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Abstract—Biometric authenticators aim to provide a safe,
secure, and accurate authentication process in restricted areas.
Despite their advantages, biometric authenticators are vulnerable
to cyber-attacks, such as spoofing attacks. Spoofing attacks
enable malicious actors to masquerade as someone else to gain
illegitimate access or privilege. To proceed, the attacker forges
fake biometric data or duplicates existing ones. In such a context,
the evaluation of the robustness of biometric authenticators
is paramount to assessing their resilience potential and derive
deployment strategies. Through this work, we propose a generic
assessment method, based on a metric which quantifies the
robustness of biometrics against cyber-attacks. Our method-
ology can be adapted to different families of cyber-attacks
targeting biometric authentication techniques. We demonstrate
our approach by considering spoofing-attacks. To achieve this
objective, we present an extended state-of-the-art of biometrics
(physiological and behavioural), including emerging biometric
technologies. We also provide an overview of spoofing-attacks for
each identified biometric mechanism in the literature. Based on
this knowledge, we quantify and we combine the characteristics
of such attacks into a quantitative robustness metric which can
be applied to both a single and a combination of authenticators.

Index Terms—biometrics, robustness assessment, robustness
metric, authenticators combination

I. INTRODUCTION

Nowadays, there is a real need to protect restricted areas
and sensitive data with reliable and secure authentication
mechanisms. Biometric authenticators are considered a safe
way to guarantee the accuracy of an authentication process.
This is mainly due to the common belief that biometric
data are difficult to clone and/or steal, which is why such
mechanisms are widely used. Despite their accuracy and
advantages, biometric mechanisms could be vulnerable to
adversarial attacks. In this paper, We focus on spoofing attacks
targetting to biometric techniques. During spoofing attacks, an
adversary uses fake, cloned, duplicated, or stolen biometric
data belonging to an authorized person when interacting
with a biometric authenticator. The objective of spoofing-
adversary consists in impersonating the authorized user and
being identified as the latter by the targeted authentication
system. The literature has proven that without appropriate
countermeasures, the security of biometric mechanisms can
be bypassed by spoofing attacks [1]. Some vendor solutions
incorporated into biometric technologies have been proposed,
and these countermeasures can detect cloned biometric data
that an adversary may attempt to use to fool biometrics. This

includes, in the case of fingerprint authentication, the use of
a pulse detector [1] to avoid using pictures or gelatin fingers
by spoofing adversaries. However, depending on the attack,
and depending on the biometric mechanism itself, spoofing
attacks can not all be avoided. Many recent works highlight
the vulnerabilities and the weaknesses of biometrics against
spoofing attacks. The research community is continuously
investigating to find innovative biometric mechanisms for
ensuring safe, secure and accurate authentication processes.
The actual surveys on biometrics do not include the emerging,
and the less-known technologies such as Stylometry or Body
Odor biometrics. There exists a large panel of biometrics,
and each of these mechanisms can be subjected to attacks.
Moreover, there is actually no works presenting the attacks ap-
plied to the existing biometric mechanisms. Actually, a generic
robustness assessment method is missing in the literature. It
is crucial to be able to quantify the robustness of single, or
combinations of biometrics for choosing the best mechanisms
combinations. In our opinion, a robustness assessment metric
must take into consideration biometric mechanisms properties,
as well as the properties of the attacks the biometrics are
vulnerable to. This is why it is important to have an overview
of the existing biometrics, and the known attacks they are
vulnerable to. The approaches in the literature presenting
robustness assessments of biometrics do not take this aspect
into consideration. They only consider assessment methods
based on the accuracy of biometric mechanisms. Furthermore,
the proposed use-cases are based on metrics applied to specific
authenticators for specific attacks. These approaches are not
generic, and are not applicable to every biometrics. Our
contributions are fourfold : (1) We extend the existing works
presenting biometric mechanisms by incorporating emergent
and new biometric technologies ; (2) We present the existing
spoofing attacks applied to biometrics ; (3) We present a
metric for the robustness assessment of biometric mechanisms
; (4) We investigate how to generalize our proposed metric to
assess the robustness of existing combinations of biometrics
against spoofing attacks. This work is organized as follows :
We present a background on existing biometric authenticators
(including emergent technologies), existing spoofing attack
related to each biometric and related work in Section II
; Section III presents our robustness assessment method,
which is based on a quantitative metric applied to single
and combinations of authenticators regarding one or several



TABLE I
EXISTING BIOMETRIC AUTHENTICATORS.

Biometrics Refs. Family
Physiological Behavioral

Body Odor [3], [4] ✓
Breath Recognition [5] ✓

DNA (Deoxyribonucleic Acid) [6] ✓
Ear - Canal Echo [7], [8] ✓

Ear - Shape [9] ✓
ECG (Electrocardiogram) [2] ✓

Eye - Iris [10] ✓
Eye - Retina [11] ✓

Eye - Sclera Vein [12] ✓
Face [2] ✓

Finger - Contactless [13] ✓
Finger - Geometry [14] ✓

Finger - Print [15] ✓
Finger - Vein [16] ✓
Handwriting [17] ✓

Hand - Geometry [18] ✓
Keystroke [19] ✓

Lips Motion [20] ✓
Palm - Print [2] ✓
Palm Vein [21] ✓

Skin Reflectivity [22] ✓
Stylometry [23] ✓

Teeth Shape [24], [25] ✓
Thermography [26] ✓

Vocal Resonance [27] ✓
Voice [2] ✓
Walk [28] ✓

attacks ; Section IV provides a discussion about the proposed
contributions ; finally, Section V provides a general conclusion
and future works.

II. BACKGROUND

A. Existing Biometric Authenticators

Nowadays, fingerprints, which has been the very first bio-
metric technology to be used for authentication processes
for centuries, are not anymore the only technology used for
authentication purposes. Researchers are still investigating
biometrics that guarantee accurate authentication processes,
and difficult to duplicate or steal. Rui and Yan [2] have
proposed a survey of biometrics that we propose to extend
with emerging technologies such as the Body Odor, or the
Skin Reflectivity mechanisms. There exist two families of
biometrics presented in Table I with their relevant mechanisms.
Physiological technologies refer to “biological” data, such as
ECG signals, fingerprints, etc. Behavioral mechanisms include
data such as keystroke dynamics, the way a person walks, etc.
Through the next section, we present the identified spoofing
attacks applied to the biometrics presented in Table I.

B. Existing Spoofing Attacks Against Biometrics

Biometric authenticators, as many connected components,
are vulnerable to cyber-attacks. In our opinion, a robustness
assessment of biometric technologies starts by identifying
from which threat these biometrics need to be protected. The
robustness assessment approach we build can be adapted to
take into consideration a large panel of cyber-attacks. We
choose the family of the spoofing attacks to demonstrate our

approach because this family of attacks does not imply to
exploit a vulnerability related to the system the authenticator
is implemented in. Spoofing attacks only occur at the level of
the sensor itself, and our approach puts the emphasis on how a
single or a combination of biometric authentication solutions
will withstand existing spoofing attacks. The Table II presents,
for each identified biometric mechanism, the spoofing attacks
in the literature they are subjected to. As shown in Table II,
single biometrics as well as combinations of biometrics, are
vulnerable to several attacks. A robustness assessment metric
is therefore necessary, whether it is for the assessment of single
biometrics, or for a combination assessment.

Remark 1: Some of the presented biometric mechanisms in
the Table II are considered to not be subjected to spoofing
attacks. This is the case for retina and Sclera Vein biometrics.
Indeed, a Retina biometric uses the internal structure of a
person’s eye. Retinal images acquisition is done by the bias of
ophthalmologic cameras, and such a biometric is very difficult
to spoof [52]. A Sclera recognition system uses the vein
schemes of an eye. This biometric mechanism, such as the
Retina one, is internally located, and thus, considered as hard
to spoof [53]. Actually, we have not identified spoofing attacks
applied to Retina and Sclera Vein biometrics.

C. Related Work

1) Biometric Authenticators: Several works present a sur-
vey of biometric technologies, such as the work by Rui and
Yan [2], but new technologies both on the physiological and
behavioral aspects are not taken into consideration. Buciu and
Gacsadi [54] also proposed a survey based on physiological
biometrics, which are biometrics based on the capture of
biological biometric data. However, they do not take into
consideration the emerging technologies as well as the behav-
ioral mechanisms. In Section II-A, dedicated to the existing
biometric technologies, we present all the biometrics found
in the literature, considering well-known technologies such as
fingerprint, face authentication, etc, and also the emerging, or
less-known technologies.

2) Spoofing Attacks against Biometrics: To the best of
our knowledge, a work presenting spoofing attacks applied to
the existing biometric technologies, has not been introduced
yet. Several works present biometric mechanisms regarding
spoofing attacks [1], [21], [44], [45]. However, the authors
use some of the existing technologies, and an exhaustive view
of the existing spoofing attacks is missing. In Section II-B,
we present a mapping between the existing biometrics and the
spoofing attacks they are vulnerable to.

3) Biometric authentication architecture and attack sur-
face: The work by Stephen and Reddy [55] presents a general
architecture of a biometric authentication system. Such an
architecture is presented in the Fig 1.

Multiple attack points can be highlighted in such an archi-
tecture, as the work by Biggio et al [56] presents it. In the
case of spoofing attacks, the attack surface is limited at the
level of the biometric sensor itself.



TABLE II
BIOMETRICS WITH THE SPOOFING ATTACKS THEY ARE SUBJECTED TO.

Biometric mechanisms
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2-D print [29] [30] [31] [32] [33] [1] [34] [33] [35] [21] [36] [25] [26]

2-D video [30] [31] [33] [33] [36] [25]

3-D model [7] [29] [30] [31] [32] [33] [1] [33] [36] [25] [26]

Biological Samples [37]

Biological twin [38]

Contact Lens [30]

Plastic Film [1]

Full-Fledge [39]

Impersonation [40] [17] [19] [41] [36] [42] [43] [44] [45]

Makeup [46]

Masking Sensors [47]

Replay [40] [48] [41] [43] [49]

Stolen Clothes [47]

Spectral Conversion [50]

Synthesis [51]

Fig. 1. Biometric authentication architecture.

4) Robustness Metric: To the best of our knowledge, quan-
titative robust metrics that take into consideration the proper-
ties of biometric technologies and the properties of the attacks
they are subjected to, have not yet been introduced. The work
by Gafurov et al [57] presents an impersonation attack against
a gait authentication system with an active and a passive
adversary, but the authors do not describe the properties of the
attack they consider, neither a way to adapt their methodology
to other families of attacks. The work by Rodrigues et al
[58] presents two fusions schemes based on a fuzzy logic for
enhancing the security of multimodal biometric systems, and
a spoofing attack is taken as a use-case. However, this work
does not specify that biometrics are all subjected to different
kind of spoofing attacks, and a way to quantify the robustness
of each biometrics facing each type of spoofing attack is
not provided. The work by Akhtar et al [59] is dedicated
to the robustness evaluation of multi-modal biometrics facing
spoofing attacks. It is based on a quantification method of fake
score distributions, and the authors used datasets to conduct
their experiments. However, this work is only applied to a face
recognition system, and a fingerprint system with the relevant
datasets. The work by Hadid et al [60] presents spoofing
attacks related to fingerprint and face recognition systems with
an evaluation methodology based on the recognition rates of
these biometrics. Our proposed methodology is different from

the presented approaches. Indeed, we propose a generic and
quantitative robust metric by investigating the properties of
spoofing attacks and the properties of biometric mechanisms.

5) Robustness Assessment Authenticators Combinations: It
is well-known that a single biometric may not be sufficient
to guarantee the accuracy of an authentication process, and
several works present combinations of several biometric mech-
anisms for more accurate and secure authentication processes
[41], [61], [62]. Some evaluation methodologies applied to
combinations of biometrics are also available in the literature
such as the work by Wu et al [41]. In fact, this work presents
a combination of Voice and Lips Motion biometrics that
is, as claimed by the authors, “theoretically” robust against
attacks such as recorded voice replaying without lips motion.
However, such a biometric combination remains vulnerable
facing an adversary who plays a recorded video of the voice of
a legitimate person while imitating lips movements to match
with the recorded voice. Indeed, the Lips Motion biometric
technique is not capable of identifying the lips shapes, and
this is why the previously stated attack can threaten the Voice
and Lips Motion combination. This work also presents eval-
uation indicators such as True Positive Rate of the proposed
authentication system. Another work, proposed by Stewart et
al [62] is dedicated to a Keystroke-Stylometry combination to
achieve a better robustness of the authentication process. The
authors present an evaluation method based on the Equal Error
Rate indicator, which is a percentage related to the accuracy
of the authentication process conducted by the presented
combination of biometrics. The previously stated two works do
not present a generic robustness metric applied to biometric
combinations, which takes into consideration the properties
of the attacks and the biometric mechansism properties. We
address such a limitation in Section III.



III. METRIC FOR ROBUSTNESS ASSESSMENT

In this Section, we present a quantitative metric for a
robustness assessment of the existing biometric techniques.
We propose to build our own metric, that considers biometric
mechanisms properties, such as the accuracy of biometric
techniques, and also attacks properties, such as the maturity
and the complexity of an attack. In a first time, qualitative
values are attributed to these properties. The translation to
quantitative values is made by following the strategy employed
by the CVSS authors, which consist in assigning numerical
values that follow linear distributions. The CVSS Scoring
system [63] is an online calculator which provides three met-
rics for quantifying the severity of a vulnerability associated
with a system. We start our investigation by presenting a
robustness assessment method of single biometrics facing a
single attack, and then, we generalize our methodology for
a robustness assessment of biometrics facing several attacks.
In a second time, we present a robustness assessment method
for combinations of biometric mechanisms subjected to single
and several attacks.

A. Single Authenticators Assessment

Our robustness assessment strategy makes abstraction of the
environment the biometric mechanisms are implemented in.
We consider the informations related to the biometric data
and the properties of the attacks. Our choice to consider
spoofing attacks is related to the fact that this family of
attacks do not require the adversary to physically attack the
biometric sensor. Thus, we consider that an authenticator is
robust when facing a given attack if it is able to detect a fake
presented biometric information. In the following content, we
present the parameters used to build our assessment metric.
These parameters can be classified into two groups, which
are : Attack Efficiency Informations, and Biometric Data
Informations. We define each of these parameters with their
related qualitative values, and we propose a formula for a
generic robustness assessment metric. The first parameters to
be presented are related to the attack efficiency.

B. Attack Efficiency Informations

1) Attack Complexity: The Attack Complexity parameter
quantifies the difficulty for an adversary to successfully exploit
a vulnerability. For an attack α, we denote by Ecomp(α) ∈
[0, 1] its Attack Complexity. This parameter is assumed to be
“Low” if there is no specific conditions to exploit a vulner-
ability, and if it is easy for the adversary to perpetrate and
repeat its attack ; “Medium” if the adversary needs to capture
a behavioral data, which makes the attack more difficult to be
perpetrated ; “High” if the adversary must prepare its attack
and he needs specific resources, i.e., algorithms, physical
material, etc., to successfully perpetrate it.

2) Attack Maturity: The Attack Maturity parameter quanti-
fies the level of maturity of a given attack. For an attack α, we
denote by Emat(α) ∈ [0, 1] its Attack Maturity. This parameter
is assumed to be “Unproven” when the attack implementation

does not exist, or it is in a theoretical state ; “Proof-Of-
Concept” if the implementation of the attack is not functional
in all the situations and may need updates ; “Functional” if
a functional way to implement the attack exists, and it works
on most of the cases where the vulnerability exists ; “High”
when a functional code, or a way to implement the attack is
available with a full content related to the functional details.

3) Attack Remediation: The Attack Remediation parameter
quantifies the state of countermeasures that exist to gap the
vulnerability which is exploited by an attack. For an attack α,
we denote by Erem(α) ∈ [0, 1] its Attack Remediation. The
possible could be “Unavailable” if there exist no countermea-
sures ; “Workaround” in the case where there is an unofficial
solution available to avoid a given attack ; “Temporary Fix”
if there exist an official and temporary fix solution for a given
vulnerability ; “Officially Fix” if there is a complete vendor-
solution available.

4) Attack Confidence: The Attack Confidence parameter
quantifies the level of confidence in the success of an attack.
For an attack α, we denote by Econf (α) ∈ [0, 1] its Attack
Confidence parameter. This parameter can be “Unknown”
when there exist reports that highlight a vulnerability, but
the cause of such a vulnerability is unknown, or there is no
consensus on the cause of the vulnerability ; “Reasonable”
if trusted and significant details have been published in the
literature ; “Confirmed” if a detailed report is available.

Property 1: Let E(α) ∈ [0, 1] be the metric quantifying
the efficiency of a spoofing attack α against a biometric
authenticator. E(α) is defined as follow :

E(α) = (Emat(α)×Econf (α))×(1−Erem(α))×(1−Ecomp(α))
(1)

The Equation 1 has been built by combining parameters that
describe the power of an attack, such as Emat and Econf . To
these parameters, we combine Erem and Ecomp subtracted to
one. Indeed, these two last parameters describe the properties
that could make an attack difficult to be perpetrated.

An adversary who attempts to perpetrate an attack needs
access to the biometric data to be spoofed. The following
content is dedicated to the parameters used to quantify the
complexity of getting a biometric data.

C. Biometric Data Information

1) Biometric Accuracy: The Biometric Accuracy parameter
quantifies the reliability of a biometric mechanism during
the authentication process. For a biometric β, we denote
by Bacc(β) its Accuracy quantified as a percentage. For
each biometric mechanism, we have investigated the literature
to find surveys that evaluate their performance in terms of
accuracy. For each biometric, we have filled the Table III
with a range of accuracy, which corresponds to the minimum
and the maximum values of accuracy found in the related
surveys. We also provide a mean value of the accuracy for
each biometric by considering all the performance estimations
found in the surveys. This work has been done by considering



TABLE III
BIOMETRICS ACCURACY RANGE AND MEAN ACCURACY.

Biometrics Refs. Accuracy
Range (%) Mean (%)

Body Odor [3], [4] [85.00− 88.00] 86.5
Breath Recognition [5] [91.56− 92.21] 91.85

DNA [64] X 99.9
Ear - Canal Echo [7], [8] [93.04− 97.57] 95.31

Ear - Shape [9] [52.00− 100] 89.34
ECG [65] [73.00− 100] 95.3

Eye - Iris [10] [93.60− 99.40] 96.45
Eye - Retina [11] [90.21− 100] 98.57

Eye - Sclera Vein [66] [92.65− 99.07] 96.75
Face [67] [14.52− 99.29] 81.37

Finger - Contactless [13] [91.67− 98.93] 95.56
Finger - Geometry [68] [95.61− 98.25] 97.11

Finger - Print [15] [75.35− 98.60] 90.6
Finger - Vein [16] [79.00− 100] 96.3
Handwriting [69] [76.00− 97.00] 87.23

Hand - Geometry [18] [96.23− 99.81] 98.7
Keystroke [70] [90.50− 99.31] 95.1

Lips Motion [20] [53.00− 100] 90.65
Palm - Print [71] [97.50− 98.13] 97.89
Palm - Vein [72] [84.00− 99.99] 95.4

Skin Reflectivity [22] [71.10− 99.30] 90.59
Stylometry [23] [42.50− 93.58] 76.24

Teeth Shape [24], [25] [55.00− 99.74] 81.34
Thermography [73] [40.00− 98.00] 80.40

Vocal Resonance [27] [94.20− 96.10] 95.15
Voice [74] [61.40− 100] 87.54
Walk [28] [57.80− 99.90] 86.48

the “Accuracy” and the “CRR” (Correct Recognition Rate)
parameters evaluated in the surveys.

2) Victim Role: The Victim Role parameter quantifies the
level of privileges required for an adversary to successfully
interact with his victim in order to get a biometric data, and
then perpetrate an attack. For a biometric β, we denote by
Vrole(β) ∈ [0, 1] its Victim Role parameter. This parameter
could refer to a “Low-Level” for Administration employees
targeted by an adversary ; “Medium-Level” for Engineers
employees targeted by an adversary ; “High-Level” for Head
Departments employees targeted by an adversary.

Remark 2: The three presented role levels are generic,
and can be adapted to other categories of employees. In
our computation logic, the more complex a biometric is, the
highest the role level is attributed. It means that an access to
a restricted area of an organization, which requires complex
biometrics, must only be owned by a person with a high role
level in the organization.

3) Interaction with the victim: The Interaction with the
victim parameter describes whether an interaction is required
for an adversary with his victim, to get a biometric data and
then, perpetrate an attack. For a biometric β, we denote by
Vinteract(β) ∈ [0, 1] its Interaction with the victim parameter.
We assume that this parameter could have a value “None” if
the adversary does not need to interact with his victim to get
a biometric data. In this case, the relevant biometric data can
be found on the Internet, on Social Networks, etc. ; “Low”
when the adversary needs to get a biometric data that is not
publicly available and which needs low interactions, such as
the capture of a fingerprint on an object ; “Medium” if the

adversary needs to be physically close to his victim to get
a biometric data such as a behavioral one, but he does not
need to personally interact with his victim ; “High” for the
case where the adversary needs to personally interact with his
victim to get a biometric data.

4) Difficulty to Access the data: The Difficulty to Access
the data parameter is the combination of the Victim Role and
the Interaction with the victim parameters. For a biometric
β, we denote by BDA(β) ∈ [0, 1] its Difficulty to Access
parameter.

Property 2: The Difficulty to Access parameter BDA(β) of
a biometric β, is defined as follow :

BDA(β) = Vrole(β)× Vinteract(β) (2)

D. Translation to quantitative values

The previously introduced parameters are actually defined
in a qualitative way. Our objective is to translate these quali-
tative values into quantitative ones for obtaining a numerical
assessment with the robustness formula that we present in
the next section. The CVSS Scoring System [63] uses a
translation strategy from qualitative parameters to quantitative
ones to provide a numerical criticality assessment associated
with the vulnerabilities of a system. We follow the same
strategy, and our investigations show that the numerical values
used for the qualitative parameters of the CVSS follow linear
distributions. According to this observation, we choose to
assign the values as follows : Low=0.33 ; Medium=0.66 ;
High=0.99 ; None=0.1. Due to the structure of our formula, it
is not possible to choose a value equal to zero. We choose the
value 0.1 for “None” as the closest value to zero. The same
values are applied to the Victim Role parameter.

E. Robustness

In this section, we present our robustness formula which
uses the previously introduced parameters.

Property 3: Let R(β, α) ∈ [0, 1] be the metric quantifying
the robustness of a biometric authenticator β for a given attack
α. The higher this indicator is, the more robust β is. R(β, α)
is defined as follow :

R(β, α) = (Bacc(β)× BDA(β))× (1− E(α)) (3)

With each numerical value of the defined parameters, we
compute our robustness metric for single biometrics facing
a single attack R(β, α) and facing all the attacks they are
subjected to R(β,A). The numerical results are presented in a
Table available on GitHub [75]. We propose now to investigate
the robustness assessment of biometric combinations.

F. Combination Assessment

A biometric authenticator considered as a single element
used for an authentication process can be vulnerable to specific
attacks. Depending on the biometric data the authenticator has
been set up to identify, all the biometric authenticators do
not have the same weaknesses, and they are not vulnerable
to the same kind of attacks (spoofing or not). Several works



illustrate the combination of biometrics in order to provide a
more secure authentication process. We can cite Lu, Huang,
Deng and Alshamrani who have presented an authentication
scheme which uses the Handwriting and the Hand Shape
biometrics [61]. Wu et al have proposed an authentication
method which uses the combination of the Voice and the
Lips Motion biometrics [41]. Stewart et al have presented a
work dedicated to an authentication strategy based on the use
of the Stylometry and the Keystroke dynamics [62]. Other
works presenting combinations of biometrics can be found in
the literature, and we propose, as a contribution, to use our
approach for a robustness quantification of such combinations
of authenticators.

1) Combination of attacks: We have presented a metric
for a robustness assessment of biometrics. Our investigations
highlight that it is not possible for an adversary to combine
several attacks in order to increase his power facing bio-
metrics. Attacks perpetrated are, in a general way, able to
bypass specific countermeasures implemented at the level of
the biometric authentication techniques. However, there is no
dependency between such attacks, and the observation made
here is that an attack cannot improve another one.

We now generalize our metric for a robustness assessment
of biometrics facing several attacks.

Property 4: Let us consider a biometric mechanism β, and
A = {α1, . . . , αn} the set of n attacks β is subjected to. The
robustness of β becomes :

R(β,A) = min
α∈A

R(β, α) (4)

Example 1: By applying the Properties 3 and 4 to the case
of the Vocal Resonance mechanism, which is vulnerable to
Impersonation and Replay attacks, we compute the robustness
of β = Vocal Resonance to A = {α1, α2} with α1 =
Impersonation , and α2 = Replay . According to the Table
[75], we have R(β,A) = min(0.3105, 0.8621) = 0.3105.

As shown in Table [75], the robustness of several biomet-
ric technologies, such as the fingerprint mechanism, is low.
Indeed, this can be explained by the fact that attacks could
be able to bypass the security countermeasures of biometric
technologies. In certain situations, the Attack Remediations
are not sufficiently high and do not completely protect the
biometric mechanism from an adversary. Thus, the adversary is
able to get the biometric data, and to perpetrate an attack. This
observation highlights the need to combine biometric mecha-
nisms to have more accurate, secure and safer authentication
processes [41], [61], [62]. This is why we propose to extend
the application of our metric to combinations of biometric
mechanisms. We address this subject in the following section.

2) Combination of biometric mechanisms: We have seen
that biometrics are very diversified, and use different biolog-
ical and behavioral data. However, these mechanisms can be
dependent with other ones, and we propose to formalize this
notion of dependency.

Definition 1 (Dependency): The dependency of a biometric
data di with another biometric data dj is assumed to be a

numerical value in [0, 1], rated di −→ dj , i.e., it is the amount
of informations of dj obtained from di.

Property 5: Let us consider M = {β1, β2}, as a set of 2
biometric mechanisms. Let di be the biometric data which is
used for the authentication process to be conducted, with i =
{1, 2}. The biometric mechanisms in M are data-dependent
if the biometric data β1 and β2 are based on, are dependent.

Remark 3: The above definition provided is clearly related to
the Difficult to Access parameter presented previously. In fact,
the dependency between two biometrics makes it possible for
an adversary to acquire a knowledge about a biometric data,
from another one.

Example 2: Let us consider a combination of biometrics
M = {β1, β2} with β1 = Fingerprint and β2 = Palmprint .
We can easily see that these two biometrics are dependent, and
an adversary who has an access to a fingerprint data d1 can
perpetrate an attack against a fingerprint authenticator, and he
can also acquire a knowledge about a palmprint data d2 of a
legitimate user. If the fingerprint data d1 has a low Difficult
to Access parameter DAd1 , the Difficult to Access parameter
DAd2

of the palmprint biometric is going to decrease because
of this dependency.

With these observations, we present the two following
property which formalize the update procedure of the Difficult
to Access parameter for both the cases where the biometric
mechanisms are independant and dependant.

Property 6: Let us consider the Difficult to Access parameter
of two biometric data di and dj . If di −→ dj = 0, i.e., there
is no dependency between the biometric mechanisms βi and
βj , we have :

DAdj = DAdj (5)

If di −→ dj ̸= 0, i.e., there is a dependency between the
biometric mechanisms βi and βj , we update the robustness
value of the biometric mechanism βj by setting-up its DA
parameter as follow :

DAdj = min(DAdi × (di −→ dj),DAdj ) (6)

Example 3: Let us consider the two biometric mechanisms
β1 = Fingerprint and β2 = Palmprint . We have d1 −→
d2 = 0.1 because a fingerprint can be assumed to be 10% of
a palmprint data1. Thus, according to the Property 6 we have
DAd2

= min(0.1089 × 0.1, 0.0979). DAd2
is updated from

0.0979 to 0.0109.
This example shows that a dependency between two biomet-

rics contributes to decrease the Difficulty to Access parameter
of the biometric that include the data of the first one.

3) Robustness Assessment of Combinations: A robustness
assessment of combinations of biometric mechanisms occurs
in two different situations. In the first one, we consider the
robustness of a combination facing a single attack.

1We assume that a palmprint is composed of 50% by the palm itself, and
of 5× 10% for each finger.



Property 7: Let us consider a combination of r biometric
mechanisms MC = {βi}, with i = {1, . . . , r}. The robustness
of MC facing a spoofing attack α, rated R(MC , α), is
computed as follow :

R(MC , α) = max
βi∈MC

R(βi , α) (7)

Example 4: Let us consider the case of the combination
MC1 composed by the Fingerprint and the Palmprint bio-
metrics, i.e., MC1 = {β1, β2} with β1 = Fingerprint and
β2 = Palmprint . MC1 could be vulnerable to 2-D print
attacks. Thus, we have α = 2D print . According to the Table
[75], R(β1, α) = 0.0989 and R(β2, α) = 0.0957. Because
d1 −→ d2 = 0.1, i.e., β1 and β2 are dependant, DAd2 , i.e.,
the Difficulty to Access parameter of the palmprint biometric
must be updated according to the Property 6. Due to this
update, the robustness R(β, α) of the palmprint biometric
facing a 2-D print attack is updated from 0.0957 to 0.0107
with DAd2 = 0, 0109. Now, according to the Property 7 :

R(MC1 , α) = max(R(β1, α),R(β2, α))

= max(0.0989, 0.0107) = 0.0989
(8)

In the second case, we consider the robustness of a combi-
nation of authentication mechanisms facing several attacks.

Property 8: Let us consider a combination of s biometric
mechanisms MC2 = {βj}, with j = {1, . . . , s}. Let us also
consider a set of t attacks A = {αt}, with t = {1, . . . , s}.
The robustness of MC2 facing the attacks of A, rated
R(MC2 ,A), is computed as follow :

R(MC2 ,A) = min( max
βj∈MC2

R(βj ,A)) (9)

Remark 4: All the biometrics are not subjected to the same
attacks. In a combination of biometrics M = {β1, β2}, with
M subjected to α, β1 could be vulnerable to α but β2 may
not be exposed to α. In such a case, the Property 7 can still
be applied by considering R(β2 , α) = 1. The same reasoning
can be applied to the Property 8.

Example 5: Let us consider the case of the combination
MC2 composed by the Voice and the Lips Motion, i.e.,
MC2 = {β1, β2} with β1 = Voice and β2 = Lips Motion .
MC2 could be vulnerable to Impersonation and Replay at-
tacks. Thus, we have α1 = Impersonation and α2 = Replay ,
and we have AC2 = {α1, α2}. According to the Table [75],
R(β1, α1) = 0.3527, R(β1, α2) = 0.3801, R(β2, α1) =
0.1972, and R(β2, α2) = 0.2952. We have d1 −→ d2 = 0,
i.e., β1 and β2 are assumed to not be dependant. In fact,
we consider an adversary perpetrating a replay attack, who
acquired the voice biometric data on an audio recorder. Ac-
cording to the Property 8, we have :

R(MC2 ,AC2 ) = min(max(R(β1, α1),R(β2, α1)),

max(R(β1, α2),R(β2, α2)))

= min(max(0.3527, 0.1972),

max(0.3801, 0.2952)) = 0.3527

(10)

Remark 5: In the previous example, we have assumed that
the adversary has recorded the voice data on an audio recorder,
and thus, there is no dependency between the Voice and Lips
Motion biometrics. However, if the adversary would have
recording the voice data with a camera focused on the mouth
of the legitimate user, we would have had d1 −→ d2 ̸= 0,
i.e., there would have been a dependency between the two
biometrics. In this case, the robustness of the Lips Motion
biometric would have been impacted.

In the next section, we discuss the applications of our
metrics.

IV. DISCUSSION

The idea behind combining biometric authenticators is that
a biometric can gap the weaknesses of another one, and
the results provided in Table IV show that the considered
combinations are more robust than the biometrics considered
as single elements. Indeed, the less a biometric is subjected to
attacks, the more robust it is. Combining two authenticators
can avoid, or make more difficult the perpetration of attacks.
From the combinations in the literature that we have presented
in Section III-F, we notice that the mechanisms that constitute
a combination generally trigger biometric data located in the
same area of the human body. In fact, the biometrics of the
combination Handwriting-Hand Shape are both located at the
level of the hands. The Voice-Lips Motion biometrics are
both located at the level of the mouth. This can be explained
by the fact that it is easier and less expensive to implement
a combination of biometrics targeting the same area of the
body. For example, combining Palm Vein and Walk biometrics
requires two different systems, one for reading physiological
data, and the other one to read behavioral data. Such an
authentication may be expensive and difficult to implement
due to the material it requires. However, these two biometrics
constitute a very safe authentication strategy, and here we
have an example where two biometrics can be associated to
make it extremely difficult for an adversary to perpetrate a
“perfect” attack. Our proposed approach is not only related
to a robustness assessment of already implemented biometric
mechanisms. In fact, we propose to use it during the decision
process for finding the better combinations to use, i.e., the
more robust combinations from a set of several authenticators.
The presented metrics can be used to make a comparison
between combinations of biometrics, and help to choose the
better ones in terms of robustness. The Table IV presents
the robustness assessment of three biometric combinations
from the literature, facing single and all the attacks each
combination is exposed to, plus three additional combinations
introduced as examples.

As shown in Table IV, we see that the only combination
for which the two biometric mechanisms are dependent, i.e.,
the Voice-Lips Motion combination, has the lower degree
of robustness facing all the attacks R(M,A). Furthermore,
we also see that combining physiological and behavioral
biometrics, like Palm Vein-Walk biometrics, can provide a
good level of robustness. However, we must highlight that



TABLE IV
BIOMETRIC COMBINATIONS WITH THEIR ROBUSTNESS ASSESSMENT.

Spoofing Attack α R(M, α) R(M,A)

M
in

th
e

lit
er

at
ur

e Handwriting &
2-D paper 1

1Hand Shape [61]
2-D video 1
3-D model 1

Impersonation 1

Voice & Lips
Impersonation 0.3527

0.3527Motion [41]
Replay 0.3801

Synthesis 1
Spectral conversion 1

Stylometry & Impersonation 0.4967 0.4967Keystroke [62]

M
ex

am
pl

es

Fingerprint & 2-D paper 0.6633
0.6633Palm Vein 3-D model 1

Plastic film 1

Fingerprint
2-D paper 1

1& Walk
3-D model 1
Plastic film 1

Impersonation 1
Palm Vein 2-D paper 1

1& Walk Impersonation 1

the cost of the mechanisms needs to be taken into account.
In fact, the biometrics with the better degree of robustness
are generally the more complex and the more expensive ones.
Even if all weaknesses can not be avoided, and the spoofing
attacks a combination of biometrics is subjected to can not
all also be avoided, a fine balance must be found between
the biometrics combined and the corresponding attack surface.
The more robust a combination is, the less the attack surface.

V. CONCLUSION AND FUTURE WORKS

We have presented an exhaustive overview of the biometric
technologies by recensing the existing biometric mechanisms
and the emerging ones. For each of these biometrics, we
have recensed the spoofing attacks they are subjected to,
and according to a quantitative metrics we build, we have
proposed a robustness assessment of single biometrics and
combinations of biometric mechanisms facing one and several
attacks. Our approach is a generic assessment method, and
we used the family of spoofing attacks to demonstrate our
approach, but other families of cyber-attacks are compatible
with our methodology. The next steps of our work consist
in combining the properties established with new metrics
for quantifying the usability of biometric mechanisms in a
specific environment with specific constraints. Our objective
is to extend such a robustness assessment by taking into
consideration the environmental properties that may impact
the lectures of biometrics.
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