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CLEAR: A Consistent Lifting, Embedding, and Alignment
Rectification Algorithm for Multi-View Data Association

Kaveh Fathian, Kasra Khosoussi, Yulun Tian, Parker Lusk, Jonathan P. How

Abstract—Many robotics applications require alignment and
fusion of observations obtained at multiple views to form a global
model of the environment. Multi-way data association methods
provide a mechanism to improve alignment accuracy of pairwise
associations and ensure their consistency. However, existing
methods that solve this computationally challenging problem are
often too slow for real-time applications. Furthermore, some
of the existing techniques can violate the cycle consistency
principle, thus drastically reducing the fusion accuracy. This
work presents the CLEAR (Consistent Lifting, Embedding, and
Alignment Rectification) algorithm to address these issues. By
leveraging insights from the multi-way matching and spectral
graph clustering literature, CLEAR provides cycle consistent
and accurate solutions in a computationally efficient manner.
Numerical experiments on both synthetic and real datasets
are carried out to demonstrate the scalability and superior
performance of our algorithm in real-world problems. This algo-
rithmic framework can provide significant improvement in the
accuracy and efficiency of existing discrete assignment problems,
which traditionally use pairwise (but potentially inconsistent)
correspondences. An implementation of CLEAR is made publicly
available online.

SUPPLEMENTARY MATERIAL

CLEAR source code and the code for generating compar-
ison results: https://github.com/mit-acl/clear. Video of paper
summary: https://youtu.be/RBxq9KYcgTY.

I. INTRODUCTION

Data association across multiple views, known as the multi-
view or multi-way [1] matching, is a fundamental problem in
robotic perception and computer vision. Conceptually, the goal
in this problem is to establish correct associations between
the sightings of “items” across multiple “views” (see Fig. 1).
Examples include feature matching across multiple frames
[1, 2, 3], and associating landmarks across multiple maps for
map fusion in single/multi-robot simultaneous localization and
mapping (SLAM) [4].

The traditional approach treats the multi-view data associ-
ation problem as a sequence of decoupled pairwise matching
subproblems, each of which can be formulated and solved,
e.g., as a linear assignment problem [5]. Such techniques,
however, cannot leverage the redundancy in the observations
and, furthermore, often result in non-transitive (a.k.a., cycle
inconsistent) associations; see Fig. 1. One can address these
issues by synchronizing all noisy pairwise associations via
enforcing the cycle consistency constraint. Cycle consistency
serves two crucial purposes: 1) it provides a natural mecha-
nism for the discovery and correction of wrong (or missing)
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Fig. 1. An illustrative example of cycle consistency for the association
of images observed in views i, j, k. Associations of “Eiffel tower” are
cycle consistent. On the other hand, the “statue of liberty” associations are
inconsistent since the images matched between views i and j and views i and
k are not matched between views j and k (i.e., violation of transitivity).

associations obtained through pairwise matching; and 2) it
establishes an equivalence relation on the set of observations,
which is necessary for global fusion in the so-called clique-
centric applications such as map merging (Section VII).

Synchronizing pairwise associations is a combinatorial op-
timization problem with an exponentially large search space.
This problem has been extensively studied in recent years (see
[1, 2, 6, 3] and references therein). These efforts have resulted
in several algorithms that can improve the erroneous initial set
of pairwise associations. However, providing solutions that are
computationally tractable for real-time applications remains a
fundamental challenge. Further, the rounding techniques used
by some of relaxation-based methods may violate the cycle
consistency and distinctness constraints (distinctness implies
that the items observed in each view are unique, and thus
must not be associated with each other).

This work aims to address these critical challenges via
a novel spectral graph-theoretic approach. Specifically, we
leverage the natural graphical representation of the problem
and propose a spectral graph clustering technique uniquely
tailored for producing accurate solutions to the multi-way data
association problem in a computationally tractable manner.
Our solutions, by construction, are guaranteed to satisfy the
cycle consistency and distinctness constraints under any noise
regime. These are demonstrated in our extensive empirical
evaluations based on synthetic and real datasets in the context
of feature matching and map fusion in landmark-based SLAM.

A. Related Work

With the exception of combinatorial methods [7, 8] that do
not scale well to large problems, and a recent deep leaning
approach in [9], the majority of permutation synchronization
algorithms that aim to solve this computationally challenging
problem can be classified as (i) convex relaxation; (ii) spectral
relaxation; and (iii) graph clustering.
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Methods in the first category include [10], which uses
a semidefinite programming relaxation of the problem and
solves it via ADMM [11]. A distributed variation of this
method with a similar formulation has been recently presented
in [12]. Toward the same goal, [2] uses a low-rank matrix
factorization to improve the computational complexity. Works
such as [13] and [6] require full observability, whereas meth-
ods such as [14] can perform in a partially observable setting,
where only a subset of overall items is observed at each
view. The aforementioned algorithms often return solutions
that have the highest accuracy; however, due lifting to high
dimensional spaces, they are slow and not suitable for real-
time applications.

Methods in the second category are based on a spectral
relaxation of the problem, with prominent works including
[1] and [15]. The method proposed in [1] returns consistent
solutions from noisy pairwise associations using a spectral
relaxation in the fully observable setting. The work done by
[15] proposes an eigendecomposition approach that works in a
partially observable setting, however cycle consistency is lost
in higher noise regimes. The recent work of [16] leverages
a non-negative matrix factorization approach to solve the
problem. This method works in a partially observable setting
and preserves cycle consistency. Algorithms that use spectral
relaxation are relatively fast and return solutions that have
comparably high accuracy.

Methods in the third category use a graph representation
of the problem. In [17] and [3], the authors have elegantly
observed the equivalence relation between cycle consistency
and cluster structure of the association graph. This observation
is used to find approximate solutions to the problem based
on existing graph clustering algorithms. The work done in
[17] has considered a constrained clustering approach using a
method similar to k-means. In [3], the existing density-based
graph clustering algorithm in [18] is leveraged to solve the
problem. Methods in this category could be very fast, however,
the accuracy may be compromised.

Lastly, we point out that the multi-way data association
problem can be viewed and solved from a graph matching
perspective [19, 20]. Unlike all previously discussed methods
(and the present work), which only leverage the associa-
tion information across views, graph matching additionally
incorporates geometrical information between the items in
each view. The additional complexity, in general, results in
significantly slower algorithms.

B. Our Contributions

Our work provides new insights into connections between
the multi-way data association problem and the spectral graph
clustering literature. We leverage these insights to push the
boundaries of accuracy and speed—which are crucial for
real-time robotics applications—to solve the multi-way data
association problem. The main contributions of this work are
as follows:

1) To our knowledge, this work provides the first approach
that formulates and solves the multi-way association
problem using a normalized objective function. This

normalization is crucial to recover the correct solution
when the association graph is a mixture of large and small
clusters (Remark 1).

2) We leverage the natural graphical structure of the problem
to estimate the unknown universe size1 from erroneous
associations. Specifically, we prove that our technique
is guaranteed to recover the correct universe size under
certain bounded noise regimes (Proposition 2). Moreover,
we empirically demonstrate that the proposed approach is
more robust to noise than the standard eigengap heuris-
tic [21] used in the spectral graph clustering literature
(Remark 3).

3) We propose a projection (rounding) method that, by
construction, is guaranteed to produce solutions that
satisfy the cycle consistency and distinctness constraints,
whereas these constraints can be violated by some of
the state-of-the-art algorithms in high-noise regimes (Sec-
tion VIII).

In addition, we address an important subtlety regarding the
choice of suitable metrics for evaluating the performance of
multi-way matching algorithms in applications such as map
fusion (Section VII). Finally, we provide extensive numerical
experiments on both synthetic and real datasets in the context
of feature matching and map fusion (Sections VIII and IX).
Our empirical results demonstrate the superior performance of
our algorithm in comparison to the state-of-the-art methods in
terms of both accuracy and speed.

Outline

The organization of the paper is as follows. The notation
and definitions are introduced in Section II, followed by the
problem formulation in Section III. The CLEAR algorithm is
presented in Section IV, followed by a numerical example in
SectionV. The theoretical justifications behind the algorithm
are discussed in Section VI with proofs presented in the
Appendix. Application domains for the CLEAR algorithm are
discussed in Section VII. CLEAR is benchmarked against
the state-of-the-art algorithms using synthetic data in Sec-
tion VIII.Finally, experimental evaluations of CLEAR on real-
world datasets are presented in Section IX.

II. NOTATION AND DEFINITIONS

We denote the set of natural numbers by N, integers by
Z, N0

def
= {0} ∪ N, and define Nn

def
= {1, 2, · · · , n}. Scalars

and vectors are denoted by lower case (e.g., a), matrices
by uppercase (e.g., A), and sets by script letters (e.g., A).
Cardinality of set A is denoted by |A|. The element on row i
and column j of matrix A is denoted by (A)ij . The Frobenius
inner product is defined as 〈A,B〉 def

= tr(A>B), where A
and B are matrices of the same size. Finally, ‖ · ‖ denotes
the (induced) 2-norm. Table I lists the key variables used
throughout the paper.

1By definition, universe size is the total number of unique items in all
views.
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A. Permutation Matrices

Matrix P i
j ∈ {0, 1}mi×mj is said to be a partial permutation

matrix if and only if each row and column of P i
j at most

contains a single 1 entry. Matrix P is called a full permutation
matrix if and only if each row and column has exactly a single
1 entry. We denote the space of all (partial or full) permutation
matrices by P. Matrix P i ∈ P is said to be a lifting permutation
matrix if and only if each row of P i contains a single 1 entry
(however, column entries could be all zero). We denote the
space of all lifting permutation matrices by PL. The aggregate
association matrix consisting of matrices P i

j ∈ {0, 1}mi×mj ,
i, j ∈ Nn, is defined as

P
def
=

 I P 1
2 ··· P 1

n

P 2
1 I ··· P 2

n
...

...
...

...
Pn

1 Pn
2 ··· I

 ∈ Rl×l, (1)

where I is the identity matrix with appropriate size, and
l

def
=
∑n

i=1mi.

B. Graph Theory

We denote a graph with l vertices by G = (V, E), where V
is the set of vertices, and E is the set of undirected edges. The
adjacency matrix A ∈ {0, 1}l×l of G is defined by (A)ij = aij ,
where aij = 1 if there is an edge between vertices vi, vj ∈ V ,
otherwise aij = 0. We assume aii = 0, i.e., graph has
no self-loops. The degree of a vertex vi ∈ V is defined as
di

def
=
∑l

j=1 aij , and the l × l degree matrix D is defined as
a diagonal matrix with d1, . . . , dl on the diagonal. We define
C

def
= D + I , where I is identity matrix. If ci’s denote the

diagonal entries of C, then C−
1
2 is a diagonal matrix with

diagonal entries 1/
√
ci. The Laplacian matrix of G is defined

as L def
= D − A. A cluster graph G is a disjoint union of

cliques (i.e., complete subgraphs). That is, G can be partitioned
into subgraphs A1,A2, . . . ,Am, where each Ai is a complete
graph and there is no edge between any two Ai, Aj . The
cliques in a cluster graph are called clusters.

III. PROBLEM FORMULATION

Simply put, the objective of this paper is to reconstruct a set
of cycle consistent associations from a set of pairwise asso-
ciations, which may contain error and lack cycle consistency.
This problem can be approached from either an optimization
or a graph-theoretic viewpoint. In what follows, we will first
describe each formulation separately, and then shed light on
their connections.

A. Optimization-Based Formulation

We consider n views and assume that view i contains
mi items. Associations (or matchings) between items in
views i and j can be represented by a binary matrix
P i
j ∈ {0, 1}mi×mj , in which the one entries indicate the

associations. An example of pairwise associations among three
views is shown in Fig. 2. A lifting permutation represents the
association between items observed in a view and the universe
(which by definition consists of all items). An example is
provided in Fig. 3.

TABLE I. Summary of important nomenclature used throughout the paper.

Notation Domain Definition and properties

n N Total number of views

m N Size of universe; number of unique items;
number of cliques in the association graph

mi N Number of items observed in view i

l N Total number of items observed across all
views; l def

=
∑

i mi

~ - Accent used for variables corresponding to
the noisy input

P i
j {0, 1}mi×mj Partial permutation matrix; association matrix

between items at views i and j

P {0, 1}l×l Aggregate association matrix consisting of
P i
j ’s; see (1)

A {0, 1}l×l Adjacency matrix of the association graph;
A = P − I

D Nl×l
0 Degree matrix of the association graph

C Nl×l
0 Diagonal matrix with entries ci

def
=

∑
j(P )ij ;

C = D + I

L Zl×l Laplacian matrix of G; L def
= D−A = C−P

Lnrm Rl×l Normalized Laplacian matrix;
Lnrm

def
= C−

1
2 LC−

1
2

Pnrm Rl×l Normalized association matrix;
Pnrm

def
= C−

1
2 P C−

1
2

P i {0, 1}mi×m Lifting permutation matrix; association of
items observed at views i to items of the
universe

V {0, 1}l×m Aggregate lifting permutation matrix consist-
ing of P i’s; see (3)

U Rl×m Normalized aggregate lifting permutation;
U

def
= C−

1
2 V ; eigenvectors associated to m

smallest eigenvalues of Lnrm

ui Rm Row of U

u′i Rm Pivot row of U

Definition 1. Pairwise associations P i
j are cycle consistent if

and only if there exist lifting permutations P i ∈ PL such that

P i
j = P i P j>, ∀i, j ∈ Nn. (2)

The cycle consistency condition (2) can be presented more
concisely as P = V V >, where P is the aggregate association
matrix defined in (1), and

V
def
=
[
P 1> P 2> · · · Pn>]> ∈ {0, 1}l×m, (3)

where l def
=
∑

imi. Here, m ∈ Nl is the number of columns of
lifting permutations that is referred to as the size of universe.

Throughout this paper, we use the accent ~ to distinguish
the variables that are associated with the noisy input. There-
fore, P̃ i

j ∈ {0, 1}mi×mj denotes the noisy association between
items in views i and j, where P̃ i

i = I by definition. Note that
P̃ i
j ’s can be erroneous and inconsistent. Let P̃ ∈ Rl×l, defined

via (1), denote the noisy aggregate association matrix. Further,
let C̃ be an l× l diagonal matrix with positive diagonal entries
c̃1, . . . , c̃l defined as the sum of corresponding rows of P̃ , i.e.,
c̃i

def
=
∑l

j=1 (P̃ )ij . Using definitions above, we now formulate
the main problem.
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Fig. 2. Association of items labeled as A, B,..., E observed at three views.

Problem 1. Given noisy associations P̃ i
j , find cycle consistent

associations P i
j that solve the program

maximize
P i

j∈P
〈Pnrm, P̃nrm〉

subject to P = V V >,
(4)

where Pnrm
def
= C−

1
2 P C−

1
2 , P̃nrm

def
= C̃−

1
2 P̃ C̃−

1
2 .

In Problem 1, diagonal matrices C and C̃ are used to
normalize the aggregate association matrices. The justification
behind this normalization will be explained in Remark 1
after the graph formulation of the problem is introduced.
The constraint P i

j ∈ P enforces the permutation structure,
preventing the rows and columns of P i

j from having more than
a single one entry. This enforces the distinctness constraint,
which implies that items in the same view are unique, thus
should not be associated with each other. The constraint
P = V V > imposes cycle consistency, capturing the fact
that correct associations should be transitive (i.e., if item i
is associated to item j, and item j is associated to item k,
then item i must also be associated to item k).

B. Graph-Based Formulation

The problem of data association has a graph representation.
This representation provides the key insights that are leveraged
by our algorithm to improve accuracy and runtime. A set
of pairwise associations P i

j can be represented as a colored
graph, where items in each view are denoted by vertices
with identical color, and each nonzero entry of P i

j represents
an edge between the corresponding vertices (e.g., Fig. 2).
Formally, an association graph is defined as G = (V, E)
with the coloring map g : V → Nn. The set of vertices V
consists of subsets Vi corresponding to items in view i, where
g(vj)

def
= i for all vj ∈ Vi. The set of edges E consists of

subsets Eij , i 6= j ∈ Nn, corresponding to associations, where
{vr, vs} ∈ Eij if and only if (P i

j )rs = 1.
The variables P, C and V defined previously in the op-

timization formulation (4) also have graph interpretations.
Specifically, the adjacency matrix of the association graph G
is given by A = P − I . Further, we have that C = D + I ,
where D is the degree matrix of the graph. To understand the
graph interpretation of V , we first note the following relation
between the cycle consistency and the graph representation.

Proposition 1. A set of pairwise associations is cycle consis-
tent if and only if the corresponding association graph is a
cluster graph (i.e., a disjoint union of complete subgraphs).

Proof of Proposition 1 is given in [3, Prop. 2] and hence
omitted here. The proof reveals the connection between the
algebraic definition of cycle consistency, P = V V >, and

B D E

Universe

View 𝑗

A

𝑃 
௝ ൌ     1 0 0 0 0

0 0 1 0 0  

C

C

A
C

DA E

View 𝑘

A B

View 𝑖

C

𝑃 
௜ ൌ     

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 
A

B

B

A C D E

C
A

𝑃 
௞ ൌ     

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 
A
D
E

Fig. 3. Lifting permutation matrices associating observations at views i, j, k
to the universe, which consists of items labeled as A, B, ..., E.

clusters of the association graph, denoted by A1, . . . ,Am. In
particular, row i of the aggregate lifting permutation matrix
V ∈ {0, 1}l×m represents vertex vi of the association graph.
The one entries in j-th column of V indicate the vertices that
belong to cluster Aj of G. That is, if (V )ij = (V )kj = 1,
then vertices vi and vk are connected by an edge and belong to
cluster Aj . We will leverage this observation in the theoretical
analysis of the algorithm.

Given a noisy association graph G̃ with adjacency matrix Ã,
degree matrix D̃, and C̃ = D̃+I , the graph-based formulation
of the multi-way association problem is as follows.

Problem 2. Given the noisy association graph G̃, find undi-
rected graph G with adjacency matrix A that solves

maximize
A

〈Anrm, Ãnrm〉
subject to G consists of clusters A1, . . . ,Am

g(vi) 6= g(vj), ∀vi, vj ∈ Ak

(5)

where Anrm
def
= C−

1
2 AC−

1
2 and Ãnrm

def
= C̃−

1
2 Ã C̃−

1
2 .

Note that Problems 1 and 2 are equivalent. As elabo-
rated above, the indices of the vertices belonging to clusters
A1, . . . ,Am uniquely determine V in Problem 1. Further,
since A = P −I , both objective functions have the same opti-
mizer. In (5), the first two constraints respectively correspond
to the cycle consistency and distinctness of associations, where
the latter is achieved by the fact that the colors of vertices in
each cluster must be distinct.

Remark 1. The normalized objective function in (4) is a key
distinction from several state-of-the-art methods [1, 15, 16]
that consider the unnormalized objective 〈P, P̃ 〉. By weighting
edges based on the degrees of their adjacent vertices, the
normalized objective provides a measure to “balance” the
number of edges that are removed from or added to the noisy
association graph G̃ to obtain G. The unnormalized objective,
on the other hand, is indifferent to the number of added edges.
This can lead to (undesired) optimal solutions that consist
of many additional edges. This point is illustrated in Fig. 4,
where, in contrast to the normalized objective, the optimal
solution with an unnormalized objective could fail to recover
the ground truth even in a relatively low-noise regime.

We point out that the example shown in Fig. 4 is only
one of countless scenarios in which the optimal solution of
an unnormalized objective could fail to recover the desired
association in a low-noise regime. Such examples can be
constructed by (wrongly) associating clusters with small and
large number of vertices.
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Fig. 4. (Best viewed in color) Graph G1 indicates the association of two items labeled as A, B, in six views identified by colors , , , , , . The
incorrect association, which connects A and B, is indicated by the red edge. If in (4) the unnormalized objective 〈P, P̃ 〉 is used instead, G2 (and also G3)
would be the optimal solution (with optimal values of 29). On the other hand, by using the proposed normalized objective 〈Pnrm, P̃nrm〉, the correct association
graph G3 is the only optimal solution (with optimal value of 1.79; the value for G2 is 1.43).

IV. THE CONSISTENT LIFTING, EMBEDDING, AND
ALIGNMENT RECTIFICATION (CLEAR) ALGORITHM

In this section, we present a concise description of the
CLEAR algorithm used for solving the permutation syn-
chronization problem, followed by a numerical example to
further illustrate the steps of the algorithm in the next section.
Theoretical justifications of the algorithm will be discussed
in Section VI. The pseudocode of CLEAR is given in Algo-
rithm 1, where each step is discussed in details below.

• Step 1: Let G̃ denote the association graph corresponding to
a set of noisy pairwise associations P̃ i

j . Define the normalized
Laplacian of G̃ as

L̃nrm
def
= C̃−

1
2 L̃ C̃−

1
2 , (6)

where L̃ = D̃− Ã, C̃ def
= D̃+ I , and D̃, Ã are respectively the

degree and adjacency matrix of G̃. Compute the eigenvalues
and eigenvectors of L̃nrm.

To reduce the computational complexity, eigendecomposi-
tion of L̃nrm is done by first finding the connected components
of G̃ using the breadth-first search (BFS) algorithm [22].
Eigenvalues of L̃nrm are then given as the disjoint union of
each component’s normalized Laplacian eigenvalues. Simi-
larly, eigenvectors are given by appropriately padding the
eigenvectors of connected components with zeros.

We point out that if L̃nrm is not symmetric, its symmetric
component (L̃nrm + L̃>nrm)/2 should be used instead in the
eigendecomposition (the skew-symmetric component does not
contribute to the optimal answer; see Remark 2). Note that
the symmetry implies that all eigenvalues and eigenvectors
are real.

• Step 2: Obtain an estimate for the size of universe as

m̂
def
= max {m̃, m1, m2, . . . ,mn}, (7)

where mi is the number of items in view i, and m̃ is defined
as

m̃
def
=
∣∣∣{λ ∈ eig(L̃nrm) : λ < 0.5}

∣∣∣ , (8)

i.e., the number of eigenvalues of L̃nrm that are less than 0.5.

• Step 3: Define matrix U ∈ Rl×m as the m̂ first eigenvectors
of L̃nrm, that is, the eigenvectors associated with the smallest
eigenvalues.

• Step 4: Normalize rows of U to have unit norm, i.e., the
i-th row of U , denoted by ui, is replaced by ui/‖ui‖. Choose
the m̂ most orthogonal rows as pivots.

This can be done based on a greedy strategy where the first
row of U is chosen as the first pivot. To find the remaining

Algorithm 1: CLEAR (pseudocode)

Input : Noisy pairwise associations P̃ i
j .

Output: Cycle consistent associations P i
j .

• Step 1: Compute L̃nrm from (6) and find its
eigendecomposition.

• Step 2: Estimate size of universe m̂ from (7).
• Step 3: Set U as the m̂ first eigenvectors of L̃nrm.
• Step 4: Normalize rows of U and chose m̂ most

orthogonal rows as pivots. Find lifting
permutations P i by assigning rows to pivots
based on distance.

• Step 5: Set P i
j ← P iP j>.

pivots, the row with the smallest inner product magnitude
with previously chosen pivots is picked consecutively. That
is, if u′k denotes the k-th pivot, u′k+1 is selected such that∑k

i=1 |〈u′i, u′k+1〉| is minimized.
For each view i, define matrix F i ∈ Rmi×m by

(F i)jk
def
= ‖uj − u′k‖2, where uj denotes the rows of U associ-

ated to items in view i, and u′k denotes the pivot rows.2 Solve
a linear assignment problem based on F i as the cost matrix to
obtain a lifting permutation P i ∈ PL that associates the items
in view i (rows uj) to the items of the universe (pivot rows u′k).
The Hungarian algorithm [5] can be used to solve the linear
assignment problem and find the optimal answer. However,
to reduce the computational complexity, faster (suboptimal)
algorithms can be used instead while the distinctness constraint
is preserved by ensuring that each u′k is associated to at most
one uj , and each uj is associated to exactly one u′k.

• Step 5: Compute pairwise associations as P i
j = P iP j>.

From Definition 1, pairwise associations are cycle consistent
by construction.

V. NUMERICAL EXAMPLE

We present an example to illustrate the steps of the CLEAR
algorithm and show how pivot rows are chosen.

Example 1. In this example, we use the CLEAR algorithm to
recover cycle-consistent associations from the (noisy) associa-
tion graph G̃ shown in Fig. 5. Note that G̃ is identical to G1 in
Fig. 4, where the correct associations and the labels A,B are
unknown and should be recovered. The aggregate association

2Specifically, uj denotes rows
∑i−1

k=1 mk + 1 through
∑i

k=1 mk of U .
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Fig. 5. The association graph corresponding to observations in six views
distinguished by color. View 1 is colored as , and views 2 through 6 are
successively colored as , , , , . Vertices are numbered from 1 to 7.
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1

Fig. 6. Embedding of rows of matrix U in Example 1.

matrix (which is equal to the adjacency matrix plus identity)
is given by

P̃ =


1 0 1 0 0 0 0
0 1 0 1 1 1 1
1 0 1 1 0 0 0
0 1 1 1 1 1 1
0 1 0 1 1 1 1
0 1 0 1 1 1 1
0 1 0 1 1 1 1

. (9)

The first two rows of P correspond to items in view 1 and the
remaining rows successively correspond to views 2 through 6.

• Step 1: From (9), the Laplacian matrix is computed as
L̃ = C̃−P̃ , where C̃ = diag(2, 5, 3, 6, 5, 5, 5) and diag creates
a diagonal matrix from input arguments. The normalized
Laplacian matrix is given by L̃nrm = C̃−

1
2 L̃ C̃−

1
2 , which has

eigenvalues {1.18, 1, 1, 1, 0.85, 0.17, 0}.

• Step 2: The number of eigenvalues of L̃nrm that are less than
0.5 are two. Hence, m̃ = 2. The number of items in views is
either two (for view 1) or one (for the rest of views). Thus,
the estimated size of universe is obtained as m̂ = 2.

• Step 3: Matrix U consisting of the first two eigenvectors of
L̃nrm is computed.

• Step 4: Rows of U are normalized to obtain (up to two
decimals)

U =


-0.94 0.34
0.47 0.88-0.88 0.48
0.07 0.99
0.47 0.88
0.47 0.88
0.47 0.88

. (10)

Fig. 6 depicts rows of (10) as vectors, where the endpoint of
each vector is colored based on the view that it corresponds
to, and the unit circle is drawn to indicate that rows have unit
norm. The pivots are chosen by taking the first row as the
first pivot u′1 = [−0.94, 0.34]. The second pivot is chosen as
the row of U that has the smallest (absolute value of) inner
product with u′1, which gives u′2 = [0.47, 0.88].

From (F i)jk
def
= ‖uj − u′k‖2, where uj are rows of U that

correspond to view i and u′k are pivot rows we obtain

F 1 = [ 0 2.28
2.28 0 ], F 2 = [ 0.02 1.97 ], F 3 = [ 1.46 0.17 ],

F 4 = [ 2.28 0 ], F 5 = [ 2.28 0 ], F 6 = [ 2.28 0 ].

By solving a linear assignment problem for each F i as the cost
matrix (which aims to find the permutation matrix P i such that
〈P i, F i〉 is minimized) we obtain lifting permutations

P 1 = [ 1 0
0 1 ], P 2 = [ 1 0 ], P 3 = [ 0 1 ],

P 4 = [ 0 1 ], P 5 = [ 0 1 ], P 6 = [ 0 1 ].

• Step 5: Cycle-consistent pairwise associations are obtained
by P i

j = P iP j . Note that these associations correspond to the
graph G3 in Fig. 4.

VI. THEORETICAL JUSTIFICATIONS

In this section, we discuss the insights and theoretical justifi-
cations behind steps of the CLEAR algorithm. To improve the
readability, proof of all lemmas and propositions are presented
in the Appendix.

The discrete and combinatorial nature of the multi-way
data association problem makes finding the optimal solution
computationally prohibitive in practice. Hence, similar to the
state-of-the-art methods, the CLEAR algorithm aims to find
a suboptimal solution via a series of approximations of the
original problem.

A. Step 1: Reformulation

Before proceeding with obtaining an approximate solution,
we reformulate (4) to obtain an equivalent problem. This
equivalent problem, given in the following proposition, is
amenable to a relaxation, which grants us an approximate
solution in a computationally tractable manner.

Proposition 2. Problem 1 is equivalent to

minimize
U∈U

tr
(
U>L̃nrm U

)
, (11)

where U def
= {U : U = C−

1
2V, V ∈ V}, V is defined as the

set of all matrices of form (3), and U>U = I .

Remark 2. The skew-symmetric part of L̃nrm does not affect
the solution of (11) since for all U and any skew-symmetric
matrix B, tr(U>B U) = 0. This observation justifies using
only the symmetric part of L̃nrm in step 1 of the CLEAR
algorithm.

B. Step 2: Estimating Size of Universe

From (7) and (8), CLEAR obtains an estimate for the size
of universe based on the spectrum of L̃nrm. By definition, the
size of universe is the total number of unique items observed
in all views (e.g., the size of universe in Fig. 3 is five), which
essentially determines the number of columns of U in (11)
(or equivalently V in (4)). This approach is justified in the
following analysis, which aims to show that, under certain
bounded noise regimes, the estimated size m̂ is guaranteed to
be identical to its true value m. Let us denote the ground truth
association graph by G. Note that G consists of m clusters,
each representing an item of the universe.

Lemma 1. If Lnrm is the normalized Laplacian matrix of the
cluster graph G, then eig(Lnrm) consists of zeros and ones.
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Moreover, the multiplicity of the zero eigenvalues is the number
of clusters.

Lemma 1 implies that in the noiseless setting the number
of zero eigenvalues of Lnrm is the size of universe, which
is correctly recovered from (8) by counting the eigenvalues
that are less than 0.5. We now consider the noisy association
graph G̃ with normalized Laplacian L̃nrm = Lnrm +N , where
N is a symmetric matrix that represents the noise. Here, the
symmetry assumption follows from using only the symmetric
component of L̃nrm in the algorithm (see Remark 2).

Lemma 2. Consider the estimate m̃ obtained by (8) from
L̃nrm = Lnrm +N . If ‖N‖ < 0.5, then m̃ = m.

Lemma 2 implies that, under a bounded noise regime, the
estimated size of universe is equal to the true value. In order to
obtain a bound in terms of the number of wrong associations
for which m̃ = m is guaranteed, let us consider a noise
model where C̃ = C. In this model, correct associations are
potentially replaced with wrong ones, however, the degrees
of vertices in G and G̃ remain the same. Let Ã = A + E,
where A and Ã are respectively the adjacency matrices of G
and G̃, and E ∈ {−1, 0, 1}l×l represents the noise. Further,
let emax

def
= max {e1, e2, . . . , el}, where ei

def
=
∑l

j=1 |(E)ij |
denotes the number of wrong associations at vertex i of the
graph G̃. Let cmin > 0 denote the smallest diagonal entry of
the C matrix.

Proposition 3. Given emax, cmin defined above and m̃ ob-
tained from (8), if emax < 0.5 cmin, then m̃ = m.

Proposition 3 implies that when the noise magnitude (in
terms of the number of mismatches) is sufficiently small, the
estimated size of universe m̂ is equal to the true value m.
We point out that in practice the bound in Proposition 3 is
conservative and correct estimates may be obtained in larger
noise regimes or for noise with a more realistic model. In
higher noise regimes where the estimate can have a large error,
taking the maximum in (7) ensures the distinctness constraint
(which implies that items in each view are unique), and
therefore the estimated m cannot be less than the maximum
number of items observed at a view.

The estimated value of m obtained from (7) fixes the size of
U in (11) throughout the algorithm. Since (as we will show)
each iteration of the CLEAR algorithm has a small execution
time, instead of using a fixed value an alternative approach
is to consider multiple values for m̂ (e.g., by looping over
all feasible m̂) and choosing the solution that maximizes the
objective in (4). In our empirical evaluations we observed
that this approach, which comes at the expense of a higher
execution time, does not notably improve the accuracy of the
results. This empirical observation hints that the estimated
value of m̂ is often close to its optimal value, advocating the
proposed estimation approach.

Remark 3. In the spectral graph clustering methods, the
“eigengap” heuristic is often used to estimate the number
of clusters [21]. In this approach, m̃ is chosen such that
|λm̃ − λm̃+1| is maximized, where λk’s are sorted eigenvalues
of Lsym

def
= D−

1
2LD−

1
2 . Unlike the normalized Laplacian Lnrm

proposed in this work (see Lemma 1), in the noiseless setting,
the nonzero eigenvalues of Lsym depend on the size of clusters.
We believe that this can make the eigengap method more
sensitive to noise. As we will see in our empirical analysis in
Section VIII, the estimated universe size based on the eigengap
heuristic can deviate considerably from the true value in
moderate noise regimes, while our approach exhibits more
robustness.

C. Step 3: Lifting and Relaxation

In order to solve (11) in a computationally tractable manner,
the second approximation used in the CLEAR algorithm is to
drop the discrete constraint U ∈ U and allow U to take values
in Rl×m. This leads to the relaxed problem

minimize
U∈Rl×m

tr
(
U>L̃nrm U

)
subject to U> U = I,

(12)

which is a generalized Rayleigh quotient problem. From the
Rayleigh-Ritz theorem [23, Sec 5.2.2], it follows that the
solution of (12) is given by the eigenvectors corresponding to
the m-smallest eigenvalues of L̃nrm (note that m is estimated
in the previous step).

We point out that the relaxation technique used here is sim-
ilar to the relaxation used to solve the normalized minimum-
cut problem in the spectral graph clustering literature [21].
This similarity is not surprising given the graph-theoretic
interpretation of our problem discussed in Section III-B.
Nevertheless, note that spectral graph clustering is based on
L̃sym

def
= D̃−

1
2 L̃D̃−

1
2 (or other normalized Laplacians) instead

of L̃nrm.

D. Step 4: Projection and Embedding

In order to obtain an approximate solution for the original
problem (11), the solution U∗ ∈ Rl×m obtained from solving
(12) should be projected back to the discrete set U. This step
is critical for ensuring the cycle consistency and distinctness
constraints. In fact, as we will show in Section VIII, the
solutions returned by some state-of-the-art methods could
violate the cycle consistency or distinctness constraints in
high-noise regimes due to bad projections.

To project U∗ onto U, several approaches can be considered.
Our approach is inspired by the spectral graph clustering
literature [21, 24, 25], where rows of U∗ are normalized and
embedded as points in Rm. These points are then grouped
into m disjoint sets based on their distance to cluster centers.
Despite the aforementioned similarity, a key difference in
our setting is the existence of the distinctness constraint
(i.e., vertex coloring), which is not present in spectral graph
clustering [25]. Hence, the k-means algorithm commonly used
for grouping the embedded points in general violates the
distinctness constraint. Furthermore, compared to other pro-
jection techniques that consider this constraint (e.g., methods
in [26, 16]), our approach has a lower complexity that leads
to superior execution time.

Our approach is based on noting that rows of V (defined in
(3)) consist of standard bases vectors which are orthogonal.
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Furthermore, as explained earlier, V identifies graph clusters
A1,A2, . . . ,Am, where vertices that belong to the same
cluster have identical rows in V . Since U def

= C−
1
2 V and C is

a diagonal matrix, it follows that in the noiseless setting the set
of normalized rows of U consists exclusively of m orthogonal
vectors. Additionally, similar to V , normalized rows of U that
are identical correspond to vertices that belong to the same
cluster.

In the noisy setting, from the Davis-Kahan theorem [27] the
eigenspace of the ground truth Laplacian matrix and its noisy
version are “close” to each other (where “closeness” can be
quantified by the noise magnitude, cf. the discussion in [21,
Sec. 7]). Hence, in modest noise regimes, the rows of U∗ that
belong to the same clusters are expected to remain close (in
terms of the Euclidean distance) and almost perpendicular to
other rows. This observation is leveraged by choosing m rows
of U∗ that are most orthogonal to each other (called pivots) to
represent the clusters. The remaining rows are then associated
to pivots (while preserving distinctness) based on distance in
order to identify which cluster they belong to.

If ui denotes the i-th row of U∗, the problem of finding
the m most orthogonal rows can be formulated as finding a
subset S of rows that solves

minimize
S⊂Nl

∑
i,j∈S |〈ui, uj〉|

subject to |S| = m.
(13)

The greedy strategy explained in step 3 of the CLEAR
algorithm can be leveraged to efficiently find an approximate
solution for (13).

After choosing the pivot rows, which are denoted by u′k
and represent clusters, the remaining rows of U∗ are assigned
to pivot rows through minimizing the within-cluster distances.
This is formally stated as

minimize
A1,...,Am

∑m
k=1

∑
vj∈Ak

‖uj − u′k‖2

subject to g(vi) 6= g(vj), ∀vi, vj ∈ As.
(14)

The constraint in (14) enforces the distinctness constraint (i.e.,
items in a view should not be in the same cluster). Let us define
F ∈ Rl×m such that (F )jk

def
= ‖uj − u′k‖2, and denote its row

blocks by

F =
[
F 1> F 2> · · · Fn>]> , (15)

where the number of rows of block F i is equal to the number
of items at view i. Using this notation, and since V encapsu-
lates both the distinctness constraint and the cluster structure,3

(14) can be represented in matrix form as min
V ∈V
〈V, F 〉. Noting

that

min
V ∈V

〈V, F 〉 = min
P i∈PL

∑n
i=1〈P i, F i〉 (16a)

=
∑n

i=1 min
P i∈PL

〈P i, F i〉, (16b)

and since each subproblem in (16b) is a linear assignment
problem [5], the optimal solution can be obtained by, e.g.,
applying the Hungarian (Kuhn-Munkres) algorithm on each
block F i.

3If the j-th entry in column k of V is nonzero, then vj ∈ Ak .

From the implementation point of view, as long as the lifting
permutation structure of P i is preserved, faster suboptimal
methods can be used instead to solve (16b). To improve the
runtime, instead of the Hungarian algorithm CLEAR uses a
suboptimal greedy strategy based on sorting, where the index
of the smallest entries of F i are used to determine the index of
one entries in P i. These indices are chosen with care to ensure
that P i is a lifting permutation (i.e., each row has a single
one entry and each column has at most a single one entry).
In our empirical evaluations we observed that this suboptimal
strategy performs as well as the optimal Hungarian algorithm
most of the time in term of accuracy, but has a considerable
speed advantage.

Lastly, we emphasize that the proposed projection technique
is based on the orthogonality property of the embedded rows.
Hence, the results are not affected by any transformation
that preserves the orthogonality. This is particularly important
since solutions of (12) are only recovered up to an orthogonal
transformation (i.e., if U∗ is a solution so is U∗R for any
orthogonal matrix R).

E. Computational Complexity

The computational complexity of CLEAR is determined
by the eigendecomposition algorithm (used for estimating the
universe size and computing the eigenvectors of L̃nrm) and
the linear assignment problem (used for the projection step).
The time complexity of the eigendecomposition and optimal
linear assignment (e.g., Hungarian algorithm) are respectively
O(l3) and O(nm3), where l is the number of vertices in the
assignment graph, n is the number of views, and m is the size
of universe.

In order to improve the speed and scalability of CLEAR, a
breadth-first search (BFS), which has the worst computational
complexity of O(l2), can be used to first find the connected
components of G̃. The spectrum (i.e., eigenvalues of normal-
ized Laplacian) of G̃ is then obtained by taking the disjoint
union of components’ spectra (similarly eigenvectors are given
by zero padding the components’ eigenvectors) [28]. Through
this approach, the complexity of the eigendecomposition is
reduced to O(l31), where l1 is the number of vertices in
the largest connected component of G̃. In practice, often
the association graph consists of many disjoint components
(e.g., see examples in Section IX), and the aforementioned
procedure considerably improves the runtime and scalability.

The second improvement in speed is achieved by replacing
the Hungarian algorithm with the suboptimal sorting strategy.
This approach reduces the computational complexity of the
projection step to O(nm2 log(m)).

VII. APPLICATIONS: EDGE-CENTRIC VS.
CLIQUE-CENTRIC

In this section, we divide the applications that benefit from
solving the multi-view matching problem into two categories,
namely edge-centric and clique-centric. It will become clear
shortly that making this subtle distinction is crucial for choos-
ing the appropriate evaluation metric for each category.
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In edge-centric applications, one ultimately seeks to estab-
lish associations between pairs of views (and not all views).
In graph terms, this corresponds to seeking individual edges
of the association graph (hence the name). For example,
using multi-view matching algorithms to associate features
between multiple images for estimating relative transformation
between the corresponding pair of camera poses [2] belongs
to this category. The purpose of using multi-view matching
techniques in such applications is to refine the initial noisy
associations by incorporating information from multiple views
and enforcing cycle consistency. Based on this definition,
even a cycle inconsistent set of associations is still a feasible
(although erroneous) solution in edge-centric applications. As
a result, computing standard metrics such as precision/recall
based on individual edges of the association graph is appropri-
ate for evaluating the performance of multi-view association
algorithms in such applications.

By contrast, in what we refer to as clique-centric applica-
tions, one ultimately seeks to fuse information globally (i.e.,
across all views) as prescribed by the cliques of the association
graph. For example, consider the map fusion problem that
arises in single/multi-robot SLAM [4]. After identifying every
sighting of each unique landmark in all maps (i.e., encoded in
the cliques of a cycle-consistent association graph) via multi-
view matching techniques, the corresponding measurements
(across all maps) must be fused together in the SLAM
back-end to generate the global map. Note that such notion of
global fusion is well-defined only if association, as a binary
relation on the set of observations, is an equivalence relation.4

Therefore, unlike edge-centric applications, cycle consistency
of associations is a must in clique-centric applications where
the observations in each equivalence class are fused together.
Cycle-inconsistent solutions must therefore be made cycle
consistent before being used in such applications. An implicit
and natural way of doing this is via the so-called transitive
closure of associations which gives the smallest equivalence
relation containing the original associations. In graph terms,
this is equivalent to completing each connected component of
the association graph into a clique. Thus evaluating such cycle-
inconsistent solutions by computing precision/recall based on
individual edges can be highly misleading in the case of
clique-centric applications. In such cases, precision/recall must
be computed after completing the connected components of
the association graph (i.e., for the transitive closure).

Note that a single incorrect association only affects local
(pairwise) fusions in edge-centric applications, while it may
have a catastrophic global impact in clique-centric domains.
This is illustrated in Fig. 7 using a simple example. Here the
association graph G1 contains only a single incorrect edge
drawn in red. Although G1 has a high precision and a high
recall for edge-centric applications, it is not cycle consistent
and thus does not immediately prescribe a valid solution
to clique-centric applications. As mentioned above, for such
applications one must first compute the transitive closure of
G1. The transitive closure of G1 is given by G2 which performs

4This mainly refers to transitivity since for all practical purposes in robotics,
associations are always reflexive and symmetric.

AA

A A

A

BB

𝒢ଵ

B

𝒢ଶ

B

A

AA

A A

Fig. 7. Evaluating the performance of cycle-inconsistent solutions (e.g., G1)
for clique-centric applications must be done after completing the connected
components of the association graphs (i.e., for the transitive closure G2). Even
a single incorrect edge (drawn in red) may have catastrophic consequences in
clique-centric applications.

poorly in terms of precision. Note that each red edge in G2
indicates an incorrect fusion of two observations.

Although CLEAR, by construction, always returns cycle-
consistent solutions, as we will see in the following sections
several existing algorithms may violate cycle consistency in
noisy regimes. It is thus crucial to be aware of the distinction
between local (pairwise) and global fusion in order to use the
appropriate performance metric in a particular application.

VIII. SIMULATION RESULTS

In this section, we use Monte Carlo analysis with syn-
thetic data to compare CLEAR with several state-of-the-art
algorithms across different noise regimes. The aim of these
comparisons is to 1) analyze the accuracy of the returned
solutions; 2) identify algorithms that violate the cycle consis-
tency or distinctness constraints in high-noise regimes; and 3)
evaluate the accuracy of the proposed technique for estimating
the universe size.

Algorithms used in our comparisons, which span across
three aforementioned domains, include: 1) MatchLift [10] and
MatchALS [2] that are based on a convex relaxation; 2)
Spectral algorithm [1] extended for partial permutations by
Zhou et al. [2], MatchEig [15], and NMFSync [16] that are
based on a spectral relaxation; 3) and QuickMatch [3] that is
a graph clustering approach.

We consider scenarios with various number of views and
observations across different mismatch percentage in the pair-
wise correspondences. The mismatch in correspondences is
introduced by randomly reassigning correct matches to wrong
ones according to a uniform distribution. In all comparisons,
the universe is set to contain 100 items, where this value is
assumed to be unknown to algorithms and should be estimated.
For algorithms that require the knowledge of universe size (all
except QuickMatch), the same estimated value obtained for
CLEAR from (7) is used.

We report the F1 score, which is commonly used in the
literature and is defined as f def

= 2 p r
p+r ∈ [0, 1], to evaluate the

performance of the algorithms. Here, precision p ∈ [0, 1] is
defined as the number of correct associations divided by the
total number of associations in the output, and recall r ∈ [0, 1]
is the number of correct associations in the output divided by
the total number of associations in the ground truth. The best
performance is achieved when f = 1 (when p = q = 1) and
the worst when f = 0 (zero precision and/or zero recall).

In the first comparison, the algorithms are evaluated for
different number of views and percentage of mismatch in the
input. The observation ratio is fixed at 0.5; i.e., in each view,
50 (out of 100) items of the universe are observed. These
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Fig. 8. (Best viewed in color) Comparison of the state-of-the-art algorithms with CLEAR for uniformly sampled observations. Various number of views and
observation ratios versus the percentage of mismatch in the input are considered. The F1 score is reported in percentage in each grid (the higher the better).
These values are computed based on individual edges in the association graph (i.e., for edge-centric applications); see Section VII.

items are sampled uniformly at random. For each number of
views and mismatch percentage, 10 Monte Carlo simulations
are generated and the average F1 score of the outputs across
these simulations is reported in the first row of Fig. 8 (in
percentage). In the second comparison (second row in Fig. 8),
the number of views in all Monte Carlo simulations is fixed
at the value of n = 10, and results for various observation
ratios of universe items and input mismatch percentage are
reported. Similar to the first comparison (first row in Fig. 8),
each observation ratio indicates the number of items that were
observed (i.e., uniformly sampled at random) in a view. For
example, observation ratio of 0.2 indicates that each agent
observed 20 (out of 100) items of the universe.

Fig. 8 shows that for a fixed observation ratio, as the number
of views increases, the F1 score also increases. This indicates
that the algorithms are able to leverage the redundancy in
observations with the help of the cycle consistency constraint.
For the same reason, for a fixed number of views, the F1 score
improves as the observation ratio increases.

We also tested the returned solutions for cycle consistency
(transitive associations) and distinctness (two observations in
a view cannot be associated to each other). The results are
displayed using colors in Fig. 8. In particular, here dark
green indicates that the (cycle consistent) ground truth was
recovered in all Monte Carlo iterations. Light green indicates
that the returned solutions satisfied cycle consistency and
distinctness, but contained wrong associations in at least one
of the simulations. Furthermore, red indicates that, in at
least one simulation, the output was not cycle consistent,
orange indicates violation of the distinctness constraint, and
finally purple indicates violation of both cycle consistency and
distinctness constraints.

In addition, Fig. 8 demonstrates that the extended spectral
algorithm, MatchEig, and MatchALS may return results that
violate the cycle consistency and/or distinctness constraints
in moderate to high noise regimes. Recall from Section VII
that although a cycle-inconsistent solution may exhibit a
high F1 score in terms of individual associations, in clique-
centric applications its F1 score can dramatically decrease after
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Fig. 9. (Best viewed in color) The average F1 score of the inconsistent
algorithms after making them cycle consistent by completing the graph’s
connected components for clique-centric applications (see Section VII).

completing the connected components of the association graph
(i.e., transitive closure). This is demonstrated in Fig. 9 for
MatchEIG and MatchALS algorithms (compare Fig. 9 with
Fig. 8). For example, the average F1 score of MatchEIG with
10 views and under 15% mismatch drops from 0.93 (Fig. 8) to
0.08 (Fig. 9). As discussed in Section VII, here the F1 score
of 0.93 can be very misleading if the solution obtained by
the algorithm is going to be used for fusion in the context of
clique-centric applications.

Among the algorithms that do not violate the consistency
and distinctness constraints, on average, MatchLift, NMFSync,
and CLEAR have the highest F1 scores. The poor performance
of QuickMatch is mainly due to the fact that this algorithm
was originally designed and tuned for matching image features
based on weighted associations, whereas in our setting the
associations are binary.5 In conclusion, synthetic comparisons
demonstrate that CLEAR returns cycle consistent solutions
with high F1 scores. In the next section, we evaluate the
runtime and scalability of the algorithms in real-world exam-
ples, where the total number of observations can reach several
thousands.

Finally, we compare the estimated size of universe, obtained
from (7), with the eigengap method commonly used in the
spectral graph clustering literature (see Remark 3). The results
are reported in Fig. 10. The number written inside each square
is the average of estimated universe sizes (rounded) in the
Monte Carlo runs of Fig. 8. The correct universe size is 100.

5Nonetheless, it is straightforward to generalize CLEAR and other algo-
rithms to the weighted case.
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Fig. 10. The average of estimated universe sizes in the Monte Carlo runs of
Fig. 8 by CLEAR and the eigengap method based on the symmetric Laplacian.
The closer to 100, the better.

According to the results depicted in Fig. 10, although both
techniques perform equally well under a high signal-to-noise
ratio (top two rows in each figure), the proposed approach is
more robust to noise and significantly outperforms the standard
eigengap heuristic (bottom three rows in each figure).

IX. EXPERIMENTAL RESULTS

To further evaluate the accuracy and speed of CLEAR
in real-world robotics applications, we consider two scenar-
ios, namely multi-image feature matching and map fusion
in landmark-based SLAM. Feature matching datasets have
become standard benchmarks for comparing the performance
of multi-way data association algorithms. Hence, we report
the results on two publicly available standard benchmark
datasets, namely Graffiti6 and CMU Hotel.7 The aim of our
experimental comparisons is to 1) compare the runtime of
algorithms; 2) evaluate the precision/recall for the returned
solutions.

A. CMU Dataset

The CMU hotel dataset consists of 101 images. The ground
truth provided by this dataset consists of 30 feature points per
image and their correct associations. These feature points are
visible across all images, leading to a total of 3030 features
across all images. Due to the large ratio of the number of
images (101 images) to the number of feature points per
image (30 features), this dataset represents scenarios where
observations have high redundancy. To obtain the input for
algorithms, we compute the SIFT descriptor [29] of each
feature point using the VLFeat library8 [30]. The standard
vl_ubcmatch routine in VLFeat is used to match feature
points across image pairs based on the Euclidean distance
between their descriptor vectors. By taking this input (as a
3030 × 3030 aggregate association matrix), each algorithm
returns an output which is then compared with the ground
truth to evaluate its accuracy. We further record the execution
time of each algorithm. All results are based on Matlab

6 http://www.robots.ox.ac.uk/~vgg/data/data-aff.html
7 http://pages.cs.wisc.edu/~pachauri/perm-sync/
8http://www.vlfeat.org/

implementation of algorithms on a machine with an Intel Core
i7-7700K CPU @ 4.20GHz and 16GB RAM.

Fig. 11 shows an example of three images in the CMU
hotel sequence, where feature points and their associations
across images are shown for the input and the output of
four algorithms. Note that the input associations, which are
obtained by matching features on image pairs, are cycle
inconsistent and contain errors. The output of the algorithms
should ideally identify and remove these errors based on the
cycle consistency principle.

Fig. 12 reports the precision (i.e., number of correct matches
divided by the total number of returned matches) versus the
frequency (rate) of the solutions returned by algorithms. The
frequency (i.e., the inverse of execution time) indicates the
number of times an algorithm can run in one second. Due to
the large difference between the runtimes of the algorithms,
the frequency axis is scaled logarithmically. The precision
of the input is indicated by the orange line on the plot and
approximately has the value of 0.92. Note that this value is
calculated based on individual edges and thus is only mean-
ingful for edge-centric applications; see Section VII. Solutions
that were not cycle consistent are colored in red. An ideal
algorithm should have a high frequency (i.e., small runtime)
and a high precision output (i.e., based on individual edges
and for edge-centric applications). Among the cycle-consistent
algorithms, QuickMatch is the fastest, however, the returned
solution does not improve the precision of the input. CLEAR,
Spectral, NMFSync, and MatchLift algorithms improve the
precision, while CLEAR has a higher frequency: CLEAR is
about 3x faster than Spectral, 10x faster than NMFSync, 7500x
faster than MatchLift.

The faster runtime of CLEAR is due to 1) the structure
of the input association graph, which consists of several
disjoint connected components (this graph consists of 81
connected components, where the largest component has 297
vertices). This structure is exploited by the proposed eigen-
decomposition approach, which uses the BFS algorithm to
find the spectrum of the graph as the union of its connected
components’ spectra. 2) The projection technique, which uses
a suboptimal sorting strategy (instead of, e.g., the Hungarian
algorithm) to improve the speed while ensuring consistency
and distinctness. More specifically, running CLEAR with the
Hungarian algorithm results in the same output (i.e., the same
value for precision and recall), however, the execution time
increases from 0.5s to 0.7s.

Fig. 13 reports the precision and recall of returned solutions.
An ideal solution simultaneously has high precision and recall.
The output of the Spectral algorithm has the highest precision
and lowest recall. On the other hand, the output of QuickMatch
has the highest recall and lowest precision. In comparison, the
output of CLEAR shows a balanced precision versus recall.

We note that the precision and recall of MatchEig after
making its solution cycle consistent by completing the asso-
ciation graph’s connected components (Section VII) become
0.67 and 0.8, respectively. Similarly, MatchALS’s output af-
ter completion takes the precision and recall of 0.73 and
0.76, respectively. This sharp drop in precision underlines
the importance of taking cycle consistency into account in

http://www.robots.ox.ac.uk/~vgg/data/data-aff.html
http://pages.cs.wisc.edu/~pachauri/perm-sync/
http://www.vlfeat.org/
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Wrong association Correct association

Fig. 11. (Best viewed in color) An example of matched feature points across three images of the CMU Hotel dataset. Input, obtained by matching features
across image pairs independently, contains error and is inconsistent. CLEAR returns cycle-consistent results and improves the precision of the input.
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Fig. 12. Precision vs. frequency (the inverse of execution time) in CMU
Hotel dataset. The frequency axis has a logarithmic scale (CLEAR is about
3x faster than Spectral, 10x faster than NMFSync, 7500x faster than Match-
Lift). The precision of the input (based on individual edges and for edge-
centric applications) is denoted by the orange line; see Section VII. Cycle-
consistent/inconsistent outputs are respectively denoted by and . The
closer to the top-right corner, the better.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0.9

0.91

0.92

0.93

0.94

Fig. 13. Precision vs. recall in CMU Hotel dataset. Precision and recall of
input (based on individual edges and for edge-centric applications) are denoted
by the orange lines; see Section VII. The closer to the top-right corner, the
better.

evaluating multi-view matching algorithms for clique-centric
applications.

B. Graffiti Dataset

The Graffiti dataset consists of six images, each taken from
a different viewpoint of a textured planar wall. Due to the large
difference between the viewpoints, this dataset is particularly
challenging for feature point detection/matching algorithms
(thus, pairwise associations have a lower precision compared
to the CMU hotel dataset). The dataset provides ground truth
homography transformations between the viewpoints. We use
the VLFeat library to extract the SIFT feature points for each
image. To obtain the ground truth associations, the provided
homography matrices are used to match the extracted features
(correct matches must satisfy the planar homography mapping
[31, see (5.35)]). To make sure that ground truth associations
are error-free, we only take feature points and associations

that are cycle consistent across all images and discard the rest.
These associations are further visually inspected to ascertain
that they do not contain mismatches. The number of feature
points retained after this process ranges from 313 to 657 per
image. The total number of feature points across all images
is 3176. Unlike the CMU hotel dataset, the Graffiti dataset
has a small ratio of the number of images to the number of
feature points per image. Thus, it represents scenarios where
observations have little to no redundancy.

The precision and frequency of algorithms is reported in
Fig. 14. Among the cycle-consistent algorithms, QuickMatch
is the fastest, however, it does not improve the precision of the
input computed based on individual edges and for edge-centric
applications (Section VII). CLEAR improves the precision and
is considerably faster compared to the other algorithms that
improve the input’s precision: about 21x faster than Spectral,
39x faster than NMFSync, 3800x faster than MatchLift.

In the Graffiti dataset, the input association graph consists of
1506 connected components, where the largest component has
22 vertices. Running CLEAR with the Hungarian algorithm
results in an output with the same value for precision and
recall (up to three decimals), however, the execution time of
the algorithm increases considerably from 0.92s to 49.5s.

The precision and recall of returned solutions are reported
in Fig. 15. Among cycle-consistent algorithms, the Spectral
algorithm has the highest precision and lowest recall, while
QuickMatch has the highest recall and lowest precision. In
comparison, CLEAR, MatchLift, and NMFSynch have a bal-
anced precision versus recall. The precision and recall of
MatchEig after making its solution cycle consistent (for clique-
centric applications) become 0.53 and 0.69, respectively. Sim-
ilarly, MatchALS’s output after completion takes the precision
and recall of 0.54 and 0.69, respectively. Once again, the
difference between these values and those reported in Fig. 15
highlights the importance of taking cycle consistency into
account in evaluating multi-view matching algorithms for
clique-centric applications.

C. Forest Landmark-based SLAM Dataset

Map fusion is an important clique-centric application of
the multi-view matching problem in single/multi-robot SLAM
[4]. The goal in this problem is to identify unique landmarks
across a given set of local maps (created by one or multiple
robots) in order to fuse the corresponding measurements in
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Fig. 14. Precision vs. frequency (the inverse of execution time) in Graffiti
dataset. The frequency axis has a logarithmic scale (CLEAR is about 21x
faster than Spectral, 39x faster than NMFSync, 3800x faster than MatchLift).
Precision of the input is denoted by the orange line. Cycle consistent and
inconsistent outputs are respectively denoted by and . The closer to the
top-right corner, the better.
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Fig. 15. Precision vs. recall. in Graffiti dataset. Precision and recall of input
are denoted by the orange lines. The closer to the top-right corner, the better.

the landmark-based SLAM back-end.9 In this section, we
report the performance of CLEAR in the context of map
fusion based on a SLAM dataset collected in the forest at
the NASA Langley Research Center (LaRC) [32]. In this
dataset, a single unmanned aerial vehicle equipped with an
inertial measurement unit (IMU) and a 2D LIDAR is tasked
with autonomously exploring an area under the tree canopy
(Fig. 16). The exploration mission lasts 120 seconds. As
the vehicle traverses the forest, it performs LIDAR-inertial
odometry by fusing IMU measurements with incremental
motion estimates from the iterative closest point algorithm at
40 Hz. In addition, the vehicle also uses a customized detector
to identify trees from the LIDAR scans at a rate of 1 Hz.
The objective is to correctly match and fuse identical tree
landmarks detected during the exploration, and subsequently
optimize the landmark positions and vehicle trajectory inside
a landmark-based SLAM framework.

To obtain the initial pairwise data association, we apply the
correspondence graph matching algorithm [33] that associates
two sets of landmarks based on their local configurations.
Crucially, we note that this process does not use any global
pose estimates, and thus is not affected by drift in the LIDAR-
inertial odometry. Due to the presence of spurious detections
and the lack of informative descriptors (e.g., SIFT), the initial
data association matrix (of dimension 1091 × 1091) contains
many mismatches and is not cycle consistent. We thus call
CLEAR and other multi-view matching algorithms to achieve
cycle consistency. Recall from our discussion in Section VII
that map fusion is inherently a clique-centric application.

9Here, each local map represents a “view” in the multi-view matching
problem. In practice, local maps may represent one or multiple frames, and
may be built by one or multiple robots.

Fig. 16. Single UAV autonomous exploration at NASA LaRC. The vehicle
(highlighted in red) performs landmark-based SLAM based on detected trees
in order to estimate its position within the forest.

Therefore, we make any inconsistent data associations cycle
consistent by completing the connected components in the
association graph (Section VII). In addition, we also introduce
a baseline algorithm that directly completes the connected
components in the input associations.

Since ground truth data association is not available, we
adopt the following alternative performance metrics. A pair of
associated trees is classified as either a definite negative or a
potential positive, based on whether their distance as estimated
by the LIDAR-inertial odometry is higher than a threshold of
2 m. We note that these definitions are precise assuming that
the threshold value of 2 m accounts for the drift in the LIDAR-
inertial odometry.10 Since the number of definite negatives
(denoted by DN) is an underestimate of the true number of
mismatches, and the number of potential positives (denoted by
PP) is an overestimate of the true number of correct matches,
we can further calculate an upper bound on the true precision
as follows,

P̄ def
=

PP
DN + PP

. (17)

We note that for landmark-based SLAM, the number of def-
inite negatives (DN) is particularly important, since it is well
known that any false data association could inflict catastrophic
impact on the final solution. Therefore, an ideal data asso-
ciation should contain no definite negatives, or equivalently
achieve a value of 100% for P̄ (upper bound on precision).

TABLE II. Cross comparison of algorithms in terms of the number of
definite nagatives (DN), potential positives (PP), upper bound on precision
(P̄), and runtime. The upper bound on precision is computed from (17).

Algorithm DN PP P̄ (%) Runtime (s)

CLEAR 11 3393 99.677 0.084

MatchLift [10] 5 2394 99.792 124.7

MatchALS [2] (completed) 89 15230 99.419 4.580

QuickMatch [3] 897 15757 94.614 0.118

NMFSync [16] 290 3233 91.768 4.272

MatchEIG [15] (completed) 21415 20381 48.763 1.808

Baseline 26249 20487 43.836 N/A

10Since the vehicle is flying at a low speed (2 m/s) for a relative short
amount of time 120 s, we expect the estimation drift at any time is reasonably
bounded.
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(a) Baseline (b) NMFSync (c) MatchALS (completed) (d) MatchLift

(e) MatchEIG (completed) (f) QuickMatch (g) CLEAR (h) CLEAR (post-processed)

Fig. 17. Output association of baseline (a) and each algorithm (b)-(g) in the landmark-based SLAM dataset. Cycle-inconsistent solutions are completed due
the clique-centric nature of the problem (Section VII). Each black triangle represents a single tree observation. The LIDAR-inertial odometry is shown in blue.
Definite negatives identified using the odometry estimates are highlighted as red edges. We note that the output of CLEAR (g) still contains a few mismatches,
but in practice, these can be filtered out by removing small clusters from the returned association, as shown in (h).
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Fig. 18. Precision upper bound P̄ vs. frequency in the landmark-based SLAM
dataset. The frequency axis has logarithmic scale. The closer to the top-right
corner, the better. The solid orange line corresponds to the precision of input
data associations. The dashed orange line corresponds to the precision of
the baseline, obtained by completing the connected components in the input
association graph. Further quantitative results are reported in Table II.

Fig. 17 visualizes the data associations returned by each
algorithm in the world frame. All definite negatives are high-
lighted in red. The solutions of MatchALS and MatchEIG are
not cycle consistent initially, and are made cycle consistent
by completing the connected components. The solution of the
spectral algorithm is omitted, as it contains significantly more
mismatches due to its sensitivity in estimating the universe
size. Table II shows the complete set of quantitative results and
Fig. 18 shows the precision and frequency of each evaluated
algorithm.

Due to the existence of mismatches in the input associations,
the baseline algorithm which directly completes the connected
components yields more than 25000 definite negatives; see
Fig. 17(a). In contrast, most other algorithms are able to
significantly reduce the number of definite negatives. Among

these algorithms, CLEAR and MatchLift nearly eliminate all
definite negatives; see Table II. However, MatchLift requires
124.7 s to converge while CLEAR only takes 0.084 s. The
superior speed of CLEAR thus makes the algorithm favorable
for real-time SLAM applications. On the other hand, we
note that the output of CLEAR still contains a few definite
negatives; see Fig. 17(g). This is undesirable for landmark-
based SLAM, as any incorrect fusion of landmarks could
inflict catastrophic impact on the final SLAM solution. In
practice, these mismatches can be filtered out by removing
clusters of small size from the returned solution. For example,
Fig. 17(h) shows the resulting association after removing
clusters of size smaller than four from the output of CLEAR.
After this post-processing step, the final association is accurate
and can be used by any SLAM back-end to solve for the
vehicle trajectory and landmark positions.

Fig. 19 demonstrates the results of landmark-based SLAM
using the data association returned by each algorithm. Prior
to optimization, we apply the same post-processing procedure
described earlier, by removing clusters of size smaller than
four from each data association. Subsequently, we initialize a
single tree for each remaining cluster in the fused map. All
tree positions and vehicle poses are then jointly optimized
using g2o [34]. We note that Fig. 19 mainly provides a
qualitative comparison of the trajectory estimates. Intuitively,
we expect that SLAM trajectories that are discontinuous are
likely to be wrong due to false data associations. These
include the trajectories optimized with the baseline, NMFSync,
MatchALS, MatchEIG, and QuickMatch. While CLEAR and
MatchLift produce similar results, CLEAR is more than 1000
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Fig. 19. Fused map after optimization with g2o. The solutions of MatchALS and MatchEIG are made cycle consistent by completing each connected
components in the induced association graph. Each association is post-processed to remove any clusters of size smaller than four. Each black triangle
represents a single tree in the fused map. Trajectory estimates from EKF-based LIDAR-inertial odometry and after landmark-based SLAM are shown in blue
and red, respectively.

times faster as indicated by the results in Table II.
Finally, we note that some quantitative results presented in

this section are different from those obtained in earlier com-
parisons based on synthetic data. For example, we observed
that algorithms such as NMFSync perform better in simulation.
A major cause of this discrepancy is the noise model. In our
synthetic data, the input is solely corrupted by mismatches that
reassign correct matches to wrong ones. In the forest dataset,
however, the input is corrupted by both mismatches and a
significant number of missing correct associations, thus further
reducing the signal-to-noise ratio.

X. CONCLUSION

Data association across multiple views is a fundamental
problem in robotic applications. Traditionally, this problem
is decomposed into a sequence of pairwise subproblems.
Multi-view matching algorithms can leverage observation re-
dundancy to improve the accuracy of pairwise associations.
However, the use of these algorithms in robotic applications
is often prohibited by their high computational complexity,
as well as critical issues such as cycle inconsistency and
high number of mismatches which may have catastrophic
consequences.

To address these critical challenges, we presented CLEAR,
an algorithm that leverages the natural graphical representation
of the multi-view association problem. CLEAR uses a spectral
graph clustering technique, which is uniquely tailored to solve
this problem in a computationally efficient manner. Empirical
results based on extensive synthetic and experimental eval-
uations demonstrated that CLEAR outperforms the state-of-

the-art algorithms in terms of both accuracy and speed. This
general framework can provide significant improvements in
the accuracy and efficiency of data association in many appli-
cations such as metric/semantic SLAM, multi-object tracking,
and multi-view point cloud registration that traditionally rely
on pairwise matchings.
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APPENDIX

Proof of Proposition 2. Consider the optimization problem (4). Since trace is invariant under cyclic permutations11, we obtain

max
P=V V >

〈Pnrm, P̃nrm〉 = max
P=V V >

tr(P>nrmP̃nrm) (from definition of inner product 〈·, ·〉) (18a)

= max
V ∈V

tr(C−
1
2 V V >C−

1
2 P̃nrm) (since Pnrm

def
= C−

1
2 P C−

1
2 and P = V V >) (18b)

= max
V ∈V

tr(V >C−
1
2 P̃nrm C

− 1
2 V ). (from cyclic permutation) (18c)

As discussed in Section III-B, in the graph formulation of the problem, V corresponds to partitions of the association graph G
into clusters A1, . . . ,Am, where (V )ij = 1 if and only if vertex vi ∈ Aj . This implies that

∑l
i=1 (V )ij = |Aj |, and diagonal

entries of C are ci = |Aj | for each vertex vi ∈ Aj . Consequently, V >C−1V = I . Since solution of (18c) is invariant to
adding/subtracting a constant to the objective function, by subtracting tr(V >C−1V ) = tr(I) = l from (18c) and defining
U

def
= C−

1
2 V we obtain the equivalent program

max
V ∈V

tr(V >C−
1
2 P̃nrm C

− 1
2 V )− tr(V >C−1V ) (19a)

= max
V ∈V

tr(V >C−
1
2 P̃nrm C

− 1
2 V )− tr(V >C−

1
2 C−

1
2 V ) (C−1 = C−

1
2 C−

1
2 ) (19b)

= max
U∈U

tr(U>P̃nrm U)− tr(U>U) (replacing U def
= C−

1
2 V ) (19c)

= max
U∈U

tr(U>C̃−
1
2 P̃ C̃−

1
2 U)− tr(U>C̃−

1
2 C̃ C̃−

1
2U) (since C̃−

1
2 C̃ C̃−

1
2 = I) (19d)

= max
U∈U

tr(U>C̃−
1
2 (P̃ − C̃) C̃−

1
2 U) (by factoring terms) (19e)

= min
U∈U

tr(U>C̃−
1
2 L̃ C̃−

1
2 U) (since P̃ − C̃ = −L̃) (19f)

= min
U∈U

tr(U> L̃nrm U). (using definition L̃nrm
def
= C̃−

1
2 L̃ C̃−

1
2 ) (19g)

From the definition U def
= C−

1
2 V and since V >C−1V = I , it follows that U>U = I .

Proof of Lemma 1. The spectrum of a complete graph with li vertices and Laplacian Li ∈ Rli×li consists of eigenvalues 0
and li, with multiplicities 1 and li − 1, respectively [28, Chap. 1]. Since in this case the diagonal matrix Ci = Di + I has
diagonal entries li, eigenvalues of the normalized Laplacian C−

1
2

i Li C
− 1

2
i = 1

li
Li are 0 and 1, with multiplicities 1 and li− 1,

respectively. By definition, a cluster graph is a disjoint union of complete graphs. Since spectrum of a graph is the union of
its connected components’ spectra [28], the conclusion follows.

Proof of Lemma 2. Let λ1 ≤ λ2 ≤ · · · ≤ λl denote ordered eigenvalues of Lnrm, where from Lemma 1 we have λ1 = λ2 =
· · · = λm = 0 and λm+1 = λm+2 = · · · = λl = 1. If λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃l are the ordered eigenvalues of L̃nrm = Lnrm + N ,
from the Weyl’s eigenvalue theorem [35] we have |λ̃i − λi| < ‖N‖ for all i ∈ Nl. This implies, if ‖N‖ < 0.5, that∣∣∣{λ̃ : λ < 0.5}

∣∣∣ = m, which shows the correct number of clusters is recovered.

Proof of Proposition 3. We have

‖L̃nrm − Lnrm‖ = ‖C̃− 1
2 L̃ C̃−

1
2 − C− 1

2 LC−
1
2 ‖ (from definitions of L̃nrm, Lnrm) (20a)

= ‖C− 1
2 (L̃− L)C−

1
2 ‖ (since by assumption C̃ = C) (20b)

≤ ‖C−1‖ ‖L̃− L‖ (since 2-norm is submultiplicative) (20c)

= ‖C−1‖ ‖(D̃ − Ã)− (D −A)‖ (since L def
= D −A) (20d)

= ‖C−1‖ ‖Ã−A‖ (since C̃ = C and D = C − I) (20e)

= ‖C−1‖ ‖E‖ (since E def
= Ã−A) (20f)

≤ 1

cmin
‖E‖ (since C is diagonal) (20g)

≤ emax/cmin, (since ‖E‖ ≤ emax) (20h)

where the last inequality follows from the Gershgorin circle theorem [35, Sec. 6.1]. The conclusion follows from Lemma 2
and observing that ‖L̃nrm − Lnrm‖ = ‖N‖ < 0.5 implies emax < 0.5 cmin.

11e.g., tr(ABC) = tr(BC A) = tr(C AB).


	I Introduction
	I-A Related Work
	I-B Our Contributions

	II Notation and Definitions
	II-A Permutation Matrices
	II-B Graph Theory

	III Problem Formulation
	III-A Optimization-Based Formulation
	III-B Graph-Based Formulation

	IV The Consistent Lifting, Embedding, and Alignment Rectification (CLEAR) Algorithm
	V Numerical Example
	VI Theoretical Justifications
	VI-A Step 1: Reformulation
	VI-B Step 2: Estimating Size of Universe
	VI-C Step 3: Lifting and Relaxation
	VI-D Step 4: Projection and Embedding
	VI-E Computational Complexity

	VII Applications: Edge-Centric vs. Clique-Centric
	VIII Simulation Results
	IX Experimental Results
	IX-A CMU Dataset
	IX-B Graffiti Dataset
	IX-C Forest Landmark-based SLAM Dataset

	X Conclusion
	Appendix

