNS software supporting DNSSEC in our testing environment.
We report on the tests of five authoritative nameserver and
5 recursive resolver implementations to see how they imple-
ment DNSSEC standard. We have set up our experiments on
Ubuntu 18.04 LTS and Windows Server 2019 Base virtual
machines. We have installed the latest packaged versions of
the following DNS server software: BIND9 [30], Microsoft
DNS [31], NSD [32] (authoritative-only), PowerDNS [33],
Knot DNS [34] (authoritative-only), Knot Resolver [35]
(recursive-only), and Unbound [36] (recursive-only).

A. Authoritative Nameservers

The DNSSEC standard [19] states that all the query re-
sponses sent out by an authoritative nameserver to a DNSSEC-

TABLE II
THE IMPLEMENTATION OF DNSSEC VALIDATION BY DNS RESOLVER VENDORS

Vendor Version DNSSEC validator Recognizes Retrieves Retrieves Retrieves
out-of-the-box misconfigurations child DNSKEY parent DNSKEY child DS

BIND9 9.16.1-Ubuntu ✔ ✔ ✔ ✔ ✘
Unbound 1.9.4 ✔ ✔ ✔ ✔ ✘
Knot Resolver 5.4.4 ✔ ✔ ✔ ✔ ✘
PDNS-Recursor 4.2.1-1build2 ✘ (supported since v4.5.0) ✔ ✔ ✔ ✔
Microsoft DNS 10.0.20348 ✘ (need to activate trust anchors) ✔ ✔ ✔ ✘

enabled resolver should be accompanied by corresponding
RRSIG signatures. The signature must verify the requested
resource record, provided the recursive resolver is willing to
do the necessary checks. In case the authoritative nameserver
cannot provide the response (e.g., the requested domain name
or resource record do not exist), an NSEC/NSEC3 resource
record is returned as a proof of non-existence. If the returned
response does not directly answer the query but rather refers to
the child zone, the KSK hash of the child zone (DS) is also to
be included. The DNSKEY key however, may only be included
in response to the SOA or NS queries arriving at the root of
the zone (zone apex).

For each tested nameserver implementation, we set up a
two-level DNS zone infrastructure (subdomain.test.com
and test.com) on two distinct machines. Both zones are
correctly signed. We then deploy a validating recursive re-
solver running BIND9 that we use to issue A requests for
subdomain.test.com. Our experiment confirms that all
five implementations return responses accompanied by RRSIG

records. More importantly, each NS referral to the child
zone was accompanied by DS records. DNSKEYs were never
included in answers and were, thus, queried separately. We
choose BIND9 as an authoritative nameserver to set up our
enumeration infrastructure.

B. Recursive Resolvers

While we can freely choose any suitable authoritative
nameserver implementation, we do not have any control over
recursive resolvers. We again refer to RFC 4035 [19] and study
the expected behavior of validating recursive DNS resolvers
from 5 software vendors, summarized in Table II. For this
experiment, we have deployed the same two-level (test.com
and subdomain.test.com) authoritative DNS zone setup
using BIND9 as an authoritative nameserver. We study the
three following aspects of the software:

1) DO bit: A validating recursive resolver must set the DO

bit on all its requests to signal DNSSEC support, even if the
initiating query did not require it. In the tests described below,
all the recursive resolver implementations issued DNS requests
with the DO bit set to 1. Three vendors (BIND9, Unbound, and
Knot Resolver) had DNSSEC validation enabled by default,
which makes them protected from cache poisoning attacks out
of the box.

2) Query patterns: When a query with the DO bit set arrives
at the authoritative nameserver, the response will include
additional records as described in Section III-A. To establish

TABLE III
TEST SUBDOMAINS FOR ACTIVE DETECTION OF VALIDATING OPEN DNS

RESOLVERS

Subdomain Misconfiguration

valid Correctly signed
no-ds DS record is not published to the parent zone
bad-ds DS record in the parent zone contains an error
no-key Public ZSK is not published in the child zone
bad-key Public ZSK in the child zone contains an error
no-rrsig RRSIG over DNSKEY RRset is not published in the child zone
bad-rrsig RRSIG over DNSKEY RRset in the child zone contains an error
exp-rrsig RRSIG over A RRset in the child zone has expired

the chain of trust, all five implementations additionally queried
for DNSKEY records at the parent and child zones. Regular
caching rules also apply to DNSSEC-related resource records.
However, we have noticed that PowerDNS explicitly queried
for the DS record at the parent, even though it was provided
along with referrals. So, we consider that the presence of
DNSKEY and DS queries at authoritative nameservers indicates
the process of DNSSEC validation.

3) Misconfigured domains: A correctly operating validator
must not only retrieve DNSSEC resource records but also
computationally prove that the zone has not been tampered
with. To check this, we deployed 7 misconfigured subdomains
under test.com. Table III presents all the misconfigurations.
The five recursive resolver vendors (BIND9, Unbound, Mi-
crosoft DNS, Power DNS, and Knot Resolver) detected all
the misconfigured domains.

IV. STEP 1: DETECTION OF VALIDATING OPEN
RESOLVERS

In this section, we present Step 1 of our method in which we
actively enumerate IPv4/IPv6 validating open DNS resolvers
on the scale of the Internet. We also prepare for Step 2 -
we analyze the sequences of DS and DNSKEY requests on our
authoritative nameservers and the responses received on our
scanner. This data constitutes our labeled training dataset for a
machine learning-based classification approach that we use to
identify validating closed resolvers based only on sequences
of observed DNSSEC queries at authoritative nameservers in
Step 2.

A. Experimental Setup

1) Identifying DNS resolvers: We start with an open re-
solver scan in which we use our own custom tool developed
for sending DNS requests on a large scale. Our targets are the

TABLE IV
ORGANIZATIONAL DISTRIBUTION OF (NON)-VALIDATING OPEN RESOLVERS

Version Rank ASN Organization name Country code Total resolvers Validators Non-validators

Count Ratio (%) Count Ratio (%)

IPv4

1 16276 OVH FR 1,604 393 24.5 1,211 75.5
2 3462 Chunghwa Telecom Co., Ltd. TW 1,019 132 13 887 87.1
3 51167 Contabo GmbH DE 618 73 11.8 545 88.2
4 9318 SK Broadband Co Ltd KR 604 187 31 417 69
5 24940 Hetzner Online GmbH DE 571 109 19.1 462 80.9

IPv6

1 51167 Contabo GmbH DE 53 8 15.1 45 84.9
2 16276 OVH FR 49 19 38.8 30 61.2
3 3209 Vodafone GmbH DE 30 0 0 30 100
4 20773 Host Europe GmbH DE 28 2 7.1 26 92.9
5 63949 Linode, LLC US 23 20 87 3 13

whole routable IPv4 address space [27] and a list of responsive
addresses in the IPv6 space [28]. The scanner sends an A query
for the domain name under our control (test.com) to each
address. To prevent caching, each domain name contains a
random string as well as the encoded IP address of the query
destination. During the scan, we constantly process requests
received on our authoritative nameservers to avoid IP address
churn [25] later on. We know that we have reached an open
resolver if we see an A request for our domain. It is possible,
however, that the observed source IP address was different
from the one of the original query destination. In this case,
we refer to the original query destination as a forwarder.
However, for further analysis, we keep only non-forwarders.
The presence of intermediate recursive resolvers makes the
validation process [17] more complex - it is impossible to see
where exactly DNSSEC validation takes place.

2) Validation: Once we obtain an intermediate list of open
non-forwarders, we perform a series of queries to determine
if they are validators. Each non-forwarder is requested to
resolve eight types of subdomains under dnssec-test.com,
corresponding to each misconfiguration. Each domain name is
unique thanks to a random string. To avoid potential packet
losses, we repeat each query 10 times. As a result, each
resolver is requested to process 80 A requests. A correctly con-
figured DNSSEC validating recursive resolver should return to
our scanner the SERVFAIL error message for misconfigured
subdomains, as it cannot complete the validation process. We
have verified this correct behavior by querying the Google
Public DNS [37]. Moreover, the two online DNS zone analysis
tools (DNSViz [38] and DNSSEC Analyzer [39]) interpreted
our misconfigurations as intended and marked zones as bogus.
If the recursive resolver is DNSSEC-enabled but not validat-
ing, it successfully resolves all the tested domain names.

B. Enumeration Results

1) Open resolver scan: We scanned 2.8B routable IPv4
and 297M IPv6 addresses from the target list. The set of
addresses already excludes the address ranges that we were
asked not to scan (see Section VI for ethical considerations).
The scan resulted in 4.6M IPv4 and 5.5K IPv6 open resolvers
that contacted our authoritative nameservers to resolve our
requests. The majority of them, however, were forwarders and

did not perform the recursive resolution themselves. Thus,
after the elimination of forwarders, we keep 51.6K IPv4 and
853 IPv6 non-forwarding open resolvers for further analysis.

2) DNSSEC-enabled resolvers: We first examine whether
open resolvers declare the DNSSEC support by set-
ting the DO bit to 1 in incoming queries for the
valid.dnssec-test.com subdomain. From the list of
non-forwarders derived in the previous step, we further
exclude those that did not respond to any of the ten
valid.dnssec-test.com queries. Neither did we analyze
resolvers that this time forwarded their requests. As a result,
we obtain 49K IPv4 and 767 IPv6 open non-forwarders. At
this step, we analyze at most ten queries per resolver. If a
resolver signals its support for DNSSEC in at least one of its
requests, we call it DNSSEC-enabled. Such DNSSEC-enabled
resolvers are the majority of tested non-forwarders: 38.6K
(78.7%) IPv4 and 710 (92.6%) IPv6.

3) Validating resolvers: Validators, apart from being
DNSSEC-enabled, are expected to computationally verify the
authenticity of received responses. If this check succeeds, they
return the response with the NOERROR code to the requesting
client and resolve the domain to the configured IP address. In
case of validation failure, one receives a SERVFAIL error. We
refer to a DNSSEC-enabled recursive resolver as a validator if
it never succeeds to resolve any of the misconfigured domain
names. Although the DNS return codes are generic and not
directly related to DNSSEC, we consider SERVFAIL to be the
result of the validation failure and NOERROR as its success.
The no-ds subdomain is a special case that we discuss later.

We continue to analyze DNSSEC-enabled open resolvers
derived in the previous step. We retrieve the response codes
for all the six misconfigured subdomains (excluding no-ds)
returned to the scanner machine. We further rule out resolvers
that did not return any response for one or more subdomains.
Neither do we keep those that returned multiple response
codes for a single misconfiguration. As a result, 7.3K IPv4
and 273 IPv6 open resolvers successfully detected all our
misconfigurations and responded with the SERVFAIL return
code to all the queries. They represent 18.9% IPv4 and 38.5%
IPv6 DNSSEC-enabled resolvers.

4) Absence of DS at the parent zone: One has to manually
add the generated DS records to the parent zone, for example

TABLE V
QUERIES TO AUTHORITATIVE NAMESERVERS FROM (NON)-VALIDATING OPEN RESOLVERS

Queries
IPv4 IPv6

Validators Non-validators Validators Non-validators

Count Ratio (%) Count Ratio (%) Count Ratio (%) Count Ratio (%)

None 19 0.3 24,253 98.1 - - 384 96.2
DNSKEY-p, DNSKEY-c, DS-p 5,641 81.8 321 1.3 164 61.7 11 2.8
DNSKEY-p, DNSKEY-c 1,234 17.9 120 0.5 100 37.6 4 1
DNSKEY-c, DS-p - - 13 0.05 - - - -
DNSKEY-p 1 0.01 3 0.01 1 0.4 - -
DNSKEY-c 2 0.03 12 0.05 1 0.4 - -

Total 6,897 100 24,722 100 266 100 399 100

through a registrar’s control panel. This process is error-
prone [21] and the absence of the key hash at the parent zone
is one of the most common server-side misconfigurations [20].
The DNSSEC standard requires treating the domains without
DS at the parent zone as if they were unsigned [19], which
makes the zone insecure from the DNSSEC point of view
but should not result in a validation error. We now check
how validating resolvers (that successfully detected all the
six misconfigurations) treat our zone without DS records.
The great majority of them returned NOERROR to queries for
no-ds.dnssec-test.com domains. The remaining 389 IPv4
and 7 IPv6 resolvers failed, so we excluded them from the list
of validators. As a result, we identified 6.9K IPv4 (266 IPv6)
validators and 24.7K IPv4 (395 IPv6) non-validators.

5) Non-validating and partially validating resolvers: In
general, the great majority of DNSSEC-enabled resolvers
are consistent - they either validate or invalidate all the
misconfigurations. Very few resolvers (43 IPv4 and 4 IPv6)
returned different response codes for different subdomains. In
the remainder of the paper, we will consider them as non-
validators. Finally, the majority of DNSSEC-enabled resolvers
are non-validators: 24.7K (64%) IPv4 and 399 (56.2%) IPv6
open resolvers returned NOERROR for all the queries to miscon-
figured zones. Although these resolvers support DNSSEC (as
they set the DO bit in outgoing queries), they do not anyhow
benefit from it to validate the received responses.

6) Autonomous system and geographical distribution: The
discovered open resolvers are widely spread both geographi-
cally and organizationally. They originate from 189 countries
and 5.6K autonomous systems. Table IV presents the top
5 autonomous systems with the highest total number of
discovered validating and non-validating (denoted later on as
(non)-validating) IPv4/IPv6 open resolvers. It also provides
the ratio of each resolver type per autonomous system. The
French and German cloud providers (OVH and Contabo) lead
for the number of identified resolvers in both address spaces,
however, the majority of them are non-validators. In general,
autonomous systems are dominated by non-validators, which
is the case for 75.1% IPv4 and 50.6% IPv6 ASes. Moreover,
autonomous systems tend to be highly consistent: 81% IPv4
and 87% IPv6 ASes contain either validators or non-validators,
but not both.

7) Software versions: We additionally queried all the (non)-
validating open resolvers for DNS software versions and ob-
tained results for 9.4K IPv4 and 244 IPv6 resolvers. Whether
validators or not, the majority of these resolvers (92%) are
running different versions of BIND. Other (but much less
frequently seen) vendors include Unbound and PowerDNS.

C. Machine Learning-Based Classification

We already identified validating (6.9K IPv4 and 266 IPv6)
and non-validating (24.7K IPv4 and 399 IPv4) open re-
solvers by examining return codes on the scanning ma-
chine. To prepare Step 2, in which we target closed re-
solvers, we need to find a scheme for detecting a validator
that does not rely on the response analysis but is solely
based on analyzing the queries arriving at our authoritative
nameservers. For each (non)-validating resolver, we check
whether it sent a DS request to the parent zone (denoted as
DS-p for the valid.dnssec-test.com domain) as well as
DNSKEY requests to both parent and child zones (DNSKEY-p
for the dnssec-test.com domain and DNSKEY-c for the
valid.dnssec-test.com domain).

Table V presents the number of IPv4/IPv6 resolvers per each
combination of queries and the groups they belong to. This
data constitutes our labeled training dataset in which the three
query codes (DS-p, DNSKEY-p, and DNSKEY-c) are binary
input features to our classifier and the desired binary output
value is the resolver class: non-validator (0) or validator (1).
We use a decision tree machine learning algorithm as it is
the most interpretable algorithm for our classification problem.
We split the dataset so that 70% is used for training and 30%
for testing. We perform all model training and analysis using
scikit-learn [40].

The proposed method achieves good average weighted re-
sults with Accuracy = 0.984, Precision = 0.985, Recall =
0.984, F1 − score = 0.984, and MCC = 0.956. Figure 3
shows the graphical representation of the decision tree classi-
fier with three input features (query codes DS-p, DNSKEY-p,
and DNSKEY-c) and two output classes (validator and non-
validator). Each node contains the following information:

• Node number – a unique identifier of the node.
• Condition – applies to non-leaf nodes only. If the condi-

tion evaluates to True, the decision process continues to
the left child node. If the condition is False, proceed to

Fig. 3. Implementation of the decision tree classifier on a training dataset
with three features (DS-p, DNSKEY-p, and DNSKEY-c) and two output
classes (validator and non-validator).

the right child node. When evaluating the condition, the
fest arrow refers to the absence of resource records while
the right arrow refers to the presence.

• Gini – gives the information on whether the items in the
dataset belong to different classes. If greater than zero,
the sample contains items from different classes.

• Samples – 100% refers to all the training data. As we
go down the tree, the initial training set splits down to
samples of smaller sizes.

• Value – a number between 0 and 1. The first item in the
list is the proportion of elements at the current node that
are non-validators while the second one is the proportion
of validators.

• Class – the label assigned to the node. Can be either a
validator or a non-validator.

We see from Table V that the most observed query pattern
was None, which means the absence of any queries on
our nameservers. In the great majority of cases, it was the
characteristic of non-validators (24.3K IPv4 and 384 IPv6). To
see how the decision tree labels resolvers that did not issue
a single query, we start at the root node. The first condition
evaluates to True (no DNSKEY-c resource record), so we go to
node #1. The condition at node #1 also evaluates to True (no
DNSKEY-p resource record) so we go to the left node #2. We
already finished at the leaf node, although we never checked
for the presence of the DS-p record. It turns out that the great
majority of validators issue at least one of the DNSKEY queries,
so the classifier labels all resolvers without any DNSKEY as
non-validators. The data at node #2 suggests that 99.9% of
resolvers in this group are indeed non-validators while the
remaining validators were mistakenly assigned this label.

We have identified 5.9K IPv4 and 175 IPv6 resolvers
requesting all the three resource records in zones under our
control to establish the chain of trust. As we expect, the
great majority of them are validators, an important insight
proving that the combination of DNSKEY-p, DNSKEY-c, and
DS-p is a strong fingerprint of a validating resolver (see

Table V and Figure 3, node #10). Another query pattern
largely observed for validators is the transmission of two
DNSKEY requests (see Figure 3, terminal node #9). As we have
shown in Section III-B, some validating recursive resolver
implementations only request the two keys (DNSKEY-c and
DNSKEY-p) and do not explicitly issue a DS query, as they
retrieve the resource record directly from the cache.

Finally, the remaining query patterns were issued by only
31 IPv4 and 2 IPv6 resolvers. Unlike our A requests, the DS

and DNSKEY queries do not refer to unique subdomains but
rather to zone names. As such, if multiple resolvers share the
same cache and one of them already requested the records
with valid TTL, other resolvers can retrieve them directly from
the cache [41], which explains why a few validating resolvers
request a subset of necessary records (see Figure 3, nodes #4,
#5, and #7).

V. STEP 2: DETECTION OF VALIDATING CLOSED
RESOLVERS

In this section, we present Step 2 of our method in which
we look for closed resolvers by actively probing 3.1B routable
IP addresses with packets having forged source addresses. The
ultimate goal is to classify them as validators or non-validators
using the proposed machine learning-based approach.

A. Experimental Setup

We have already examined the behavior of DNSSEC-
enabled open resolvers. Now, the goal is to generate queries to
our authoritative nameservers on closed resolvers. By defini-
tion, they only serve predefined clients and are not reachable
from hosts outside. However, a recent study has shown that if
a closed resolver receives a request from the same prefix (even
when the source IP address of the UDP packet is forged), it
is very likely to accept and process the query [12].

For the forged packet to reach the closed resolver, we
leverage the absence of Source Address Validation (SAV).
The standard requires enabling packet filtering at the network
edge and dropping all the traffic with unexpected source IP
addresses [42].

Figure 4 shows an example of sending a packet with its
source IP forged. SAV can be applied to packets in two direc-
tions: outbound or inbound. In the outbound scenario, packets
leaving the customer network may have source addresses that
do not belong to the prefix of the network. Networks not
filtering outgoing traffic can become attack sources. Moreover,
even if networks enable ingress filtering [42], they will protect
the rest of the Internet from their customers but can still be
attack targets. As shown in Figure 4, the sender transmits a
request to host 5.6.7.1, but it modifies its IP address to
be 5.6.7.2. As this address does not belong to the sender
prefix (1.2.3.0/24), it should be dropped at the network
edge (denoted as 1⃝). In the inbound scenario, packets entering
the customer network have source addresses that belong to
the destination network, which reveals to the outsider an
otherwise hidden internal part of the network such as closed
DNS resolvers. In our example, a packet with the source

Attacker's network 1.2.3.0/24 Victim's network 5.6.7.0/24

1.2.3.4 5.6.7.1 5.6.7.2

Src: 1.2.3.4 5.6.7.2
Dst: 5.6.7.1

Src: 5.6.7.1
Dst: 5.6.7.2

1 2

Fig. 4. Sending a packet with a forged source IP address.

IP address of 5.6.7.2 arrives at the 5.6.7.0/24 network
edge (denoted as 2⃝). The packet IP address belongs to the
destination network, however, it is not supposed to arrive from
the outside and should be dropped.

For our proposed detection of DNSSEC-validating re-
solvers, we exploit the absence of inbound SAV. We issue A re-
quests for the DNSSEC-enabled domain names under our con-
trol in a global-scale measurement. We create a two-level DNS
zone infrastructure (test.com and subdomain.test.com)
so that we can capture child and parent zone queries.

The difference with the open resolver scan is that every
packet leaving our scanner has a forged source IP address,
adjacent to the destination, but always from the same prefix.
We rely on the absence of inbound SAV at the destination
network edge and in transit networks. If our forged packet
freely enters the network and reaches a DNS resolver, we will
see the resolution traces on our authoritative nameservers. In
parallel to the closed resolver scan, we run an open resolver
scan, so that we can later distinguish closed resolvers from
the open ones.

B. Enumeration Results

1) Closed and open resolver scans: Similarly to the open
resolver scan described in the previous section, we sent
2.8B IPv4 and 297M IPv6 A requests, this time with forged
source IP addresses. If a tested resolver only resolves a query
seemingly coming from the same prefix, then it is closed.
Conversely, a resolver accepting a query from our scanner is
open. The measurement campaign took 12 days.

2) Identifying DNSSEC-enabled closed resolvers: Our
forged queries reached 5.7M IPv4 and 51.2K IPv6 resolvers
in networks not deploying inbound SAV. A majority of those
resolvers (92.8% in IPv4 and 54.3% in IPv6) are forwarders, so
we eliminate them from further analysis. From the remaining
non-forwarders, we only keep closed resolvers resulting in
382K IPv4 and 22.9K IPv6 servers. They show a significantly
higher level of DNSSEC support compared to open resolvers:
98.8% IPv4 and 99.2% IPv6 closed resolvers are DNSSEC-
enabled. We keep them for further analysis.

3) Classification: To identify validators among DNSSEC-
enabled closed resolvers, we retrieve the queries on our author-
itative nameservers (see the details in Table VI). Similarly to
the open resolver scan, the patterns that largely dominate are
DNSKEY-p + DNSKEY-c, DNSKEY-p + DNSKEY-c + DS-p,
and the absence of any DNSSEC-related query. In Section IV,
we have presented a classification model that predicts whether
a given resolver is a DNSSEC validator by examining its
queries to authoritative nameservers. We run the model on

TABLE VI
QUERIES ON AUTHORITATIVE NAMESERVERS FROM DNSSEC-ENABLED

CLOSED RESOLVERS

Queries IPv4 IPv6

None 235,534 9,294
DNSKEY-p, DNSKEY-c, DS-p 128,374 8,422
DNSKEY-p, DNSKEY-c 12,897 1,335
DNSKEY-c, DS-p 58 2
DNSKEY-p, DS-p 79 13
DNSKEY-p 140 5
DNSKEY-c 230 3,689
DS-p 25 1

Total 377,337 22,761

the unseen data and label 37.4% IPv4 and 42.9% IPv6 closed
resolvers as validators.

4) Verification: So far, we found closed validators by
inspecting query patterns on our nameservers. To validate the
finding, we could have also inspected the DNS response codes
but the proposed methodology does not allow us to do so
as the responses are sent back to forged source addresses.
Instead, we leveraged RIPE Atlas, a global measurement
network with probes located in thousands of autonomous
systems worldwide [29]. It lets us both reach closed resolvers
(configured as local resolvers of probes) and access DNS
response codes. We inspected 287 IPv4 and 71 IPv4 closed
resolvers. The ratio of validators was 35.9% and 42.3% in IPv4
and IPv6, respectively, consistent with the results returned by
the classifier. Moreover, 97 IPv4 and 26 IPv6 resolvers were
also tested using our passive methodology, which correctly
classified 91% of those as either validators or non-validators.

5) Representativeness: the presented (non)-validators were
collected as a result of an active measurement. Previous work
showed that responding resolvers can be misconfigured routers
or other network equipment rather than operational DNS
resolvers [43]. Our measurements would also trigger otherwise
unused systems to respond, which is why we need to evaluate
whether the tested resolvers generate any traffic besides our
scans.

We have used the Day In The Life of the Internet (DITL)
dataset [44] that contains query traces to the DNS root servers
gathered during for days. In particular, we have analyzed
301B incoming queries on the DNS root servers from 31M
hosts. Importantly, these traces were collected before we
started our active measurements, so they do not contain traffic
generated by us. Our 432K resolvers (both open and closed)
represent 1.39% of all the resolvers seen at the root servers but
accounted for 7.08% of all the observed traffic. Consequently,
we must have measured recursive resolvers that have some
real end clients or systems behind them.

6) Autonomous System and Geographical Distribution:
The discovered validating and non-validating closed resolvers
come from 220 countries and 20K autonomous systems.
Table VII presents the organizational distribution and the
fraction of (non)-validators. In IPv4, four large American ISPs
and telecom companies dominate the rank. Surprisingly, the
German hosting provider does not have a single validator but

TABLE VII
ORGANIZATIONAL DISTRIBUTION OF (NON)-VALIDATING CLOSED RESOLVERS

Version Rank ASN Organization name Country code Total resolvers Validators Non-validators

Count Ratio (%) Count Ratio (%)

IPv4

1 46606 Unified Layer US 44,471 59 0.1 44,412 99.9
2 14061 DigitalOcean, LLC US 29,497 15,150 51.4 14,347 48.7
3 63949 Linode, LLC US 10,258 5,078 49.5 5,180 50.5
4 20473 The Constant Company, LLC US 8,981 3,359 37.4 5,622 62.6
5 34788 Neue Medien Muennich GmbH DE 7,050 0 0.0 7,050 100.0

IPv6

1 63949 Linode, LLC US 3,283 2,053 62.5 1,230 37.5
2 197695 "Domain names registrar REG.RU", Ltd RU 2,262 841 37.2 1,421 62.8
3 20857 Transip B.V. NL 1,664 404 24.3 1,260 75.7
4 14061 DigitalOcean, LLC US 1,157 462 39.9 695 60.1
5 197540 netcup GmbH DE 477 211 44.2 266 55.8

as many as 7K non-validating resolvers. In general, more than
half of IPv4 organizations (51.2%) are predominated by non-
validators. This ratio is even larger for IPv6 (61.2% ASes have
more non-validators than validators).

7) Software versions: Similarly to open resolvers, closed
(non)-validating resolvers also mostly run the BIND9 software,
which is the case for 99.9% of resolvers for which we managed
to retrieve the information.

VI. ETHICAL CONSIDERATIONS

Network scanning has become a well-established practice
in the research community. We contacted the Institutional
Review Board (IRB) of our university and described the
research presented in this paper. Our study is out of their
scope because it does not involve human subjects. As it is not
uncommon that institution IRBs do not evaluate the research
involving computer systems only, the measurement community
developed its own guidelines for researchers. In particular,
Partridge and Allman advocate that every publication should
contain ethical analysis so that it can be further discussed in
the community [45]. The Menlo report, in turn, outlines the
recommended research practices in the field of Information
and Communications Technologies [46].

Durumeric et al. [47] provided technical guidelines for
performing large-scale active measurements. To minimize the
interference caused by our measurements, we have randomized
the scanning lists so that we do not consecutively scan all the
machines inside the same network at the same time. Moreover,
all the scanned domain names point to a website that provides
contact details for opting out. We did not scan any hosts that
opted out from our previous measurement campaigns and did
not receive any new complaints.

Generating traffic with forged IP addresses has been ex-
tensively used in research to check for the deployment of
ingress filtering [12], [48]–[52] and to identify the presence
of censorship [53]–[56], which did not raise concerns and the
methods used were justified for addressing research questions
successfully. We build upon the experience of previous work
to conduct our measurements.

VII. CONCLUSIONS

In this paper, we presented a new active method to enumer-
ate DNSSEC-validating recursive resolvers. It overcomes the
limitations of other techniques as it is fast, remote, and free.

In the first phase, we scanned for open non-forwarding DNS
resolvers and found that while most of them are DNSSEC-
enabled, less than 18% in IPv4 and 38% in IPv6 validate
received responses. We have acquired the ground truth data
by examining the query patterns of open resolvers on our
nameservers and the actual validation status determined from
DNS query codes. We have trained and tested a decision tree
classifier resulting in very high scores.

In the second phase, we probed for closed resolvers and
ran our classifier on the query patterns of closed resolvers ob-
served at our two-level authoritative DNS zone infrastructure.
The algorithm has shown that 37.4% IPv4 and 42.9% IPv6
closed resolvers are likely to be validators. We cross-checked
these findings using probes from the RIPE Atlas network. The
ratio of validators among closed local resolvers of probes was
consistent with our results and we correctly classified 91% of
resolvers that were common with our passive detection dataset.

Our methodology has a large coverage as we have identi-
fied (non)-validators in 224 countries and 21.9K autonomous
systems. Moreover, the measured DNS resolvers generated a
non-negligible amount of traffic observed on DNS root servers,
which suggests that they are in use by real customers or other
systems. Consequently, the end users/systems that rely on
non-validators for DNS resolution remain vulnerable to cache
poisoning attacks.

ACKNOWLEDGMENT

This work has been partially supported by Carnot LSI
and Grenoble Alpes Cybersecurity Institute (under the con-
tract ANR-15-IDEX-02), the French Ministry of Research
projects PERSYVAL-Lab under contract ANR-11-LABX-
0025-01, DiNS under contract ANR-19-CE25-0009-01, and
the RIPE NCC Community Projects Fund. We thank DNS-
OARC for providing access to the Day in the Life of the
Internet (DITL) dataset.

REFERENCES

[1] P. Mockapetris, “Domain names - implementation and specification,”
RFC 1035, 1987.

[2] D. Kaminsky, “It’s the End of the Cache as We Know It,” 2008, https:
//www.slideshare.net/dakami/dmk-bo2-k8.

[3] A. Klein, H. Shulman, and M. Waidner, “Internet-Wide Study of DNS
Cache Injections,” in IEEE INFOCOM, 2017.

[4] A. Herzberg and H. Shulman, “Security of Patched DNS,” in ESORICS,
2012.

[5] H. Shulman and M. Waidner, “Fragmentation Considered Leaking: Port
Inference for DNS Poisoning,” in ACNS, 2014.

[6] A. Herzberg and H. Shulman, “Vulnerable Delegation of DNS Resolu-
tion,” in ESORICS, 2013, pp. 219–236.

[7] ——, “Socket Overloading for Fun and Cache-Poisoning,” in ACSAC,
2013.

[8] A. Herzberg and H. Shulman, “Fragmentation Considered Poisonous,
or: One-domain-to-rule-them-all.org,” in IEEE CNS, 2013.

[9] F. Alharbi, J. Chang, Y. Zhou, F. Qian, Z. Qian, and N. Abu-Ghazaleh,
“Collaborative Client-Side DNS Cache Poisoning Attack,” in IEEE
INFOCOM, 2019.

[10] H. Berger, A. Dvir, and M. Geva, “A Wrinkle in Time: A Case Study
in DNS Poisoning,” in Int. J. Inf. Secur., 2019.

[11] D. Dagon, C. Lee, W. Lee, and N. Provos, “Corrupted DNS Resolution
Paths: The Rise of a Malicious Resolution Authority,” in NDSS, 2008.

[12] M. Korczyński, Y. Nosyk, Q. Lone, M. Skwarek, B. Jonglez, and
A. Duda, “Don’t Forget to Lock the Front Door! Inferring the Deploy-
ment of Source Address Validation of Inbound Traffic,” in PAM, 2020.

[13] Y. Nosyk, M. Korczyński, Q. Lone, M. Skwarek, B. Jonglez, and
A. Duda, “The Closed Resolver Project: Measuring the Deployment
of Inbound Source Address Validation,” IEEE/ACM Transactions on
Networking, 2023.

[14] M. Korczyński, Y. Nosyk, Q. Lone, M. Skwarek, B. Jonglez, and
A. Duda, “Inferring the Deployment of Inbound Source Address Vali-
dation Using DNS Resolvers,” in ANRW, 2020.

[15] P. Pearce, B. Jones, F. Li, R. Ensafi, N. Feamster, N. Weaver, and
V. Paxson, “Global Measurement of DNS Manipulation,” in USENIX
Security, 2017.

[16] B. Hubert and R. Mook, “Measures for Making DNS More Resilient
against Forged Answers,” RFC 5452, 2009.

[17] S. Rose, M. Larson, D. Massey, R. Austein, and R. Arends, “DNS
Security Introduction and Requirements,” RFC 4033, 2005.

[18] ——, “Resource Records for the DNS Security Extensions,” RFC 4034,
2005.

[19] ——, “Protocol Modifications for the DNS Security Extensions,” RFC
4035, 2005.

[20] T. Chung, R. van Rijswijk-Deij, B. Chandrasekaran, D. Choffnes,
D. Levin, B. M. Maggs, A. Mislove, and C. Wilson, “A Longitudinal,
End-to-End View of the DNSSEC Ecosystem,” in USENIX Security,
2017.

[21] T. Chung, R. van Rijswijk-Deij, D. Choffnes, D. Levin, B. M. Maggs,
A. Mislove, and C. Wilson, “Understanding the Role of Registrars in
DNSSEC Deployment,” in IMC, 2017.

[22] W. Lian, E. Rescorla, H. Shacham, and S. Savage, “Measuring the
Practical Impact of DNSSEC Deployment,” in USENIX Security, 2013.

[23] M. Wander and T. Weis, “Measuring Occurrence of DNSSEC Valida-
tion,” in PAM, 2013.

[24] Yingdi Yu, D. Wessels, M. Larson, and Lixia Zhang, “Check-Repeat:
A New Method of Measuring DNSSEC Validating Resolvers,” in IEEE
INFOCOM Workshops, 2013.

[25] Ó. Guðmundsson and S. Crocker, “Observing DNSSEC Validation in
the Wild,” in SATIN, 2011.

[26] K. Fukuda, S. Sato, and T. Mitamura, “A Technique for Counting
DNSSEC Validators,” in IEEE INFOCOM, 2013.

[27] “University of Oregon Route Views Project,” http://www.routeviews.org/
routeviews/.

[28] O. Gasser, Q. Scheitle, P. Foremski, Q. Lone, M. Korczyński, S. D.
Strowes, L. Hendriks, and G. Carle, “Clusters in the Expanse: Under-
standing and Unbiasing IPv6 Hitlists,” in IMC, 2018.

[29] “RIPE Atlas,” https://atlas.ripe.net.
[30] Internet Systems Consortium, “BIND9,” https://www.isc.org/bind/, Apr.

2023.
[31] Microsoft, “Domain Name System (DNS),” https://learn.microsoft.com/

en-us/windows-server/networking/dns/dns-top, Jul. 2023.

[32] NLnet Labs, “NSD,” https://www.nlnetlabs.nl/projects/nsd/about/, Jul.
2023.

[33] PowerDNS.COM BV, “https://www.powerdns.com,” https:
//www.powerdns.com, Jul. 2023.

[34] cz.nic, “Knot DNS,” https://www.knot-dns.cz, Jul. 2023.
[35] ——, “Knot Resolver,” https://www.knot-resolver.cz, Jul. 2023.
[36] NLnet Labs, “UNBOUND,” https://www.nlnetlabs.nl/projects/unbound/

about/, Jul. 2023.
[37] Google, “Public DNS,” https://developers.google.com/speed/public-dns,

Feb. 2023.
[38] DNSViz, “A DNS visualization tool,” https://dnsviz.net, Jul. 2023.
[39] VERISIGN Labs, “DNSSEC Analyzer,” https://dnssec-analyzer.

verisignlabs.com, Jul. 2023.
[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
Plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-Learn: Machine Learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[41] A. Berger, N. Weaver, R. Beverly, and L. Campbell, “Internet Name-
server IPv4 and IPv6 Address Relationships,” in IMC, 2013.

[42] D. Senie and P. Ferguson, “Network Ingress Filtering: Defeating Denial
of Service Attacks which Employ IP Source Address Spoofing,” RFC
2827, 2000.

[43] M. Kührer, T. Hupperich, J. Bushart, C. Rossow, and T. Holz, “Going
Wild: Large-Scale Classification of Open DNS Resolvers,” in IMC,
2015.

[44] DNS-OARC, “DITL,” https://www.dns-oarc.net/oarc/data/ditl.
[45] C. Partridge and M. Allman, “Ethical Considerations in Network Mea-

surement Papers,” Commun. ACM, vol. 59, no. 10, p. 58–64, Sep. 2016.
[46] D. Dittrich and E. Kenneally, “The Menlo Report: Ethical Principles

Guiding Information and Communication Technology Research,” U.S.
Department of Homeland Security, Tech. Rep., August 2012.

[47] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-
wide Scanning and Its Security Applications,” in USENIX Security,
2013.

[48] R. Beverly and S. Bauer, “The Spoofer Project: Inferring the Extent of
Source Address Filtering on the Internet,” in USENIX Steps to Reducing
Unwanted Traffic on the Internet Workshop, Jul. 2005.

[49] R. Beverly, A. Berger, Y. Hyun, and k. claffy, “Understanding the
Efficacy of Deployed Internet Source Address Validation Filtering,” in
IMC, 2009.

[50] M. Luckie, R. Beverly, R. Koga, K. Keys, J. Kroll, and k. claffy,
“Network Hygiene, Incentives, and Regulation: Deployment of Source
Address Validation in the Internet,” in CCS, 2019.

[51] CAIDA, “The Spoofer Project,” https://www.caida.org/projects/spoofer/.
[52] C. Deccio, A. Hilton, M. Briggs, T. Avery, and R. Richardson, “Behind

Closed Doors: A Network Tale of Spoofing, Intrusion, and False DNS
Security,” in IMC, 2020.

[53] R. Sundara Raman, P. Shenoy, K. Kohls, and R. Ensafi, “Censored
Planet: An Internet-Wide, Longitudinal Censorship Observatory,” in
CCS, 2020.

[54] P. Pearce, R. Ensafi, F. Li, N. Feamster, and V. Paxson, “Towards
Continual Measurement of Global Network-Level Censorship,” IEEE
S&P, 2018.

[55] ——, “Augur: Internet-Wide Detection of Connectivity Disruptions,” in
IEEE S&P, 2017.

[56] R. Ensafi, P. Winter, A. Mueen, and J. R. Crandall, “Analyzing the Great
Firewall of China Over Space and Time,” in PETS, 2015.

https://www.slideshare.net/dakami/dmk-bo2-k8
https://www.slideshare.net/dakami/dmk-bo2-k8
http://www.routeviews.org/routeviews/
http://www.routeviews.org/routeviews/
https://atlas.ripe.net
https://www.isc.org/bind/
https://learn.microsoft.com/en-us/windows-server/networking/dns/dns-top
https://learn.microsoft.com/en-us/windows-server/networking/dns/dns-top
https://www.nlnetlabs.nl/projects/nsd/about/
https://www.powerdns.com
https://www.powerdns.com
https://www.knot-dns.cz
https://www.knot-resolver.cz
https://www.nlnetlabs.nl/projects/unbound/about/
https://www.nlnetlabs.nl/projects/unbound/about/
https://developers.google.com/speed/public-dns
https://dnsviz.net
https://dnssec-analyzer.verisignlabs.com
https://dnssec-analyzer.verisignlabs.com
https://www.dns-oarc.net/oarc/data/ditl
https://www.caida.org/projects/spoofer/

	Introduction
	Background on DNSSEC and Related Work
	Background on DNSSEC
	DNSSEC Validation

	Evaluating Compliance with the DNSSEC RFCs
	Authoritative Nameservers
	Recursive Resolvers
	DO bit
	Query patterns
	Misconfigured domains

	Step 1: Detection of Validating Open Resolvers
	Experimental Setup
	Identifying DNS resolvers
	Validation

	Enumeration Results
	Open resolver scan
	DNSSEC-enabled resolvers
	Validating resolvers
	Absence of DS at the parent zone
	Non-validating and partially validating resolvers
	Autonomous system and geographical distribution
	Software versions

	Machine Learning-Based Classification

	Step 2: Detection of Validating Closed Resolvers
	Experimental Setup
	Enumeration Results
	Closed and open resolver scans
	Identifying DNSSEC-enabled closed resolvers
	Classification
	Verification
	Representativeness
	Autonomous System and Geographical Distribution
	Software versions

	Ethical Considerations
	Conclusions
	References

