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Abstract—We consider a dynamical system whose trajectory is
a result of minimizing a multiphase cost function. The multiphase
cost function is assumed to be a weighted sum of specified features
(or basis functions) with phase-dependent weights that switch at
some unknown phase transition points. A new inverse optimal
control approach for recovering the cost weights of each phase
and estimating the phase transition points is proposed. The key
idea is to use a length-adapted window moving along the observed
trajectory, where the window length is determined by finding
the minimal observation length that suffices for a successful cost
weight recovery. The effectiveness of the proposed method is first
evaluated on a simulated robot arm, and then demonstrated on
a dataset of human participants performing a series of squatting
tasks. The results demonstrate that the proposed method reliably
retrieves the cost function of each phase and segments each phase
of motion from the trajectory with a segmentation accuracy above
90%.

Index Terms—Inverse optimal control, multiphase cost func-
tions, human motion segmentation, recovery matrix.

I. INTRODUCTION

INVERSE optimal control (IOC) techniques are able to find
a latent cost function that explains an observed trajectory

generated by a system under the corresponding optimal control
policy. The technique has been applied to many fields from
robotics to biomechanics, where knowing the underlying cost
function enables applications such as apprenticeship learning
[1], human-robot collaboration [2], human motion analysis [3],
etc.

Most existing IOC studies assume that the observed system
trajectory is generated from a stationary cost function, which
is constructed as a linear combination of given features (or
basis functions) with unknown weights. Though valid in many
cases, these methods are restrictive when applied to complex
or long-term behaviors where different cost functions may be
active in different phases. For example, prior studies [4], [5]
show that human motions tend to minimize different costs in
different circumstances depending on tasks and environmental
conditions.

This has motivated us to investigate the IOC problem for
multiphase cost functions. We consider the observed trajectory
as a concatenation of multiple phases of motion, where each
phase is characterized by a distinct cost function parameterized
as a linear combination of given features with phase-dependent
cost weights. We focus on not only recovering the cost weights
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of each phase, but also identifying the boundary of each phase
in the observed trajectory.

A. Related Work
Prior IOC methods can be grouped into two classes. One is

a nested structure where the forward optimal control problem
is computed repeatedly in an inner loop while the cost function
(cost weights) is updated in the outer loop. This formulation
was first employed to learn cost functions for Markov decision
processes, where IOC is also known as inverse reinforcement
learning. Representative works include [6], where the cost
weights are computed by maximizing the margin between
costs of predicted and observed trajectories, and [7], where the
weights are solved to maximize the entropy of the trajectory
probability distribution while matching the feature values of
observation. In [8], cost weights are computed by minimizing
the deviation of predicted trajectories from the observed ones.
Despite successful applications such as robot navigation [9]
and autonomous driving [10], a shortcoming with these nested
methods is the huge computational cost for repeatedly solving
the optimal control problem in the inner loop.

The second category of IOC methods directly computes
the cost weights using a set of optimality equations. In those
methods, the extent to which the optimality conditions are
violated by the observed trajectories is evaluated. Representa-
tive works include [11], where Karush-Kuhn-Tucker (KKT)
conditions are used, [12] using the Pontryagin’s maximum
principle, and [13] using Euler-Lagrange equations. Recently,
[14] developed an inverse KKT approach to address contacts
and constraints in robot manipulations. Recoverability for IOC
problems has also been considered in those methods; for
instance, if a system remains at an equilibrium point, the
trajectory, though satisfying optimality conditions, cannot be
used for cost function recovery. In [15], the authors propose a
sufficient condition to check the recoverability of cost weights.

To our knowledge, theoretical formulations and solutions to
the IOC problem for multiple-phase cost functions appear to be
very rare, although direct multiphase optimal control is well-
established [16]. The most relevant work is [4], where human
motion is segmented to multiple phases by discriminating
different underlying cost functions. The authors process the
trajectory by a sliding window of fixed length (manually set),
and the weights are solved by minimizing the KKT conditions
[17]. Although successfully segmenting motion trajectories,
the KKT method under data of incomplete trajectory cannot
ensure correct recovery of cost functions, as demonstrated later
in this paper.

B. Contributions
To address the limitations of existing methods in handling

multiphase cost function recovery problems, we develop a
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new IOC technique. We hypothesize that the observed system
trajectory is a result of minimizing a multiphase cost function,
which at each phase is constructed as a linear combination of
selected features with unknown phase-dependent cost weights.
We recover the cost weights of each phase and estimate phase
transition points by using an adaptive-length window sliding
along the trajectory. At each time step, the cost weights under
the window are incrementally computed. The window length
is determined based on the recovery matrix [18], which seeks
to find the minimal observations that suffice for a successful
cost weight recovery. The output of the recovery is a sequence
of cost weights indexed by time, which describes the changing
of cost function over time. Based on the output, each phase
can be segmented.

The advantages of the proposed IOC method include: (i) it
takes as input a union feature set that contains all relevant
phase features, and may also include additional irrelevant
phase features, which facilitates applications where the knowl-
edge of exact features is not available; (ii) as phase transition
points are estimated, each phase is extracted, thereby providing
a solution to motion segmentation or identification problems;
and (iii) as the computation of the cost weights is performed
incrementally, the method can be used in on-line settings.

We apply the proposed method to a human motion exper-
iment. Using a dataset of participants performing a series of
squatting tasks, we applied the proposed method to recover
the multiphase cost function underlying the continuous human
motion trajectory, and then segmented the motion into different
phases. The experimental results illustrate the capability of the
proposed method to analyze real motion datasets.

The rest of the paper is constructed as follows. The problem
is formulated in Section II. In Section III, we focus on recov-
ering the cost function within a single phase. We then propose
the multiphase IOC method in Section IV. The experimental
results are presented in Section V. Discussions are presented
in Section VI, and conclusions drawn in Section VII.

C. Notation

The column operator col {x1,x2, ...,xk} stacks its vector
arguments into a column (i.e. concatenation vector). xk:k+n
denotes a stack of multiple vectors from time k to k+n, that
is, xk:k+n = col {xk,xk+1, ...xk+n}. A (bold-type) denotes
a block matrix. Given a vector function f(x) and a constant
x∗, ∂f

∂x∗ denotes the Jacobian matrix with respect to x eval-
uated at x∗. Zero matrix/vector is denoted as 0, and identity
matrix denoted as I , both with appropriate dimensions. σi(A)
denotes the ith smallest singular value of matrixA.A′ denotes
the transpose of matrix A.

II. PROBLEM FORMULATION

Consider the discrete-time system1

xk+1 = f(xk,uk+1), x0 ∈ Rn, (1)

where f(·, ·) : Rn × Rm 7→ Rn is differentiable; xk ∈ Rn
denotes the state; uk ∈ Rm is the control input; and k is the

1In (1), at time k, we denote the control input as uk+1 instead of uk for
notation simplicity of following discussions, as adopted in [19].

time index. Suppose that the system trajectory of states and
inputs (x∗1:T ,u

∗
1:T ) is a sequential concatenation of p phases,

and each phase minimizes a different cost function. The overall
cost of the system trajectory is denoted by

J(x1:T ,u1:T ) =

p∑
j=1

Tj+1∑
k=Tj+1

C(j)(xk,uk), (2)

where C(j)(x,u) is the running cost of the jth-phase motion,
and interval (Tj , Tj+1] is the time horizon for the jth-phase
motion with T1 = 0 and Tp+1 = T . Here, we call Tj (1 <
j ≤ p) a phase transition point. We construct the jth-phase
running cost as

C(j)(x,u) = ω(j)′φ(x,u), (3)

where φ = [φ1, φ2, · · · , φr]′ ∈ Rr is called the union feature
vector, and ω(j) ∈ Rr are the cost weights of the jth-phase
motion. We say that the feature

φi is

{
relevant if ω

(j)
i 6= 0

irrelevant otherwise
(4)

for the jth-phase motion. Here, ω(j)
i , i.e. the ith entry of ω(j),

is the cost weight for φi with 1 ≤ i ≤ r.
Given the observed trajectory (x∗1:T ,u

∗
1:T ) and the union

feature vector φ, we aim to (i) recover the cost weights ω(j) of
each phase and (ii) estimate the location of the phase transition
points Tj (1 < j ≤ p). Note that the cost weights of each phase
can only be recovered up to a non-zero scaling [15]. Thus, for
the jth-phase motion (1 ≤ j ≤ p), we call the recovered cost
weights ω̂(j) a successful recovery if ω̂(j) = cω(j) with c > 0;
specific c can be obtained by normalization [11].

III. SINGLE-PHASE COST FUNCTION RECOVERY USING
THE RECOVERY MATRIX

In this section, we first focus on recovering the cost function
within a single phase. As developed in our previous work [18],
we aim to find the minimal number of observations of state-
input pairs that suffices for a successful recovery.

We consider a segment of the state and input trajectory of
system (1), denoted as (x∗t:t+l−1,u

∗
t:t+l−1), where t represents

the observation starting time and l is called the observation
length. Suppose that (x∗t:t+l−1,u

∗
t:t+l−1) are from a single

phase, say the jth phase (that is, Tj < t ≤ t+ l− 1 ≤ Tj+1).
Using Pontryagin’s maximum principle [20], we have

λk −
∂f ′

∂x∗k
λk+1 −

∂φ′

∂x∗k
ω(j) = 0 (5)

∂f ′

∂u∗k
λk +

∂φ′

∂u∗k
ω(j) = 0 (6)

for any t ≤ k ≤ t+l−1, where λk is the costate for the optimal
control system. By writing the above equations in matrix form
for all t ≤ k ≤ t+ l − 1, we have [18]

F x(t, l)λt:t+l−1 −Φx(t, l)ω(j) = V (t, l)λt+l (7)

F u(t, l)λt:t+l−1 + Φu(t, l)ω(j) = 0 (8)



This is a preprint version, and the published version can be accessed at IEEE Transactions on Robotics. 3

where λt:t+l−1 := col {λt, · · · ,λt+l−1} and

F x(t, l) =



I −∂f
′

∂x∗t

0 I
. . .
. . . −∂f ′

∂x∗t+l−2

0 · · · I


Φx(t, l) =



∂φ′

∂x∗t
∂φ′

∂x∗t+1

...
∂φ′

∂x∗t+l−1



F u(t, l) =



∂f ′

∂u∗t
∂f ′

∂u∗t+1

. . .
∂f ′

∂u∗t+l−1


Φu(t, l) =



∂φ′

∂u∗t
∂φ′

∂u∗t+1

...
∂φ′

∂u∗t+l−1


V (t, l) =

[
0 ∂f

∂x∗t+l−1

]′
∈Rnl×n (9)

with ∂f
∂x∗T

= I . The dimensions of the above matrices are:
F x(t, l) ∈ Rln×ln,F u(t, l) ∈ Rlm×ln,Φx(t, l) ∈ Rln×r and
Φu(t, l) ∈ Rlm×r. To facilitate the computation of the cost
weights ω(j) in (7) and (8) (by combining the two equations
and eliminating the unknown variables λt:t+l−1), we define
the following recovery matrix [18]:

H(t, l) =
[
H1(t, l) H2(t, l)

]
∈ Rml×(r+n), (10)

with

H1(t, l) = F u(t, l)F−1x (t, l)Φx(t, l) + Φu(t, l) (11)

H2(t, l) = F u(t, l)F−1x (t, l)V (t, l). (12)

Then, the cost weights satisfy the equation

H(t, l)

[
ω(j)

λk+l

]
= 0. (13)

The recovery matrix H(t, l) has the following properties (the
interested reader can refer to [18] for detailed proofs):
(1) iterative property: for any 1 ≤ t ≤ t+ l − 1 < T ,

H(t, l + 1) =
[
H1(t, l + 1) H2(t, l + 1)

]
(14)

=

[
H1(t, l) H2(t, l)
∂φ′

∂u∗t+l

∂f ′

∂u∗t+l

][
I 0
∂φ′

∂x∗t+l

∂f ′

∂x∗t+l

]
with initial H(t, 1) for the single observation of (x∗t ,u

∗
t )

H(t, 1) =
[
H1(t, 1) H2(t, 1)

]
=
[
( ∂f

′

∂u∗t

∂φ′

∂x∗t
+ ∂φ′

∂u∗t
) ∂f ′

∂u∗t

∂f ′

∂x∗t

]
. (15)

(2) rank non-decreasing: for any 1 ≤ t ≤ t+ l − 1 < T ,

rankH(t, l) ≤ rankH(t, l + 1). (16)

(3) rank upper bound: for any Tj < t ≤ t + l − 1 ≤ Tj+1

with 1 ≤ j ≤ p,

rankH(t, l) ≤ r + n− 1. (17)

Based on the recovery matrix and its properties, the lemma
below provides a method for using the minimal observation
length to recover the cost weights within a single phase [18].

Lemma 1. Suppose that the observations of the state and input
trajectory of the system (1) start from time t and are within the

jth phase, i.e. Tj < t ≤ t+ l−1 ≤ Tj+1. The recovery matrix
H(t, l) is incrementally updated with new observations via
(14)-(15). The minimal observation length that suffices for a
successful recovery of the jth phase cost weights ω(j), defined
as lmin(t), is

lmin(t) = min
{
l | rankH(t, l) = r + n− 1}. (18)

If a vector col {ω̂, λ̂} 6= 0 with ω̂ ∈ Rr is a solution to

H(t, lmin(t))

[
ω̂

λ̂

]
= 0, (19)

then ω̂ is a successful recovery for ω(j).

Proof. Please refer to [18] for the proof.

Lemma 1 states that the cost weights of a single phase can
be recovered using minimal observations of state-input pairs of
that phase: once the nullity of the recovery matrix is one, then
any non-zero vector in the kernel corresponds to a successful
recovery. Using Lemma 1, we assume that the horizon of the
jth phase satisfies Tj+1 − Tj ≥ lmin(t); and due to (16) and
(17), rankH(t, lmin(t)) ≤ rankH(Tj + 1, Tj+1−Tj) ≤ r+
n−1. We thus establish the following assumption for the cost
weight ‘recoverability’ of each phase.

Assumption 1. Given the union feature vector φ in (3) and the
recovery matrix defined in (10), the state and input trajectory
of the j-th phase (x∗Tj+1:Tj+1

,u∗Tj+1:Tj+1
) satisfies

rankH(Tj + 1, Tj+1 − Tj) = r + n− 1. (20)

for all j = 1, 2, . . . , p.

Assumption 1 provides the condition under which the cost
weights of each phase can at least be recovered using the
whole phase horizon. The validity of this assumption depends
on the informativeness of the data in each phase [18] and also
the union feature set used. To understand this, we consider the
following contradiction: assume that given a very large union
feature set, there exist non-unique feature combinations which
can be used to characterize the jth phase, i.e. there exist two
independent cost weight vectors, say ω(j) and ω̃(j), for which
(7) and (8) hold, and it follows that rankH(Tj + 1, Tj+1 −
Tj) < r + n− 1 [18].

IV. MULTIPLE-PHASE COST FUNCTION RECOVERY

Based on the previous discussions for the single-phase case,
we now consider multiphase cost function recovery.

A. The Approach

Under Assumption 1, the idea for recovering the multiphase
cost function is to compute the cost weights over time using an
observation window moving along the trajectory (x∗1:T ,u

∗
1:T ).

The procedure includes two ingredients: first, a window, with
the starting position at time t with the adaptive length denoted
as l(t), moves forward along the trajectory while recovering
the cost weights, denoted as ω̂(t), using the trajectory data
within that window via (19); second, in an inner loop, the
window length l(t) is incrementally determined by finding the
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minimal observation length lmin(t) defined in (18). Therefore,
the procedure is a recursive application of Lemma 1 along the
trajectory, and the output is the recovered weights ω̂(t). Note
that the index t in ω̂(t) and l(t) is used to indicate where the
corresponding observation window starts.

For the above process, we analyze the following two cases:
first, the observations and recovery are performed within the
same phase, as shown in Fig. 1, and second, the observations
are crossing a phase transition point, as shown in Fig. 2.

1) Observations within the Same Phase: without loss of
generality, we suppose that a window with starting time t is
in the jth phase, as illustrated in Fig.1. When the minimal
observation window length lmin(t) (18) is successfully found
within the same phase, i.e. Tj < t ≤ t+lmin(t)−1 ≤ Tj+1, as
shown in Fig. 1, the recovery process is just the single-phase
case as discussed in the previous section.

j th phase(j-1) th phase (j+1) th phase

jT 1jT t

)(min tl

Figure 1: An illustration where the minimal observation length
is found within the same phase. Here, the observation window
is colored in red.

2) Observations over a Phase Transition Point: we now fo-
cus on the case where the window (with the starting time t) is
over a phase transition point, say Tj+1, as illustrated in Fig.2.
This case only happens when the observations from t to Tj+1

(i.e. of length Tj+1− t+1 as shown in the upper panel in Fig.
2) cannot reach the minimal observation length (18), that is,
rankH(t, Tj+1−t+1) < n+r−1. In what follows, based on
the bottom panel in Fig. 2, we fix the window starting time t
and discuss the rank values of H(t, l) while increasing l from
(Tj+1 − t+ 1). First, we have the following lemma.

j th phase(j-1) th phase (j+1) th phase

jT 1jT tjT 1jT t

jT 1jT t

݈୫୧୬ሺ ܶାଵ  1ሻ

ܶାଵെݐ1

ܶାଵെݐ1

Figure 2: An illustration when the window is over a phase
transition point. The upper panel shows the case where the
window ends at Tj+1; the bottom panel shows that the window
length increases to include the data of the (j + 1)th phase.

Lemma 2. Suppose that Assumption 1 holds, and the window
starts at time t ∈ (Tj , Tj+1] which satisfies rankH(t, Tj+1−
t+ 1) < n+ r − 1. Then there exists an observation length l
with

l ∈ (Tj+1 − t+ 1, Tj+1 − t+ 1 + lmin(Tj+1 + 1)] (21)

such that
rankH(t, l) ≥ r + n− 1 (22)

where lmin(Tj+1 + 1) denotes the minimal observation length
from the starting time Tj+1 + 1.

Proof. Proof by contradiction: assume that rankH(t, l) < r+
n−1 holds for all Tj+1−t+1 < l ≤ Tj+1−t+1+lmin(Tj+1+
1). However, due to the rank non-decreasing in (16), we have

rankH(t, Tj+1 − t+1 + lmin(Tj+1 + 1))

≥ rankH(Tj+1 + 1, lmin(Tj+1 + 1)) = r + n− 1.

contradicting the assumption. This completes the proof.

Based on Lemma 2, we consider the following two sub-
cases when increasing l to include the data of the next phase:

Case A: if there exists l such that rankH(t, l) = r+n− 1
holds, we still can compute non-trivial weights ω̂ through (19);
however, such ω̂ may not be a successful recovery of ω(j) as
it is computed using the data from two phases, in this case we
call ω̂ a “degenerate recovery”; and

Case B: otherwise, increasing l will result in a direct jump
to rankH(t, l) = r+n. In this case, just from the rank value
we can say that the window includes a phase transition point.

From the above discussions, we note that when the obser-
vations from the previous phase are not sufficient to produce a
successful recovery (i.e. the window starting time t satisfying
rankH(t, Tj+1− t+ 1) < n+ r− 1), increasing the window
length to include the data of the next phase may not lead to
rankH(t, l) = n + r due to degenerate recoveries. This will
lead to a possible failure to detect the phase transition points
by only observing the rank condition of the recovery matrix
(However, as we shall discuss in Section V and VI, in practice
we have not encountered this issue).

To circumvent the limitations due to degenerate recovery,
we use the cost weights computed at each window to facilitate
the estimation of phase transition points. Specifically, as the
observation window moves along the trajectory, at any starting
time t ∈ (Tj , Tj+1], (1 ≤ j ≤ p), the cost weights, denoted as
ω̂(t), are computed by:

Case A: if increasing l results in rankH(t, l) = n+ r− 1,
here denoted as lmin(t), compute the weights ω̂(t) via (19).

Case B: otherwise (increasing l only leads to rankH(t, l) =
n+ r, indicating that the window includes a phase transition
point), set ω̂(t) = ω̂(t− 1).
Consequently, by checking the changes of ω̂(t) over time t, the
phase transition point Tj+1 can be estimated. Considering the
degenerate recovery that may happen in Case A, the estimated
phase transition point, denoted as T̂j+1, is always bounded by

t(j)max ≤ T̂j+1 ≤ Tj+1 (23)
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where t(j)max is the last starting time in the jth phase such that
rankH(t, Tj+1 − t+ 1) = n+ r − 1 holds, that is,

t(j)max = arg max t

s.t. rankH(t, Tj+1 − t+ 1) = n+ r − 1.

As we will demonstrate later, when the observation window
includes a phase transition point, degenerate recoveries happen
infrequently. This is because in most cases the trajectory data
of the next phase always violates the optimality condition of
the previous phase. Thus, usually when the window includes
a small number of data points of the next phase, the rank of
the recovery matrix immediately jumps to (n+ r).

B. Implementation

We first describe our implementation for checking the rank
condition (18) and computing the weights in (19) considering
data noise, near-optimality of trajectories, and computational
error. To verify rankH(t, l) = n+r−1, we check the metric

κ(t, l) =
σ2(H̄(t, l))

σ1(H̄(t, l))
≥ γ with l ≥ r + n

m
. (24)

Here, H̄(t, l) = H(t,l)
‖H(t,l)‖F is the normalized recovery matrix

where ‖·‖F is the Frobenius norm; and γ is a rank index
threshold. We use the metric κ(t, l) to check the rank condition
because when (18) holds, κ(t, l) will increase to infinity, thus
facilitating the rank check process [18]. For the computation
of (19), we use the following minimization[

ω̂

λ̂

]
= arg min

col {ω̂,λ̂}

∥∥∥∥∥H(t, lmin(t))

[
ω̂

λ̂

]∥∥∥∥∥ (25)

where ‖·‖ denotes the l2-norm, and to avoid trivial solutions
we normalize col {ω̂, λ̂} such that

∑r
i=1 ω̂i = 1.

Based on the above rules, we now consider the implemen-
tation of the recovery procedure to obtain ω̂(t). Suppose that
the window starts at time t. We increase its length l(t) while
examining the validity of (24):
Case A: if (24) is fulfilled for a certain increased l(t), here,
denoted as lmin(t), then we compute ω̂(t) via (25).
Case B: otherwise; if (24) cannot be fulfilled for any l(t) from
d r+nm e (d·e is ceiling operator) to T−t+1, set ω̂(t) = ω̂(t−1).
To reduce computational cost, in Case B we do not necessarily
need to verify for all d r+nm e ≤ l ≤ T − t+ 1 (as indicated by
Lemma 3 in Section VI); instead, we use a maximum window
length lmax and only examine (24) for l(t) from d r+nm e to
lmax. Here, lmax should be larger than any phase horizon, i.e.

lmax > Tj+1 − Tj , ∀ 1 ≤ j ≤ p. (26)

Thus, we summarize the computation of ω̂(t) as

ω̂(t) =

{
computed via (25), if lmin(t) < lmax

ω̂(t− 1), otherwise
(27)

where lmin(t) < lmax means that the window length satisfying
(24) is found within lmax. Note that in (27) the cost weights
for the data points near the trajectory terminal, which do not
suffice for a minimal observation length, are also considered:
their values remain the same as the previous recovery results.

The overall implementation for recovering the multiphase
cost functions is presented in Algorithm 1. We will show how
to select the parameters γ and lmax in the experiment section.

Algorithm 1: IOC for multiphase cost functions
Input: trajectory observations (x∗

1:T ,u∗
1:T );

a union feature vector φ.
Output: recovered cost weights ω̂(t) at time

t = 1, 2, · · · , T .
Parameter: rank index threshold γ (24);

maximum window length lmax (26).
for t = 1 : T do

initialize observation length l(t)=d r+n
m
e;

initialize the recovery matrix H(t, l(t)) (14-15);
normalize to obtain H̄(t, l(t)) (24);
while l(t) < lmax and not satisfying (24) do

extend the observation size l(t) = l(t) + 1;
take the next observation (x∗

t+l(t),u
∗
t+l(t));

update H(t, l(t)) (14);
normalize to obtain H̄(t, l(t)) (24);

end
compute the cost weights ω̂(t) via (27).

end

V. EXPERIMENTS

The proposed method is tested in two sets of experiments:
(i) we first evaluate the method on a simulated two-link robot
arm where the ground truth cost function is known; then (ii)
we apply the method to segment continuous human motion.

A. Simulated Robot Arm

On a two-link robot arm, we evaluate the proposed method
in terms of observation noise, parameter settings, and com-
parison with a state-of-the-art method. We define the recovery
error eω to quantify the multiphase IOC accuracy:

eω =

T∑
t=1

inf
c 6=0
‖cω̂(t)− ω(t)‖

T
(28)

where T is the overall horizon, and the ground truth ω(t) =
ω(j) for Tj < t ≤ Tj+1 with j = 1, 2, · · · , p.

The dynamics of a two-link arm is given by [21, p. 209]

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) = τ , (29)

where θ = [θ1, θ2]′ ∈ R2 is the joint angle vector; M(θ) ∈
R2×2 is the inertia matrix; C(θ, θ̇) ∈ R2×2 is the Coriolis
matrix; g(θ) ∈ R2 is the gravity vector; and τ = [τ1, τ2]′ ∈ R2

are the torques applied to each joint. The parameters used here
are as follows [21, p. 209]: the link mass m1 = m2 = 1kg,
the link length l1 = l2 = 1m; the distance from joint to center
of mass (COM) lc1 = lc2 = 0.5m, and the moment of inertia
with respect to COM I1 = I2 = 0.5kgm2. By defining

x =
[
θ1 θ̇1 θ2 θ̇2

]′
and u = τ =

[
τ1 τ2

]′
, (30)

we write (29) in state-space representation and further approx-
imate it to the following discrete-time form [20]

xk+1 = xk + ∆ · f(xk,uk+1) (31)
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(b) Recovered cost weights.

Figure 3: Recovery of a three-phase cost function for the robot
motion: (a) the state trajectory of the two-link robot arm with
the red dotted lines indicating the phase transition points of
ground-truth; the ground-truth cost weights for each phase is
ω(1) = [0.75, 0.25]′, ω(2) = [0.5, 0.5]′, and ω(3) = [0.2, 0.8]′;
and (b) shows the recovered results by the proposed method
(blue solid lines) and the KKT method [4] (red dotted/dashed
lines).

where ∆ = 0.001s is the discretization interval.
The motion of the robot arm contains three phases, and

each phase has different extents and cost functions. The union
feature vector is φ = [τ21 , τ

2
2 ]′, where τ2i (i = 1, 2) denotes

a quadratic basis function of torque τi. In Phase I, the robot
moves from x0 = xT1

= [0, 0, 0, 0]′ at T1 = 0 to xT2
=

[−π6 , 0,−
π
3 , 0]′ at T2 = 1000 (1s) with cost weights ω(1) =

[0.75, 0.25]′; in Phase 2, from xT2
to xT3

= [π4 , 0,
π
2 , 0]′ at

T3 = 2000 (2s) with ω(2) = [0.5, 0.5]′; and in Phase 3, from
xT3

to xT4
= [−π6 , 0,−

π
3 , 0]′ at T4 = 3000 (3s) with ω(3) =

[0.2, 0.8]′. The multiphase optimal control is solved by GPOPS
[16] and the optimal state trajectories are shown in Fig. 3a.

Given the union feature vector φ, we apply Algorithm 1
to recover the multiphase cost weights from the trajectory
given in Fig. 3a. We set γ = 100 and lmax = 1000. The
results ω̂(t) are plotted in Fig. 3b in blue solid lines. From
Fig. 3b, we can see that the cost weights of each phase and
the phase boundaries are successfully recovered. For example,
we observe that the first phase is from time 0 to 1001 with
the average weights [0.7501, 0.2499]′ (by averaging ω̂(t) for
1 ≤ t ≤ 1001); the second phase from 1002 to 2000 with the
average weights [0.4998, 0.5002]′; and the third phase from
2001 to 3000 with the average weights [0.1998, 0.8012]′.

1) Observation Noise: we evaluate the performance of the
proposed method by adding varying levels of white Gaussian
noise to the trajectory data, and the results are listed in Table I.
From Table I, we can conclude that (i) the average minimum
observation length increases if the trajectory noise is high;
and (ii) since the increased window length includes more data
points to mitigate noise, the recovery accuracy maintains high.

Table I: Recovery performance under different noise levels

Noise level eω Avg. lmin
∗ T̂1 and T̂2 eω for KKT method ∗

1e− 4 0.0019 145.3 1004, 2000 0.15
1e− 3 0.0016 236.0 1004, 2000 0.15
1e− 2 0.0014 554.5 1004, 2002 0.18

∗ The averaged lmin is computed by averaging lmin(t) for 1 ≤ t ≤ T ;
and eω for KKT method is evaluated with window length L = 950.

2) Comparison with Related Work: we compare the pro-
posed method with the KKT method [4]. In [4], a window of
manually-specified length moves along the trajectory, and the
weights are computed by minimizing the violation of KKT
conditions. Here, we set the window length L = 950 and
L = 1000, and plot the corresponding recoveries in Fig. 3b
using red dotted and red dashed lines, respectively. We also
test the recovery error for L = 950 under different noise levels
and summarize the results in Table I.

The results illustrate that although being able to discriminate
motion phases, the KKT method does not consistently produce
the correct cost weights (the recovery errors for L = 950 and
L = 1000 are 0.18 and 0.15, respectively), and the estimated
phase transition points have high errors. We also find that the
KKT method is sensitive to the choice of window length: a
larger window length will improve recovery accuracy, but may
lead to inaccuracy for the phase transition point estimation.

This is because the KKT method only uses current window
data and does not consider the influence of future data beyond
the window on the recovery; i.e., it establishes the optimality
equations by neglecting the right-hand term of (7), inevitably
leading to a recovery error. This future information is encoded
in the costate λ in (19) in our formulation. When the observed
data is of ‘low richness’, e.g. of a small window length, the
influence of future information becomes relatively significant,
thus leading to a large recovery error. Thus, the KKT method
always requires a large window, but this will potentially dete-
riorate the accuracy of phase boundary detection. In Fig. 3b,
we also observe that the KKT method results in a detection
delay for the first phase transition point. This may be because
when the window is over the transition point, the included
data from the first phase is more expressive compared to that
of the second phase, thus contributing more to the computed
cost weight and making the results look more like the ones of
the first phase.

3) Setting Parameters: the value of lmax does not affect the
recovery performance as long as it satisfies (26). To facilitate
implementation, in practice we can choose lmax = T/j, where
j ∈ {1, 2, · · · , p}. Here, p is the number of motion phases (or
an approximation if not explicitly known) and T is the overall
time horizon of the trajectory. Note that a larger lmax will lead
to higher computational cost as more trajectory points of the
next phase need to be checked when the observation window
is over a phase transition point. In the above simulation, as
p = 3, we choose j = p and thus lmax = 3000/3 = 1000 for
lower computation cost.

To choose γ, we inspect its influence on recovery perfor-
mance. We set lmax = 1000 and vary γ to observe the changes
of average window length and recovery error. Results in Fig. 4
show that larger γ increases the window length and improves
the accuracy because more observations can compensate for
uncertainties (noise). But above 250, further increasing γ will
not significantly improve accuracy, implying the insensitivity
of changing γ to the recovery and the flexibility of choosing γ.
Therefore, we use the following two rules to find a proper γ.
(I) In the case where the union feature set is explicitly known,
we may choose γ from the range of [100,∞), as demonstrated
in the above simulation where we chose γ = 100 (for lower
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Figure 4: Recovery performance with varying γ

computational cost); for the case where the union features
are selected based on empirical knowledge [9], [3], we may
choose γ from the range of (5,∞). This is because if the
empirically-selected features are not perfect in the sense of
not strictly satisfying the optimality condition (13) for any
nonzero cost weights and future costate, then the upper bound
property (17) tends to be not valid (increasing l tends to render
rankH(t, l) increase to n+ r), and thus the metric κ(t, l) in
(24) becomes smaller. (II) We may first choose a high γ for
initial trials, if most of windows reach lmax, adjust γ to a
smaller one for lower computational cost (because of smaller
window length). Note that the above two rules are based on
our empiricism.

B. Human Motion Segmentation

(a) A repetition of squat motion[4].

0 10 20 30 40 50 60 70

Time [s]

-2

-1

0

1

2

3

Jo
in

t a
ng

le
 [r

ad
]

q
ankle

q
knee

q
hip

(b) Joint trajectory of 15 squats.

Figure 5: Squat exercise and a sample trajectory for 15 squats.

In the second experiment, the proposed method is tested on
a human motion dataset. We choose the human squat motion
[22] (Fig. 5a) as it is a common and full-body exercise studied
in both athletics and rehabilitation [23].

1) Data Collection: The squat dataset was collected from
6 (5M, 1F, µage = 26.2) healthy participants. Each participant
performed 15 squats (Fig. 5a) in 3 sets, with 5 repetitions in
each set. All squats are recorded in a single recording via the
MotionAnalysis motion capture system, where an 80-marker
model was used, providing Cartesian positions. Joint angles
were then computed via inverse kinematics [22] and converted
to a 3 DOF planar model, as shown in Fig. 5a, corresponding
to qankle, qknee, and qhip.

The motion capture system has a sampling rate ∆ = 0.01s.
The obtained joint trajectories were smoothed by a moving
Savitzky-Golay filter [24] (span 2s and degree 10). This allows

to suppress noise and compute smooth trajectory derivatives.
The joint velocity and acceleration are then computed by
numerical differentiation. Fig. 5b plots the joint trajectories
for a sample participant.

2) Body Dynamics Model and Feature Selection: As shown
in Fig. 5a, the human body is modeled as a 3DOF (ankle-knee-
hip joints) fixed-base articulated system. The dynamics of the
modeled human body [4] is given by

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ , (32)

where q = [qankle, qknee, qhip]
′ is the joint angle vector;

M(q) ∈ R3×3 is the inertia matrix; C(q, q̇) ∈ R3×3 is the
Coriolis matrix; g(q) ∈ R3 is the gravity vector; and τ ∈ R3

are the torques generated by each joint. The anthropometrics
parameters [25] are used in (32). The torques (trajectories) are
computed from (32). We represent (32) in state-space form
ẋ = f(x,u) with the state x and input u defined as

x =
[
q, q̇

]′
and u = τ , (33)

respectively, and then discretize it into xk+1 = xk + ∆ ·
f(xk,uk+1) with the discretization interval ∆ = 0.01s (i.e.
sampling rate of the motion capture system).

The unit feature vector φ in this experiment is chosen based
on the previous results obtained in [4], where the following
features in Table II were demonstrated to play significant roles
in human squat motion [4]. Thus, φ = [φ1, φ2, φ3]′.

Table II: The selected features [4]

Criterion Feature function (φi)

Joint acceleration φ1 =
∑3

i=1 q̈
2
i

Joint jerk φ2 =
∑3

i=1

...
q 2
i

Joint power φ3 =
∑3

i=1(τiq̇i)
2

q1, q2, and q3 correspond to qankle, qknee, and qhip, respectively.

3) Recovery Results: note that for each participant, all 15
squats are in a single recording and we apply the proposed
method on the trajectory without manual segmentation.

In Algorithm 1, following the rules given in Section V.A.3,
we set γ = 6 (as described before, the value of γ in practice
is always smaller because of the imperfection of union feature
set selection); since in each motion set (around 6s) the number
of phases is estimated around 10, we set lmax = 60 (that is,
(6s)/10/(0.01s)).

We use the data from Participant 1 (P1), Participant 3 (P3),
and Participant 5 (P5) as examples to demonstrate the recovery
results. In Fig. 6, the joint trajectories of P1, P3, and P5 are
shown in the first row; here, we present the entire motion data
(i.e. 3 sets and a total of 15 squats) for P1 and only one set (5
squats) for P3 and P5 to show both overall and local details
of the recovery results. Corresponding to the motion data, the
recovered cost weights ω̂(t) are presented in the panels below;
here, cost weight ω̂1, ω̂2, and ω̂3 correspond to φ1, φ2, and φ3
in Table II, respectively. We have the following observations:

a) Overall, Fig. 6a shows a reliable multiphase cost func-
tion recovery performance. During each squat repetition (i.e.
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(a) 15 squats by Participant 1 (data of three sets).
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(b) 5 squats by Participant 3 (data of one set).
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(c) 5 squats by Participant 5 (data of one set).

Figure 6: Multiphase cost function recovery for three sample participants. Joint trajectory (filtered) of each participant is
plotted in first row: (a) 15 squats in 3 sets by Participant 1; (b) one 5-squat set by Participant 3; and (c) one 5-squat set by
Participant 5. The corresponding recovery results are shown below respectively, where ω̂1, ω̂2, and ω̂3 are the cost weights for
the acceleration φ1, joint jerk φ2, and power φ3 in Table II, respectively.

Table III: Motion segmentation and multiphase cost function recovery for all participants. Active-squat phases and between-
squats phases are segmented by ωth, and the corresponding segmentation accuracy is computed. Using successful segmentations,
the average cost weights for both phases are computed. The results by the KKT method [4] are also compared.

Participant Average ω̂ for active-squat phases Average ω̂ for between-squats phases Segmentation accuracy [%]

ωth = 0.8 ωth = 0.9 ωth = 0.8 ωth = 0.9 ωth = 0.8 ωth = 0.9 KKT method [4]

1 [0.98, 0.00, 0.02] [0.98, 0.00, 0.01] [0.55, −0.01, 0.45] [0.61, −0.01, 0.40] 96.88% 96.88% 89.54%
2 [0.97, 0.00, 0.03] [0.98, 0.00, 0.02] [0.63, −0.01, 0.38] [0.69, −0.01, 0.32] 100.0% 100.0% 83.51%
3 [0.98, 0.00 , 0.02] [0.99, 0.01, 0.00] [0.56, −0.01, 0.44] [0.63, −0.01, 0.38] 96.67% 96.67% 85.80%
4 [0.96, 0.00, 0.03] [0.98, 0.01, 0.01] [0.62, −0.01, 0.38] [0.70, −0.01, 0.31] 94.44% 100.0% 67.62%
5 [0.98, 0.00, 0.02] [0.98, 0.00, 0.01] [0.64, −0.01, 0.37] [0.65, −0.01, 0.36] 92.89% 93.33% 76.39%
6 [0.98, 0.01, 0.02] [0.98, 0.01, 0.01] [0.69, −0.01, 0.31] [0.73, −0.01, 0.27] 91.15% 90.00% 89.05%

standing-squatting-standing in Fig. 5a), the cost weights ω̂(t)
remain at the value around [1, 0, 0], which indicates that one
squat belongs to the same phase in terms of sharing the
same cost function. Between two squats where a participant
is near (approaching) standing position, the weights change to
(around) [0.6, 0, 0.4], indicating that the participants switch to
a different control strategy after finishing one squat but before
starting the next. Fig. 6a also shows that the cost weights in
between two motion sets (where the participants are in the
standing position) are around [0.8, 0, 0.2].

b) Recovery results in Fig. 6b and Fig. 6c show in more
detail the changes of the cost weights within a 5-squat set.
Below, we use Fig. 6c for analysis. As labeled by the dotted
black (vertical) lines, we divide a squat repetition into two
motion phases according to different cost functions used:
• Active-Squat (AS): between the first and second dotted lines,

during which the participant is flexing hips and knees (to
squatting position) and then extending the hips and knees.
The recovered results show that the control objective of this
phase is to minimize the joint acceleration φ1 (as both ω̂2

and ω̂3 are near zeros).
• Between-Squats (BS): between the second and third dotted

lines, during which the participant is finishing the hip and
knee extension from the previous active squat and then

preparing for next one. The cost function to be minimized
for this phase is (approximately) 0.6φ1 + 0.4φ3.

4) Segmentation Results: in order to automate the segmen-
tation of the active-squat phase and the between-squats phase
in each motion set, we define a segmentation threshold ωth for
ω̂1(t) (the most influential weight), and then the segmentation
is performed using the following rules: if ω̂1(t) > ωth;
the current phase is classified as active-squat; otherwise, as
between-squats. We evaluate the segmentation accuracy by(
0.5 × ( TAS

TAS+FBS
+ TBS

TBS+FAS
)
)
[4], where TAS is the count

of the cases where a true active-squat phase is segmented into
active-squat (True Positive); TBS when a true between-squats
phase is segmented into between-squats (True Negative), FAS
when a true active-squat phase is classified as between-squats
(False Positive), and FBS when a true between-squats phase
is segmented into active-squat (False Negative).

The segmentation results for all participants are summarized
in Table III. Here, two thresholds ωth = 0.8 and ωth = 0.9
are used, and the average cost weights for active-squat and
between-squats are computed based on all successful segmen-
tations. It can be seen that the proposed method demonstrates
a high reliability and accuracy in segmenting different motion
phases. The difference in the average cost weights of between-
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squats phase for two thresholds is due to the fact that the actual
period of a between-squats phase is small (Fig. 6c), thus is
more likely to be affected by segmentation threshold values.
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(b) Between-squats phase.

Figure 7: Recovery results over all participants for active-
squat and between-squats phases. Bars denote the mean cost
weights, and top line segments denote the standard deviation.

Using ωth = 0.9, we summarize the average cost weights
for active-squat and for between-squats over all participants
in Fig. 7a and 7b, respectively. It shows that all participants
adopt a similar control policy in squat exercise: during active
squat, participants focus on minimizing the joint acceleration,
while in between squats, they adopt a balanced control policy
minimizing both joint acceleration and power. This finding is
consistent with previous human motion studies [4], [3], [8].

For comparison, we also perform the motion segmentation
using the KKT method [4], as shown in Table II. The proposed
method can achieve a segmentation accuracy above 90%,
which is higher than that of the KKT method [4] with average
accuracy 81.99%.

5) Result Validation: to validate the recovery and segmen-
tation results, we simulate the trajectory of each segmented
phase by solving the optimal control problem based on the
recovered cost functions. Considering the consistency of the
recovery among different squat repetitions (Fig. 6) and differ-
ent participants (Fig. 7), we just use one squat repetition of a
sample participant for illustration. We consider one squat repe-
tition performed by Participant 5 as labeled by the black dotted
lines in Fig. 6c. Under segmentation threshold ωth = 0.9, the
active-squat phase is from time 3.46s to 5.62s with the average
cost weights [0.99, 0.00, 0.00] (by averaging ω̂(t) within this
active-squat phase), and the between-squats is from 5.62s to
6.33s with average cost weights [0.62,−0.01, 0.39]. We solve
the optimal control problem using these cost functions for both
phases [16] and plot the results in Fig. 8. The results show
that the simulated trajectory using the recovered cost functions
fits well the real data, indicating the validity of the recovered
multiphase cost functions in characterizing squat motion.

VI. DISCUSSION

In this section, we provide further insights into the multi-
phase cost function recovery and discuss possible extensions.

A. Accurate Estimation of Phase Transition Points
It was noted in Section III and IV that Assumption 1 only

guarantees that the proposed method can accurately recover
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Figure 8: Simulated trajectory using the recovered multiphase
cost functions. Solid lines are real motion data (second squat
repetition in Fig. 6c): red for the active-squat phase and yellow
for the between-squats phase. Dotted lines are the simulated
motion: blue for the active-squat phase and brown for the
between-squats phase.

the cost weights between Tj and t(j)max, 1 ≤ j ≤ p, and due to
degenerate recovery the cost weights between t(j)max and Tj+1

may not be recovered correctly. To avoid this limitation, we
establish the following assumption.

Assumption 2. Assumption 1 holds. For the window with the
starting time t ∈ (Tj , Tj+1] which satisfies rankH(t, Tj+1 −
t+1) < n+r−1, there does NOT exist an observation length
l ∈ (Tj+1 − t + 1, Tj+1 − t+ 1 + lmin(Tj+1 + 1)] such that
rankH(t, l) = r + n− 1.

Assumption 2 guarantees that the degenerate recovery never
occurs for any observation window over a phase transition
point. Under this assumption, at the end of each phase where
the observations are not sufficient for a successful recovery,
the cost weights will be assigned to the ones of the previous
successful recovery, and thus the change of ω̂(t) happens only
at Tj+1. Thus, the proposed method will produce accurate
estimates for all phase transition points.

B. Elimination of Degenerate Recovery

We have noted in Section IV.A that observations over a
phase transition point may result in degenerate recovery. The
following lemma, however, indicates that degenerate recovery
can be eliminated by observing more data.

Lemma 3. Suppose that Assumption 1 holds, and the window
starts at time t ∈ (Tj , Tj+1] that satisfies rankH(t, Tj+1 −
t+ 1) = n+ r − 1. If the window length l ≥ Tj+1 − t+ 1 +
lmin(Tj+1 + 1), then

rankH(t, l) = r + n. (34)

Here, lmin(Tj+1 + 1) denotes the minimal observation length
from the starting time Tj+1 + 1.

Proof. Please see the proof in Appendix.
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Lemma 3 indicates that by observing more data in addition
to achieving rankH(t, Tj+1−t+1) = n+r−1, we can always
obtain a detectable rank condition of rankH(t, Tj+1−t+1) =
n+ r for checking the presence of the phase transition points.
However, one disadvantage of this ‘additional observations’
strategy is that it will lead to a large error range, e.g., from
Lemma 3, we are only able to tell that the phase transition
point is located in the interval [t, Tj+1 + lmin(Tj+1 + 1)] and
cannot obtain its more precise location.

C. A Bi-pass Scheme

Another idea to mitigate the influence of degenerate recov-
ery and obtain a more accurate phase transition point estimate
is to use a bi-pass framework. Since the proposed method only
adopts a forward pass scheme, the detected time where the cost
weights changes, denoted as T̃ fj+1, will be no later than the
real phase transition point Tj+1, i.e. T̃ fj+1 ≤ Tj+1 (as shown
in (23)). Similarly, if one also performs a back pass recovery,
i.e. moving and recovering in a backward fashion, the detected
phase transition point, denoted as T̃ bj+1, will happen no earlier
than the real phase transition point: Tj+1 ≤ T̃ bj+1. Combining
results from both passes, the estimated phase transition point
will fall into the range of [T̃ fj+1, T̃

b
j+1], which is more precise

than the estimate using a single pass.
Although producing a more accurate estimate of the phase

transition point, the above bi-pass framework has the following
disadvantages compared to single forward pass: 1) significant
computational cost is involved, making it difficult for online
implementation; and 2) as shown in experiments, degenerate
recovery happens infrequently in most cases; thus by applying
only forward pass, the estimated point where the cost weights
change is already very close to the real one. We may consider
the bi-pass based recovery method in our future work.

D. Selection of the Union Feature Set

We now discuss how to select the union feature set when the
set of features is not explicitly known. From (4) we note that
one advantage of the proposed method is its ability to allow for
additional irrelevant features in the union feature vector (the
recovered cost weights for those features are equal to zeros).
This property implies that one can include as many candidate
features as possible into the union feature set. However, too
many features will lead to the violation of Assumption 1, as
explained in Section III. To further illustrate this, we consider
the cost function recovery in Fig. 3a, given different union
feature vectors listed in Table IV. We set γ = 100 and lmax =
1000 in Algorithm 1, and the corresponding recovery error for
each union feature vector is summarized in Table IV.

As shown in Table IV, more candidate features will signif-
icantly increase the minimal observation length required for a
successful recovery. Thus, an increasing number of candidate
features may lead to the required window length exceeding a
phase horizon, causing the violation of Assumption 1 and the
failure of the proposed algorithm.

Thus, a principle for union feature set selection is to make
the selected set contain as few irrelevant features as possible.
One way to form a union feature set is to try an initial feature

Table IV: Recovery performance with irrelevant features

Union feature vector ∗ eω Ave. lmin T̂1, T̂2

[τ21 , τ
2
2 ] 0.0018 236.0 1004, 2000

[τ21 , τ
2
2 , τ

3
1 ] 0.0037 333.2 1004, 2002

[τ21 , τ
2
2 , τ

3
1 , τ

3
2 ] 0.0037 386.4 1004, 2003

[τ21 , τ
2
2 , τ

3
1 , τ

3
2 , τ

4
1 ] 0.0052 459.8 1004, 2003

[τ21 , τ
2
2 , τ

3
1 , τ

3
2 , τ

4
1 , τ

4
2 ] 0.0050 505.8 1004, 2003

∗ All candidate features are the polynomial function with the form
τki where the variable τi denotes the joint torque applied on the ith
joint of the simulated two-arm robot, and k is the exponent.

set which includes many possible candidate features based on
prior knowledge (at this point Assumption 1 may be violated),
then remove features from the set by trial and error (we may
also need to solve the optimal control problems) until a stable
recovery performance and a ‘compact’ union feature set are
obtained. A theoretical exploration for the choice of relevant
features will be left as our future work.

VII. CONCLUSIONS

We consider the inverse optimal control problem where the
system trajectory is a concatenation of multiple phases of
motion, which are generated by minimizing a phase-dependent
cost function. We hypothesize the phase-dependent cost func-
tion as a weighted sum of given union features with phase-
dependent cost weights. An inverse optimal control method is
developed for not only recovering the cost weights of each
phase but also estimating the phase transition points.

We solve the multiphase cost function recovery by sliding
an adaptive-length window along the observed trajectory while
at each position recovering the cost weights under the window.
The window length is determined by finding the minimal
observation length that suffices for a successful recovery using
the recovery matrix. The output is a trace of the recovered cost
weights indexed by time, from which the cost function for each
phase can be obtained and then each phase can be segmented.
We demonstrate the proposed method using real human motion
data, and experiments show that the method reliably recovers
the cost function of each phase, and segments each motion
phase from the trajectory.

APPENDIX:PROOF OF LEMMA 3
We first prove that (34) holds for l = Tj+1 − t + 1 +

lmin(Tj+1 + 1). We prove this by contradiction: assume
rankH(t, l) < r + n for l = Tj+1 − t+ 1 + lmin(Tj+1 + 1).
Due to the rank non-decreasing property (16), rankH(t, l) ≥
rankH(t, Tj+1 − t + 1) = n + r − 1; thus rankH(t, l) =
n+r−1 has to hold. We thus can find a vector col {ω̃, λ̃} 6= 0
in the kernel ofH(t, l). Based on the definition of the recovery
matrix in (10-12), we further can find a sequence of costates
λ̃t:t+l−1 such that

F x(t, l)λ̃t:t+l−1 −Φx(t, l)ω̃ = V (t, l)λ̃ (35)

F u(t, l)λ̃t:t+l−1 + Φu(t, l)ω̃ = 0 (36)

where F x(t, l), Φx(t, l), F u(t, l), Φu(t, l), and V (t, l) are
defined in (9). In the following, we consider two sub-cases:
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Case 1: consider ω̃ 6= 0. Splitting both (35) and (36) at time
Tj+1 and recalling the definition of recovery matrix, we have

H(t, Tj+1 − t+ 1)

[
ω̃

λ̃Tj+1+1

]
= 0 (37)

H(Tj+1 + 1, lmin(Tj+1 + 1))

[
ω̃

λ̃

]
= 0. (38)

As (37) and (38) in fact correspond to the optimality conditions
in jth and (j+ 1)th phases, respectively, thus given the actual
costates λ∗Tj+1+1 and λ∗Tj+1+1+lmin(Tj+1+1), we have

H(t, Tj+1 − t+ 1)

[
ω(j)

λ∗Tj+1+1

]
= 0 (39)

H(Tj+1 + 1, lmin(Tj+1 + 1))

[
ω(j+1)

λ∗Tj+1+1+lmin(Tj+1+1)

]
= 0.

(40)

As rankH(Tj+1 + 1, lmin(Tj+1 + 1)) = rankH(t, Tj+1 −
t + 1) = n + r − 1, based on (37)-(40) we have ω(j) = c1ω̃
and ω(j+1) = c2ω̃ (c1 > 0 and c2 > 0 are two scalars)
and thus ω(j+1) = c2

c1
ω(j). This contradicts the fact that jth

phase and j + 1th phase correspond to different cost weights
(independent weight vectors).
Case 2: consider ω̃ = 0. Since both (37) and (39) still hold,
rankH(t, Tj+1 − t + 1) = n + r − 1, and ω(j) 6= 0, then
λ̃Tj+1+1 = 0 in (37) have to be satisfied. Resorting to (35)
and considering the structure of F x(t, l) in (9), we have the
following iteration form for the costates

λ̃k =
∂f ′

∂x∗k
λ̃k+1 (41)

for Tj+1 +1 ≤ k ≤ Tj+1 + lmin(Tj+1 + 1). Given λ̃Tj+1+1 =

0, if det ( ∂f
′

∂x∗k
) 6= 0 (det(·) is matrix determinant operator), by

iteration λ̃Tj+1+1+lmin(Tj+1+1) = λ̃ = 0. Thus, col {ω̃, λ̃} =

0, which contradicts the statement that col {ω̃, λ̃} is non zero
vector in the kernel of H(t, l).

Combining the above two cases, we can see that in Lemma
3, rankH(t, l) = r + n − 1 cannot hold for l = Tj+1 − t +
1 + lmin(Tj+1 + 1). Thus rankH(t, l) = r + n holds. Due
to the rank nondecreasing property, for any l ≥ Tj+1 − t +
1 + lmin(Tj+1 + 1), rankH(t, l) = r + n still holds, which
completes the proof.
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