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Abstract—A hybrid exoskeleton is a class of wearable robotic
technology that simultaneously uses a powered exoskeleton and
functional electrical stimulation (FES) to generate assistive joint
torques for people with impaired mobility due to neurological dis-
orders such as spinal cord injury (SCI). The hybrid assistive tech-
nology benefits from FES that actively elicits force from paralyzed
muscles via their neural excitation, leading to muscle strengthening.
The main technical barrier to realizing the hybrid technology is to
attain stable coordination between FES and the exoskeleton despite
the quick onset of FES-induced muscle fatigue, which causes a
rapid decline in the muscle force. Current methods to measure the
induced fatigue lack direct muscle state measurements and may be
ineffective at capturing the muscle force decay due to FES. Instead,
ultrasound (US) imaging accurately quantifies FES-related muscle
contractility and fatigue due to the direct visualization of muscle
fibers. In this article, we use real-time US imaging-derived muscle
strain changes as biomarkers of FES-induced fatigue in an optimal
controller that modulates exoskeleton assistance and FES dosage.
To demonstrate that real-time US imaging is a promising muscle–
machine interface technology that can optimize shared control in a
hybrid exoskeleton, we perform experiments involving continuous
seated knee extension and over-ground walking tasks on two par-
ticipants with SCI and four participants without disabilities. Fur-
thermore, this work helps design a novel and unprecedented robotic
gait technology with the capability to impart FES-associated ther-
apeutic benefits while assisting the gait of neurologically impaired
individuals, including those with SCI, stroke, multiple sclerosis, etc.

Index Terms—Biomedical imaging, electrical stimulation,
exoskeletons, neurorehabilitation, optimal control.
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I. INTRODUCTION

PARAPLEGIA (paralysis) and paraparesis (weakness) are
debilitating outcomes of spinal cord injury (SCI) that re-

sult in mobility limitations, such as difficulty transferring to
standing and walking. In the United States alone, 40.6% of
approximately 288 000 people living with SCI have paraplegia,
and thousands of new cases of SCI occur each year [1]. These
mobility impairments result in frequent hospitalizations and
preventable complications such as urinary tract infections and
pressure injuries of the skin, with average lifetime medical costs
exceeding $1 million per individual [2], [3]. In contrast, the
functional and therapeutic benefits associated with enabling gait
mobility for those with incomplete SCI leads to fewer secondary
medical complications and rehospitalizations [4], [5].

Functional electrical stimulation (FES) is an assistive tech-
nology that induces active but artificial muscle contractions that
have the potential to generate the power required to perform
standing and walking tasks and thus help people with SCI
recover mobility [6], yet FES is not widely used for standing
and walking following SCI [7]. Notably, due to its nonphysio-
logical manner of muscle recruitment, FES is prone to induce
a rapid onset of muscle fatigue that limits its effectiveness in
long-term periodic and high-powered motions such as walking
or sitting-to-standing. This is more problematic in persons with
chronic SCI, where due to muscle atrophy, muscle fiber-type
composition changes to fast-fatiguing muscle fiber types [8],
[9]. As a result, the force output of the stimulated muscle drops
by 50% shortly after stimulation onset (compared to 30% in
nonparalyzed muscles) [10]. Commonly, an orthosis is applied
to stabilize the limbs in lieu of FES [11], foregoing the benefits
of activating the lower-limb muscles to improve the kinematics
and kinetics of walking. The use of an orthosis instead of FES
is largely due to the inability of current technology to address
muscle fatigue or compensate for its effect while synergistically
adapting walking motion [12].

Recently, powered exoskeletons have emerged as a technol-
ogy that can restore lower limb mobility during functions such
as sit-to-stand and walking [13]. Potentially, robotic exoskeleton
devices, when augmented with FES, can enhance the rehabilita-
tive attributes of powered exoskeletons by helping users achieve
active muscle contractions while simultaneously receiving assis-
tance from the exoskeleton. The cooperative torque assistance
from FES also reduces the power requirement from the robotic
exoskeleton and potentially leads to portable, longer-lasting
solutions [14], [15], [16].
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The addition of FES creates actuator redundancy, which re-
mains one of the primary challenges in the design and control of
a hybrid exoskeleton. The control problem is nontrivial mainly
because the designed controller needs to dynamically determine
a proper FES dosage and motor torque while maintaining a
desired lower limb motion despite the onset of muscle fatigue.
Indeed, control methods have been developed to achieve a hybrid
exoskeleton, but they address the control problem in an ad hoc
manner. For example, proportional-integral-derivative control
of an exoskeleton [17], [18] has been combined with muscle
torque estimation [17] and event-based FES triggering [18] to
coordinate FES and a hybrid exoskeleton. In [19], a switched
control framework was designed to switch between control
modes that used motors only and motors and FES based on a
muscle fatigue level from a mathematical model. These control
approaches do not optimally distribute control between FES
and the exoskeleton or resolve actuator redundancy based on
the muscle fatigue state. In this context, optimal control or
dynamic optimization is more suitable for cooperative control
of a hybrid exoskeleton. Studies in [20] and [21] used a model
predictive control (MPC) approach to regulate the knee joint and
determined the optimal FES and motor torque dosage based on a
dynamic model (e.g., musculoskeletal model of a user). A major
benefit of this control design is that it ensures state and input con-
straints, such as limits of FES dosage, are met. While promising,
these MPC approaches use estimates of fatigue onset based on
a dynamic fatigue model [22]. The fatigue model depends on an
accurate initial condition and person-specific parameters, which
potentially leads to model inaccuracy without the availability of
a direct fatigue measurement to update the model. A key to effec-
tive shared control in a hybrid exoskeleton is to directly measure
the muscle’ s fatigue state, update the fatigue model, and then
use an optimal control framework, such as MPC, to optimize
and automate the distribution of inputs to FES and exoskeleton.
However, sensors that provide direct, noninvasive physiological
state measurements of targeted skeletal muscles are lacking.
Current efforts to measure muscle fatigue include force mea-
surements from load cells or dynamometers [23] and surface
electromyography (sEMG) [24], [25], [26]. While a decay in
isometric force generation is directly related to muscle fatigue,
it is difficult to measure the fatigue of individual muscles within
a group such as the quadriceps. Further, it is difficult to estimate
force generation in a dynamic setting, and most dynamometers
are not portable for real-time exoskeleton control. While helpful,
these measures do not provide direct metrics of muscle-related
changes due to FES-elicited contractions. sEMG is suitable to
measure fatigue at the neuromuscular level but has its has its own
limitations such as sensitivity to electrode placement, cross talk
between neighboring muscles [25], inability to measure signals
from deep muscles [25], and signal interference from electrical
stimulation [27]. The lack of direct measurements of muscle fa-
tigue may limit the maximization of FES dosage during therapy
by not effectively modulating the administered FES in response
to the fatigue level of the stimulated muscle. Thus, we believe
that there is a need for real-time direct muscle fatigue feedback
to assist a hybrid exoskeleton controller’ s decision-making
regarding FES and motor torque input. Ideally, if user-specific

muscle fatigue during FES can be monitored, the motor torque
can be adjusted as a fatigue compensation technique (i.e., as the
user’s muscle fatigues, the hybrid exoskeleton will rely more on
the motors to provide assistance until the muscle recovers).

Recently, ultrasound (US) imaging has been used as a non-
invasive sensing modality to directly assess changes in muscle
contractility [28], which may be used as an index to monitor
muscle functions [29], [30], [31], [32]. US imaging is advanta-
geous for multiple reasons. First, it has a relatively wide field
of view (FOV) and has the capability to collect 2-D information
on a targeted muscle in vivo. In addition, unlike sEMG signals,
US imaging is unaffected by interference from FES artifacts and
neighboring muscle activity. Further, in [33], US imaging was
shown to be a viable approach for detecting isometric muscle
contractions, and in [34], [35], [36], US imaging was used as
a method for motion prediction in the upper limb. Overall, US
imaging is beneficial because it concurrently provides a direct
visualization of the desired muscles and a variety of US-derived
signals, such as muscle thickness, pennation angle, and fascicle
length, that can be used to analyze muscle contractility both
superficially and at greater muscle depths. Our recent stud-
ies [37], [38], [39] highlight the potential use of US in closed
loop control of assistive devices. In [38], US echogenicity signals
from ankle muscles were fused with EMG to estimate muscle
activation levels for use in an assist-as-needed controller during
treadmill walking tasks. Sheng et al. [37] demonstrated that the
axial strain derived from US images is a promising indicator
of contractility change in the human quadriceps muscles due to
FES-induced fatigue. US images were captured during isometric
muscle contractions generated by FES, and a strain tensor was
computed based on estimates of tissue motion in the captured
images. Sheng et al.[39] investigated in vivo continuous vari-
ation of muscle contractility at different stages over the time
course of the stimulation protocol. The correlation between the
degraded contractility and the varying force produced by a re-
peatedly stimulated muscle was derived and validated on human
participants, showing that US imaging can be a novel noninva-
sive sensing tool to measure the internal muscle state. When
combined with predictive mathematical models of FES-induced
force and fatigue, this will significantly improve their fatigue
prediction. However, the studies in [37] and [39] performed US
imaging analysis offline, leaving much room to investigate the
use of real-time US-derived fatigue measurements.

The main objective of this article is to evaluate a real-time
US-based sensing technique that has the capability of measuring
FES-induced fatigue via changes in muscle contractility and
informing an MPC-based control allocation framework (see
Fig. 1). We designed an experimental protocol to study the use of
real-time fatigue measurements in an MPC framework to track a
continuous knee joint angle during seated knee flexion/extension
and walking tasks on participants with and without SCI, while
addressing the need for real-time state measurements of fatigue
by using a graphical processing unit (GPU)-based implemen-
tation of the US imaging-driven adaptive speckle tracking al-
gorithm in [37]. Further, we compare the US-derived real-time
fatigue measurements during FES-elicited muscle contractions
with the fatigue measurements from a dynamometer to validate



Fig. 1. Overview of proposed real-time US imaging technique for shared
control. Measuring US-derived strain changes during isometric contractions in
real-time could lead to more accurate allocation between FES and motors during
shared control. As the muscle fatigues, the hybrid exoskeleton should reduce the
FES input while increasing motor usage.

its real-time accuracy. We also compare the performance of the
MPC scheme with real-time US-based measurements and with
only the fatigue model to determine if inaccurate fatigue indica-
tion causes under/over-stimulation of the quadriceps. Because
cooperative control between FES and exoskeleton may reduce
the torque requirement from the exoskeleton, we also want to
validate if the exoskeleton torques are reduced upon the addition
of FES when compared to a case when only exoskeleton is used.

The innovation of this work lies in the use of real-time
US-derived muscle strain signals that update a muscle fatigue
and recovery model through quantifying muscle contractility
changes. Particularly, we demonstrate the following contribu-
tions:

1) We develop and implement a real-time GPU-based archi-
tecture to measure muscle contractility from US images
during FES-induced muscle contractions of the quadri-
ceps.

2) We propose a sampled-data observer (SDO) structure to
incorporate the real-time US measurement into a pre-
existing mathematical fatigue model.

3) The use of the SDO in an MPC framework is experimen-
tally tested in both seated knee extension and walking tasks
on two participants with SCI and four participants without
disability.

The demonstrated work is significant to inform optimal con-
trol methods and fatigue characterization for US-based gait as-
sistance. The research outcomes inform the design of a wearable
exoskeleton gait technology that encourages using FES. The
inclusion of FES can potentially infuse a variety of potential
muscle health benefits (e.g., muscle strengthening, positive neu-
roplasticity, and cardiovascular fitness) while the elicited walk-
ing improves the quality of life and overall health goals post-SCI
by increasing mobility and ambulation in social life. The rest
of this article is organized as follows: Section II describes
modeling of knee extension dynamics with US-derived fatigue
measurements. The MPC development is shown in Section III.
Section IV presents the real-time speckle tracking algorithm to
estimate MEI. Section V shows the experimental study design.

Sections VI and VII present the results and discussion. Finally,
Section VIII concludes this article.

II. KNEE EXTENSION DYNAMIC MODELING WITH REAL-TIME

US DERIVED FATIGUE MEASUREMENTS

Our goal is to model and investigate cooperative control of a
single degree of freedom leg extension model during both knee
extension and walking tasks. The leg extension dynamics for a
single degree of freedom musculoskeletal model are given as

Jθ̈ + τp(θ, θ̇) +G(θ) + w(t) = τ (1)

where θ, θ̇, θ̈ ∈ R represent the angular position, velocity, and
acceleration of the knee joint, J ∈ R+ is the moment of in-
ertia of the leg, and G(θ) = mgl sin(θ + θeq) is a term that
represents the torque due to gravity where m ∈ R+ is the mass
of the lower leg, g is the gravitational acceleration constant,
and θeq ∈ R+ is the equilibrium position of the lower leg with
respect to the vertical. w(t) ∈ R is an unknown disturbance,
and τp is the passive torque of the knee joint and is modeled as
τp(θ, θ̇) = d1(φ− φ0) + d2φ̇+ d3e

d4φ − d5e
d6φ, where φ, φ̇

are the anatomical knee joint angle and angular velocity de-
fined as φ = π

2 − θ − θeq, φ̇ = −θ̇, and di(i = 1, 2, . . .6) ∈ R
are person-specific parameters. The total torque τ ∈ R is the
sum of torques generated from an electric motor and FES and
is defined as τ = τm + τke, where τm is the motor torque and
τke is the torque generated by FES. The FES-elicited torque is
modeled as

τke = ρ(θ, θ̇)ηa (2)

where

ρ(θ, θ̇) = (c2φ
2 + c1φ+ c0)(1 + c3φ̇) (3)

is a positive, bounded function that represents nonlinear muscle
length/muscle velocity dynamics, ci(0, 1, .., 3) ∈ R are person-
specific parameters, and a ∈ [0, 1] is the muscle activation from
FES. The activation is modeled as

ȧ =
uf − a

Ta
(4)

where uf ∈ [0, 1] is the normalized FES pulse width or current
input, Ta ∈ R+ is a muscle activation time constant, and η ∈
[ηmin, 1] is the FES-induced muscle fatigue, modeled as muscle
effectiveness index (MEI)

η̇ = wf (ηmin − η)a+ wr(1− η)(1− a) (5)

wherewf , wr ∈ R+ are fatigue and recovery time constants and
ηmin ∈ (0, 1) is the person-specific minimum MEI. Based on this
model, when the muscle is rested, the MEI level is one, whereas
when the muscle is completely fatigued, the MEI is ηmin.

A. Fused Real-Time US Imaging-Based MEI Estimate

Our goal is to update the model in (5) with normalized strain
measurements from US images obtained at a lower sampling
frequency than the exoskeleton controller. To achieve this, we
use a SDO structure to fuse each independent US-derived strain



measurement with the model defined as

˙̂η = wf (ηmin − η̂)a+ wr(1− η̂)(1− a) + λη̃(tk) (6)

where η̂ is the estimated MEI, a is the muscle activation from a
normalized FES current input, λ ∈ R+is a positive gain, and

η̃(tk) = η̂(tk)− η(tk) (7)

where η(tk) is the normalized strain measurement obtained by
US at time instant tk and η(tk) is held constant until a subsequent
measurement is available at tk+1, with the time between two
measurements denoted as T .

Theorem 1: The error between the model in (5) and the SDO
in (6) asymptotically converges to zero if λ is chosen as 2wr

3 ≤
λ ≤ 2wr and the sampling time between two consecutive US
measurements is 2

2wr−λ
ln( λ+2wr

3λ−2wr
) > T .

Proof: Choose a Lyapunov functional candidate as

V (t) =
1

2
η̃2 (8)

where η̃ is defined in (7). Taking the derivative of V (t), using
the definitions of ˙̂ηand η̂, and using the assumption that Tr > Tf

(i.e., the muscle fatigues faster than it recovers and wr < wf ),
gives

V̇ = −(wf − wr)aη̃
2 − wrη̃

2 + η̃λη̃(tk). (9)

Invoking the lower bound on a and applying Young’s Inequality
gives

V̇ ≤ −(wr − λ

2
)η̃2 +

1

2
λη̃2(tk). (10)

Provided λ < 2wr, V̇ can be further bounded as

V̇ ≤ −ΥV + λV (tk) (11)

where Υ = wr − λ
2 . Multiplying both sides of (11) by eΥt and

integrating on the interval [tk, tk+1] gives

V (tk+1) ≤ ςV (tk) (12)

where

ς =

[
λ

Υ
− λ

Υ
e−ΥT − e−ΥT

]
. (13)

For any iteration k, it can be seen that

V (tk) ≤ ςkV (t0). (14)

It is clear that if ς ≤ 1, V (tk) approaches zero as k increases.
To determine bounds on λ that satisfy ς ≤ 1, and noting that

λ ≤ 2wr, define auxiliary variable δ̄ such that λ = 2wr − δ̄.
Rearranging the terms of ς ≤ 1 and substituting λ = 2wr − δ̄
into (13) gives

4wr − 2δ̄

δ̄
− 1 ≤ e−( δ

2 )T

(
4wr − 2δ̄

δ̄
+ 1

)
. (15)

Further algebraic manipulation yields

T ≤ 2

δ̄
ln

(
4wr − δ̄

4wr − 3δ̄

)
. (16)

Substituting λ back into (16) gives

T ≤ 2

2wr − λ
ln

(
λ + 2wr

3λ − 2wr

)
. (17)

Thus, if 2wr

3 < λ ≤ 2wr is satisfied, and if the sampling time
between consecutive US measurements satisfies (17), it is true
that ς < 1. Thus, from (14), the error between the augmented
and nominal model in (7) converges to zero.

III. MPC FRAMEWORK

The goal of the MPC framework as previously shown in [40]
is to determine the motor and FES inputs, τm and uf , to track
a desired joint angle trajectory θd(t) ∈ R. In this framework,
parameters for the nominal leg extension model without any
disturbances are denoted by x̄, while x is a generalized state of
the actual system. To achieve this goal, a tracking error term
e ∈ R is defined as

e = θd − θ̄. (18)

To further ease the subsequent control development, we intro-
duce an auxiliary error term r ∈ R that is defined as

r = ė+ αe (19)

where α ∈ R+ is a positive gain. Introducing the auxiliary error
term helps in rewriting the second-order dynamics in terms of
the first-order dynamics. Further, an additional activation error,
ex ∈ R, is introduced to accommodate the cascaded activation
dynamics in (4) as

ex = ā− ād (20)

where ād is a desired activation dynamics defined as ād =
η̂−1(J̄ρ(θ̈d + αė) + L̄ρ), where J̄ρ, L̄ρ are defined as J̄ρ = J̄

ρ̄

and L̄ρ =
τ̄p+Ḡ

ρ̄ for nominal torque–length and torque–velocity
relation ρ̄ in (3). It is important to note that the FES control
input does not directly influence the knee dynamics in (1) but
appears in the dynamics of activation variable, a in (4). Thus,
introducing the error term, ex, helps to design the FES control
input, uf .

Taking the time derivative of (19) and using (18) and (1), the
closed loop error system becomes [40]

J̄ρṙ = −η̂ex − τ̄m
ρ
. (21)

Further, taking the time derivative of ex in (20) gives an error
dynamics that facilitates the design of the FES control input,
ėx = 1

Ta
uf − 1

Ta
ā− ˙̄ad. Now, if one designs the FES input,

uf , as uf = Ta(v + ˙̄ad +
ā
T a

+ η̂r), where v(t) ∈ R is the un-
known control input to be determined by the MPC, the feedback
linearized error dynamics is written as

ėx = η̂r + v. (22)

Above, we have transformed the dynamics in (1)–(4) into first-
order dynamics. Further, by defining a nominal state x̄ ∈ R3 as
x = [e r ex]

T and control input ū ∈ R2 as

ū =
[
τ̄m v(t)

]T
(23)



the first-order error system in (19), (21), and (22) is written for
MPC formulation as

˙̄x =

⎡
⎣ r − αe

1
J̄ρ
[−η̂ex − τ̄m

ρ ]

η̂r + ū2

⎤
⎦ = f(x̄, ū). (24)

The MPC framework determines the optimal ū in (23) by solving
the optimization problem

min
ū

∫ tk+T

tk

l(x̄, ū)dt+ V (x̄(tk + T )) (25)

subject to

˙̄x = f(x̄, ū)

˙̂η = wf (ηmin − η̂)ā+ wr(1− η̂)(1− η̂) + λη̃(tk)

x̄(tk + T ) ∈ ΩT

ū ∈ U

Taȧd ≤ 1− TaΩr − Taγ2 (26)

where U is a set of control inputs that bounds ū and ΩT is a
terminal region defined as

||x̄(tk + T )||2 ≤ 3
γ2
1 + γ2

2

k2s + k2
(27)

where γ1, γ2, ks, k ∈ R+ are positive control gains.
The running cost l(x, u) and terminal cost V (x(tk + T )) in

(25) are defined as

l(x, u) = x̄TQx̄+ ūTRū

V (x(tk + T )) =
1

2
e2 +

1

2
J̄ρr

2 +
1

2
e2x (28)

where Q ∈ R3×3 and R2×2 are positive definite, symmetric
matrices. The terminal region and terminal cost are introduced
to ensure recursive feasibility of the MPC framework [40].

To account for disturbances between the measured states
and the states from the nominal model, a nonlinear feedback
controller is designed as

ufd = ϑ(||σ||)||σ||sat

(
δ

ε1

)
+�sat

(
δ

ε1

)
+ κδ (29)

where ε1, κ ∈ R+ are gains, � is the upper bound of the distur-
bance to the nominal system w(t), and ε, δ ∈ R are terms that
represent the error between the nominal and actual knee joint
angle and are defined as

ε = θ̄ − θ

δ = ε̇+ βε

where β ∈ R+ is a positive constant, σ = [δ ε]T , and
ϑ(||σ||) ∈ R+ is a positive monotonic bounded function such
that

τp(θ, θ̇)− τp(θ̄,
˙̄θ) +G(θ)−G(θ̄)

+ ρ̄(θ̄, ˙̄θ)āη̂ − ρ(θ, θ̇)aη̂ + βJδ − β2Jε

≤ ϑ(||σ||)||σ||. (30)

Fig. 2. Control framework of MPC with real-time US to perform knee ex-
tension tasks. A sinusoidal knee flexion-extension motion was performed for
two minutes using MPC, which allocated FES and motors based on the US
imaging-derived MEI. When the leg was in the vertical position during the
trajectory, a diagnostic FES pulse was delivered to obtain an MEI estimate. As
the muscle fatigues due to continuous stimulation from FES, the MPC should
ensure that the FES dosage decreases and that the motor increases its contribution
to guarantee joint angle tracking performance.

The total input that goes to the motor is then given as

τm = τ̄m + ufd. (31)

Equation[40] further derives a terminal controller to guarantee
recursive feasibility and ensure that the control inputs of the
original system stay within their constraints. The optimal control
problem in (25) was solved in real-time using a fast gradient pro-
jection algorithm described in [41]. The overall implementation
of the shared control framework during the knee extension study
is shown in Fig. 2.

IV. REAL-TIME GPU-BASED SPECKLE TRACKING TO

ESTIMATE MEI

In this section, we present a real-time US imaging based
MEI estimation algorithm based on [37]. A speckle tracking
algorithm was developed to measure tissue motion during FES-
induced contractions. It was observed that as the quadriceps
fatigued, the decay in tissue motion correlated with the force de-
cay from FES-induced fatigue. The speckle tracking algorithm
consists of the following steps:

1) Determine the tissue motion between two consecutive US
images m and n by calculating a displacement matrix in
axial (depth) and lateral directions at each spatial position
(x, y) in the region of interest (ROI) of US images. The
displacement matrix dm,n(x, y) is calculated as

dm,n(x, y) = argmax
u,v

(γ(u, v)) (32)

where γ(x, y) is a normalized cross-correlation given as

γ(x, y) =∑
Kx,y

(fm(a, b)− f̄m)(fn(a+ u, b+ v)− f̄n,u,v)√∑
Kx,y

(fm(a, b)− f̄m)2(fn(a+ u, b+ v)− f̄n,u,v)2

(33)



where fn, fm are the magnitudes of the US image at
spatial positions a, b ∈ Kx,y . Kx,y is a rectangular kernel
centered at (x, y), and u, v are displacement offsets that
form a search windowKu,v around (x, y). Further, f̄m and
f̄n are averaged values of fm(a, b) and fn(a+ u, b+ v).

2) Spatially filter dm,n(x, y) to mitigate tracking noise be-
tween each pair of frames. A 21× 11 pixel kernel was
generated and centered around (x, y). The median value
of dm,n(x, y) within the kernel was assigned to a filtered
displacement map df (x, y).

3) Accumulate the displacement with respect to the first
image of the motion. The accumulated displacement at
frame n, defined as sn(x, y), can be calculated as

sn(x, y) = (xn, yn)− (x0, y0) (34)

where

(xn, yn) = (xn−1, yn−1) + dn−1,n(x, y). (35)

4) Calculate axial strain by applying a Savitzky–Golay fil-
ter [42] on the cumulative displacement in the direction of
propagation of US images.

It is noted that the computation time of the normalized
cross-correlation increases quadratically with the size of the
kernel, search window, and ROI. In addition, to estimate small
tissue motion between a set of US images, it is necessary to
interpolate the US images to obtain a smaller lateral resolution,
thus increasing the number of spatial locations at which the
correlation coefficient is computed. To overcome these chal-
lenges, because γ(x, y) at each spatial location is independent,
the speckle tracking algorithm was implemented using a parallel
processing GPU framework in which each set of US images
was loaded on a GPU, and all values of γ(x, y) were computed
simultaneously [43].

When using the GPU implementation, the fatigue estimate
between two consecutive images is reduced from the time scale
of minutes to< 1 s. To obtain a fatigue estimate for a full isomet-
ric contraction, the frame-to-frame displacement is accumulated
across the total number of frames in the contraction. Thus, the
total computation time is the time required to calculate tissue
motion between two frames multiplied by the number of frames
in the contraction. The final fatigue estimate is obtained by taking
the gradient of the accumulated displacement in the direction of
US propagation, and its computation time is dependent on the
sizes of the kernel, search window, and ROI, the interpolation
factor, and the contraction duration.

Since the fatigue measurement from US images is com-
puted by accumulating displacement across multiple frames,
the sampling frequency of US fatigue measurements is much
lower than the control frequency of the exoskeleton. In addition,
each measurement is treated as an independent sample, which
indicates the strain during an independent contraction along with
a noise component due to the tradeoff between robust speckle
tracking parameters and computation time. The SDO addresses
these issues by fusing the fatigue model with each measurement.
The workflow for the GPU-adapted speckle tracking algorithm
is shown in Fig. 3.

In our previous studies [37], [39], US images were captured
during isometric contractions within a fatiguing protocol, and

Fig. 3. Parallel computation of an adaptive speckle tracking algorithm to
measure real-time strain changes. The displacements at each point in the region
of interest (ROI, green squares) between two US images are independent and
can be computed simultaneously. US images are loaded onto the GPU, and the
tissue motion at each point is computed using in parallel NVIDIA’ s CUDA
architecture. The solid red squares highlight original tracking points with solid
lines indicating the surrounding kernels in the original frame, while the blue
squares represent the displaced points in the tracking frame. Red highlights
a positive strain (i.e., tension), while blue represents a negative strain (i.e.,
compression) in the direction of propagation of US.

strain measurements were computed offline, providing the ca-
pability of analyzing larger ROIs and prolonged muscle con-
tractions. To mimic these methods in a real-time exoskeleton
control environment, we designed a diagnostic stimulation pro-
tocol for both knee extension and walking tasks. The diagnostic
stimulation protocol consists of a one-second diagnostic pulse
applied at a point during the desired trajectory at which the knee
joint has zero velocity to ensure a quasi-isometric contraction.
During the diagnostic pulse, the US system was delay triggered
to collect raw radio frequency (RF) data and transfer it to the
GPU platform (Titan V, NVIDIA, USA) after 150 ms of stim-
ulation. The delayed trigger accounted for electromechanical
delay when estimating the muscle response to FES. All images
were reconstructed by sum and delay beamforming, and the US
speckle tracking was implemented on the GPU. The MEI, η(tk)
at time tk in (7), is then calculated by averaging the strain at each
pixel in the ROI and normalizing to the first contraction in the
trial. The fatigue measurement was then sent to the MPC via a
data transfer protocol (UDP). The procedure can be summarized
in the following steps:

1) Start diagnostic stimulation.
2) Trigger US system after 150 ms of stimulation.
3) Collect 1 s of US images at 100 Hz (100 images in total)
4) Beamform images and perform speckle tracking of the

image sequence.
5) Average strain map of the final image, normalize, and send

to exoskeleton controller.
It is noted that in real-time, Steps 1–5 provide a visualization

of a partial muscle contraction in comparison to the offline
approach during which the whole muscle contraction can be
imaged. To image a longer contraction, the number of frames in
Step 3 can be increased, thus increasing the computation time
of a fatigue measurement.

V. EXPERIMENTAL DESIGN

All experimental procedures performed in this study were
approved by the Institutional Review Board (IRB) at the North



TABLE I
PARTICIPANT DEMOGRAPHICS

Fig. 4. (a) Experimental setup for the continuous knee extension using a lab-
developed exoskeleton. (b) MPC with real-time US was used to allocate FES
and motors during a continuous knee extension task. Each participant performed
two continuous knee extension trials during which the MPC framework tracked
a sinusoidal trajectory for two minutes.

Carolina State University (IRB approval #: 20553). Four par-
ticipants without disability and two participants with SCI were
recruited to participate in this study. The overall study was bro-
ken into two sections: continuous knee extension and walking.
During each section, the MPC framework to allocate FES and
motors was implemented with and without US feedback. Details
on each participant are shown in Table I.

A. Continuous Knee Extension

The framework and experimental setup for the continuous
knee extension study is shown in Fig. 4. Participants were seated
in a lab-fabricated exoskeleton as seen in Fig. 4(a) with the left
knee joint actuated by an electric motor (Harmonic Drive LLC,
MA, USA) and electrical stimulation of the quadriceps achieved
using a commercial stimulator (Rehastim 2, HASOMED GmbH,
Germany), which administered FES at a frequency of 33 Hz
and a pulse width of 300 µ s through adhesive electrode pads
(PALS, 7.62 cm by 10.16 cm, Axelgaard Manufacturing Co.,
Ltd., USA). A clinical US linear transducer (L7.5SC Prodigy
Probe, S-Sharp, Taiwan) was placed longitudinally on the thigh
and fixed by a customized probe holder to image the targeted
quadriceps muscle.

Participants went through an experimental protocol that con-
sists of two 2-min trials (“fatigue” and “recovery”) during a
seated knee extension task as shown in Fig. 4(b). The MPC
with real-time US updates was administered to track a desired
trajectory, shown in Fig. 4(b). Overall, each trial consisted of
24 knee extension repetitions resulting in a total of 96 knee
extension repetitions throughout the whole study (fatigue trial,
recovery trial, with and without US). The goal of the fatigue
and recovery trial was to test allocation when the fatigue was
initialized at different initial fatigue values. During the fatigue
trial, because FES was being used for a 2-min duration, the

quadriceps would fatigue. The goal of the recovery trial is to
determine allocation when the muscle starts at a fatigued state
(i.e., during the recovery trial, the MPC should rely more on
motors and less on FES, as compared to the fatigue trial, to
maintain the tracking performance). During each trial, strain
measurements were obtained for each knee extension cycle
based on the diagnostic stimulation protocol and strain mea-
surement algorithm described in Section IV. Thus, through the
course of a single trial, 2400 images were processed overall.

Before and after each trial, participants sat in a dynamometer
(Biodex, Medical Systems, NY, USA) and isometric torque
measurements at the knee joint during a 1-s stimulation pulse
were recorded as a benchmark for fatigue. In between the fatigue
and recovery trial, real-time US measurements were collected
based on a diagnostic pulse for comparison with the normalized
isometric torque and model reinitialization.

B. Over-Ground Walking

The overall framework and experimental setup for the walking
experiments is shown in Fig. 5. Two participants with no disabil-
ity and two participants with SCI (n = 4) donned an INDEGO
(Ohio, USA) exoskeleton embedded with FES capabilities as
seen in Fig. 5(a) and performed four trials consisting of 20 steps
(10 left, 10 right) in which the MPC framework was used to
track the left knee trajectory during the gait cycle. Overall, each
participant performed four trials of 20 steps with and without US
resulting in a total of 80 steps taken in the exoskeleton. The linear
transducer used in the walking experiments (L7.0SC Prodigy
Probe, S-Sharp, Taiwan) was oriented and secured using medical
tape as seen in Fig. 5(a) as to obtain transverse images of the
quadriceps during the stance phase of each left step. This results
in a total of 1000 US images collected during each walking trial.

At the beginning of each trial, real-time US measurements
were collected to initialize the fatigue model for that trial. In
addition, the participant started each trial in a seated position and
performed a sit-to-stand task solely using a feedback controller
before performing the walking. The trajectories for the sit-to-
stand task were designed based on a virtual constraint method
in [44].

The timing and control of the exoskeleton was governed by a
finite state machine (FSM) with four states.

1) Sit-To-Stand.
2) Right Half Step.
3) Left Step.
4) Right Step.
The FSM started by transitioning from sit-to-stand followed

by a right half step, and it proceeded to alternate between left
step and right step for the entire 10 left step trial. The left and



Fig. 5. (a) Experimental setup while a participant with SCI was seated and after they performed a sitting-to-standing task with assistance of the INDEGO
exoskeleton, highlighting US probe placement during the walking trials. (b) Framework for experiments where MPC with real-time US is used to perform knee
flexion/extension during a walking task. Each participant donned the exoskeleton and performed four trials of 20 steps (10 left, 10 right) during which the MPC
was used to control knee flexion/extension on the left leg during the swing phase and a RISE controller was used on the right knee and both hip joints.

Fig. 6. Desired joint angle trajectories during states 3 (Left Step) and 4 (Right Step) of the FSM, highlighting the periods at which the MPC was utilized as well
as the diagnostic pulse to collect US-driven MEI measurements.

right steps in states 3 and 4 were divided into the following
three substates: a) swing leg hip and knee flexion, stance leg
flexion/extension, b) swing leg knee extension, and c) stance leg
hip extension.

The trajectory for each sub-state was designed using a third-
order polynomial trajectory based on the desired angles of
hip and knee flexion and extension. The desired flexion and
extension angles for the hip and knee are highlighted in Fig. 5(b).
The MPC algorithm was implemented on the left knee during
knee flexion/extension of the swing phase, while the right knee
and both hips were controlled by a robust-integral-signum-error
(RISE) controller [45]. The RISE controller is given by the
control law

τ = k1e2 +

∫ t

0

[kα2 + βsgn(e2)]ds (36)

with tracking errors e1, e2 defined as

e1 = θd − θ

e2 = ė1 + α1e1 (37)

where k1, α1, α2 ∈ R+ are positive gains, θd(t) ∈ R is the
desired trajectory, θ(t) ∈ R is the joint angle, and sgn is a
signum function. Similar to the knee extension experiments, US
imaging-based MEI measurements were received during each
left step based on images collected during a diagnostic pulse to
provide a quasi-isometric contraction, while the left leg was in
the stance phase. The periods during which the quadriceps were
stimulated by the MPC and by a diagnostic FES pulse are seen
in Fig. 6.

VI. RESULTS

Experiments were performed on two participants with SCI
and four participants without disability under two conditions:
seated knee extension and over-ground walking. In each case, we
compared the motor and FES inputs under conditions in which
US was used as MEI feedback and when no US was used. We
also compared the MEI from the model and from US images in
the case in which US was used in the loop. To compare the MEIs
from the Biodex dynamometer and from strain imaging, we
normalized each modality for consistency with the MEI model.



Fig. 7. Average joint angle, motor inputs, and knee extension FES inputs
during the fatigue trial across all participants and all flexion/extension cycles
along with representative MEI measurements (B3, right). Real-time US-derived
measurements were used to update the model using a SDO approach at each
time instant that US-based MEI measurements were available (indicated by the
red circles).

A. Continuous Knee Extension Tracking and Actuator
Allocation

The average root mean squared error (RMSE) between desired
and actual trajectories for all participants was 2.74± 0.53 (mean
±STD) and 2.67± 0.41 degrees during the fatigue and recovery
trials, respectively. The average knee joint position and motor
and FES inputs along with the MEI profile with US updates for
a participant without disability during the fatigue trial are shown
in Fig. 7.

To determine a performance metric which highlights motor
and FES usage, we computed the time integrals of motor torque
and normalized FES for each knee extension cycle during the
fatigue and recovery trials for all participants [see Fig. 8(a)]. The
average integral of normalized FES during the fatigue and recov-
ery trials was 0.38± 0.24 and 0.075± 0.056 s, respectively. The
average integral of motor torque during the fatigue and recovery
trials was 14.60± 4.26 and 20.96± 5.11 Nm-s, respectively. A
one-tailed t-test revealed a significant difference in motor and
FES inputs during the fatigue and recovery trial (one-tailed t-test,
p = 0.004 for motors, p = 0.009 for FES, α = 0.05).

The experimental protocol was repeated using only the MEI
dynamic model in the MPC. In this case, the initial condition for
the recovery trial was reinitialized from normalized isometric
torque measurements. The average RMSE was 2.81± 0.60 and
2.78± 0.61◦ during the fatigue and recovery trials, respectively,
when the MPC allocation relied only on the MEI model with-
out US-derived MEI updates. The RMSE for each trial and
participant is shown in supplementary table S1. There is no
significant difference in RMSE in either the fatigue or recovery
trials when US is used as feedback compared to the fatigue
model without US updates. The average integral of normalized
FES during the fatigue and recovery trials with only the fatigue
model was 0.43± 0.19 and 0.10± 0.07 s, respectively (one-
tailed t-test, p < 0.001, α = 0.05), while the average integral

of motor torque during the fatigue and recovery trials was
13.48± 2.86 and 18.21± 1.85 Nm-s, respectively (one-tailed
t-test, p = 0.001, α = 0.05). The integrals of normalized FES
and motor torques for each participant with and without US
feedback is shown in supplementary table S2.

B. Real-Time US Fatigue Measurements Compared to the
Dynamic Model

We compared the MEI values during the final flex-
ion/extension cycle of fatigue and recovery trials when US
updates were used as feedback to using the model only. Due to
the different fatigue rates of people with and without disability,
we grouped their MEI values separately [see Fig. 8(b)]. For the
participants with no disability, the average MEI after the final
cycle of the fatigue trial with the model with US updates and
with the model only was 0.69± 0.11 and 0.78± 0.05 (one-
tailed t-test, p = 0.046, α = 0.05), respectively. The average
MEI value after the final cycle of the fatigue trial was0.39± 0.01
and 0.46± 0.01 (one-tailed t-test, p = 0.02, α = 0.05) for the
participant with SCI. For the participants with no disability, the
average final MEI value after the final cycle of the recovery
trial with the model with US updates and with the model only
was 0.55± 0.17 and 0.84± 0.03 (one-tailed t-test, p = 0.004,
α = 0.05), respectively. For the participant with SCI, the av-
erage MEI value after the final cycle of the recovery trial
was 0.50± 0.02 and 0.90± 0.03 (one-tailed t-test, p = 0.003,
α = 0.05). The final MEI for each participant in each case is
shown in supplementary table S3.

We further compared the integral of the total MEI over time
across both fatigue and recovery trials with and without US
updates [see Fig 8(c)]. For the participants with no disability, the
average integral of MEI over both fatigue and recovery trials was
172.45± 17.43 and 201.48± 5.47 s with US updates and with
the MEI model only, respectively (one-tailed t-test, p = 0.004,
α = 0.05). The average integral of MEI over both fatigue and
recovery trials was 144.8± 3.39 and 167.90± 2.97 s for the
participant with SCI when US updates and the MEI model only
were used, respectively (one-tailed t-test, p = 0.009,α = 0.05).

C. Benchmarking Real-Time US Measurements With MEI
From a Dynamometer

It is seen in Fig. 7 that when a real-time US measurement is
available, the SDO described in (6) is used to update the model.
The amplitude of the difference in MEI between the model
update and the original model is determined by the discrepancy
between the model and measurement. However, it is unclear
if the model or the measurement is closer to the true MEI of
the muscle since the model is heavily dependent on system
identification parameters and an accurate initial condition while
the US measurement is susceptible to a variance and noise due
to the discrete time points at which measurements are taken.
To benchmark the US measurement, normalized strain values
were collected after each trial as descried in the experimental
procedure and compared to MEI recorded by the isometric
torques [see Fig. 8(d)]. The average MEI from the US and
the dynamometer after the fatigue trial was 0.76± 0.14 and
0.76± 0.13, respectively, and the average difference between



Fig. 8. Experimental results during a continuous knee extension task with MPC. (a) Integrals of average normalized FES and average motor torques across all
knee extension cycles for all participants (with no disability and with SCI) during the fatigue and recovery trials. The integral of motor input increases during the
recovery trial, while the FES integral decreases, indicating that as the muscle fatigues the hybrid exoskeleton uses less FES and more motor to perform the knee
extension task. (b) Final MEI with and without US imaging-based feedback for the fatigue trial (left) and recovery trial (right) for both participant groups. (c)
Integral of total MEI during the fatigue and recovery trials. The US measurements detect a lower MEI than just the fatigue model for both groups. (d) MEI based on
decay in isometric torque during a diagnostic stimulation pulse measured from a dynamometer and from US imaging after continuous knee extension using MPC.
The difference in MEI from US and isometric torque measurements is less than. 07 (7%) for all participants. (e) MEI from the dynamometer after the fatigue trial
with real-time US measurements and shared control compared to fatigue measurements from the dynamometer when a feedback controller using only FES was
used for continuous knee extension. The MPC with US measurements and shared control results in less fatigue.

Fig. 9. Average horizontal and vertical foot placement of the left foot during the walking experiment during which the knee joint was controlled using MPC with
US MEI updates with a shaded standard deviation for all participants. The foot position was calculated using forward kinematics from the left hip and knee joint
angles. The labels B2 and B3 represent the kinematics from participants 2 and 3 from the group without disabilities, and S1 and S2 represent the two participants
with SCI.

MEI measured from the dynamometer and real-time US was
0.03± .02. We performed a one-tailed t-test, which indicated
no statistical difference between the MEIs from real-time US
and the dynamometer (p = 0.5, α = 0.05). This indicates that
US-derived strain measurements can be used as an indicator of
MEI in real time.

D. Comparison of Shared Control to FES Only Based Knee
Extension

We conducted another isolated seated knee extension trial on
all the participants with MPC to control only FES in which no US
updates or motor was used in the controller. In this case, the aver-
age MEI measured from normalized isometric torque measure-
ments was 0.59± 0.07. In comparison, the MPC for shared mo-
tor and FES assistance yielded the average MEI as 0.76± 0.12
(one-tailed t-test, p = 0.01, α = 0.05) [see Fig. 8(e)].

E. Shared Control Framework With Real-Time US
Measurements During Walking

To show the functionality of the walking framework, we com-
puted the foot position of the left leg using forward kinematics.
The average vertical and horizontal foot position of all 40 steps
of the left leg controlled by the MPC with US measurements
is shown in Fig. 9. A positive horizontal position represents the
foot being in front of the hip, and a positive vertical position
represents the foot being above the ground. The average RMSE
in the horizontal direction between the desired and actual foot
position across all four trials of 10 steps was 0.14± 0.006,
0.12± 0.01, 0.26± 0.006, and 0.17± 0.008 meters for the
two participants with no disability and two participants with
SCI, respectively. The average RMSE in the vertical direction
was 0.03± 0.002, 0.03± 0.004, 0.09± 0.01, and 0.06± 0.004
meters for all participants, respectively. The RMSE for each



Fig. 10. Experimental results for the walking study performed on the INDEGO exoskeleton. (a) Integrals of FES and motor torque for each step plotted against
the MEI measured from US images for participants with no disability (aggregated) and SCI along with a linear regression trend line. As MEI increases, the total
integral of FES decreases, while the integral of motor torques increases.The labels S1 and S2 represent the two participants with SCI. (b) Integrals of FES and
motor inputs during the 1st and 10th steps of each trial and integrals of FES and motor inputs after the 10th step of each trial with and without US feedback. (c)
MEI during the 10th step of each trial for participants with and without disability when walking with MPC which uses the MEI model with US updates and the
model only.

TABLE II
AVERAGE INTEGRALS OF MOTOR TORQUE AND NORMALIZED FES DURING THE SWING PHASE WHILE USING SHARED CONTROL WITH REAL-TIME US MEI

UPDATES

participant during each trial in the vertical and horizontal po-
sitions is shown in Table S4. To highlight the fatigue-based
allocation during the walking task, we plotted the integral of
FES and motor inputs for each step across all 40 steps against
the MEI of each step derived from real-time US measurements
along with a linear regression trend line [see Fig. 10(a)]. The
results show that as the MEI decreases (i.e., more fatigue), the
integral of normalized FES decreases while the integral of motor
torques increases.

We additionally compared the integral of normalized FES
during the swing phase of the 1st step of each trial with the
integral of normalized FES during the swing phase of the 10th
step [see Fig. 10(b)] as well as the integral of motor torque during
the swing phase of the 1st and 10th steps for participants with
and without disability. The average integrals of normalized FES
and motor torques during the swing phase of the 1st and 10th
steps for participants with and without disability are shown in
Table II.

The individual integrals of normalized FES inputs and motor
torques with and without US feedback during the 1st and 10th
steps for all participants is shown in supplementary Tables S5–
S8.

The experimental protocol was repeated on all four partici-
pants with the MPC relying on only fatigue dynamics instead of
US feedback. The MEI for all participants at each step with US
updates compared to the model only are shown in supplementary
Fig. S1 and supplementary table S9. We compared the final
MEI during the 10th step of each trial when US was used to
update the model and when only the model was used in the
MPC framework [see Fig. 10(c)]. The average MEIs during the
10th step are shown in Table III.We also compared the integral
of normalized FES and motor torque during the swing phase of
the 10th step with and without US feedback [see Fig. 10(b)]. The
average integrals of normalized FES and motor torques during
the swing phase of the 10th step with and without US updates
are shown in Table IV.



TABLE III
AVERAGE MEI DURING THE 10TH STEP WHEN USING SHARED CONTROL

WITH AND WITHOUT US UPDATES

Fig. 11. Mean and standard deviation of knee motor torques when using the
RISE controller and MPC during the swing phase to perform a walking task.

Finally, to verify the reduced power consumption of motors
when using shared control, we compared the knee motor torques
from the RISE controller on the right knee to the motor torques
computed from the MPC as seen in Fig 11. The average integral
of motor torque across the swing phase with the RISE controller
and with MPC was 34.71± 16.88 and 9.83± 11.62 Nm-s,
respectively (one-tailed t-test, p = 0.03, α = 0.05).

F. Comparison of Shared Control With FES Only Walking

We additionally compared the shared control MPC framework
with US measurements to an FES-only walking framework in
which there was no motor assistance at the left knee joint. Partic-
ipant S2 (injury level T-10) participated in two trials of 20 steps
(10 left, 10 right). The fused MEI measurements between US and
the fatigue model during the first trial for both FES only and the
shared control framework are shown in Fig. 12. The integrals of
MEI across the walking duration of two trials are 67.26± 2.96
and 77.32± 2.86 s when using FES only and shared control,
respectively. This indicates that US-derived MEI is higher (less
fatigue) in the case of shared control when compared to FES
only for one participant with SCI, highlighting that using an
exoskeleton along with FES can induce less fatigue due to lower
FES dosage. This will likely improve fatigue resistance over an
extended time compared to the FES-only case.

VII. DISCUSSION

We demonstrate using US imaging-derived strain measures in
real-time with MPC to allocate inputs between FES and motors

Fig. 12. MEI at each walking step during the first walking trial based on
fused US-model MEI measurements for both the shared control and FES only
framework.

at the knee joint in a hybrid exoskeleton for both a continuous
knee extension task and a walking task. The results of this
study show that real-time US can be used as a biomarker for
fatigue measurements in closed loop MPC algorithms. Specif-
ically, real-time fatigue measurements from US imaging and a
dynamometer differed by less than 7% for all participants [see
Fig. 8(d)].

FES-induced fatigue leads to a sharp decay in force generation
by the stimulated muscle, which can also be observed as a
reduction in kinematic joint angle when performing dynamic
tasks such as continuous knee extension and walking. In the
presence of closed-loop control, the goal of which is to track a
prescribed trajectory, the kinematic angle decay is not observ-
able. In addition, since current state-of-the-art fatigue indicators
such as dynamometers, load cells and sEMG are either difficult
to incorporate into exoskeleton design, suffer from stimulation
artifact interference, or do not directly indicate muscle fatigue
state, there is a need for an alternative fatigue indicator. Based
on the results from this study, direct fatigue measurement can
be accomplished using US imaging.

The incorporation of US into the MPC algorithm was accom-
plished via a SDO to account for 1) the low sampling rate of
US-based fatigue measurements due to memory limitations on
the GPU as well as a tradeoff between measurement accuracy
and speed and 2) mismatches between the fatigue differential
model and real-time measurements. It is noted that the propa-
gation of fatigue dynamics is highly dependent on fatigue and
recovery time constants and a known initial condition. At the
beginning of any periodic long-term FES task, it is assumed
that the fatigue initial condition is one (no fatigue) since the
muscle starts at a rested state, but any mismatch in time con-
stants or initial condition will cause a discrepancy in the fatigue
model. In contrast, the US-derived fatigue measurement detects
unmodeled residual fatigue levels based on tissue motion. The
SDO generates a continuous fatigue estimate that reinitializes
whenever a fatigue measurement becomes available.

The MPC algorithm with real-time US measurements was
also effective at performing knee flexion and extension during
a walking task while allocating motor and FES. As seen in



TABLE IV
AVERAGE INTEGRALS OF MOTOR TORQUE AND NORMALIZED FES DURING THE SWING PHASE OF THE 10TH STEP WHILE USING SHARED CONTROL WITH

REAL-TIME US MEI UPDATES

Fig. 10(a), as the MEI increases, the integral of FES input
during the swing phase trends negatively (i.e., as the muscle
fatigues, less FES is used, and the motor torque contributes more
effort) similar to Fig. 8(a), where the integral of motor inputs
increases while the integral of normalized FES decreases during
the recovery trial of the continuous knee extension experiments.
This is further highlighted by the decrease in FES inputs between
the 1st and 10th steps of each trial [see Fig. 10(b)]. Thus, the
MPC with real-time US can adapt FES inputs based on fatigue
level during a walking task.

In addition, from the comparison of the MEI at the 10th step
for all participants when using MPC with US feedback to MEI at
the 10th step when the MPC relied only on the model, it is seen
that the final MEI from the US is lower (more fatigued) than
when relying on the model [see Fig 10(c)]. This is consistent
with the continuous knee extension study [see Fig. 8(b)]. Further,
Fig. 10(b) shows the integral of FES during the 10th step for all
trials when the MPC relies on US compared to only the model,
and it is seen that the MPC with US feedback uses less FES
than the MPC with only the model. Thus, the MPC scheme
is more sensitive to fatigue when US updates are included
than when relying only on the model. Simultaneously, it re-
duces the FES dosage and maintains good tracking performance
of the knee joint. Thus, including real-time US in the MPC
framework will lead to less overstimulation and could enable
muscle recovery over extended periods of use. In addition to
the therapeutic benefit of FES, another benefit when using MPC
during walking is that the knee motors require less power than
a traditional feedback controller, as seen in Fig. 11. The lower
power requirement has implications in exoskeleton hardware
design and has the potential to enable the use of more lightweight
motors.

While the MPC with real-time US was shown to be effective
at performing a walking task and the results indicate that the FES
dosage and motor torque are allocated based on the MEI, it is
seen that there are certain outliers in Fig. 10(a). This is because
the goal of the MPC algorithm is to track a desired knee joint
trajectory based on a leg extension model in (1), which does not
account for forces such as ground reaction forces, which may be
present during walking but not seated leg extension. Additional
challenges arise with participants with SCI, such as limitations of
the range of motion and the weakened strength of non-stimulated
muscles such as hamstrings, ankle dorsiflexors, and plantar flex-
ors. Further, desired trajectories from the FSM were designed
individually as time-based third-order polynomial trajectories,
leaving the possibility for coordination mismatch. One potential
solution would be to consider a holistic walking model which
includes trunk, hip, and knee dynamics as well as the ground

reaction forces and to design the trajectories based on virtual
constraints.

The presented results show promise in using real-time US
imaging as a fatigue biomarker in a hybrid exoskeleton. How-
ever, there are further limitations that should be addressed for
full-scale implementation as a clinical rehabilitation technique.
First, there is a tradeoff between real-time US computation time
and measurement accuracy. The computation time using the
GPU can be increased by reducing the size of the ROI of the
quadriceps, size of the search window, kernel size, and duration
of the FES-induced diagnostic contraction. Decreasing each of
these parameters has the potential to lead to additional noise
in the real-time US measurement, which could be corrected by
parameters of the SDO. An alternative option is to tune the size
of the ROI, kernel, size of the search window, and median filter
parameters to track more precise displacements. This usually
involves increasing the size of the ROI to track a larger region of
the muscle as well as the size of the kernel and search window
and would increase the sampling time, causing the MPC scheme
to rely on fatigue from the model for a longer duration. Further,
the computation time of US images can influence potential
walking speeds of the exoskeleton. For the presented results,
the trajectories were designed such that an MEI measurement
was available at each left step. To increase walking speed while
still receiving US updates, we could 1) relax speckle tracking
parameters to speed up US image computation and/or 2) design
the real-time US framework to obtain MEI measurements every
N th step, where N = 2, 3, 4. . .. The first option reduces the ac-
curacy of each individual measurement, while option 2 increases
the duration during which the MPC relies on the model without
a US update and thus leaves room for overstimulation. Another
challenge and potential problem for future research is developing
a US imaging system that is easy to don and doff and that is more
portable compared to the current US platform, which requires a
GPU, monitor, and desktop setup. In our current experimental
protocol, during the walking experiments, the US platform was
wheeled with the participant as they walked in the exoskeleton,
which creates a challenge of ensuring the probe does not slip
from the quadriceps during each step. Developing a wearable
US system that can detect real-time fatigue is the potential next
step in clinical implementation.

VIII. CONCLUSION

Overall, this study established a real-time US fatigue algo-
rithm, which can be used in conjunction with an MPC algorithm
to allocate FES and motors in a hybrid exoskeleton based on the
user’ s muscle fatigue level. The real-time fatigue measurements



were benchmarked with isometric torque measurements from a
dynamometer and implemented in real-time to perform contin-
uous leg extension as well as a walking task on a commercial
exoskeleton. The implications of this study can be expanded to
perform other functional rehabilitation tasks besides walking to
improve the overall quality of life of people with SCI.
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