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Density control of large-scale particles swarm
through PDE-constrained optimization

Carlo Sinigaglia, Andrea Manzoni, Francesco Braghin, Fellow, IEEE

Abstract—
We describe in this paper an optimal control strategy for

shaping a large-scale swarm of particles using boundary global
actuation. This problem arises as a key challenge in many swarm
robotics applications, especially when the robots are passive
particles that need to be guided by external control fields. The
system is large-scale and underactuated, making the control
strategy at the microscopic particle level infeasible. We consider
the Kolmogorov forward equation associated to the stochastic
process of the single particle to encode the macroscopic behaviour
of the particles swarm. The control inputs shape the velocity field
of the density dynamics according to the physical model of the
actuators. We find the optimal actuation considering an optimal
control problem whose state dynamics is governed by a linear
parabolic advection-diffusion equation where the control induces
a transport field. From a theoretical standpoint, we show the
existence of a solution to the resulting nonlinear optimal control
problem. From a numerical standpoint, we employ the discrete
adjoint method to accurately compute the reduced gradient
and we show how it commutes with the optimize-then-discretize
approach. Finally, numerical simulations show the effectiveness
of the control strategy in driving the density sufficiently close to
the target.

Index Terms—Swarm Control, Underactuated Passive Agents,
Optimal control of PDEs, Bilinear control systems, Distributed
systems, Density control, Finite Element method, Adjoint prob-
lem

I. INTRODUCTION

LARGE-SCALE underactuated robotic systems in the
form of particle swarms are increasingly finding ap-

plications in robotics. Micro-robots driven by the uniform
magnetic field generated by a Magnetic Resonance Imaging
(MRI) system are foreseen to be used in medical applications
[1], [2] to control swarms of robots for drug delivery in the
human body.

Particles swarms find also application in distributed space
robotics. A large-scale system of reflective particles is envi-
sioned to replace continuum monolithic apertures for advanc-
ing the current state of the art space telescope technology
[3], [4], [5] where a cloud of reflective particles is deployed
and kept in shape by external electromagnetic actuators; the
conceptual design, feasibility analysis and working principles
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have been studied in [6], [5], [7]. A fundamental advance in
the field of micro-robotics appeared very recently in [8] where
a remote laser-controlled actuation system has been developed
together with a method to mass produce a swarm of robots in
the order of millions of agents.

In this paper, we provide a method to control such large-
scale and underactuated systems by steering the macroscopic
density dynamics of the particles using methods from optimal
control theory, where the state dynamics is described by a
partial differential equation. This framework allows us to find
the boundary actuation time history that steers the swarm
towards a given target distribution. The velocity vector field
in the state dynamics is determined by boundary controls
according to the actuator physical model that ends up in a
linear combination of control functions. As a consequence, the
control functions enter bilinearly in the state equation, making
the Optimal Control Problem (OCP) nonlinear.

The robotic swarms that we consider cannot perform any
onboard computation and moves according to external stimuli.
We model the robot as a particle subjected to a velocity
field that can be externally modulated as a function of the
boundary actuation. Therefore, all the particles are subjected
to the same control field. The control authority is limited
to the boundary of the workspace and cannot be modulated
arbitrarily in space and time to guide and control each single
particle. From the control-theoretic perspective, this results in
a largely underactuated system where we aim at controlling
the macroscopic density instead of following the dynamics of
each single particle.

A. Literature survey on control of swarms of particles

The existing literature on density control of large-scale
multi-agent systems is mostly based on robotics swarm, where
each agent is able to directly exert actions to control its
motion. Since the control problem becomes intractable as the
number of individual robots gets large, control laws based on
macroscopic models of such systems have recently become
an attractive alternative to classical optimal control and path
planning methods [9]. The main idea of these methods is to op-
timize the macroscopic behavior based on a density evolution
model that takes the form of an unsteady Advection-Diffusion
(AD) equation. In [10] Pontryagin’s Minimum Principle is
used to recover optimal density motion and task allocation
in a stochastic hybrid automation one dimensional setting.

In [11], [12], the necessary optimality conditions were es-
tablished using methods from Calculus of Variations, and then
numerically solved for the case in which the control functions
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are null at the boundary. In [13], [14], the same problem
is tackled from the perspective of functional analysis stating
some well-posedness and existence results. The controllability
of the Advection-Diffusion equation using the velocity field
as control input was addressed in [15] where finite-time
and path controllability are proved for unconstrained velocity
control fields. A similar PDE macroscopic model is analysed
in [16] and general well-posedness and existence results are
obtained adapting a classical proof from [17]. Besides robotic
applications, the problem of controlling the advection field
for a steady Advection-Diffusion equation is also considered
in [18] where a regularized least-square identification problem
is solved for an unknown divergent-free velocity field. A one-
dimensional OCP in the advection field is considered in [19]
for an unsteady Advection-Diffusion equation with Dirichlet
boundary conditions, for which the control field is allowed to
vary both in space and time. A divergence free, space-time
dependent control vector field is tackled more recently in [20]
where an existence theorem for L2 controls is provided in
the case of Dirichlet boundary conditions, then an efficient
conjugate gradient method is also developed for the numerical
solution of the problem.

All the previously mentioned approaches are indeed at-
tractive for robotic systems where the local controllers can
follow without constraints on the optimal velocity vector field.
However, in our case, the velocity vector field is constrained
before-hand and is generated by boundary actuation, making
the previous methods not suitable. Boundary global actuation
is considered in [1], [2] for positioning a system of two
particles using magnetic actuation. The particles are confined
into a two-dimensional squared workspace and are subject to
a uniform global control input, each particle experiences the
same displacement and the symmetry is broken by assuming
that particles pushed against the boundary remains still. How-
ever, this method does not scale well when the number of
particles increases.

On the other hand, the reformulation as a density control
problem allows us to remove such a boundary constraint
and to develop a control algorithm that is independent of
the number of particles. In this paper, we will just assume
that the particles cannot leave the domain considering no-flux
boundary conditions. A numerical optimization algorithm is
then able to find the actuation history that drives the density
towards the target.

Compared to control strategies that make use of a PDE
model, in our case the space dependence of the velocity vector
field does not arise as an approximation of the control field as
in [11], [12], but it is imposed by the physical model of the
actuators. In particular, the velocity field v depends on a set
of control functions that allow us to ensure a nonnegativity
constraint stemming from the physical nature of the actuators.
These latter can only provide unilateral actions, thus limiting
the control authority on the induced vector field.

Finally, we note that an existence result for a similar OCP is
shown in [21], where the velocity field is affine in the controls,
however, for a Fokker-Planck equation involving Dirichlet
boundary conditionswhile Neumann no-flux boundary con-
ditions are considered in [22] where, however, the control

vector field nullify at the boundaries and the cost functional
is linear in the state variable thus simplifying the form of
the adjoint equations. Building on this work, we extend the
existence result considering a Kolmogorov equation equipped
with Neumann boundary conditions where the velocity vector
field is induced by control functions defined at the boundary
of the workspace.

B. Main contributions and paper organization

The main contributions of this paper, compared to the
existing literature, are threefold:

1) a suitable PDE model of the density evolution that is
consistent with the particles dynamics is analysed;

2) an OCP to steer the probabilistic density of the particles
towards a target distribution is set up. The boundary
control field determines the velocity that drives the state
dynamics. The existence of an optimal control in space
and time is proven under box constraints imposed by
the actuation model, then a set of first-order necessary
optimality conditions is derived. Afterwards, a numerical
approximation with respect to both space and time leads
to a discrete set of state and adjoint equations;

3) the discrete adjoint method is then used to efficiently
compute the reduced gradient, and is shown how it
commutes with its discretized continuous counterpart.
Numerical simulations are finally performed to show
the effectiveness of the algorithm considering different
target functions of increasing difficulty.

The paper is organized as follows. In Section II, the density
dynamics is established together with its dependence on the
control functions. In Section III, the OCP is set up, and
an existence theorem is proved. Then, a set of first-order
optimality conditions is derived. In Section IV, numerical
approximations of the system of optimality conditions is
carried out in view of the numerical solution of the OCP. Then,
the discrete adjoint method is compared to the “Optimize then
Discretize” approach. Numerical results are then shown in
Section V, while some conclusions then follow in Section VI.

II. DENSITY DYNAMICS: THE STATE PROBLEM

In this section we establish the single particle stochastic
model providing in detail the actuator layouts and their effect
on the motion of the particles. Then, the density dynamics
in the form of a time-dependent Advection-Diffusion partial
differential equation is derived, and some properties of the
solution of this equation are proved.

We consider a simplified two-dimensional layout given, for
the sake of simplicity, by the unit square, where the swarm
of particles is confined as shown in Figure 1. The actuator
stacks are positioned at each of the four sides and exert their
action in the orthogonal direction with vanishing intensity as
the distance from the relative source grows. The same layout
was considered in [23] and in [24], although in these works
the modeling was carried out at the discrete level from the
beginning. Under the influence of the force field generated by
the actuators, we assume that the particles motion follows the
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Figure 1. Layout of the control system, the actuators on the four sides
generate a velocity field that determines the evolution of the density inside
the workspace. The control functions are the intensities of the actuators. The
boundary actuation induces a velocity field on all the particles located in the
respective row or column.

stochastic differential equation (SDE) of a reflective diffusion
process [15].

Consider a swarm of N particles that are deployed on the
domain Ω = (0, 1)2 with boundary Γ = ∂Ω. The position
of each particle is denoted by Xi(t), where t denotes time
and i the particle’s index. We assume that the position of
each particle evolves according to a stochastic process and
that the particles are noninteracting. Therefore, the random
variables corresponding to the particle dynamics are inde-
pendent and identically distributed, hence, we can drop the
subscript i and consider a single stochastic process X(t) ∈ Ω.
The boundary actuation induces a deterministic velocity field
v(X(t), t) ∈ R2, while the motion is perturbed by a two-
dimensional Wiener process W(t).

This model is able to capture simultaneously the stochas-
tic effect due to Gaussian diffusion, the deterministic mo-
tion imposed by the actuators and the reflection due to the
boundedness of the workspace. The equation governing the
microscopic particle dynamics is:

{
dX(t) = v(X(t), t)dt+

√
2µdW(t) + n(X(t))dψ(t)

X(0) = X0,
(1)

where X0 ∈ R2 is the initial position of the particle, ψ(t) ∈
R is the reflecting function or local time (see e.g. [15]) that
constrains X(t) to belong to the domain Ω, µ > 0 is the
diffusion constant and n(x) is the outward normal at x ∈
∂Ω. Equation (1) is the same model used in [13], [14], [15],
[16] to describe the microscopic dynamics of a robotic agent.
Considering the swarm of particles as a continuum, the density
dynamics is described by the following Kolmogorov forward

equation:

∂q

∂t
+∇ · (−µ∇q + vq) = 0 in Ω× (0, T ),

(−µ∇q + vq) · n = 0 on Γ× (0, T ),

q(x, 0) = q0(x) in Ω at t = 0
(2)

where q : Ω× [0, T ] 7→ R represents the probability density of
the particles. Equation (2) is related to the SDE (1) through
the relation P(X(t) ∈ A) =

∫
A
q(x, t) dΩ for all t ∈ [0, T ]

and all measurable A ⊂ Ω. Note that Neumann conditions
are imposed on the whole boundary, prescribing a no-flux
condition.

Remark 1 Note that the density dynamics is consistent with
the microscopic particle dynamics in the sense that the total
mass is conserved, and the particles are not allowed to leave
Ω. Indeed, defining M(t) =

∫
Ω
q dΩ as the total mass in the

workspace, we have that:

Ṁ(t) =

∫
Ω

∂q

∂t
dΩ =

∫
Ω

−∇ · (−µ∇q + vq) dΩ

=

∫
Γ

−(−µ∇q + vq) · n dΓ = 0,

using the Divergence Theorem and the no-flux boundary
condition. The state dynamics in (2) is a particular case of the
more general conormal derivative problem for linear parabolic
PDEs, see, e.g. [17], [16], [25].

The boundary control field induces a velocity field in the
domain Ω. We assume that the actuators have a vanishing
effect ∝ e−cx where x stands for the distance from the actuator
and c ∈ R is a constant scalar that defines the decay rate. Such
modeling choice is an abstraction of the typical behaviour of
magnetic actuators [26]. However, we stress the fact that the
functional form of the decay rate does not affect the structure
of the problem, and different kind of actuating models (e.g.
laser-based) can be used. Hence, the velocity field induced by
the control functions takes the form:

v(x, t) =

[
u4(x2, t)e

−cx1 − u2(x2, t)e
−c(1−x1)

u1(x1, t)e
−cx2 − u3(x1, t)e

−c(1−x2)

]
. (3)

The components v1(x1, x2, t) and v2(x1, x2, t) of the velocity
field are linear combinations of the actuator functions defined
on the boundary, weighted by negative exponentials. We note
that the vector field v inherits the regularity of the control
functions u1, . . . , u4.
The well-posedness of the state problem can be proved by
adapting classical results found, e.g. in [17], [27], [25].

We will now describe the functional setting for our problem
and prove some estimates that will be used in Section III to
show the existence of optimal controls. We define the space
of controls for each boundary control function as Uad,i :=
{u ∈ Ui s.t. 0 ≤ ui(t) ≤ umax a.e. on Γi} with
Ui = L2(0, T ;L∞(Γi)); then we group the boundary control
functions in a vector u = (u1 , . . . , u4) with associated space
Uad = Uad,1 × Uad,2 × Uad,3 × Uad,4 endowed with the norm

‖u‖U =
√∑4

i=1 ‖ui‖
2
Ui . First of all we show that the norm
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of the velocity field is bounded by the norm of the control
field.

Lemma 1 (Estimate on the velocity field) Assume that u ∈
Uad. Then, the following inequality holds:

‖v‖2L2(0,T ;L∞(Ω)2) ≤ 8 ‖u‖2U . (4)

Proof: see the Appendix. �

In the remainder of the paper we will rely on the weak
formulation of the state problem (2). This is obtained by
multiplying (2) by a test function φ ∈ H1(Ω) and integrating
over Ω. The Divergence Theorem is then applied to handle
the boundary condition so that, for every t > 0, we obtain the
following problem: find q ∈ H1(0, T ;H1(Ω), H1(Ω)∗) such
that ∀φ ∈ H1(Ω), a.e. t ∈ (0, T ) it holds that{ ∫

Ω
∂q(t)
∂t φdΩ +

∫
Ω

(µ∇q(t) · ∇φ− v(t) · ∇φ q(t))dΩ = 0

q(0) = q0.
(5)

We can now define the bilinear forms associated to this
problem as:

a(q, φ) = d(q, φ)+b(q, φ;v(t)) =

∫
Ω

(µ∇q·∇φ−v(t)·∇φ q) dΩ

(6)
where d(q, φ) :=

∫
Ω
µ∇q ·∇φdΩ is associated to the diffusion

term, while b(q, φ;v(t)) := −
∫

Ω
v(t) · ∇φ q dΩ is associated

to the advection term. The details on the derivation of the
bilinear forms (6) is given in the Appendix.

Remark 2 Note that the weak formulation can be expressed
equivalently as: find q such that ∀φ ∈ H1(Ω), a.e. t ∈ (0, T )∫

Ω

∂q(t)

∂t
φ+ µ∇q(t) · ∇φ+ v(t) · ∇q φ dΩ

+

∫
Ω

(∇ · v(t)) q(t)φ dΩ−
∫

Γ

v(t)q(t) · nφdΓ = 0

(7)

and in this form it will be used for the numerical approxima-
tion in Section IV.

The bilinear form a(q, φ) is weakly coercive, according to
the following Lemma.

Lemma 2 (Weak coercivity of a(q, φ)) Under the assump-
tions of Lemma 1 and provided µ > 0, there exists λ(t) > 0
such that the bilinear form a(q, φ) =

∫
Ω

(µ∇q · ∇φ − v(t) ·
∇φ q)dΩ satisfies the Gårding inequality

a(q, q) + λ(t) ‖q‖2L2(Ω) ≥ α0(t) ‖q‖2H1(Ω)

for some α0(t) ≥ 0. In particular, we can choose λ(t) as

λ(t) =
‖v(t)‖2L∞(Ω)2

µ
. (8)

We can also set:

ᾱ0 = min
0≤t≤T

{
µ

2
,
‖v(t)‖2L∞(Ω)2

2µ

}
. (9)

Proof: see the Appendix. �

Now, we can prove a series of estimates on the norm of the
state and its time derivative that ensure the well-posedness of
the state equation, and will also be useful when showing the
existence theorem for the OCP in Section III.

Theorem 1 (Well-posedness of the state problem )
Assume that u ∈ Uad, the initial density q0 ∈ L2(Ω)
and µ > 0 is finite. Then, there exists a unique weak
solution q ∈ L2(0, T ;H1(Ω)) to the state problem (2)
with q̇ ∈ L2(0, T ;H1(Ω)∗), such that the following energy
estimates hold:

‖q‖2L∞(0,T ;L2(Ω)) ≤ e
16
µ ‖u‖

2
U ‖q0‖2L2(Ω) , (10a)

‖q‖2L2(0,T ;L2(Ω)) ≤ T e
16
µ ‖u‖

2
U ‖q0‖2L2(Ω) , (10b)

‖q‖2L2(0,T ;H1(Ω)) ≤
1

ᾱ0

(1

2
+

8

µ
‖u‖2U e

16
µ ‖u‖

2
U

)
‖q0‖2L2(Ω) ,

(10c)

‖q̇‖2L2(0,T ;H1(Ω)∗)

≤
(µ2

ᾱ0
+ 16

(
1 +

µ

ᾱ0

)
‖u‖2U e

16
µ ‖u‖

2
U

)
‖q0‖2L2(Ω) , (10d)

where ᾱ0 is the minimum weak coercivity constant defined in
Equation (9).

Proof: see the Appendix. �

III. THE OPTIMAL CONTROL PROBLEM

In this section, we state our OCP and derive a system of
first-order necessary optimality conditions in the continuous
framework, using the Lagrange multiplier approach, without
any approximation on the form of the control functions and
on the resulting state density function. Before doing that, we
provide a mathematical analysis of the OCP by showing the
existence of optimal controls and the differentiability of the
control-to-state map.

The control problem can be framed as finding the boundary
control actuation functions u ∈ Uad such that an initial density
q0(x) is optimally steered towards a target density qT (x)
while using as little actuation as possible. Obviously, these
are conflicting objectives since zero actuation would end up
in a uniform distribution due to diffusion. Formally, we can
encode our objectives in a quadratic cost functional and write
the OCP as:

J̃(q,u) −→ min
q,u

s.t.
∂q
∂t +∇ · (−µ∇q + vq) = 0 in Ω× (0, T )

(−µ∇q + vq) · n = 0 on Γ× (0, T )

q(x, 0) = q0(x) in Ω at t = 0

and 0 ≤ ui(x1, t) ≤ umax, i = {1, 3}

0 ≤ ui(x2, t) ≤ umax, i = {2, 4}.
(11)
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where

J̃(q,u) =
1

2

∫
Ω

(q(x, T )− qT (x))2 dΩ

+
α

2

4∑
i=1

∫ T

0

∫
Γi

ui(s, t)
2 dΓ dt.

A. Analysis of the Optimal Control Problem

In this subsection we prove the existence of an optimal con-
trol for Problem (11) and the differentiability of the control-
to-state map. For a fixed initial condition q0 ∈ L2(Ω), we
define q = Ξ(u) as the control-to-state-map, that is the state
dynamics generated by the control function u ∈ Uad.

Theorem 2 (Differentiability of the control-to-state map)
The control-to-state map q = Ξ(u) is Fréchet differentiable
and the directional derivative z = Ξ′[u]h at u ∈ Uad in the
direction h ∈ Uad is the solution of:
∂z

∂t
+∇ · (−µ∇z + vuz) = −∇ · (vhq) in Ω× (0, T )

(−µ∇z + vuz) · n = −vh · nq on Γ× (0, T )

z(x, 0) = 0 in Ω at t = 0
(11 bis)

where vu and vh are the velocity vector fields generated
by u and h respectively, and q = Ξ(u).

Proof: see the Appendix. �

Finally, we show that at least an optimal control exists for
the OCP (11).

Theorem 3 (Existence of an optimal control) Let q0 ∈
L2(Ω). Consider the minimization problem of the reduced cost
functional J(u) = J̃(Ξ(u),u) over Uad, where J̃ is defined
in (11). Then, there exists a pair (ū, q̄) such that q̄ = Ξ(ū)
and ū minimizes J on Uad.

Proof:
We already know that the state problem (11) is well

posed in the space Y = H1(0, T ;H1(Ω), H1(Ω)∗)
where H1(0, T ;H1(Ω), H1(Ω)∗) ={
y ∈ L2(0, T ;H1(Ω)) : ẏ ∈ L2(0, T ;H1(Ω)∗)

}
, that is

for every u ∈ Uad, problem (11) has a unique solution
q = Ξ(u) ∈ Y and that, thanks to the estimates (10c) and
(10d),

‖q‖2Y ≤ C0(‖u‖2U ) ‖q0‖2L2(Ω) (12)

where C0 =
(

1
ᾱ0

(
1
2 + 8

µ ‖u‖
2
U e

16
µ ‖u‖

2
U

)
+
(
µ2

ᾱ0
+ 16

(
1 +

µ
ᾱ0

)
‖u‖2U e

16
µ ‖u‖

2
U

))
.

Moreover, the control-to-state map is F-differentiable (see
Theorem 2).

First of all, inf(q,u)∈Y×U J̃(q,u) = I > −∞ and the set
of feasible points is nonempty since J̃(q,u) ≥ 0.

For the sake of simplicity, we redefine the weak form of the
state Equation (5) as: find q such that ∀φ ∈ H1(Ω)

〈q̇(t), φ〉H1(Ω)∗,H1(Ω)+d(q(t), φ)+b(q(t), φ;u(t)) = 0, (13)

where 〈q̇, φ〉H1(Ω)∗,H1(Ω) =
∫

Ω
q̇φ dΩ.

We start by defining the operators associated to the bilinear
forms d and b defined in Equation (6), then, using the estimates

on the state equations we prove that they are bounded. The
functional D : H1(Ω) 7→ H1(Ω)∗ associated to the bilinear
form d is:

〈D q(t), φ〉H1(Ω)∗,H1(Ω) = d(q(t), φ) = µ

∫
Ω

∇q(t) · ∇φdΩ

∀φ ∈ H1(Ω). From the definition of norm in the dual space
H1(Ω)∗ we have:

‖D q(t)‖H1(Ω)∗ ≤ µ ‖q(t)‖H1(Ω)

while squaring and integrating in time we get:

‖D q‖2L2(0,T ;H1(Ω)∗) ≤ µ
2 ‖q‖2L2(0,T ;H1(Ω))

≤ µ2

ᾱ0

(1

2
+

8

µ
‖u‖2U e

16
µ ‖u‖

2
U

)
‖q0‖2L2(Ω) ≤ C

for some constant C ≥ 0, since ‖u‖2U is bounded and
q0 ∈ L2(Ω). Note that we have used the estimate obtained in
Theorem 1. The functional B : H1(Ω) 7→ H1(Ω)∗ associated
to the bilinear form b is:

〈B(u(t), q(t)), φ〉H1(Ω)∗,H1(Ω) = b(q(t), φ;u(t))

=

∫
Ω

−q(t)v(u(t)) · ∇φdΩ ∀φ ∈ H1(Ω).

Now we show that B(u, q) is bounded. Using Cauchy-Schwarz
inequality we obtain:

|〈B(u(t), q(t)), φ〉H1(Ω)∗,H1(Ω)| = |b(q(t), φ;u(t))|

=

∣∣∣∣∫
Ω

q(t)v(u(t)) · ∇φdΩ

∣∣∣∣
≤ ‖v(u(t))‖L∞(Ω)2 ‖q(t)‖L2(Ω) ‖φ‖H1(Ω)

using the definition of norm in H1(Ω)∗ we have:

‖B(u(t), q(t))‖H1(Ω)∗ ≤ ‖v(u(t))‖L∞(Ω)2 ‖q(t)‖L2(Ω) ,

while squaring and integrating over time we have:

‖B(u, q)‖2L2(0,T ;H1(Ω)∗) ≤ ‖q‖
2
L∞(0,T ;L2(Ω)) ‖v‖

2
L2(0,T ;L∞(Ω)2) .

Finally, we use the estimates found in Lemma 1 and Theorem
1 to conclude that:

‖B(u, q)‖2L2(0,T ;H1(Ω)∗) ≤ 8e
16
µ ‖u‖

2
U ‖q0‖2L2(Ω) ‖u‖

2
U ≤ C

for some constant C ≥ 0. We can now recast the state equation
in the dual space H1(Ω)∗ by defining:

G(q,u) =

(
q̇(t) +Dq(t) +B(u(t), q(t))

q(0)− q0

)
(14)

so that the state problem is G(q,u) = 0 a.e. t ∈ (0, T ).
A minimizing sequence {(qk,uk)} is bounded in Y ×U . Let

{un}n≥1 be a minimizing sequence such that lim
n→∞

J(un) = I

where I = inf
u∈Uad

J(u) and the associated sequence of states

{qn}n≥1 such that qn satisfies Equation (14) for the control
un. Then, thanks to the definition of Uad, we have that ‖un‖U
is bounded and from Equation (12) we deduce that ‖qn‖Y is
bounded as well.

The set of feasible points is weakly* sequentially closed
in Y × U . Given the estimates on qn and un, there exists a
subsequence such that:
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un
∗
⇀ ū (weakly star) in U

qn
∗
⇀ q̄ (weakly star) in L∞(0, T ;L2(Ω))

qn ⇀ q̄ (weakly) in L2
(
0, T ;H1(Ω)

)
(15a)

q̇n ⇀ ψ (weakly) in L2
(
0, T ;H1(Ω)∗

)
(15b)

Dqn ⇀ χ (weakly) in L2
(
0, T ;H1(Ω)∗

)
B (un, qn) ⇀ Λ (weakly) in L2

(
0, T ;H1(Ω)∗

)
.

Note that we have that ψ = ˙̄q and χ = Dq̄. Moreover, from
Equations (15a) and (15b) we have that qn ⇀ q̄ in Y and
hence qn(0) ⇀ q̄(0) in L2(Ω).

Finally we prove that B(ū, q̄) = Λ. We can write:∫ T

0

〈B(ū, q̄)− Λ, φ〉 dt

=

∫ T

0

∫
Ω

(−q̄ v(ū) + lim
n→∞

qn v(un)) · ∇φdΩ dt

= − lim
n→∞

∫ T

0

∫
Ω

(q̄ v(ū)− qn v(un)) · ∇φdΩdt

= − lim
n→∞

∫ T

0

∫
Ω

q̄ (v(ū)− v(un)) · ∇φdΩdt

− lim
n→∞

∫ T

0

∫
Ω

v(un)(q̄ − qn) · ∇φdΩdt ∀φ ∈ H1(Ω).

(16)
Since v(u) =

∑4
i=1 biui (see Appendix B), we have v(ū)−

v(un) =
∑4
i=1 bi(ūi − ui,n). Hence, for the first term in

Equation (16), we can write:

− lim
n→∞

∫ T

0

∫
Ω

q̄ (v(ū)− v(un)) · ∇φdΩdt

= lim
n→∞

∫ T

0

∫
Ω

q̄

4∑
i=1

bi(ui,n − ūi) · ∇φdΩdt

= lim
n→∞

4∑
i=1

∫ T

0

∫
Ω

q̄ bi · ∇φ(ui,n − ūi) dΩdt.

(17)

We now prove that the limit in Equation (17) is equal
to zero. bi is an analytic function in Ω thus q̄ bi · ∇φ ∈
L2(0, T ;L1(Ω)) and the domain Ω can be written as the
Cartesian product Γ1 × Γ2 = (0, 1)× (0, 1) therefore for the
control function u1 we have:

lim
n→∞

∫ T

0

∫
Ω

q̄ b1 · ∇φ(u1,n − ū1) dΩdt

= lim
n→∞

∫ T

0

∫
Γ1

∫
Γ2

q̄ b1 · ∇φdΓ2 (u1,n − ū1) dΓ1 dt = 0

since, thanks to Fubini’s Theorem, see e.g. [28], Chapter 4,
we have

∫
Γ2
q̄ b1 ·∇φdΓ2 ∈ L2(0, T ;L1(Γ1)) and u1,n

∗
⇀ ū1.

The same resoning holds for the control functions u2, u3, u4.
Note that, thanks to Aubin-Lions Lemma [29], the embed-

ding H1(0, T ;H1(Ω), H1(Ω)∗) ↪→ L2(0, T ;L2(Ω)) is com-
pact. Thus, {qn} admits a subsequence strongly convergent
to q̄ in L2(0, T ;L2(Ω)). Hence, regarding the second term in

Equation (16), we have:∣∣∣∣∣
∫ T

0

∫
Ω

v(un)(q̄ − qn) · ∇φdΩdt

∣∣∣∣∣
≤ ‖v(un)‖L∞(Q) ‖q̄ − qn‖L2(0,T ;L2(Ω)) ‖∇φ‖L2(0,T ;L2(Ω)) ,

so that:

lim
n→∞

∣∣∣∣∣
∫ T

0

∫
Ω

v(un)(q̄ − qn) · ∇φdΩdt

∣∣∣∣∣ = 0,

since qn → q̄ strongly and ‖v(un)‖L∞(Q) is uniformly
bounded.

Since Γi is bounded for i = 1 . . . 4, the weak star
convergence of un,i in L2(0, T ;L∞(Γi)) to some ūi ∈
L2(0, T ;L∞(Γi)) implies weak convergence of un to ū in
any L2(0, T ;Lp(Γ)), 1 ≤ p < ∞, and in particular in
L2(0, T ;L2(Γ)). Then, exploiting the fact that qn weakly
converges to q̄ in L2(0, T ;H1(Ω)) and that J̃(q,u) is convex
and continuous in L2(0, T ;H1(Ω)) × L2(0, T ;L2(Γ)), we
conclude that:

J(ū) ≤ lim
n→∞

inf J(un) = I;

thus, the pair (ū, q̄) is an optimal pair for the considered
optimal control problem. �

B. Optimality conditions

We now derive a set of first-order optimality conditions
using the Lagrangian method [30]. Using this idea, we obtain
an explicit expression for the gradient of the cost functional
in the continuous setting. The Lagrangian functional L :
V × U ×W∗ 7→ R is defined as

L(q,u, p) = J̃(u, q) + 〈p,G(q,u)〉W∗,W
where V = H1(0, T ;H1(Ω), H1(Ω)∗) and W =
L2(0, T ;H1(Ω)∗) so that state, control and adjoint variables
are considered independently. Therefore, the set of first-order
necessary optimality conditions consists of imposing that the
Gateaux derivative of the Lagrangian with respect to the triple
(q,u, p) along an arbitrary variation (ψ,h, φ) is equal to zero.
In our case, the Lagrangian takes the explicit form

L = J̃(u, q)−
∫

Ω

∫ T

0

∂q

∂t
p+∇· (−µ∇q+vq)p dΩdt, (18)

where p : Ω × [0, T ] 7→ R is the adjoint variable relative
to the dynamic constraint. In order to derive the adjoint
system fulfilled by p, it is useful to rearrange some terms
of the Lagrangian so that we can express the portion of the
Lagrangian relative to the dynamic constraint as:∫

Ω

∫ T

0

∂q

∂t
p+∇ · (−µ∇q + vq)p dΩdt

=

∫
Ω

q(x, T )p(x, T ) dΩ−
∫

Ω

q(x, 0)p(x, 0) dΩ

−
∫

Ω

∫ T

0

q
∂p

∂t
dtdΩ +

∫
Γ

∫ T

0

(µ∇pq) · ndtdΓ

+

∫
Ω

∫ T

0

−µ∆pq dtdΩ−
∫

Ω

∫ T

0

v · ∇p dtdΩ.
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The adjoint dynamics is obtained by imposing L′q[ψ] = 0,
hence

L
′

q[ψ] =

∫
Ω

(q(x, T )− qT (x))ψ(x, T ) dΩ

−
∫

Ω

∫ T

0

(
−µ∆p− ∂p

∂t
− v · ∇p

)
ψ dΩ dt

−
∫

Γ

∫ T

0

µ∇p · nψ dtdΓ

−
∫

Ω

ψ(x, T )p(x, T ) dΩ = 0

where ψ(x, 0) = 0 since the initial condition on q(x, t) is
fixed. The adjoint dynamics thus reads:

− ∂p

∂t
− µ∆p− v · ∇p = 0 in Ω× (0, T )

∇p · n = 0 on Γ× (0, T )

p(x, T ) = q(x, T )− qT (x) in Ω at t = T.

(19)

Note that the adjoint problem is backward in time, and a
final time condition is imposed. We also highlight that the
velocity field v appears with an opposite sign compared to the
state equation. Furthermore, even if the velocity field varies
in space (that is ∇ ·v 6= 0), this dependence does not directly
affect the adjoint equation. Finally, the boundary conditions
of the adjoint problem are of homogeneous Neumann type
while in the state equation we had Neumann no-flux boundary
conditions. Up to now, we have not taken into account the
explicit dependence of the velocity field v from the set
of control actions (i.e. the dependence v = v(u)) that is
formalized in Equation (3). Interestingly, this dependence does
not affect the derivation of the adjoint equation. The reduced
gradient is obtained by imposing L′u[h] = 0. The gradient
relative to each control function is derived by taking a variation
along that direction only. For the sake of clarity, we rewrite the
terms of the Lagrangian that depends on the control functions
as:

L = . . .+
α

2

∫
T

4∑
i=1

∫
Γi

ui(xi, t)
2 dΓ dt

+

∫
Ω

∫ T

0

v · ∇p qdΩdt

= . . .+
α

2

∫
T

4∑
i=1

∫
Γi

ui(xi, t)
2 dΓ dt

+

∫
Ω

∫ T

0

q v1
∂p

∂x1
+ q v2

∂p

∂x2
dΩdt

where, substituting the form of v1 and v2 in Equation (3), we
have:∫

Ω

∫ T

0

q v1
∂p

∂x1
+ q v2

∂p

∂x2
dΩdt

=

∫
Ω

∫ T

0

q
(
u4(x2, t)e

−cx1 − u2(x2, t)e
−c(1−x1)

) ∂p
∂x1

dΩdt

+

∫
Ω

∫ T

0

q
(
u1(x1, t)e

−cx2 − u3(x1, t)e
−c(1−x2)

) ∂p
∂x2

dΩdt.

The Gateaux derivative with respect to the control function u1

along the direction h1 is:

L
′

u1
[h1] = α

∫ T

0

∫
Γ1

u1(x1, t)h1(x1, t) dt dΓ

+

∫
Ω

∫ T

0

e−cx2 q
∂p

∂x2
h1(x1, t)dΩdt.

(20)

In our case, Ω = (0, 1)2 and the function u1(x1, t) : [0, 1] ×
[0, T ] → R is a function of the x1 variable only, thus, the
integral in (20) can be split and simplified as:

L
′

u1
[h1] = α

∫ T

0

∫ 1

0

u1 h1 dx1 dt

+

∫ 1

0

∫ 1

0

∫ T

0

e−cx2 q
∂p

∂x2
h1 dx1 dx2 dt

=

∫ T

0

∫ 1

0

[
αu1 +

∫ 1

0

q e−cx2
∂p

∂x2
dx2

]
h1 dx1 dt

=

∫ T

0

∫ 1

0

∇J1(x1, t)h1(x1, t) dx1 dt ,

for any variation of the first control function h1(x1, t). We
have identified the reduced gradient of the cost functional J
with respect to the control function u1 as:

∇J1(x1, t) = αu1(x1, t) +

∫ 1

0

q e−cx2
∂p(x1, x2, t)

∂x2
dx2.

The gradients with respect to u2, u3 and u4 are obtained in
a similar way. In the continuous setting, the set of first-order
necessary conditions that the optimal triple (q?,u?, p?) must
satisfy is given by:
• the optimal state dynamics:

∂q?

∂t
+∇ · (−µ∇q? + vu?q

?) = 0 in Ω× (0, T )

(−µ∇q? + vu?q
?) · n = 0 on Γ× (0, T )

q?(x, 0) = q0(x) in Ω at t = 0

• the adjoint dynamics:

− ∂p?

∂t
− µ∆p? − vu? · ∇p? = 0 in Ω× (0, T )

∇p? · n = 0 on Γ× (0, T )

p?(x, T ) = q?(x, T )− qT (x) in Ω at t = T
(21)

and the variational inequalities:

∫ 1

0

∫ T

0

∇Ji(ui − u?i ) dxk dt ≥ 0 ∀i = 1, . . . , 4 ∀u ∈ Uad

where k = 1 for i = {1, 3} and k = 2 for i = {2, 4}.
Note that the vector field vu depends on the control vector as
shown in Equation (3); see the Appendix B for further details.
The functional relationship v = v(u) affects the expression
of the gradient of the reduced cost functional while does not
influence directly the form of the adjoint problem.

Remark 3 (Controllability issues) The controllability prop-
erties of the Kolmogorov forward equation with no-flux
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boundary conditions have been studied in [15] obtaining
weaker conditions on the target and initial densities. [31]
considers the controllability problem around a nominal tra-
jectory where the control vector field is defined in a compact
region of the workspace, as stated in the paper their derivation
strongly relies on the Dirichlet boundary conditions and results
concerning a no-flux boundary are yet to be established. Very
recently, [32] established asymptotic controllability with a
scalar control in the diffusive term and no-flux boundary
conditions. In these works the control vector field is the
velocity field itself, either in the whole domain or in a compact
subset of it. In our case, the control actions are defined
along the boundary of the domain and are mapped to the
velocity field though a function that depends on the actuation
mechanism. The rigorous controllability analysis for our case
is left to future work but we show through numerical test cases
that relatively complex target densities can be approximately
reached. As can be intuitively guessed, closed shapes cannot
be reached with sufficient accuracy.

IV. NUMERICAL APPROXIMATION

In this Section, the control functions are approximated
with one-dimensional Radial Basis Functions (RBF) while the
PDEs arising from state and adjoint dynamics are discretized
in space with the Finite Element Method (FEM) thus pursuing
an “Optimize-then-Discretize” (OtD) approach. Afterward, we
reformulate the control problem in the so-called “Discretize
then Optimize” (DtO) framework and we draw some similari-
ties between the resulting control problems obtained following
either strategies.

A. Optimize-then-Discretize

The space of continuous functions in which the set of control
functions is taken is approximated in space with a finite
number of basis functions as:

u1(x1, t) =

Nc∑
i=1

ψi(x1)u1,i(t); (22)

under this choice applying Theorem 1 is straightforward if we
take an appropriate set of basis functions ψi(x1). The form
of the adjoint Equation (21) is unchanged, we just need to
specialize the form of the vector field v determined by the
approximation of control functions uk in its expression as:

− ∂p

∂t
− µ∆p− v · ∇p = −∂p

∂t
− µ∆p

−
Nc∑
i=1

ψi(x2)
(
u4,i(t)e

−cx1 − u2,i(t)e
−c(1−x1)

) ∂p
∂x1

−
Nc∑
i=1

ψi(x1)
(
u1,i(t)e

−cx2 − u3,i(t)e
−c(1−x2)

) ∂p
∂x2

= 0,

whereas to recover the form of the gradient it is easier to
modify the term in the cost functional that weights the control
actions as:

Jc =
α

2

∫ T

0

4∑
k=1

Nc∑
i=1

u2
k,i(t) dt.

This change makes sense since we have no control on the ψi
basis functions that had been chosen beforehand. The reduced
gradient is recovered by taking a variation along each u1,i.
We will derive the optimality conditions for the generic set of
basis functions ψi and then adapt it to a specific choice later.
The reduced gradient for the control coefficient related to the
i-th basis function of actuator 1 is:

∇J1,i(t) = αu1,i(t) +

∫
Ω

ψi(x1)e−cx2 q
∂p

∂x2
dΩ,

while the other components are obtained in the same way.
Note that since we have prescribed a fixed spatial shape for the
control functions, the reduced gradients are functions of time
only and measure the sensitivity to variations in the control
coefficients uk,i for the i-th coefficients of the k-th control
function. Since there are 4 control functions (i.e. one for each
side) and Nc basis functions, we have 4×Nc reduced gradients
as functions of time.

We proceed in the numerical approximation of the OCP
resorting to a Finite Element Method (FEM). The state and
adjoint variables are expressed as linear combinations of a set
of basis functions, using the same basis for both state and
adjoint problems. This choice allows us to draw an interesting
comparison between the OtD and DtO approaches. The state
and adjoint functions are then approximated as:

q(x, t) =

Nq∑
i=1

φi(x)qi(t), (23)

p(x, t) =

Np∑
i=1

φi(x)pi(t), (24)

where we also choose Np = Nq . We select piecewise linear,
globally continuous ansatz functions φi (P1 finite elements).
The derivation of the resulting system of ordinary differential
equations (ODEs) is standard practice in the treatment of linear
parabolic PDEs with the FEM. However, some care is needed
for the case at hand because the control functions appear in the
Neumann boundary conditions of the state equation. Thus, we
carry out the complete derivation of the ODE system starting
from the weak formulation of the state equation (7).

First of all, we substitute in Equation (7) the state approxi-
mation (23) and the form of v in Equation (3) with the spatial
control approximation in Equation (22). We rename w the
test function and we assume it belongs to the same finite
dimensional space, that is w =

∑Nq
i=1 φi wi. The state equation

(7) must be satisfied for each basis function φi. Carrying out
the substitutions we obtain the usual mass matrix M , whose
elements are defined as:

(M)ij =

∫
Ω

φj(x)φi(x) dΩ,

and the diffusion matrix A whose elements are:

(A)ij =

∫
Ω

µ∇φj(x) · ∇φi(x) dΩ.
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The pure transport term is somewhat more involved and
need to be split as:∫

Ω

v · ∇q φi dΩ =

∫
Ω

v1
∂q

∂x1
φi dΩ +

∫
Ω

v2
∂q

∂x2
φi dΩ,

for the v1 term we have:∫
Ω

v1
∂q

∂x1
φi dΩ

=

∫
Ω

(
u4(x2, t)e

−cx1 − u2(x2, t)e
−c(1−x1)

) ∂q
∂x1

φi dΩ

=

∫
Ω

u4(x2, t)e
−cx1

∂q

∂x1
φi dΩ

−
∫

Ω

u2(x2, t)e
−c(1−x1) ∂q

∂x1
φi dΩ

=
(∫

Ω

Nc∑
k=1

Nq∑
j=1

ψk e
−cx1

∂φj
∂x1

φi dΩ
)
u4,k(t)qj(t)

−
(∫

Ω

Nc∑
k=1

Nq∑
j=1

ψk e
−c(1−x1) ∂φj

∂x1
φi dΩ

)
u2,k(t)qj(t).

We define the matrices B4,k and B2,k as:

(B4,k)ij =

∫
Ω

ψk(x2) e−cx1
∂φj(x)

∂x1
φi(x) dΩ,

(B2,k)ij =

∫
Ω

ψk(x2) e−c(1−x1) ∂φj(x)

∂x1
φi(x) dΩ.

Carrying out the same substitutions, the v2 component deter-
mines the matrices B1,k and B3,k.

Now we examine the reaction term generated by the diver-
gence of the velocity vector field:∫

Ω

(∇ · v) q φi dΩ =

∫
Ω

∂v1

∂x1
q φi dΩ +

∫
Ω

∂v2

∂x2
q φi dΩ;

regarding the v1 term we note that:

∂v1

∂x1
=

∂

∂x1

(
u4(x2, t)e

−cx1 − u2(x2, t)e
−c(1−x1)

)
= −cv1,

and thus:∫
Ω

∂v1

∂x1
q φi dΩ

=

∫
Ω

−c v1 q φi dΩ

=

∫
Ω

−c
(
u4(x2, t)e

−cx1 − u2(x2, t)e
−c(1−x1)

)
q φi dΩ

=
(∫

Ω

Nc∑
k=1

Nq∑
j=1

−cψk e−cx1 φj φi dΩ
)
u4,k(t)qj(t)

−
(∫

Ω

Nc∑
k=1

Nq∑
j=1

−cψk e−c(1−x1) φj φi dΩ
)
u2,k(t)qj(t).

We define the matrices C4,k and C2,k as:

(C4,k)ij =

∫
Ω

−cψk(x2) e−cx1 φj(x)φi(x) dΩ

(C2,k)ij =

∫
Ω

−cψk(x2) e−c(1−x1) φj(x)φi(x) dΩ.

With the same idea we carry out the derivation of the matrices
C1,k and C3,k regarding the v2 terms.

Finally, we treat the term generated by the boundary con-
ditions: ∫

Γ

−vq · nφi dΓ

=

∫
Γ

−v1 n1 q φi dΓ +

∫
Γ

−v2 n2 q φi dΓ;

regarding the v1 term we have:∫
Γ

−v1n1 q w dΓ

=

∫
Γ

−
(
u4(x2, t)e

−cx1 − u2(x2, t)e
−c(1−x1)

)
n1 q w dΓ

=
(∫

Γ

Nc∑
k=1

Nq∑
j=1

−ψk(x2)e−cx1φj φin1 dΓ
)
u4,k(t)qj(t)

−
(∫

Γ

Nc∑
k=1

Nq∑
j=1

−ψk(x2)e−c(1−x1)φj φin1 dΓ
)
u2,k(t)qj(t),

and we define matrices L4,k and L2,k as:

(L4,k)ij =

∫
Γ

−ψk(x2)e−cx1φj(x)φi(x)n1(x) dΓ (25)

(L2,k)ij =

∫
Γ

−ψk(x2)e−c(1−x1)φj(x)φi(x)n1(x) dΓ.

Similarly, for the v2 term we define the matrices L1,k and
L3,k.
Grouping the unknown time-dependent coefficients of the state
in a vector q = [q1, . . . , qNq ]

> we obtain the following system
of ODEs arising from the spatial discretization of state and
control functions:{

M q̇ +Aq + Γq(u)q = 0 , t ∈ (0, T )

q(0) = q̄0

where Γq(u) ∈ RNq×Nq is defined as

Γq(u) =

Nc∑
k=1

{
u4,k

(
B4,k + C4,k + L4,k

)
+ u1,k

(
B1,k + C1,k + L1,k

)
− u3,k

(
B3,k + C3,k + L3,k

)
− u2,k

(
B2,k + C2,k + L2,k

)}
(26)

that is, a bilinear control system with state q(t) ∈ RNq and
control inputs uc,k(t), c = 1, . . . , 4 and k = 1, . . . , Nc. The
discretization (in space) of the problem data is denoted by an
overline (e.g. q̄0 corresponds to the given initial condition).

Lemma 3 (Properties of the B,C,L matrices) The matrices
Bc,k, Cc,k, Lc,k satisfy:

Bc,k +B>c,k + Cc,k + Lc,k = 0 (27)

for any choice of FEM ansatz functions φi, control basis
functions ψk k = 1, . . . , Nc and actuator side c = 1, . . . , 4.
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Proof: We will just prove it for L4,k. The results for
all the other matrices are identical. Recalling the definition
of (L4,k)ij in Equation (25) and defining ψ̃k(x1, x2) :=
ψk(x2)e−cx1 , using integration by parts we get:

(L4,k)ij =

∫
Γ

−ψk(x2)e−cx1φj(x)φi(x)n1(x) dΓ

= −
∫

Γ

ψ̃k(x)φj(x)φi(x)n1(x) dΓ

−
∫

Ω

∂

∂x1

(
ψ̃k(x)φj(x)φi(x)

)
dΩ

−
∫

Ω

∂φi
∂x1

ψ̃kφj dΩ−
∫

Ω

∂φj
∂x1

ψ̃kφi dΩ

−
∫

Ω

∂ψ̃k
∂x1

φiφj dΩ = −(B4,k)ji − (B4,k)ij − (C4,k)ij

and thus:

(L4,k)ij + (B4,k)ji + (B4,k)ij + (C4,k)ij = 0.

�

With the same reasoning and definitions for the state and
input matrices the FEM discretization of the adjoint equation
reads:

{
−M ṗ +Ap + Γp(u)p = 0 , t ∈ (0, T )

p(T ) = q(T )− q̄T
(28)

where the matrix Γp ∈ RNq×Nq is defined as:

Γp(u) = −
Nc∑
k=1

{
u4,kB4,k + u1,kB1,k

− u3,kB3,k − u2,kB2,k

}
.

(29)

Note that the matrices Ca,k and La,k do not appear in the
adjoint equations while the matrices Ba,k related to pure
transport terms appear with opposite sign. Note also that, due
to Lemma 3, we have −Ba,k = B>a,k +Ca,k +La,k, Ca,k and
La,k being symmetric. It is possible to show that:

Γq(u)> = Γp(u). (30)

From its definition in Equation (26) we get:

Γq(u)> =

Nc∑
k=1

{
u4,k

(
B>4,k + C>4,k + L>4,k

)
+ u1,k

(
B>1,k + C>1,k + L>1,k

)
− u3,k

(
B>3,k + C>3,k + L>3,k

)
− u2,k

(
B>2,k + C>2,k + L>2,k

)}
= −

Nc∑
k=1

{
u4,kB4,k + u1,kB1,k

− u3,kB3,k − u2,kB2,k

}
= Γp(u),

where we have used the symmetry of the matrices C and L
and Lemma 3. Equation (30) will be useful to investigate the
interconnection between OtD and DtO approaches.
The gradient can be expressed as:

∇J1,k(t) = αu1,k(t) +

∫
Ω

ψk(x1)e−cx2 q
∂p

∂x2
dΩ

= αu1,k(t) +

∫
Ω

ψk(x1)e−cx2

Nq∑
i=1

Np∑
j=1

φi
∂φj
∂x2

qipj dΩ

= αu1,k(t) + q(t)>B1,k p(t),

(31)

where we have replaced the definition of B1,k.
∇J2,k(t),∇J3,k(t) and ∇J4,k(t) are obtained in the
same way.

The discretized (in space) set of optimality conditions result
in a Two-Point Boundary Value Problem (TPBVP) for a
coupled system of ODEs with time as independent variable. In
order to fully solve the problem, we follow a standard iterative
procedure to compute the reduced gradient [33]. We resort to a
second-order time discretization to solve sequentially the state
equation forward in time and the adjoint equation backward
in time. Then, we evaluate Equation (31) to get the reduced
gradient.

The fully discretized problem is obtained by applying the
Crank-Nicolson method to the resulting system of ODEs. We
partition the time interval [0, T ] in N sub-intervals of equal
size ∆t = T

N and denote by ti = i∆t i = 0, . . . , N the discrete
time instances. Furthermore, we denote the approximation of
the unknown variable in the ODE system at time ti as q(ti) ≈
qi. The Crank-Nicolson method for the state equation gives:

[
M

∆t
+

1

2
{A+ Γq(ui+1)}

]
qi+1 =

[
M

∆t
− 1

2
{A+ Γq(ui)}

]
qi

q0 = q̄0,

for i = 0, . . . , N − 1. Defining the discrete transition matrices
as:

Ã+(u) =

[
M

∆t
+

1

2
{A+ Γq(u)}

]
Ã−(u) =

[
M

∆t
− 1

2
{A+ Γq(u)}

]
,

(32)

we obtain the compact form:

Ã+(ui+1)qi+1 = Ã−(ui)qi , i = 0, . . . , N − 1

q0 = q̄0.
(33)

In the same way, we define the discrete adjoint transition
matrices

Â+(u) =

[
M

∆t
+

1

2
{A+ Γp(u)}

]
Â−(u) =

[
M

∆t
− 1

2
{A+ Γp(u)}

]
so that the compact form of the adjoint dynamics reads as:{

Â+(ui)pi = Â−(ui+1)pi+1 , i = N − 1, . . . , 0

pN = qN − q̄T
(34)

that has to be integrated backward in time.
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B. Discretize then Optimize

The Discretize then Optimize (DtO) approach casts the
OCP as a Nonlinear Programming Problem (NLP) where the
dynamics is considered as a constraint. The set of constraints
is already given by Equation (33) and we just need to fully
discretize (i.e. both in time and space) the cost functional.
Since the control functions are approximated in space with
the RBF basis functions the cost functional reads as:

J =
1

2

∫
Ω

(q(x, T )− qT (x))2 dΩ +
α

2

∫ T

0

4∑
k=1

Nc∑
i=1

u2
k,i(t) dt.

Substituting the FEM approximation in space and approx-
imating the integral in time with the trapezoidal method,
that is consistent with the Crank-Nicolson method used to
approximate in time the system of ODEs, we get:

J̃ =
1

2
(qN − q̄T )>M(qN − q̄T )

+
α

2

∆t

2

(
N−1∑
i=1

2u>i ui + u>0 u0 + u>NuN

)
;

note that J̃ = J̃(qN ,u0, . . . ,uN ) is a function of the control
vector at each time instant and of the final state qN . This
latter is also a function of the control vector through the fully
discretized dynamics expressed in Equation (33). Therefore,
the OCP can be cast as the following Nonlinear Program:

min J̃(qN ,u0, . . . ,uN )

s.t. Ã+(ui+1)qi+1 = Ã−(ui)qi i = 0, . . . , N − 1

q0 = q̄0

0 ≤ ui ≤ umax i = 0, . . . , N.

We now use the discrete adjoint method [34] to eliminate
the dynamic constraints and to recast the NLP in the control
unknowns u0, . . . ,uN only. We define the discrete Lagrangian
function as:

L̃ = J̃ −∆t

{
N∑
i=0

〈Ã+(ui+1)qi+1 − Ã−(ui)qi,pi+1〉

}
(35)

where pi are the discrete adjoint variables associated to the
dynamic constraint. Equation (35) can be rewritten as:

L̃ = J̃−∆t

{
N∑
i=1

〈Ã+(ui)qi,pi〉 −
N−1∑
i=0

〈Ã−(ui)qi,pi+1〉

}
.

(36)
The gradient of the reduced cost functional J̃(qN (u),u) is
equal to the partial derivative of the discrete Lagrangian with
respect to the control variables. This derivative for internal
time instants (i.e. i 6= 0, N ) is:

∂L̃
∂ui

>

= ∆t αui

−∆t
∂

∂ui

{
〈Ã+(ui)qi,pi〉 − 〈Ã−(ui)qi,pi+1〉

}
.

In general, computing the derivative of ∂
∂ui

Ã+(ui) might
be an involved task, yielding a tensor. However, the matrix
Ã+(ui) is linear in the control components and the derivative
can be carried out term by term. Denoting ui,1,k the control
component relative to the k-th basis function of actuator 1 at
time instant i we obtain

∂Ã+(ui)

∂ui,1,k
=

∂

∂ui,1,k

[
M

∆t
+

1

2

{
A+ Γq(ui)

}]
=

∂

∂ui,1,k

1

2
Γq(ui) =

1

2

{
B1,k + C1,k + L1,k

}
,

then resulting in a sum of constant matrices. The same results
hold for the actuator sides 2, 3, 4. The {i, 1, k}-th component
of the reduced gradient of the cost function is:

∂J̃

∂ui,1,k
=

∂L̃
∂ui,1,k

= ∆t
(
αui,1,k

− q>i

(
B>1,k + C>1,k + L>1,k

) (pi + pi+1)

2

)
and, using again Lemma 3, we obtain:

∂J̃

∂ui,1,k
= ∆t

(
αui,1,k + q>i B1,k

(pi + pi+1)

2

)
. (37)

The components of the gradient for the control variables
corresponding to the actuator sides 2, 3, 4 are obtained in
a similar way. The components of the reduced gradient are
readily obtained once we have the state and adjoint vectors qi
and pi. The discrete adjoint equation is obtained by imposing
that the derivative of the discrete Lagrangian with respect to
the state vector qi at each instant vanishes, that is:

∂L̃
∂qN

>

= M(qN − qT )−∆t Ã>+(uN )pN = 0,

∂L̃
∂qi

>

= −∆t
{
Ã>+(ui)pi − Ã>−(ui)pi+1

}
= 0.

The previous equations give the adjoint dynamics:

Ã>+(ui)pi = Ã>−(ui)pi+1 i = N − 1, . . . , 1

Ã>+(uN )pN =
M

∆t
(qN − q̄T )

(38)

C. Comparison between DtO and OtD approach

DtO and OtD do not commute in general unless the dy-
namics is linear and the cost functional is quadratic [30], [35],
[34]. For the case at hand, the cost functional is quadratic, but
the dynamics is bilinear since the control input multiplies the
state. The bilinearity is present in the continuous setting in
the state dynamics given by the combination of advection and
reaction terms v · ∇q + (∇ · v)q. The FEM discretization is
consistent with the PDE model and results in a bilinear system
of ODEs since the matrix Γq depends linearly on the control
components. Since the problem is almost linear we can show
that the DtO and OtD almost commute. We start drawing a
comparison between the adjoint dynamics obtained with the
two different approaches. The adjoint dynamics of the OtD
approach is given by Equation (34) while the DtO counterpart
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is given by Equation (38). Using Equation (30) it is easy to
show that:

Ã>+(u) = Â+(u).

Indeed, from its definition in Equation (32) we have:

Ã>+(u) =

[
M>

∆t
+

1

2

{
A> + Γq(u)>

}]
=

[
M

∆t
+

1

2

{
A+ Γq(u)>

}]
=

[
M

∆t
+

1

2
{A+ Γp(u)}

]
= Â+(u).

Hence, the two different formulations of the adjoint dynamics
in Equations (34) and (38) differ only at the time instants at
which they are evaluated. The reduced gradients obtained with
the two approaches in Equations (31) and (37) only differ for
the time instant which the adjoint is evaluated at. In the OtD
formulation, everything is continuous in time and each variable
is evaluated at the same instant when the time is discretized.
In the DtO approach, the adjoint is evaluated at the midpoint
between two successive time instants, while state and control
functions are evaluated at the same time instant.

The main result that allows to establish the quasi commu-
tation of OtD and DtO approaches is Lemma 3 that allows to
prove Equation (30)). Thanks to this it is possible to infer that
the semi-discretization in space fully commutes. The semi-
discrete adjoint equation arising from the OtD method is
Equation (28) while it is possible to recover the semi-discrete
adjoint equation arising from the DtO method with a passage
to the limit. Starting from the adjoint algebraic Equation (38)
and using the definition of Ã>+(u) we obtain:

Ã>−(ui)pi+1 − Ã>+(ui)pi

= M
pi+1 − pi

∆t
− 1

2

(
A+ Γ>q (ui)

)
pi+1 −

1

2

(
A+ Γ>q (ui)

)
pi

in the limit ∆t → 0 we formally have pi+1−pi
∆t = ṗ and

pi+1 ≈ pi = p and thence the semi-discrete adjoint dynamics
resulting from the DtO method is:

−M ṗ +Ap + Γ>q (u)p = 0.

Therefore the two approaches fully commute (in space) due
to Equation (30) whose proof relies on Lemma 3.

V. NUMERICAL SIMULATION

In this Section, the OCP is fully discretized in time using
the Crank-Nicolson method and the resulting Nonlinear Opti-
mization Program (NLP) is stated. The discrete adjoint method
is then used to compute the gradient of the reduced objective
function and to set up the optimization in the control space
only.

The control coefficients at each instant of time and for
each basis function are stacked in a single vector U =
[u0, . . . ,uN ] ∈ RNc(N+1). In the same way. we define
the stacked state and adjoint vector Q = [q0, . . . ,qN ] ∈
RNq(N+1) and P = [p1, . . . ,qN ] ∈ RNpN .

The resulting optimization problem has the form:

min
U

J̃(U)

s.t. 0 ≤ U ≤ Umax.
(39)

Problem (39) is a NLP subject to bound constraints only.
The procedure to numerically compute the exact gradient
∇J̃(U) is given in Algorithm 1.

Algorithm 1 Reduced Gradient
1: Given U = [u0, . . . ,uN ]
2: Solve state Equation (33) for Q = [q0, . . . ,qN ]
3: Solve adjoint Equation (38) for P = [p1, . . . ,pN ]
4: Evaluate Equations (37) for ∇J̃(U)

We make use of a MATLAB interface [36] to the NLP
solver IPOPT [37] to solve the NLP (39). We provide the
solver with the reduced gradient obtained from Algorithm (1).

In the next subsections we will show the numerical results
obtained for two different test cases. For both of them the main
parameters of the simulation are summarized in Table I, so that
the time instants are N = 40, while, selecting Nc = 10 basis
functions, the stacked control vector U has dimension 1640
while the state Q and adjoint vectors P have 29192 and 28480
elements respectively. All computations were conducted on a
Dell XPS15 desktop PC with an Intel Core i7-10750HQ CPU
and 16 GB RAM running Ubuntu 18.04. The computational
time is roughly 3 hours for both cases.

A. Test case 1
As a first test case, we consider the problem of driving an

initial uniform density to a combination of three disjoint radial
basis functions. Figure 2 presents a snapshot of the control
system where the spatial intensity of the actuator stacks is
shown together with the induced vector field.

Parameter Value
T 0.1
∆t 0.0025
α 0.0001
µ 0.1

FEM nodes 712

Table I
MAIN SIMULATION PARAMETERS.

The target density consists of a combination of Radial Basis
Functions with unitary total mass so that they represent a
probability density. The contour plot of the target density is
shown in Figure 4. The density at the final instant from the
solution of the OCP is shown in Figure 3.

Figure 5 shows the difference between the target and the
density reached at the final instant demonstrating that the
optimal control algorithm is able to reach the target.

Finally, the optimal control space-time history of the actua-
tion in the vertical and horizontal direction is shown in Figure
6 and Figure 7, respectively. It is interesting to notice that the
maximum actuation effort is needed from the left portion of
actuator u1. Most of the space-time domain intensity of the
actuators is close to zero due to the minimum energy feature
of the optimal control problem.
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Figure 2. Layout of the control system at t = 0.0875 [s]. The actuator stacks
spatial intensity is shown according to the colormap on the right. The induced
velocity field is represented by black arrows in the workspace together with
the level-set curves of the density.

Figure 3. Test Case 1. Density reached at final time T = 0.1 [s] by the
optimal control algorithm.

Figure 4. Test Case 1. Target Density consisting of three normalized disjoint
radial basis functions.

B. Test case 2
As a second test case, we consider the problem of driving an

initial uniform density to a complex target function shown in

Figure 5. Test Case 1. Pointwise difference between target density qT (x) and
the optimal density q?(x, T ) reached at the final instant by the optimal control
algorithm. The L2 distance between q?(x, T ) and qT (x) is

∫
Ω(q?(x, T ) −

qT (x))2 dΩ = 0.001.

Figure 6. Test Case 1. Space-time intensity of actuators u1 and u3 that
generates a velocity field along the x2 axis in the positive and negative
direction respectively.

Figure 8. The control algorithm is able to drive the density to
the target as shown in Figure 9. The simulation parameters are
the same as for Test Case 1. We note that the control effort is
significantly lower as shown in Figures 10 and 11. This is due
to the fact that the target density, despite being more complex,
it is more evenly distributed in the workspace and it is closer
in the L2 sense to the initial uniform distribution. Finally,
we report in Figure 12 a comparison between relative cost
iterations. The initial guess for the control U0 is the zero vec-
tor. Note that the initial condition q0(x) is a uniform density
and it is an equilibrium distribution for the zero control case.
Therefore, the value of the cost functional at the first iteration
J0 is the FEM approximation of 1

2

∫
Ω

(qT (x)−q0(x))2 dΩ that
is half the L2 distance between qT and q0. The relative cost
iterations are slightly faster to converge for Test Case 1 thus
showing that Test Case 2 represents a more difficult problem.
The initial cost is decreased of 99.4% and 99.1% respectively.
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Figure 7. Test Case 1. Space-time intensity of actuators u2 and u4 that
generates a velocity field along the x1 axis in the nevative and positive
direction respectively.

Figure 8. Test Case 2. Target Density consisting of a complex horseshoe-
shaped function.

VI. CONCLUSIONS

In this paper we have showed how to contain and control
a large scale swarm of underactuated particles. Actually, the
method presented assumes an infinite number of passive par-
ticles. The macroscopic dynamic model encodes the physical
layout of the actuators and automatically takes into account
the limited control authority. The PDE model arising from a
Kolmogorov forward equation is used as state dynamics to
set up an optimal control problem. The state dynamics and
the optimal control problem are thoroughly analysed. A series
of estimates is provided for the state dynamics that allowed
to prove an existence theorem for the optimal control vector.
The necessary conditions for optimality for this problem
are analytically derived in closed-form expression. From the
continuous formulation, the two main numerical approaches
(i.e. DtO and OtD) are investigated and the resulting discrete
equations are compared. By exploiting some properties of
the resulting matrices, it is shown that the two approaches

Figure 9. Test Case 2. Pointwise difference between target density qT (x) and
the optimal density q?(x, T ) reached at the final instant by the optimal control
algorithm. The L2 distance between q?(x, T ) and qT (x) is

∫
Ω(q?(x, T ) −

qT (x))2 dΩ = 0.0015.

Figure 10. Test Case 2. Space-time intensity of actuators u1 and u3.

Figure 11. Test Case 2. Space-time intensity of actuators u2 and u4.
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Figure 12. Iterations of the NLP solver for both test cases. Each cost is
normalized by the initial value of the cost functional and the abscissa axis
is in logarithmic scale. For Test Case 1 we have J0 = 2.14, while for Test
Case 2 we have J0 = 0.66.

almost commute. In addition, we note that the numerical
procedure is general in nature and can work with any kind
of control basis functions. Compared to previous works [12],
[11], our method allows the control basis function to be not
necessarily null at the boundary thus improving the flexibility
of the resulting systems. The adjoint sensitivity analysis used
to compute the gradient of the reduced cost functional in the
DtO approach allows for an exact and fast way to compute
the sensitivity. Compared to similar results in the literature
[34], we used the more accurate Crank-Nicolson method for
the time discretization, carefully taking into account the state
transition matrices resulting from the fully discretized system.
The numerical simulation showed the effectiveness of the
resulting method. Future research will mainly focus on two
aspects. On the one hand, the link between macroscopic and
microscopic dynamics will be further investigated considering
a finite number of particles subjected to the optimal velocity
field obtained. On the other hand, a mechanism to encode
more complex particles behaviour such as repulsion will also
be considered.

APPENDIX

A. Derivation of the bilinear form (6)

The bilinear form a(q, φ) is defined as

a(q, φ) =

∫
Ω

∇ · (−µ∇q + vq)φdΩ,

using integration by parts and the boundary conditions we can
show that:∫

Ω

∇ · (−µ∇q + vq)φdΩ =

∫
Ω

µ∇q · ∇φ− v q · ∇φdΩ.

Indeed:∫
Ω

∇ · (−µ∇q + vq)φdΩ =

∫
Ω

µ∇q · ∇φdΩ

−
∫

Γ

µ∇q · nφdΩ +

∫
Ω

∇ · (vq)φdΩ =

∫
Ω

µ∇q · ∇φdΩ

−
∫

Γ

µ∇q · nφdΩ +

∫
Γ

v · nqφ dΩ

−
∫

Ω

qv · ∇φdΩ =

∫
Ω

µ∇q · ∇φ− q v · ∇φdΩ

+
�����������∫

Γ

(−µ∇q + vq) · nφdΓ

so that the bilinear form can be equivalently written as:

a(q, φ) =

∫
Ω

µ∇q · ∇φ− v q · ∇φ.

B. Proof of Lemma 1

We define:

b1 =

[
0

e−cx2

]
, b2 =

[
0

e−c(1−x1)

]
,

b3 =

[
0

e−c(1−x2)

]
, b4 =

[
0

e−cx1

]
;

hence, we can express v(t) as:

v(t) =

4∑
i=1

biui(t).

For every t > 0, we thus have:

‖v(t)‖L∞(Ω)2 =

∥∥∥∥∥
4∑
i=1

biui(t)

∥∥∥∥∥
L∞(Ω)2

≤
4∑
i=1

‖biui(t)‖L∞(Ω)2 ≤
4∑
i=1

‖ui(t)‖L∞(Γi)

Squaring and integrating in time between 0 and T ; we obtain

‖v‖2L2(0,T ;L∞(Ω)2) =

∫ T

0

‖v(t)‖2L∞(Ω)2

≤
∫ T

0

( 4∑
i=1

‖ui(t)‖L∞(Γi)

)2

≤ 8

4∑
i=1

∫ T

0

‖ui(t)‖2L∞(Γ) = 8 ‖u‖2U ,

where we iteratively used Cauchy inequality (a+b)2 ≤ 2(a2+
b2). Then, turning to the definition of norms we finally obtain:

‖v‖2L2(0,T ;L∞(Ω)2) ≤ 8 ‖u‖2U .

�
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C. Proof of Lemma 2

Using the definition of a(q, φ) and Cauchy-Schwarz in-
equality we have

a(q(t), q(t)) + λ(t) ‖q(t)‖2L2(Ω) ≥ µ ‖∇q(t)‖
2
L2(Ω)

− ‖v(t)‖L∞(Ω)2 ‖∇q(t)‖L2(Ω) ‖q(t)‖L2(Ω) + λ(t) ‖q(t)‖2L2(Ω)

≥ (µ− ε(t)) ‖∇q(t)‖2L2(Ω)

+
(
λ(t)−

‖v(t)‖2L∞(Ω)2

4 ε(t)

)
‖q(t)‖2L2(Ω) .

Note that we have used Cauchy’s inequality (see e.g., [25]),
that is ab ≤ εa2 + b2

4ε for a, b, ε > 0 so that we have:

‖∇q(t)‖L2(Ω)

(
‖v(t)‖L∞(Ω)2 ‖q(t)‖L2(Ω)

)
≤ ε ‖∇q(t)‖2L2(Ω) +

‖v(t)‖2L∞(Ω)2 ‖q(t)‖2L2(Ω)

4ε

Then, setting ε(t) = µ
2 , we need to choose λ(t) such that

λ(t) >
‖v(t)‖2

L∞(Ω)2

2µ ; hence, it is sufficient to select

λ(t) =
‖v(t)‖2L∞(Ω)2

µ
.

Finally choosing α0(t) = min

{
µ
2 ,
‖v(t)‖2

L∞(Ω)2

2µ

}
we have

a(q(t), q(t)) + λ(t) ‖q(t)‖2L2(Ω)

≥ µ

2
‖∇q(t)‖2L2(Ω) +

‖v(t)‖2L∞(Ω)2

2µ
‖q(t)‖L2(Ω)

≥ α0(t) ‖q(t)‖2H1(Ω) .

�
We are now ready to prove Theorem 1.

D. Proof of Theorem 1

1) Existence and uniqueness: From Lemma 1 we have that
v ∈ L2(0, T ;L∞(Ω)2); from Lemma 2, the bilinear form
a(q, φ) associated to the weak formulation of the problem (5)
is weakly coercive. a(q(t), φ(t)) is continuous in H1(Ω) for
a.e. t ∈ (0, T ) since

|a(q(t), φ(t))| ≤
(
µ+‖v(t)‖L∞(Ω)2

)
‖q(t)‖H1(Ω) ‖φ(t)‖H1(Ω)

and t-measurable for fixed q(t),φ(t) and v(t). That is a : t 7→
a(q(t), φ(t)) is in L1(0, T ). These assumptions guarantee the
well-posedness of the state problem and thus the existence
of a unique q ∈ L2(0, T ;H1(Ω)) which solves (2) with q̇ ∈
L2(0, T ;H1(Ω)∗), see, e.g., Chapter 7 in [38].

2) Proof of Estimate (10a) and (10b): Substituting q(t) as
test function in the weak formulation in Equation (5) we have:∫

Ω

∂q(t)

∂t
q(t)dΩ + a(q(t), q(t)) = 0 a.e. t ∈ (0, T ),

that can be rewritten equivalently as

1

2

d

dt
‖q(t)‖2L2(Ω) + a(q(t), q(t)) = 0 a.e. t ∈ (0, T ). (40)

From Lemma 2, Equation (40) gives:

1

2

d

dt
‖q(t)‖2L2(Ω) + a(q(t), q(t))

≥ 1

2

d

dt
‖q(t)‖2L2(Ω) + α0 ‖q(t)‖2H1(Ω) − λ(t) ‖q(t)‖2L2(Ω)

which implies:

1

2

d

dt
‖q(t)‖2L2(Ω) + α0(t) ‖q(t)‖2H1(Ω) ≤ λ(t) ‖q(t)‖2L2(Ω) .

Integrating between 0 and t; we obtain

1

2
‖q(t)‖2L2(Ω) −

1

2
‖q0‖2L2(Ω) +

∫ t

0

α0(τ) ‖q(τ)‖2H1(Ω) dτ

≤
∫ t

0

λ(τ) ‖q(τ)‖2L2(Ω) dτ,

(41)

so that

‖q(t)‖2L2(Ω) ≤ ‖q0‖2L2(Ω) +

∫ t

0

2λ(τ) ‖q(τ)‖2L2(Ω) dτ.

Applying Gronwall Lemma (see, e.g., [25]) we have

‖q(t)‖2L2(Ω) ≤ e
∫ t
0

2λ(τ)dτ ‖q0‖2L2(Ω) . (42)

We now look for a bound on the term
∫ t

0
2λ(τ)dτ . From the

proof of Lemma 1, we have that:

‖v(t)‖2L∞(Ω)2 ≤ 8

4∑
i=1

‖ui(t)‖2L∞(Γi)

recalling the expression of λ(t) found in Lemma 2 we have:

λ(t) =
‖v(t)‖2L∞(Ω)2

µ
≤ 8

µ

4∑
i=1

‖ui(t)‖2L∞(Γi)

and hence∫ t

0

2λ(τ)dτ ≤
∫ T

0

2
8

µ

4∑
i=1

‖ui(τ)‖2L∞(Γi)
dτ =

16

µ
‖u‖2U

We can then bound the terms in Equation (42) from above as:

‖q(t)‖2L2(Ω) ≤ e
16
µ ‖u‖

2
U ‖q0‖2L2(Ω) . (43)

The definition of norm in L∞(0, T ;L2(Ω)) gives:

‖q‖2L∞(0,T ;L2(Ω)) ≤ e
16
µ ‖u‖

2
U ‖q0‖2L2(Ω)

while squaring and integrating between 0 and T finally yields

‖q‖2L2(0,T ;L2(Ω)) ≤ T e
16
µ ‖u‖

2
U ‖q0‖2L2(Ω) .

�
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3) Proof of Estimate (10c): From Equation (41) we have:∫ T

0

α0(t) ‖q(t)‖2H1(Ω) dt

≤
∫ T

0

λ(t) ‖q(t)‖2L2(Ω) dt−
1

2
‖q(T )‖2L2(Ω) +

1

2
‖q0‖2L2(Ω)

which implies∫ T

0

α0(t) ‖q‖2H1(Ω) dt ≤
∫ T

0

λ(t) ‖q‖2L2(Ω) dt+
1

2
‖q0‖2L2(Ω) .

(44)
From Equation (43) and the expression for λ(t) in Equation

(8) we have:

λ(t) ‖q(t)‖2L2(Ω) ≤
8

µ

4∑
i=1

‖ui(t)‖2L∞(Γi)
e

16
µ ‖u‖

2
U ‖q0‖2L2(Ω) ;

then, integrating between 0 and T :∫ T

0

λ(t) ‖q(t)‖2L2(Ω) dt ≤
8

µ
‖u‖2U e

16
µ ‖u‖

2
U ‖q0‖2L2(Ω) .

Plugging this result into Equation (44) gives:∫ T

0

α0(t) ‖q(t)‖2H1(Ω) dt

≤
(1

2
+

8

µ
‖u‖2U e

16
µ ‖u‖

2
U

)
‖q0‖2L2(Ω) .

Using the definition of ᾱ0 in (9) we have:

ᾱ0

∫ T

0

‖q(t)‖2H1(Ω) dt ≤
∫ T

0

α0(t) ‖q(t)‖2H1(Ω) dt

≤
(1

2
+

8

µ
‖u‖2U e

16
µ ‖u‖

2
U

)
‖q0‖2L2(Ω)

and thus we obtain

‖q‖2L2(0,T ;H1(Ω)) ≤
1

ᾱ0

(1

2
+

8

µ
‖u‖2U e

16
µ ‖u‖

2
U

)
‖q0‖2L2(Ω) .

�
4) Proof of Estimate (10d): Using the duality pairing

formalism we recast the state equation as

〈q̇(t), φ〉H1(Ω)∗,H1(Ω) + a(q(t), φ) = 0 ∀φ ∈ H1(Ω).

From the continuity of the bilinear form and Cauchy-Schwarz
inequality we get

|〈q̇(t), φ〉H1(Ω)∗,H1(Ω)| = |a(q(t), φ)|
≤ µ ‖∇q(t)‖L2(Ω) ‖∇φ‖L2(Ω)

+ ‖v(t)‖L∞(Ω)2 ‖q(t)‖L2(Ω) ‖∇φ‖L2(Ω)

≤
(
µ ‖q(t)‖H1(Ω) + ‖v(t)‖L∞(Ω)2 ‖q(t)‖L2(Ω)

)
‖φ‖H1(Ω) .

Note that we have ‖∇φ‖L2(Ω) ≤ ‖φ‖H1(Ω). From the defini-
tion of the dual space norm, we have:

‖q̇(t)‖H1(Ω)∗ ≤
(
µ ‖q(t)‖H1(Ω)+‖v(t)‖L∞(Ω)2 ‖q(t)‖L2(Ω)

)
.

Squaring, integrating and using Cauchy inequality we have:∫ T

0

‖q̇(t)‖2H1(Ω)∗ dt

≤
∫ T

0

(
µ ‖q(t)‖H1(Ω) + ‖v(t)‖L∞(Ω)2 ‖q(t)‖L2(Ω)

)2

dt

≤
∫ T

0

2µ2 ‖q(t)‖2H1(Ω) dt

+

∫ T

0

2 ‖v(t)‖2L∞(Ω)2 ‖q(t)‖2L2(Ω) dt

≤ 2µ2 ‖q‖2L2(0,T ;H1(Ω))

+ 2 ‖v‖2L2(0,T ;L∞(Ω)2) ‖q‖
2
L∞(0,T ;L2(Ω))

≤ 2µ2 1

ᾱ0

(1

2
+

8

µ
‖u‖2U e

16
µ ‖u‖

2
U

)
‖q0‖2L2(Ω)

+ 16 ‖u‖2U e
16
µ ‖u‖

2
U ‖q0‖2L2(Ω) .

Finally, we obtain

‖q̇‖2L2(0,T ;H1(Ω)∗)

≤
(µ2

ᾱ0
+ 16

(
1 +

µ

ᾱ0

)
‖u‖2U e

16
µ ‖u‖

2
U

)
‖q0‖2L2(Ω) .

�
5) Proof of Theorem 2: Let us consider Equation (11 bis),

define the vector field f = vhq. Its weak form reads:∫
Ω

∂z(t)

∂t
φ dΩ

+

∫
Ω

µ∇z(t) · ∇φ− z(t)vu(t) · ∇φdΩ =

∫
Ω

f(t) · ∇φdΩ

(45)

that is,∫
Ω

∂z(t)

∂t
φdΩ + a(q(t), φ)

=

∫
Ω

f(t) · ∇φdΩ ∀φ ∈ H1(Ω), a.e. t ∈ (0, T ).

Subtituting φ = z(t) and using the weak coercivity of a(q, φ),
Cauchy-Schwarz and Cauchy inequality, we obtain, for every
ε > 0, ∫

Ω

∂z(t)

∂t
z(t)dΩ− λ(t) ‖z(t)‖2L2(Ω)

+ (α0(t)− ε) ‖z(t)‖2H1(Ω) ≤
1

4ε
‖f(t)‖2L2(Ω)2 .

Choosing ε = α0(t) we have∫
Ω

∂z(t)

∂t
z(t) dΩ ≤ 1

4α0(t)
‖f(t)‖2L2(Ω)2 + λ(t) ‖z(t)‖2L2(Ω)

≤ 1

4 ᾱ0
‖f(t)‖2L2(Ω)2 + λ(t) ‖z(t)‖2L2(Ω) .

(46)

Equation (46) can be rewritten as:

1

2

d

dt
‖z(t)‖2L2(Ω) ≤

1

4 ᾱ0
‖f(t)‖2L2(Ω)2 + λ(t) ‖z(t)‖2L2(Ω) .

Integrating in time between 0 and t, and considering that
z(0) = 0, we obtain:
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‖z(t)‖2L2(Ω)

≤
∫ t

0

1

2 ᾱ0
‖f(τ)‖2L2(Ω)2 dτ +

∫ t

0

2λ(τ) ‖z(τ)‖2L2(Ω) dτ

then applying Gronwall’s Lemma and the expression for λ(t)
in (8) we get:

‖z(t)‖2L2(Ω) ≤ e
∫ t
0

2λ(τ)dτ

∫ t

0

1

2ᾱ0
‖f(τ)‖2L2(Ω)2 dτ

≤ 1

2ᾱ0
e

16
µ ‖u‖

2
U ‖f‖2L2(0,T ;L2(Ω)2) .

(47)

Integrating in time between 0 and T we finally obtain:

‖z‖2L2(0,T ;L2(Ω)) ≤
T

2ᾱ0
e

16
µ ‖u‖

2
U ‖f‖2L2(0,T ;L2(Ω)2) .

We need to find a bound on ‖f‖2L2(0,T ;L2(Ω)) based on the
norms of state and control functions. Recalling the definition
of f = vhq, we have:

‖f‖2L2(0,T ;L2(Ω)2) =

∫ T

0

‖f(t)‖2L2(Ω)2 dt

≤
∫ T

0

‖vh(t)‖2L∞(Ω)2 ‖q(t)‖2L2(Ω) dt

≤ ‖vh‖2L2(0,T ;L∞(Ω)2) ‖q‖
2
L∞(0,T ;L2(Ω)) ;

then, using the results obtained in Lemma 1 and Theorem 1,
we have:

‖f‖2L2(0,T ;L2(Ω)) ≤ 8 ‖h‖2U e
16
µ ‖u‖

2
U ‖q0‖2L2(Ω)

so that, finally, we obtain

‖z‖2L2(0,T ;L2(Ω))

≤ 4T

ᾱ0
(e

16
µ ‖u‖

2
U )2 ‖q0‖2L2(Ω) ‖h‖

2
U = C(‖u‖2U ) ‖h‖2U .

Proceeding in a similar way as for the state equation, the
following estimates hold:

‖z‖L2(0,T ;H1(Ω))

≤ 8

ᾱ2
0

‖h‖2U e
16
µ ‖u‖

2
U ‖q0‖2L2(Ω)

(
1 +

16

µ
e

16
µ ‖u‖

2
U ‖u‖2U

)
,

‖ż‖2L2(0,T ;H1(Ω)∗)

≤ 32

ᾱ2
0

‖h‖2U e
16
µ ‖u‖

2
U ‖q0‖2L2(Ω)(

16µe
16
µ ‖u‖

2
U ‖u‖2U + 4 ‖u‖2U ᾱ0 + 1 + µ2

)
.

In order to prove that the control-to-state map q = Ξ(u) is
Fréchet differentiable with directional derivative z = Ξ′(u)h,
we define R = Ξ(u + h) − Ξ(u) − z where Ξ(u + h) and
Ξ(u) are weak solutions of (5) with control actions u + h
and u, respectively, whereas z solves Equation (45). As a

consequence, R satisfies a.e. on t ∈ (0, T ):∫
Ω

∂R(t)

∂t
φ dΩ

+

∫
Ω

µ∇R(t) · ∇φdΩ−
∫

Ω

vu+h(t)R(t) · ∇φdΩ

=

∫
Ω

z(t)vh(t) · ∇φdΩ ∀φ ∈ H1(Ω).

(49)

Since Equation (49) has the same form of Equation (45), it
holds that:

‖R‖2L2(0,T ;L2(Ω))

≤ T

2ᾱ0
e

16
µ ‖u+h‖2U ‖vh‖2L2(0,T ;L∞(Ω)2) ‖z‖

2
L∞(0,T ;L2(Ω)) ,

while from Equation (47) we obtain

‖z‖2L∞(0,T ;L2(Ω)) ≤
4

ᾱ0

(
e

16
µ ‖u‖

2
U

)2

‖h‖2U ‖q0‖2L2(Ω) ,

hence we have:

‖R‖2L2(0,T ;L2(Ω))

≤ 16T

ᾱ2
0

e
16
µ ‖u+h‖2U

(
e

16
µ ‖u‖

2
U

)2

‖h‖4U ‖q0‖2L2(Ω) .

Proceeding in a similar way we obtain

‖R‖2L2(0,T ;H1(Ω))

≤ 32

ᾱ3
0

‖q0‖2L2(Ω)

(
e

16
µ ‖u‖

2
U

)2

(
8 ‖u + h‖2U e

16
µ ‖u+h‖2U

µ
+ 1

)
‖h‖4U

‖Ṙ‖2L2(0,T ;H1(Ω)∗)

≤ 128

ᾱ0
‖q0‖2L2(Ω)

(
e

16
µ ‖u‖

2
U

)2

( 2

ᾱ0

(
8 ‖u + h‖2U e

16
µ ‖u+h‖2U

(2µ

α0
+ 1
)

+
2µ2

α0

)
+ 1
)
‖h‖4U

that can be compactly written as:

‖R‖2L2(0,T ;H1(Ω)) ≤ C1(‖u‖U , ‖h‖U ) ‖h‖4U
and

‖Ṙ‖2L2(0,T ;H1(Ω)∗) ≤ C2(‖u‖U , ‖h‖U ) ‖h‖4U
so that finally:

‖R‖2H1(0,T ;H1(Ω),H1(Ω)∗)

= ‖R‖2L2(0,T ;H1(Ω)) + ‖Ṙ‖2L2(0,T ;H1(Ω)∗)

≤ C ‖h‖4U .

(50)

where C = max{C1, C2} and has a finite value as ‖h‖U →
0. As a consequence, from Equation (50), we have that
‖R‖H1(0,T ;H1(Ω),H1(Ω)∗) → 0 as ‖h‖U → 0, thus implying
the Fréchet differentiability of the control-to-state map. �
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