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Abstract—Point cloud analysis without pose priors is very challenging in real applications, as the orientations of point clouds are often
unknown. In this paper, we propose a brand new point-set learning framework PRIN, namely, Point-wise Rotation Invariant Network,
focusing on rotation invariant feature extraction in point clouds analysis. We construct spherical signals by Density Aware Adaptive
Sampling to deal with distorted point distributions in spherical space. Spherical Voxel Convolution and Point Re-sampling are proposed
to extract rotation invariant features for each point. In addition, we extend PRIN to a sparse version called SPRIN, which directly
operates on sparse point clouds. Both PRIN and SPRIN can be applied to tasks ranging from object classification, part segmentation,
to 3D feature matching and label alignment. Results show that, on the dataset with randomly rotated point clouds, SPRIN demonstrates
better performance than state-of-the-art methods without any data augmentation. We also provide thorough theoretical proof and
analysis for point-wise rotation invariance achieved by our methods. The code to reproduce our results will be made publicly available.

Index Terms—Point cloud, object analysis, rotation invariance, feature learning

1 INTRODUCTION

Deep learning on point clouds has received tremendous interest
in recent years. Since depth cameras capture point clouds directly,
efficient and robust point processing methods like classification,
segmentation and reconstruction have become key components
in real-world applications. Robots, autonomous cars, 3D face
recognition and many other fields rely on learning and analysis
of point clouds.

Existing works like PointNet [1] and PointNet++ [2f] have
achieved remarkable results in point cloud learning and shape
analysis. But they focus on objects with canonical orientations. In
real applications, these methods fail to be applied to rotated shape
analysis since the model orientation is often unknown as a priori,
as shown in Figure [} In addition, existing frameworks require
massive data augmentation to handle rotations, which induces
unacceptable computational cost.
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Fig. 1. PointNet++ part segmentation results on rotated shapes.
When trained on objects with canonical orientations and evaluated on
rotated ones, PointNet++ is unaware of their orientations and fails to
segment their parts out.
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Spherical CNN [3] and a similar method [4] try to solve this
problem and propose a global feature extracted from continuous
meshes, while they are not suitable for point clouds since they
project 3D meshes onto their enclosing spheres using a ray casting
scheme. Difficulty lies in how to apply spherical convolution in
continuous domain to sparse point clouds. Besides, by project-
ing onto a unit sphere, their method is limited to processing
convex shapes, ignoring any concave structures. Therefore, we
propose a point-wise rotation invariant network (PRIN) to handle
these problems. Firstly, we observe the discrepancy between unit
spherical space and Euclidean space, and propose Density Aware
Adaptive Sampling (DAAS) to avoid biases. Secondly, we come
up with Spherical Voxel Convolution (SVC) without loss of rota-
tion invariance, which is able to capture any concave information.
Furthermore, we propose Point Re-sampling module that helps to
extract rotation invariant features for each point.

PRIN is a network that directly takes point clouds with random
rotations as the input, and predicts both categories and point-
wise segmentation labels without data augmentation. It absorbs the
advantages of both Spherical CNN and PointNet-like network by
keeping rotation invariant features, while maintaining a one-to-one
point correspondence between the input and output. PRIN learns
rotation invariant features at spherical voxel grids. Afterwards,
these features could be aggregated into a global descriptor or per-
point descriptor to conduct model classification or part segmen-
tation, respectively. We rigorously prove the point-wise rotation
invariance of PRIN under certain conditions.

In addition, we extend our PRIN framework and propose a
sparse version of PRIN called SPRIN. SPRIN considers the input
as the Dirac delta function and gives rotation invariant features
when the filter is constant on the left coset of z-axis rotation.

We experimentally compare PRIN and SPRIN with various
state-of-the-art approaches on the benchmark dataset: ShapeNet
part dataset [S] and ModelNet40 [|6]. Additionally, both PRIN and
SPRIN can be applied to 3D point matching and label alignment.
Both PRIN and SPRIN exhibit remarkable performance. SPRIN
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also achieves the state-of-the-art performance on part segmenta-
tion.
The key contributions of this paper are as follows:

e We design two novel deep network processing pipelines
PRIN/SPRIN that extracts rotation invariant point-level
features.

e Three key modules: Density Aware Adaptive Sampling
(DAAS), Spherical Voxel Convolution (SVC) and Point
Re-sampling are proposed for PRIN.

e We propose a special spherical voxel convolution and
prove that it is rotation equivariant. In addition, we extend
this convolution to the sparse domain and develop a sparse
version of PRIN called SPRIN. Rigorous proof of point-
wise rotation invariance is given for both PRIN and SPRIN
frameworks.

e We show that PRIN/SPRIN can be used for point cloud
part segmentation, classification, 3D point matching and
label alignment under different rotations. SPRIN achieves
the state-of-the-art performance on part segmentation.

A preliminary version of this work was presented in
AAAI2020 [[7]. In this study, we extend it in two fundamental
aspects. First, we provide thorough theoretical analysis and proof
for the point-wise rotation invariance in PRIN, and some necessary
filter conditions are proposed. With this revised version of spher-
ical voxel convolution, we achieve much better results than our
previous work. Second, we extend PRIN to sparse domain, where
the Dirac delta function is leveraged and sparse correlation is
proposed with guaranteed rotation invariance. The sparse version
of PRIN, which is named SPRIN, achieves the state-of-the-art
performance on ShapeNet part segmentation.

2 RELATED WORK
2.1 Rotation invariant Features

Rotation Invariance is often regarded as a preliminary to the
success of template matching and object detection, in both 2D
and 3D domains.

The development of rotation invariant features from geome-
tries could be retrospected to manual designed features, includ-
ing Structural Indexing [8]], Signature of Histogram Orientations
(SHOT) [9], CGF [10] and Snapshots [11]. They construct a local
reference frame (LRF) which aligns the model into its canonical
pose in order to extract rotation invariant point features. However,
these methods depend on local surface variations, therefore are
sensitive to noise and point densities. Besides, these descriptors
rely on delicate hand-craft design, and could only capture low-
level geometric features. For a more complete review on tradi-
tional feature descriptors, we refer to Guo et al. [|12]].

Recently, some papers consider generalizations of 2D CNNs
that exploit larger groups of symmetries [13], [[14]], including the
2D/3D rotation group [15]. Spherical CNN [3] and a similar
method [4] propose to extract global rotation invariant features
from continuous meshes, while they are not suitable for point
clouds since they project 3D meshes onto their enclosing spheres
using a ray casting scheme.

In parallel to group invariant/equivalent convolutions, some
researchers incorporate rotation invariant point-level convolutions.
SRINet [[16]] proposes the point projection feature, which is in-
variant to the rotation of the input point cloud. It introduces an
efficient key point descriptor to assign each point with different
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response and help recognize the overall geometry. Poulenard et
al. [17] employ a spherical harmonics based kernel at different
layers of a point-based PCNN architecture. Kim et al. [|18] take
advantages of multi-level abstraction based on graph convolutional
neural networks, which constructs a descriptor hierarchy to encode
rotation invariant shape information of an input object in a bottom-
up manner. Zhang et al. [[19] use low-level rotation invariant
geometric features such as distances and angles to design a
convolution operator for point cloud learning. PPF-FoldNet [20]
obtains unsupervised rotation invariant point-wise features via an
auto encoder-decoder structure. Li et al. [21] present a network
architecture to embed rotation invariant representations into fea-
tures, encoding local relations between points and their neighbors,
and the global shape structure. Using graphs as point cloud
representation is another way to achieve rotation invariance like
Zhang et al. [22]] and Wang et al. [23].

2.2 Rotation Equivariance in Point Clouds

Rotation Equivariance is closely related to rotation invariant point
features, where feature locations are equivalently transformed
according to the input rotation. Tensor field networks [24] build
filters from spherical harmonics and are proven to be equivariant
to rotations. SE(3)-Transformers [25] combine graph networks and
self-attention mechanisms to fulfill the goal of rotation-translation
equivariance. However, both Tensor field networks and SE(3)-
Transformers do not scale well with input points and fail to be
applied to large point clouds (e.g. 2048 points). In contrast, our
SPRIN can easily fit 2048 points with a large batch size, due to
the introduced sparse correlation.

Cohen et al. [3]], Esteves et al. [4] and Cruz [26] all decom-
poses SO(3) group with irreducible harmonic orthogonal basis,
which is proven to strictly equivariant to SO(3) rotations. Quater-
nion equivariant capsule networks [27] disentangles geometry
from pose with dynamic routing algorithm from capsule networks.
Rotation Equivariance can be also achieved by giving a rotation
invariant representation for each individual point, such as Khoury
et al. [|10] and Gojcic et al. [28].

2.3 Deep Learning on 3D Shapes

As the consequence of success in deep learning, various methods
have been proposed for better understanding 3D models. Con-
volutional neural networks are applied to volumetric data since
its format is similar to pixels in an image and easy to transfer
to existing frameworks. 3D ShapeNet [6] and VoxNet [29] are
pioneers introducing fully-connected networks to voxels. How-
ever, dealing with voxel data requires large memory and the
sparsity of point sets also makes it challenging to extract particular
features from big data. As a consequence, MinkowskiNet [30]
and Submanifold Sparse Convolutional Networks [31] try to solve
this by conducting sparse convolutions near existing points. Our
SPRIN also takes inspiration from these works to improve the
scalability of PRIN.

Another research branch is multi-view methods. MVCNN [32]
renders 3D models into multi-view images and propagates these
images into traditional convolutional neural networks. These ap-
proaches are limited to simple tasks like classification and not
suitable for 3D part segmentation, key point matching or other
tasks.

Dealing with point clouds directly is another popular branch,
among which PointNet [[1] is the pioneer in building a general
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Fig. 2. PRIN Architecture. Our network takes sparse points as input, and then uses Density-Aware Adaptive Sampling to transform the signals
into spherical voxel grids. The spherical voxel signals are then passed through several Spherical Voxel Convolution layers, ending with a feature at
each spherical voxel grid. Any point feature can be extracted by point re-sampling, which is used to do point-wise part segmentation. All these voxel
features can also be max-pooled to get a global feature, which is suitable for classification.

framework for learning point clouds. Since then, many networks
are proposed to learn from point clouds. PointNet++ [2]] extends
PointNet by introducing a hierarchical structure. RSNet [33]]
combines a novel slice pooling layer, Recurrent Neural Network
(RNN) layers, and a slice unpooling layer, to better propagate
features among different parts. SplatNet [34] uses sparse bilateral
convolutional layers to enable hierarchical and spatially-aware
feature learning. DGCNN [35] proposes EdgeConv, which ex-
plicitly constructs a local graph and learns the embeddings for
the edges in both Euclidean and semantic spaces. As a follow-
up, LDGCNN [36] links the hierarchical features from different
dynamic graphs based on DGCNN. SO-Net [37] models the
spatial distribution of point cloud by building a Self-Organizing
Map (SOM) and its receptive field can be systematically ad-
justed by conducting point-to-node k nearest neighbor search.
SpiderCNN [38] designs the convolutional filter as a product of a
simple step function that captures local geodesic information and a
Taylor polynomial that ensures the expressiveness. DeepSets [39]
provides a family of functions which are permutation-invariant and
gives a competitive result on point clouds. Point2Sequence [40]
uses a recurrent neural network (RNN) based encoder-decoder
structure, where an attention mechanism is proposed to highlight
the importance of different area scales. Kd-Network [41] utilizes
kd-tree structures to form the computational graph, which learns
from point clouds hierarchically. However, few of them are ro-
bust to random rotations, making it hard to apply them to real
applications.

3 PRELIMINARIES
3.1 Unit Sphere: S?

A point s in a two-dimensional sphere can be uniquely described
by its azimuthal and polar angles: (v, 3), where a € [0, 27], 5 €
[0, 7]. Furthermore, if we denote n = (0, 0, 1)7 as the North Pole,
the coordinate of s is given by Z(«a)Y (8)n, where Z(-) and Y (+)
represent the rotation matrix around z and y axes, respectively.
For more details of this space, we refer the reader to [42].

3.2 Unit Spherical Space: S? x H

Any point z in unit ball can be uniquely parameterized by an
augmented spherical coordinate: (s(a, 8),h), where s(a, 3) €
5?2 denotes its location when projected to unit sphere, and h €
H = [0, 1] represents the radial distance to the origin. It is obvious
that this parametrization is bijective.

3.2.1 Rotation Transformation

Consider an arbitrary rotation transformation () applied to a point
x e S?x H:

Qm(a, B, h) = (QS(O‘7 6)7 h)
= (QZ()Y (B)n, h).

Intuitively, @ rotates the point around the origin, while keeping its
radial distance towards the origin.

(M

3.3 3D Rotation Group: SO(3)

The 3D rotation group, often denoted SO(3), which is termed
“special orthogonal group”, is the group of all rotations about
the origin of three-dimensional Euclidean space R3 under the
operation of composition. Almost every element (except for sin-
gularities) in SO(3) can be uniquely parameterized by ZYZ-
Euler angles [43]: (a, 3,7), where a € [0,27],3 € [0,7],
and v € [0, 27]. In matrix form, for any element R € SO(3),
R(a, B,7) = Z(a)Y(B)Z(y). This parametrization is also
bijective almost everywhere.

3.3.1 Rotation Transformation

Consider an arbitrary rotation transformation ) applied to another
rotation R € SO(3), which is a transformation composition:

QR(a,B,7) = QZ(a)Y (8)Z (7). )

4 PRIN: AN EXACT POINT-WISE ROTATION IN-
VARIANT NETWORK

In this section, we discuss the development of our point-wise
rotation invariant algorithm. In Section we propose a density
aware adaptive sampling module to correct the distortion in
spherical voxels. In Section we propose a special spherical
voxel convolution and prove that it is rotation equivariant (e.g.,
point-wise rotation invariant) theoretically. Besides, we also derive
a sufficient condition on convolutional filters to ensure this rotation
equivariance.

4.1 Problem Statement

Given a set of unordered points X = {x;} with 2; € R?" and
i=1,---, N, where N denotes the number of input points and
d'™ denotes the dimension of input features at each point, which
can be positions, colors, etc. Our goal is to Produce a set of point-
wise features ) = {y;} with y; € R¥" andi = 1,---, N,
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which are invariant to input orientations. PRIN can be modeled as
a rotation invariant function F : X — ). Although the problem
and the method developed are general, we focus on the case
d;n = 3 using only Euclidean coordinates as the input. To imple-
ment the function F, we design mainly three modules: (1) Density
Aware Adaptive Sampling (DAAS) module I : RN*3 — RS*xH
that constructs spherical signals; (2) Spherical Voxel Convolu-
tion (SVC) module P : RS*XHXCin _y RS*XHXCout thyt
extracts rotation invariant features; (3) Point Re-sampling module
A RSXHXCous _y RNXCout ghag re-samples points from
spherical signals. We will explain these modules in the following
sections and the whole pipeline is shown in Figure 2]

4.2 Density Aware Adaptive Sampling

In this step, the objective is to build spherical signals from
irregular point clouds. Nonetheless, if we sample point clouds
uniformly into regular spherical voxels, we will meet a problem:
points around the pole appear to be more sparse than those
around the equator in spherical coordinates, which brings a bias
to the resulting spherical voxel signals. To address this problem,
we propose Density Aware Adaptive Sampling (DAAS). DAAS
leverages a non-uniform filter to adjust the density discrepancy
brought by spherical coordinates, thus reducing the bias. This
process can be modeled as I' : RV*3 — RS <H

4.2.1 Spherical Distortion

Specifically, we divide unit spherical space S? x H into spherical
voxels, which are indexed by (i, j,k) € I x J x K, where I X
J x K is the spatial resolution, also known as the bandwidth [44].
Each spherical voxel is represented by its center (s(a;,b;), cx)
with a; = % S2m, by = l] -m,and ¢, = % The division of unit
spherical space is shown in the left of Figure@

Then we sample the input signal into a tensor of equal-sized
measures of Euler angles (v, 8,7) in SO(3), with the bijective
mapping between SO(3) and S? x H (Theorem [4.2). They
are leveraged for discrete spherical voxel convolution discussed
later in Section [£.3] This representation is shown in the right of
Figure 3]

However, such an equal-angle discretization introduces a non-
uniform or distorted distribution of the input signal in Euclidean
space. This is illustrated in the middle of Figure@ Since the size of
the spherical voxel is smaller around the pole than on the equator,
the input signal gets distorted around the pole when we stretch
non-equal-sized spherical voxels to equal-sized angle bins.

To address this issue and obtain an unbiased estimate of
the input signal, Density Aware Adaptive Sampling (DAAS) is
proposed. Formally, we map each point z,, € X from Euclidean
space R> to unit spherical space S2 x H by calculating its
spherical coordinates x,, = (s(&n, ), hn), and then calculate
the spherical signal f : S? x H — R as follows:

N
> Wy - (&~ [[hn — cil])
flag, by, cx) ="

S : 3)

> Wy

n=1

where w,, is a normalizing factor that is defined as
wy, = 1([lan, — aif| <€)

L([1Bn = bl < né) ©)
L[| = exll <6,

4

where £ is a predefined threshold filter width and 7 is the Density
Aware Adaptive Sampling Factor. f can be viewed as an unbiased
version of the empirical distribution of x, except we use (§ —
||, — ckl||) instead of Dirac delta because it captures information
along the H axis, which is orthogonal to S? and is invariant under
random rotations.

Theorem 4.1 (Density Aware Adaptive Sampling Factor). 1 =
sin(B) is the Density Aware Adaptive Sampling Factor, account-
ing for distorted spherical voxels in Euclidean spaces.

Proof. To get the relationship between the differential spherical
volumes and rectangular (e.g., Euclidean) volumes, we need
to calculate the Jacobian of the transformation from spherical
coordinates to Euclidean coordinates. Denote some Euclidean
coordinate as (x,y, z) and its corresponding spherical coordinate
as (a, B, h), we have [45],

x = hsin(B)cos(a),

y = hsin(B)sin(a), (5)
z = hcos().

Denote the Jacobian as J:
2] 9 o .
J= gt 35 agb|="h’sin(B), ©6)

This involves h and sin(3). h does reflect the volume difference
of spherical voxels when placed at different distances from the
ball center. However, this change is isotropic and does not cause
the volume distortion between the equator and the pole, which
is shown in Figure [3| The other factor sin(3) is therefore the
only reason for distorted spherical voxels. In other words, if we
normalize the spherical voxel by setting h = 1, we get J);—; =
sin(B). O

Stretched

o

Spherical Voxel
(i k) € I x T x K

Discretized

Sampling

e

Input Point Cloud f
in S2x H

Distorted Angle Bins
in Euclidean Space

Equal-sized Angle Bins

in SO(3)

Fig. 3. Spherical distortion. An input point cloud is first sampled into
discretized angle bins, though such equal-sized angle bins are distorted
in Euclidean space. Therefore, we propose Density Aware Adaptive
Sampling (DAAS).

4.2.2 Comparison with Other Spherical Representations

To recap, we create equal-sized angle bins/measures from distorted
spherical voxels to form a compact 3D tensor in SO(3). This
tensor is later used by discrete spherical voxel convolution to
achieve point-wise rotation invariance.

This is different from what is proposed in SPH3D-GCN [46],
which also leverages spherical voxel. In SPH3D-GCN, the authors
do not consider rotation invariance, and utilize a simple uniform
sampling of input signals. This is okay as long as the bias
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introduced by distorted spherical voxels is consistent in both
training and testing. However, if an arbitrary rotation is introduced
during testing but no rotation when training, the bias is inevitable,
and their method will give an inferior result. This is also confirmed
in our ablation studies, referred to as “uniform sampling”.

Besides, one may consider using HealPix [47] that produces
a subdivision of a spherical surface in which each pixel covers
the same surface area as every other pixel. Though it produces
equal sized surface area for each pixel, the center of each pixel
is not necessarily aligned with the grid of general discrete Fast
Fourier Transforms (FFTs) on the rotation group [48]], which is
required for a fast computation of the spherical voxel convolution
discussed in Section [4.3] HealPix, though uniformly discretizes
voxels in Euclidean space, produces non-uniform discretization in
SO(3) space, making the separation of variables impossible. As
a result, FFTs are not applicable for HealPix. For more details
about the requirement for FFTs on the rotation group, we refer the
reader to Chapter 3 of [48].

4.3 Spherical Voxel Convolution

Given some spherical voxel signal f : S? x H — R%n», we
introduce Spherical Voxel Convolution (SVC) to further refine the
features, while keeping it rotation invariant. This step implements
the operator O : RS*XHxCin _y RS*xHxCout

Compared with Spherical CNN [4] where only spherical sig-
nals defined in S? get convolved. We propose the spherical voxel
convolution, which takes spherical signals defined in S 2 x H as
the input. To understand spherical voxel convolution, we first give
some definitions and annotations. Here, we only consider func-
tions with C;,, = C,u: = 1 to reduce clutter, while extensions to
higher-dimension functions are straight-forward.

In order to define spherical voxel convolution, we need to first
bridge S? x H and SO(3) by several theorems and lemmas.

Theorem 4.2 (Bijection from S? x H to SO(3)). There exists a
bijective map (almost everywhere) T : S? x H — SO(3), such
that T (s(ev, ), h) = R(ev, B,2mh) = Z(a)Y (B)Z(2h).

Proof. This map is onto because almost every element R €
SO(3) can be parameterized by ZYZ-Euler angles [43]]: («, 5,7),
and there is some r = (s(a,f3),55) such that T(x) =
R(a, 8,7). To prove that this map in injective, suppose 1 # Za,
by the bijective parameterization of S? x H, (a1, S1,h1) #
(w2, B2, ha), therefore T (x1) # T (x2) by the bijective parame-
terization of SO(3). O

Lemma 4.3. For any x € S?> x H and Q € SO(3), there exists
some 0, such that:

T(Qx) = QT (x)Z(0), o

where Z(0) is the rotation around z axes by 0.

Proof. Writing left-hand side out and leverage Equation [I} we
have:

T(Qz(a, B,h)) = T(Qs(a, B), h) ®)
= T(QZ(a)Y (B)n, h), ©)

5

Notice that QZ ()Y () is a general rotation and can be uniquely
parameterized as Z (/)Y (8')Z(7'). Substitute this into Equa-
tion Ot

T(Qz) =T (Z(a")Y(B8)Z(+')n, h) (10)
=T(Z(a")Y ('), h) (11)
=Z("Y(8)Z(2rh (12)
=QZ(a)Y(8)Z(—")Z(27h) (13)
=QZ(a)Y(8)Z(2mh)Z(—) (14)
= QT (x)Z(—') (15)

Equation (II) follows from that rotations around z axes fix
the North Pole; Equation follows because QZ(a)Y (8) =
Z(a )Y (B")Z(~"); Equation follows since rotations around
z axes are commutative. O

Definition 4.1 (Adjoint Function). We define the adjoint function
of f as follows:

fr(z) = f(T(2)).

Remark. Notice that f7 is also the pull-back function [49] of the
measurable push-forward map 7 (up to a constant):

(16)

/ fr(z)dx =/ f(TY(x))dx a7
SO(3) SO(3)
- [ swdTe) a9
S2xH
=2m /Ssz f(y)dy, (19)

where we make use of y := 7 ~1(x) and Equation follows by
Theorem (4.2

Now, we are ready to give a formal definition of spherical
voxel convolution, by leveraging SO(3) group convolution.

Definition 4.2 (Spherical Voxel Convolution). Spherical voxel
convolution, evaluated at p € 52 x H, is defined as:

0010 = [ 7+ F71T )26

— [ [ er(RTe)ir(RZ() Ry,
v JSO(3)
(20)
¥, f: S?x H — R, where f is the input signal and v is the filter.

Intuitively, our spherical voxel convolution is the corresponding
adjoint SO(3) convolution averaged over the coset defined by

Z().

Definition 4.3 (Rotation Operator [3]). We introduce a rotation
function operator Lq:

[Lofl(z) = F(Qx),Q € SO(3).

It follows that:

[Loflr(a) = fr(T(Q™ ') = fr(Q™' T (2)Z(0)).

Theorem 4.4 (Main Result: Rotation Invariance). The spher-
ical voxel convolution is point-wise rotation invariant: [ *

Lo fl(@Qp) = [¥ * fl(p), when 17 is constant on the right
latitude: 7 (R) = 7 (RZ(0)) for any R, 0.

2D

(22)
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Proof. Suppose that the input point cloud is rotated by an arbitrary
rotation (), we have p — @p. As a consequence, the correspond-
ing spherical signal is also rotated: f — Lq f, since f is sampled
from the original point cloud. We are now ready to prove the
rotation invariance by applying SVC to the rotated input:

[t * Lo f1(@p)
:/ /50(3) Ur(R™VT(Qp) fr(Q " RZ(6 + 7)) dRdy (24)

S S

(23)

R'QT(p)fr(Q 'RZ(0 + ~))dRdy (25)

= Joo UTETO) [ Fr(RZO)arar o
50(3)

[ wr® ) [ fr(RZ())ddR @
SO(3) 0%

= [ [, e TN (RO Ry o8

= [v* fI( ) (29)

Equation follows from Lemma and Yr(R) =
V7 (RZ (9)); Equation follows from the right invariance of

SO(3) group integral [50]; Equation is a result of corollary
(2.1) in [50]. O

It is obvious that SVC extracts the same feature no matter how
the input point cloud rotates, which ensures point-wise rotation
invariance.

In practice, Spherical Voxel Convolution (SVC) can be effi-
ciently computed by Fast Fourier Transform (FFT) [48]]. Convo-
lutions are implemented by first doing FFT to convert both the
input and filters into spectral domain, then multiplying them and
converting the results back to spatial domain, using Inverse Fast
Fourier Transform (IFFT) [48]].

4.3.1 Finding Filter «) to Achieve Rotation Invariance

Notice that to achieve the rotation invariance stated in Theo-
rem [4.4] we need a filter such that {7 (R) = ¢7(RZ(9)), for
any R, 0. Leveraging the Euler angle representation of R, we can
reform the condition as:

Yr(Z(@)Y(B)Z2(7) = 1 (Z(a)Y (B)Z(y +0)),Va, 5,7, 0.

(30)

In other words,

br(Z(0)Y (B)Z(7)) = dr(Z(a)Y (B)Z(Y) Vo, B, 7,7

€2V

During implementation, we regard 17 as a 3D tensor with
dimensions corresponding to the three Euler angles, we have that
1) is constant on the third dimension.

To qualitatively illustrate this, we plot a sample signal f and
its rotated version L f, together with a filter ¢ that satisfy the
constraint [31]in Figure[d] We see that after our point-wise rotation
invariant spherical voxel convolution, the output is rotation equiv-
ariant; and for each individual point, exact rotation invariance is
achieved with an error up to the numeric precision.

4.4 Point Re-sampling

After Spherical Voxel Convolution (SVC), we re-sample features
at the location of orlglnal points, with Trilinear Interpolation as
our operator A : RS“XHXC _y RNXC Each point’s feature is a

6

weighted average of the nearest eight voxels, where the weights
are inversely related to the distances to these spherical voxels.
Formally, denote the target sampled point z as the spherical
coordinate (s(a, 3), h); the discrete feature map before point re-
sampling as F' € RIXI*XEXC "ywhere I x J x K are predefined
spatial resolution for S? x H; the point-wise feature map after
re-sampling as F' € RV*C we have:

Pz, ) = (32)
> Wape - F(|s=a] +a, 28] + b, [Kh]| +¢c,-)
a,b,c€{0,1} Za’,b/,c/e{OJ} Wa'b' ¢! ’
(33)
where

Wape = (1 —a+ (2a — 1)(ia - V“J ) GH

2 2w
(1= b+ (2b— 1)(# - EBJ)) 35)
(1=c+ (2¢—=1)(Kh— |Kh)])), (36)

and |-| is the integer floor function.
Finally, F" are passed through several fully connected layers to
get refined point-wise features.

4.5 Architecture

To summarize, our rotation invariant function J is a concate-
nation of the three modules/operators mentioned above: ) =
A(P(T'(X))). We first transform points from Euclidean space to
unit spherical space by operator I', and then conduct a rotation
invariant feature transform by operator ®, and finally re-sample
the point features in Euclidean space by operator A.

After extracting point-wise rotation invariant features, we are
able to do part segmentation by concatenating some fully con-
nected layers. Our network could also realize object classification
by placing a different head. In this case, we maxpool all the
features in spherical voxels and pass this global feature through
several fully connected layers, as shown in Figure 2]

5 SPRIN: SPARSE POINT-WISE ROTATION IN-

VARIANT NETWORK

Though PRIN achieves point-wise rotation invariance by conduct-
ing DAAS and SVGC, it is limited by the resolution of spherical
voxel grids in S2 x H. In practice, the maximum resolution
allowed by GPU memory is only 643, while a large quantity of
spherical voxels are empty containing no points. This is extremely
inefficient and motivates us to propose a sparse version of PRIN,
by directly taking the point cloud without sampling into dense
grids.

In this section, we provide a sparse version of PRIN, which
directly operates on the original sparse point cloud, making it
more efficient and achieve the state-of-the-art performance. We
borrow the idea of spherical voxel convolution and propose
sparse correlation on the input points. Besides, since our sparse
correlation directly operates on the input points, there is no need
to conduct DAAS or point re-sampling to convert input or output
signals across different domains. Details are given below.
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Fig. 4. Our spherical voxel convolution that achieves point-wise rotation invariance, a.k.a. rotation equivariant. Applying a rotation to the input signal
and do Spherical Voxel Convolution is equivalent to applying the same rotation to the original convolution results. The absolute equivariant error is
almost zero, with maximum 4.77 x 10~7 due to the floating point precision. Also notice that + is constant on the third dimension ~ in order to fulffill
the constraint[37] We slightly abuse the notation ¢ for - for a better illustration.

Arbitrary Rotation

No Rotation

avg. | avg. | air
inst. | cls. |plane

ear

chair phone

bag cap car

guitar knife lamp laptop

motor skate avg. | avg.
table g g

bike M8 pistol rocket board inst. | cls.

31.30{29.38|19.90 46.25 43.27 20.81 27.04 15.63
36.66(35.00|121.90 51.70 40.06 23.13 43.03 9.65
50.38(32.99|38.29 15.45 53.78 33.49 60.83 31.27
28.80(31.72|23.46 46.55 35.25 22.62 24.27 16.67

PointNet
PointNet++

RS-Net [33]
PCNN
SPLATNet [34]

3472 34.64 42.10 36.40
38.51 40.91 45.56 41.75
9.50
32.89 39.80 52.18 38.60
32.21|38.25[34.58 68.10 46.96 19.36 16.25 24.72 88.39 52.99 49.21

19.25 49.88 33.30 22.07 25.71 29.74|83.15|78.95
18.18 53.42 42.19 28.51 38.92 36.57|84.63|81.52
20.37 25.74 20.63 11.51 30.14 66.11|84.92(81.41
18.54 48.90 27.83 27.46 27.60 24.88|85.13|81.80
17.06 48.56 21.20 34.98 28.99 28.86|84.97|82.34

43.48 57.37 9.86

31.83

DGCNN [35] 43.79|30.87(24.84 51.29 36.69 20.33 30.07 27.86 38.00 45.50 42.29 34.84 20.51 48.74 26.25 26.88 26.95 28.85|85.15|82.33
SO-Net [37] 26.21(14.37|121.08 8.46 1.87 11.78 27.81 11.99 8.34 15.01 4398 181 7.05 8.78 441 638 16.10 34.98|84.83|81.16
SpiderCNN [38] m 31.81(35.46|22.28 53.07 54.2 22.57 28.86 23.17 35.85 42.72 44.09 55.44 19.23 48.93 28.65 25.61 31.36 31.32|85.33|82.40

16.34 9.79 27.66 37.33 25.22 16.31 50.91 25.07 21.29 43.10 40.27|32.75|31.25

SHOT+PointNet IE 32.88(31.46(37.42 47.30 49.53 27.71 28.09
CGF+PointNet [|10]

50.13(46.26|50.97 70.34 60.44 25.51 59.08 33.29 50.92 71.64 40.77 31.91

23.93 63.17 27.73 30.99 47.25 52.06|50.13 [46.31

SRINet | 76.95| - - - - - - - - - - -
RIConv | 79.31|74.60|78.64 78.70 73.19 68.03 86.82 71.87 89.36 82.95 74.70 76.42
Kim et al. 79.56|74.41|77.53 73.43 76.95 66.13 87.22 75.44 87.42 80.71 78.44 71.21

Li et al. |

82.17|78.78|81.49 80.07 85.55 74.83 88.62 71.34 90.38 82.82 80.34 81.64 68.87 92.23 74.51

- - - T - [7695] -
56.58 88.44 72.16 51.63 66.65 77.47|79.55|74.43
51.09 90.76 73.69 53.86 68.10 78.62|79.92|74.69
54.08 74.59 79.11|82.47|79.40

Ours(PRIN)
Ours(SPRIN)

71.20{66.75[69.29 55.90 71.49 56.31 78.44 65.92 86.01 73.58 66.97 59.29
82.67|79.50|82.07 82.01 76.48 75.53 88.17 71.45 90.51 83.95 79.22 83.83 72.59 93.24 78.99 58.85 74.77 80.31|82.59|79.31

47.56 81.47 71.99 49.02 64.70 70.12|72.04|68.39

TABLE 1
Shape part segmentation results on ShapeNet part dataset. Both average instance and average class loUs (%) are reported. All models are
trained on the non-rotated training set, then evaluated on the non-rotated and rotated test set, indicated by the labels.

5.1 Sparse Rotation Invariance

Definition 5.1 (Point Cloud). A point cloud f can be viewed as
a proper (normalized) empirical discrete probabilistic distribution
of input points:

(37

1 N
NZ i'—ﬂfz

where 9§ is the Dirac delta function, z; are input points. This is
different from that in Section where we reconstruct the dense
signal through an adaptive sampling method.

Definition 5.2 (Sparse Correlation). In SPRIN, both input and
output are the sparse points of the original point cloud. We directly
take S2 x H correlation between the filter and the point cloud,

evaluated at some point x;:

welle)= [ w(Tla) 0 @ G8)

1 N

- NZ/S2XH¢(T(
1

—Nzw »

x;) te)o(x — x;)dx (39)

(40)

Remark. The correlation output [ * f](z;) can be also viewed
as the empirical filter expectation E, . ¢ (o) [¥(T (2;) " z)].

Theorem 5.1 (Sparse Point-wise Rotation Invariance). The sparse
correlation is point-wise rotation invariant when 1) is constant on

the left coset of Z(0): v(x) = ¥(Z(0)x), for any x, 0.
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Proof.

[¢ * Lq f1(Qz;) (41)

= / W(T(Qzy) ') f(Q ' a)dx 42)
S2xH

=/ Z(-0)T(z;)"'Q "2) f(Q T x)dx  (43)
S2xH

= / O(T () ) f(x)dz (44)
S2xH

= [¢* fl(z;) (45)

O

In practice, we sum 1) over k nearest neighbors of z; to
reduce memory footprint. v is implemented as fully connected
layers, which is constant on the latitude. Since [¢) * f](z;) can
be interpreted as the expectation B¢ [0(T (x;) '), we
randomly select a subset of k nearest neighbors for filtering
without bias. This trick is also mentioned in [18]] as dilated kNN
module.

In order to include more context, besides 7 (z;) ' z;, we
augment 1) with six rotation invariant features, which are sides
and inner-angles of the triangle formed by x;, x; and % va ;.
Though some other rotation invariant features are also available,
such as moments 4 SN a2, = SN 23, we empirically find that
the triangle formed by x;, x; and % va x; gives a better result by
the ablation study. We suspect this is because the triangle sides and
angles provide more structural information than simple moments.

5.2 Architecture

SPRIN architecture is shown in Figure[3] It progressively conducts
sparse rotation invariant spherical correlation between every
point and its k£ nearest neighbors. The dilated KNN module is
leveraged, which is similar to that of Kim er al. [18]]. Given a
center point x; and a dilation rate d, the output of the dilated
kNN search is an index set of k/d points, which are randomly
chosen from the nearest k£ neighbors. To hierarchical propagate
low-level information to a larger high-level region, we leverage
a similar operation set abstraction with PointNet++ [53[]. Our set
abstraction layer only contains the farthest point sampling module,
which defines the evaluating point of following sparse spherical
correlation layers.

For part segmentation, we incorporate two feature propagation
layers are concatenated to up-sample the point cloud. This oper-
ation is similar to that in PointNet++ [53] while our model does
not induce any weight interpolation. It directly conducts sparse
spherical correlation at those up-sampled points.

6 EXPERIMENTS

In this section, we arrange comprehensive experiments to evaluate
PRIN for point cloud analysis on different tasks. First, we demon-
strate that our model can be applied to 3D shape part segmentation
and classification with random rotations. Then, we provide some
applications on 3D point matching and shape alignment. At last,
we conduct an ablation study to validate the design of each part.

6.1 Implementation Details.

PRIN and SPRIN are all implemented in Python using PyTorch
on one NVIDIA GTX 1080 Ti. Adam [54] optimization algorithm
with learning rate le-2 is employed for PRIN, with a batch size
of 8. Adam optimization algorithm with learning rate le-3 is
employed for SPRIN, with a batch size of 16. The learning rate
for PRIN decays with a rate of 0.5 every 5 epochs.

For PRIN, we set & = 1/32. One spherical voxel convolution
layer is utilized with 40 channels. It is followed by two SO(3)
group convolution layers with channel 40 and 50. All layers share
the same bandwidth, which is 32. Two fully-connected layers with
channels 50, 50 are concatenated for part segmentation.

For SPRIN, the first two sparse spherical correlation layers are
evaluated on all input points, with 2-strided 64-NN neighborhoods.
Next three sparse spherical correlation layers are evaluated on 128
sampled points from the sampling & grouping module, with 3-
strided 72-NN, 1-strided 32-NN and 1-strided 32-NN neighbor-
hoods, respectively. Then three sparse spherical correlation layers
are evaluated on 32 sampled points from the sampling & grouping
module, with 1-strided 32-NN neighborhoods. For classification,
the max and avg pooling layer concatenates max-pooling and avg-
pooling results, followed by three fully-connected layers, with
256, 64, 40 channels respectively. For part segmentation, two
sparse spherical correlation layers with 1-strided 16-NN and 1-
strided 32-NN are proposed at the first up-sampling level. Three
sparse spherical correlation layers with 1-strided 32-NN, 2-strided
48-NN and 3-strided 96-NN are proposed at the second up-
sampling level. In the end, three fully connected layers with
channels 128, 256, 50 are concatenated.

6.2 Part Segmentation on Rotated Shapes
6.2.1 Dataset

ShapeNet part dataset [5]] contains 16,881 shapes from 16 cate-
gories in which each shape is annotated with expert verified part
labels from 50 different labels in total. Most shapes are composed
of two to five parts. We follow the data split in PointNet [[1]. 2048
points are sampled per shape for both PRIN and SPRIN.

6.2.2 Evaluation Results

Part segmentation is a challenging task for rotated shape analysis.
We compare our method with various baseline methods and train
each model on the non-rotated training set and evaluate them on
the non-rotated and rotated test set. All the results of baselines
are either taken from their original papers or, if not available,
reproduced with their released code. RIConv [[19]], Kim et al. [18]
and Li et al. [52] reported their results on arbitrary rotated test
shapes with z-axis data augmentation at training time. In order
to make a fair comparison, we re-trained and re-evaluated their
models with no rotation augmentation at training time.
Qualitative results are shown in Figure [ Both PRIN and
SPRIN can accomplish part segmentation task on randomly ro-
tated shapes without seeing these rotations. Even though state-
of-the-art vanilla deep learning networks like PointNet++ [2],
DGCNN [35]] and SpiderCNN [38]] can achieve fairly good results,
they fail on the rotated point clouds. Besides, traditional local
features based on local reference frames (LRF) like CGF [10] and
SHOT [9] concatenated are also compared. For these descriptors,
we train a PointNet-like network with CGF/SHOT features as
the input. Although these descriptors are rotation invariant, their
performance is inferior to ours. Point-level rotation invariant
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Fig. 5. SPRIN Architecture. SPRIN directly operates on sparse point clouds with several sparse spherical correlation layers. Farthest point sampling
and kNN grouping are leveraged to aggregate information from low level to high level. Max and average pooling layers follows to extract global
features, and finally a classification score is given by fully-connected layers.

convolutions such as RIConv and Kim et al. [18] are trained
with z-axes rotation augmentation but still inferior to our SPRIN
network.

Table [1] shows quantitative results of PRIN/SPRIN and base-
line methods. We compare both mean instance IoU and mean class
IoU for all the methods. Our SPRIN network even approaches the
performance of modern deep learning methods when tested with
no rotation. Figure [6] gives some visualization of results between
state-of-the-art deep learning methods and PRIN/SPRIN over the
ShapeNet part dataset. Biased by the canonical orientation of point
clouds in the training set, networks like PointNet just learn a
simple partition of Euclidean space, regardless of how the object
is oriented. RIConv gives inaccurate segmentation results on part
boundaries, while our methods are able to give accurate results
under arbitrary orientations.

It should be also noticed that both PRIN and SPRIN have little
performance drop when evaluated on the rotated test set, compared
with that on the non-rotated set. This is also consistent with our
theoretical analysis.

6.3 Classification on Rotated Shapes

In this section, we evaluate our method on ModelNet40 and
ScanObjectNN, which are synthetic and real-world datasets re-
spectively.

6.3.1 Dataset

ModelNet40 [6] is a 3D shape classification dataset which contains
12,308 shapes from 40 categories. Here, we use its corresponding
point clouds dataset provided by PointNet [[I]]. ScanObjectNN [55]
is a real-world point cloud object dataset, where each object is
retrieved from real scans with potential clutter backgrounds. 2048
points are sampled per shape for both PRIN and SPRIN.

6.3.2 Evaluation Results

Though classification does not require point-wise rotation invari-
ant features but a global feature, our network still benefits from
DAAS and SVC.

We compare PRIN/SPRIN with several state-of-the-art deep
learning methods that take point Euclidean coordinates and local

Method Input NR AR

PointNet 88.45 12.47
PointNet++ [2] 89.82 21.35
PCNN 92.30 17.38
Point2Sequence 92.60 10.53
Kd-Network [41] 86.20 8.49
Spherical CNN 3] . 81.73 55.62
DeepSets [39) Point XYZ 88.73 9.72
LDGCNN [36] 9291 17.82
SO-Net [37] 93.44 9.64
Thomas e7 al. 31.24 32.29
QE-Net | 74.43 74.07
SPHNet [17] 87.70 86.60
SRINet [16] 87.01 87.01
RIConv [T9] 87.56 87.24
Kim et al_[1§ 88.49 88.40
Li et al. [52] 89.40 89.32
Ours(PRIN) . 79.76 7243
Ours(SPRIN) Point XYZ 86.01 86.13
SHOT+P91ntNet Igl Local Features 48.79 48.79
CGF+PointNet [10] 57.70 57.89

TABLE 2
Classification results on ModelNet40 dataset. Performance is
evaluated in average instance accuracy. NR means to train with no
rotations and test with no rotations. AR means to train with no rotations
and test with arbitrary rotations.

rotation invariant features as the input. All the results of baselines
are either taken from their original papers or, if not available,
reproduced with their released code. RIConv , Kim et al.
and Li et al reported their results on arbitrary rotated test
shapes with z-axis data augmentation at training time. In order
to make a fair comparison, we re-trained and re-evaluated their
models with no rotation augmentation at training time.

Local rotation invariant features like CGF and SHOT are
inferior to our method. The results are shown in Table [2| and
Table 3] Almost all other deep learning methods fail to generalize
to unseen orientations, except for a few recent rotation invariant
models. Our model achieves competitive results with current state-
of-the-arts, on both ModelNet40 and ScanObjectNN.
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Fig. 6. Visualization of results. We compare the results of various methods on rotated point clouds, which are trained on the non-rotated dataset.

Both PRIN and SPRIN generalize well to unseen orientations.

Method Input NR AR

PointNet [1] 7332 2135
PointNet++ 82.31 18.61
SO-Net [37] 86.18 13.26
SPHNet [17] 67.43 66.52
SRINet {16 69.53 69.18
RIConv [19] . 69.32 68.44
Kim ef a Point XYZ 68.76 68.65
Lietal. [5 73.42 73.44
Ours(PRIN) . 58.43 52.14
Ours(SPRIN) Point XYZ 70.12 69.83
SHOT+P0intNeﬁﬁl] Local Features 7.43 7.43
CGF+PointNet 2.87 2.87

TABLE 3
Classification results on ScanObjectNN dataset. Performance is
evaluated in average instance accuracy.

6.4 Application

3D Rotation Invariant Point Descriptors. For 3D objects, SHOT,
CGF and other local features exploits local reference frames (LRF)
as local descriptors. Similarly, PRIN/SPRIN is able to produce
high quality rotation invariant 3D point descriptors, which is
pretty useful as pairwise matching become possible regardless of
rotations. In this application, we retrieve the closest descriptor
from similar objects under arbitrary orientations. After that, point-

Fig. 7. 3D point matching results for PRIN. Point matching results
between the query object features (left) and the retrieved ones (right)
under different orientations.

level matching is conducted based on these rotation invariant
point descriptors. A demonstration is shown in Figure[7} Through
this matching process, we can find out where each point of the
query object locates on another object. Moreover, such 3D point
descriptors could have the potentiality to do scene searching and
parsing as the degree of freedom reduces from six to three, leaving
only translations.
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To test the matching accuracy on ShapeNet part dataset, we
compute and store point-wise features of 80% test objects (non-
rotated) in ShapeNet as a database. Then we compute point-wise
features of the other 20% test objects that are randomly rotated as
queries. Feature retrievals are done by finding queries’ nearest
neighbors in the database. We evaluate against three different
baselines to see if points corresponding to the same part are
matched. The results are summarized in Table @ Both PRIN and
SPRIN outperform baseline methods by a large margin.

Method Matching Accuracy

PointNet [1] 38.91

SHOT [9] 17.11

CGF [10] 52.51

Ours(PRIN) 86.12

Ours(SPRIN) 78.92
TABLE 4

3D descriptor matching results for various methods. Accuracy is
the number of matched points corresponding to the same part divided
by the number of all matched points.

Vs 2
A 4

A /

- T N

4— Label: Chair Back —»

Initial Pose Optimized Pose

Fig. 8. Chair alignment with its back on the top. Left: A misalignment
induces large KL divergence. Right: Required labels fulfilled with small
KL divergence.

Shape Alignment with Label Priors. We now introduce a task
that, given some label prior in the Euclidean space, the goal is to
align the point cloud to satisfy this requirement. For example, one
may align a chair so that its back is on the top. So we add virtual
points describing the label requirement. Once the KL divergence
between the predicted scores and the ground-truth labels of these
virtual points is minimized, the chair is aligned with its back on
the top. This is demonstrated in Figure [§]

6.5 Ablation Study

In this section, we evaluate numerous variations of our method
to verify the rationality of network design. Experiment results are
summarized in Table 3] [7]and Figure[T0]

Bandwidth DAAS PRIN Acc./mloU
32 Yes 85.99/71.20
16 Yes 84.84/68.09
8 Yes 82.58/65.43
4 Yes 72.20/52.98
32 No 83.13/67.47
TABLE 5

Ablation study. Test accuracy/mloU of PRIN on the rotated ShapeNet
part dataset. Models with various bandwidths and sampling strategies
are tested.
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6.5.1 Network Bandwidth

One decisive factor of our network is the bandwidth. Bandwidth is
used to describe the sphere precision, which is also the resolution
on S? x H. Mostly, large bandwidth offers more details of
spherical voxels, such that our network can extract more specific
point features of point clouds. While large bandwidth assures
more specific representation of part knowledge, more memory
cost is accompanied. Increasing bandwidth from 4 to 32 leads
to a relative improvement of 16.04% and 25.59% on accuracy and
mloU, which is shown in Table [5}

6.5.2 DAAS v.s. Uniform Sampling

Recall that in Equation [3] we construct our signals on each
spherical voxel with a density aware sampling factor. We now
compare it with a baseline where uniform sampling is applied and
results are given in the last row of Table 5] We see that using
the sin(B) corrected sampling filter gives superior performance,
which confirms our theory.

We also compare extracted features of DAAS and uniform
sampling qualitatively in Figure 0] After random rotations of the
input canonical point cloud, our DAAS sampled signal obtains
much better rotation equivariance than the uniform sampled signal.

No DAAS
(Uniform Sampling)

Canonical Point Cloud

Rotation 2

Rotation 1

Fig. 9. Feature visualization of rotated point clouds. The input point
cloud is rotated twice and sampled with DAAS or uniform sampling
for further computation. Colors indicate correspondence in the feature
space. Our DAAS sampled signal achieves much better correspondence
than uniform sampling.

Correlation Features \ Triangle Features \ SPRIN Acc./mloU
v 90.75/79.70
v 91.59/81.38
v v 92.08/82.67
TABLE 6

Ablation study on the selection of rotation invariant features. Test
accuracy/mloU of SPRIN on rotated ShapeNet part dataset.

# of points | PRIN Acc./mloU |  SPRIN Acc./mloU
2048 85.99/71.20 92.08/82.67
1024 84.19/67.43 90.92/79.79
512 71.19/51.50 85.59/72.04
256 55.23/36.80 64.17/51.38

TABLE 7

Qualitative results for segmentation robustness. Test
accuracy/mloU of PRIN/SPRIN on rotated ShapeNet part dataset.
Various number of points are sub-sampled.
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Fig. 10. Segmentation robustness visualization for PRIN. From left
to right: we sample a subset of 2048, 1024, 512, 256 points from
test point clouds respectively. We observe that our method is robust to
missing points and gives consistent results.

6.5.3 Selection of Rotation Invariant Features

In SPRIN, we use the correlation feature 7 (z;) 'z; and six
invariant features of the triangle formed by x;, x; and % va Tj.
We explore whether these features contribute to the final segmen-
tation. Results are given in Table [6]

6.5.4 Segmentation Robustness

PRIN and SPRIN also demonstrate some robustness to corrupted
and missing points. Although the density of point clouds declines,
our network still segments correctly for each point. Qualitative
results are given in Table [/} Both PRIN and SPRIN maintain a
good accuracy up to 4x down-sampling (512 points). In Figure[I0]
we can see that PRIN predicts consistent labels regardless of the
point density.

7 CONCLUSION

We present PRIN, a network that takes any input point cloud and
leverages Density Aware Adaptive Sampling (DAAS) to construct
signals on spherical voxels. Then Spherical Voxel Convolution
(SVC) and Point Re-sampling follow to extract point-wise rotation
invariant features. We place two different output heads to do
both 3D point clouds classification and part segmentation. In
addition, we extend PRIN to a sparse version called SPRIN, which
directly operates on sparse point clouds. Our experiments show
that both PRIN and SPRIN are robust to arbitrary orientations.
Our network can be applied to 3D point feature matching and
shape alignment with label priors. We show that our model can
naturally handle arbitrary input orientations and provide detailed
theoretical analysis to help understand our network.

ACKNOWLEDGMENTS

This work is supported in part by the National Key R&D Program
of China, No. 2017YFA0700800 and No. 2019YFC1521104,
SHEITC (2018-RGZN-02046) and Shanghai Qi Zhi Institute.
This work was also supported by the National Natural Science
Foundation of China under Grant 51675342, Grant 51975350,
Grant 61972157 and Grants 61772332.

12

REFERENCES

(1]

[2]

(3]

(4]

(5]

(6]

(71

(8]

[9]

[10]

(11]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “Pointnet: Deep
learning on point sets for 3d classification and segmentation,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017, pp. 77-85.

C.R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Advances in neural
information processing systems, 2017, pp. 5099-5108.

T. S. Cohen, M. Geiger, J. Kohler, and M. Welling, “Spherical cnns,”
International Conference on Learning Representations (ICLR), 2018.

C. Esteves, C. Allen-Blanchette, A. Makadia, and K. Daniilidis, “Learn-
ing so (3) equivariant representations with spherical cnns,” in Proceed-
ings of the European Conference on Computer Vision (ECCV), 2018, pp.
52-68.

L. Yi, V. G. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su, C. Lu, Q. Huang,
A. Sheffer, and L. Guibas, “A scalable active framework for region
annotation in 3d shape collections,” SIGGRAPH Asia, 2016.

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d
shapenets: A deep representation for volumetric shapes,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2015,
pp. 1912-1920.

Y. You, Y. Lou, Q. Liu, Y.-W. Tai, L. Ma, C. Lu, and W. Wang,
“Pointwise rotation-invariant network with adaptive sampling and 3d
spherical voxel convolution,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 12717-12724.

F. Stein and G. Medioni, “Structural indexing: Efficient 3-d object recog-
nition,” IEEE Transactions on Pattern Analysis & Machine Intelligence,
no. 2, pp. 125-145, 1992.

F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of histograms
for local surface description,” in Computer Vision — ECCV 2010, K. Dani-
ilidis, P. Maragos, and N. Paragios, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 356-369.

M. Khoury, Q.-Y. Zhou, and V. Koltun, “Learning compact geometric
features,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 153-161.

S. Malassiotis and M. G. Strintzis, “Snapshots: A novel local surface
descriptor and matching algorithm for robust 3d surface alignment,”
IEEE Transactions on pattern analysis and machine intelligence, vol. 29,
no. 7, pp. 1285-1290, 2007.

Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, “3d object
recognition in cluttered scenes with local surface features: a survey,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36,
no. 11, pp. 2270-2287, 2014.

R. Gens and P. M. Domingos, “Deep symmetry networks,” in Advances
in neural information processing systems, 2014, pp. 2537-2545.

T. S. Cohen and M. Welling, “Steerable cnns,” arXiv preprint
arXiv:1612.08498, 2016.

S. Dieleman, K. W. Willett, and J. Dambre, “Rotation-invariant con-
volutional neural networks for galaxy morphology prediction,” Monthly
notices of the royal astronomical society, vol. 450, no. 2, pp. 1441-1459,
2015.

X. Sun, Z. Lian, and J. Xiao, “Srinet: Learning strictly rotation-invariant
representations for point cloud classification and segmentation,” in Pro-
ceedings of the 27th ACM International Conference on Multimedia, 2019,
pp. 980-988.

A. Poulenard, M.-J. Rakotosaona, Y. Ponty, and M. Ovsjanikov, “Effec-
tive rotation-invariant point cnn with spherical harmonics kernels,” in
2019 International Conference on 3D Vision (3DV). 1EEE, 2019, pp.
47-56.

S. Kim, J. Park, and B. Han, “Rotation-invariant local-to-global repre-
sentation learning for 3d point cloud,” arXiv preprint arXiv:2010.03318,
2020.

Z.Zhang, B.-S. Hua, D. W. Rosen, and S.-K. Yeung, “Rotation invariant
convolutions for 3d point clouds deep learning,” in 2019 International
Conference on 3D Vision (3DV). 1EEE, 2019, pp. 204-213.

H. Deng, T. Birdal, and S. Ilic, “Ppf-foldnet: Unsupervised learning of
rotation invariant 3d local descriptors,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 602-618.

X. Li, R. Li, G. Chen, C.-W. Fu, D. Cohen-Or, and P-A. Heng,
“A rotation-invariant framework for deep point cloud analysis,” arXiv
preprint arXiv:2003.07238, 2020.

Y. Zhang and M. Rabbat, “A graph-cnn for 3d point cloud classification,”
in 2018 IEEFE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 1EEE, 2018, pp. 6279-6283.

W. Wang, Y. You, W. Liu, and C. Lu, “Point cloud classification with
deep normalized reeb graph convolution,” Image and Vision Computing,
vol. 106, p. 104092, 2021.



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

(351

(36]

(371

(38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff, and
P. Riley, “Tensor field networks: Rotation-and translation-equivariant
neural networks for 3d point clouds,” arXiv preprint arXiv:1802.08219,
2018.

F. B. Fuchs, D. E. Worrall, V. Fischer, and M. Welling, “Se (3)-
transformers: 3d roto-translation equivariant attention networks,” arXiv
preprint arXiv:2006.10503, 2020.

J. Cruz-Mota, I. Bogdanova, B. Paquier, M. Bierlaire, and J.-P. Thiran,
“Scale invariant feature transform on the sphere: Theory and applica-
tions,” International journal of computer vision, vol. 98, no. 2, pp. 217—
241, 2012.

Y. Zhao, T. Birdal, J. E. Lenssen, E. Menegatti, L. Guibas, and
F. Tombari, “Quaternion equivariant capsule networks for 3d point
clouds,” in European Conference on Computer Vision. Springer, 2020,
pp. 1-19.

Z. Gojcic, C. Zhou, J. D. Wegner, and A. Wieser, “The perfect match:
3d point cloud matching with smoothed densities,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 5545-5554.

D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural net-
work for real-time object recognition,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sept 2015, pp.
922-928.

C. Choy, J. Gwak, and S. Savarese, “4d spatio-temporal convnets:
Minkowski convolutional neural networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 3075-3084.

B. Graham and L. van der Maaten, “Submanifold sparse convolutional
networks,” arXiv preprint arXiv:1706.01307, 2017.

H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3d shape recognition,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp. 945—
953.

Q. Huang, W. Wang, and U. Neumann, “Recurrent slice networks for 3d
segmentation of point clouds,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 2626-2635.

H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M.-H. Yang, and
J. Kautz, “SPLATNet: Sparse lattice networks for point cloud process-
ing,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 2530-2539.

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” ACM
Transactions on Graphics (TOG), 2019.

K. Zhang, M. Hao, J. Wang, C. W. de Silva, and C. Fu, “Linked dynamic
graph cnn: Learning on point cloud via linking hierarchical features,”
arXiv preprint arXiv:1904.10014, 2019.

J. Li, B. M. Chen, and G. Hee Lee, “So-net: Self-organizing network
for point cloud analysis,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 9397-9406.

Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao, “Spidercnn: Deep learning
on point sets with parameterized convolutional filters,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp. 87—
102.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
and A. J. Smola, “Deep sets,” in Advances in neural information
processing systems, 2017, pp. 3391-3401.

X. Liu, Z. Han, Y.-S. Liu, and M. Zwicker, “Point2sequence: Learning
the shape representation of 3d point clouds with an attention-based
sequence to sequence network,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, 2019, pp. 8778-8785.

R. Klokov and V. Lempitsky, “Escape from cells: Deep kd-networks for
the recognition of 3d point cloud models,” in 2017 IEEE International
Conference on Computer Vision (ICCV), Oct 2017, pp. 863-872.

P. Moon and D. E. Spencer, Field theory handbook: including coordinate
systems, differential equations and their solutions. Springer, 2012.

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling,
planning and control. Springer Science & Business Media, 2010.

P. J. Kostelec and D. N. Rockmore, “Soft: So (3) fourier transforms,”
Department of Mathematics, Dartmouth College, Hanover, NH, vol.
3755, 2007.

G. B. Thomas Jr, M. D. Weir, J. Hass, C. Heil, and T. Edition, “Early
transcendentals,” pp. 927-928, 2014.

H. Lei, N. Akhtar, and A. Mian, “Spherical kernel for efficient graph
convolution on 3d point clouds,” IEEE transactions on pattern analysis
and machine intelligence, 2020.

K. M. Gorski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen,
M. Reinecke, and M. Bartelmann, “Healpix: A framework for high-

[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

13

resolution discretization and fast analysis of data distributed on the
sphere,” The Astrophysical Journal, vol. 622, no. 2, p. 759, 2005.

P. J. Kostelec and D. N. Rockmore, “Ffts on the rotation group,” Journal
of Fourier analysis and applications, vol. 14, no. 2, pp. 145-179, 2008.
J. Solomon, “Computational optimal transport,” 2017.

“Harmonic analysis on so(3),” http://www2.math.ou.edu/~cremling/
teaching/lecturenotes/In-so3.pdf, accessed: 2021-02-09.

M. Atzmon, H. Maron, and Y. Lipman, “Point convolutional
neural networks by extension operators,” ACM Trans. Graph.,
vol. 37, no. 4, pp. 71:1-71:12, Jul. 2018. [Online]. Available:

http://doi.acm.org/10.1145/3197517.3201301

X. Li, R. Li, G. Chen, C.-W. Fu, D. Cohen-Or, and P.-A. Heng,
“A rotation-invariant framework for deep point cloud analysis,” IEEE
Transactions on Visualization and Computer Graphics, 2021.

C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep
hierarchical feature learning on point sets in a metric space,’
in  Advances in Neural Information Processing Systems 30,
2017, pp. 5099-5108. [Online]. Available: http://papers.nips.cc/paper/

7095-pointnet-deep- hierarchical- feature-learning-on- point-sets-in-a-metric-space.

pdf

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

M. A. Uy, Q.-H. Pham, B.-S. Hua, T. Nguyen, and S.-K. Yeung,
“Revisiting point cloud classification: A new benchmark dataset and
classification model on real-world data,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 1588-1597.

Yang You received the BS and MS degrees from
Shanghai Jiao Tong University and University of
Virginia in 2016 and 2017 respectively. He is
now a third-year student pursuing his doctoral
degree at Mechanical Engineering department
in Shanghai Jiao Tong University. His main in-
—) terests lie in 3D Computer Vision, Computer
Graphics and Robotics.

Yujing Lou received the B.S. degree in com-
puter science and technology from Harbin Insti-
tute of Technology, China, in 2018 and the M.S.
degree in computer science and technology from
Shanghai Jiao Tong University, China, in 2020.
He is currently a Ph.D. student with MVIG lab,
Shanghai Jiao Tong University. His research in-
terests include 3D scene/object perception and
robot vision.

Ruoxi Shi is currently an undergraduate student
in School of Electronic Information and Electrical
Engineering at Shanghai Jiao Tong University,
majoring in Artificial Intelligence. He has been
working with Prof. Cewu Lu and Dr. Yang You at
the Machine Vision and Intelligence Group since
2020. He is currently interested in 3D computer
vision and deep learning.


http://www2.math.ou.edu/~cremling/teaching/lecturenotes/ln-so3.pdf
http://www2.math.ou.edu/~cremling/teaching/lecturenotes/ln-so3.pdf
http://doi.acm.org/10.1145/3197517.3201301
http://papers.nips.cc/paper/7095-pointnet-deep-hierarchical-feature-learning-on-point-sets-in-a-metric-space.pdf
http://papers.nips.cc/paper/7095-pointnet-deep-hierarchical-feature-learning-on-point-sets-in-a-metric-space.pdf
http://papers.nips.cc/paper/7095-pointnet-deep-hierarchical-feature-learning-on-point-sets-in-a-metric-space.pdf

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Qi Liu received his B.S. degrees from Dalian
University of Technology in 2016. He is now a
PhD candidate in Shanghai Jiao Tong University.
His research interests include 3D computer vi-
sion and computer graphics.

Yu-Wing Tai received his B.Eng. (First Class
Honors) and M Phil degrees from the Depart-
ment of Computer Science and Engineering,
HKUST in 2003 and 2005 and PhD degree from
the National University of Singapore in 2009.
He is currently an Adjunct Professor at the De-
partment of Computer Science and Engineering,
HKUST. He is a research director of YouTu re-
search lab of Social Network Group of Tencent.
He was a principle research scientist of Sense-
Time Group Limited from September 2015 to
December 2016. He was an associate professor at the Korea Advanced
Institute of Science and Technology (KAIST) from July 2009 to August
2015. From Sept 2007 to June 2008, he worked as a full-time student
internship in the Microsoft Research Asia (MSRA). He was awarded
the Microsoft Research Asia Fellowship in 2007, and the KAIST 40th
Anniversary Academic Award for Excellent Professor in 2011 respec-
tively. His research interests include deep learning, computer vision and
image/video processing.

Lizhuang Ma received his B.S. and Ph.D. de-
grees from the Zhejiang University, China in
1985 and 1991, respectively. He is now a Distin-
guished Professor, at the Department of Com-
puter Science and Engineering, Shanghai Jiao
Tong University, China and the School of Com-
puter Science and Technology, East China Nor-
mal University, China. He was a Visiting Profes-
sor at the Frounhofer IGD, Darmstadt, Germany
| in 1998, and a Visiting Professor at the Cen-
ter for Advanced Media Technology, Nanyang
Technological University, Singapore from 1999 to 2000. His research
interests include computer vision, computer aided geometric design,
computer graphics, scientific data visualization, computer animation,
digital media technology, and theory and applications for computer
graphics, CAD/CAM.

Weiming Wang is a Professor with the School
of Mechanical Engineering, Shanghai Jiao Tong
University, Shanghai, China. His research inter-
ests include machine vision, flexible robots, and
human-robot interaction.

14

Cewu Lu is an Associate Professor at Shanghai
Jiao Tong University (SJTU). Before he joined
SJTU, he was a research fellow at Stanford
University, working under Prof. Fei-Fei Li and
Prof. Leonidas J. Guibas. He was a Research

| Assistant Professor at Hong Kong University of
’ Science and Technology with Prof. Chi Keung

Tang. He got his PhD degree from the Chinese

Q Univeristy of Hong Kong, supervised by Prof.

Jiaya Jia. He is one of the core technique mem-

bers in Stanford-Toyota autonomous car project.

He serves as an associate editor for Journal CVPR and reviewer for

Journal TPAMI and IJCV. His research interests fall mainly in computer
vision, deep learning, deep reinforcement learning and robotics vision.




	1 Introduction
	2 Related Work
	2.1 Rotation invariant Features
	2.2 Rotation Equivariance in Point Clouds
	2.3 Deep Learning on 3D Shapes

	3 Preliminaries
	3.1 Unit Sphere: S2
	3.2 Unit Spherical Space: S2H
	3.2.1 Rotation Transformation

	3.3 3D Rotation Group: SO(3)
	3.3.1 Rotation Transformation


	4 PRIN: An Exact Point-wise Rotation Invariant Network
	4.1 Problem Statement
	4.2 Density Aware Adaptive Sampling
	4.2.1 Spherical Distortion
	4.2.2 Comparison with Other Spherical Representations

	4.3 Spherical Voxel Convolution
	4.3.1 Finding Filter  to Achieve Rotation Invariance

	4.4 Point Re-sampling
	4.5 Architecture

	5 SPRIN: Sparse Point-wise Rotation Invariant Network
	5.1 Sparse Rotation Invariance
	5.2 Architecture

	6 Experiments
	6.1 Implementation Details.
	6.2 Part Segmentation on Rotated Shapes
	6.2.1 Dataset
	6.2.2 Evaluation Results

	6.3 Classification on Rotated Shapes
	6.3.1 Dataset
	6.3.2 Evaluation Results

	6.4 Application
	6.5 Ablation Study
	6.5.1 Network Bandwidth
	6.5.2 DAAS v.s. Uniform Sampling
	6.5.3 Selection of Rotation Invariant Features
	6.5.4 Segmentation Robustness


	7 Conclusion
	References
	Biographies
	Yang You
	Yujing Lou
	Ruoxi Shi
	Qi Liu
	Yu-Wing Tai
	Lizhuang Ma
	Weiming Wang
	Cewu Lu


