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Learning More Universal Representations
for Transfer-Learning

Youssef Tamaazousti, Hervé Le Borgne, Céline Hudelot, Mohamed-El-Amine Seddik
and Mohamed Tamaazousti

Abstract—A representation is supposed universal if it encodes any element of the visual world (e.g., objects, scenes) in any
configuration (e.g., scale, context). While not expecting pure universal representations, the goal in the literature is to improve the
universality level, starting from a representation with a certain level. To do so, the state-of-the-art consists in learning CNN-based
representations on a diversified training problem (e.g., ImageNet modified by adding annotated data). While it effectively increases
universality, such approach still requires a large amount of efforts to satisfy the needs in annotated data. In this work, we propose two
methods to improve universality, but pay special attention to limit the need of annotated data. We also propose a unified framework of
the methods based on the diversifying of the training problem. Finally, to better match Atkinson’s cognitive study about universal human
representations, we proposed to rely on the transfer-learning scheme as well as a new metric to evaluate universality. This latter, aims
us to demonstrates the interest of our methods on 10 target-problems, relating to the classification task and a variety of visual domains.

Index Terms—Deep-Learning, Universal Representations, Universality Evaluation, Transfer-Learning, Visual Recognition.
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1 INTRODUCTION

H Umans are able to recognize a scene and the objects that
composed it with disconcerting ease in comparison to a

machine. According to Atkinson’s cognitive study [2], such ca-
pabilities result from the development of a powerful internal
representation in their infancy, which they re-use later in life to
solve multiple problems. In analogy, machines based on neural-
networks also perceives the data with representations that they
use to solve tasks. However, while vision in a human works
well for multiple problems, machines are only able to solve
one at a time. This latter motivated some recent works, that
wanted to “mimic” such abilities of humans by learning universal
models [26], [53] or universal representations [4], [37], [38]. By
the former, we mean models that are able to solve every possible
task (recognition, detection, segmentation, etc.), and by the latter,
we mean representations that are able to encode every possible
element (materials, objects, scenes, etc.), in every possible config-
uration (scale, occlusion, context, etc.). Note that, without a good
encoding of the data, a task can not be solved efficiently, thus a first
step toward universal models is to get universal representations.
We are far from expecting a representation that could encode any
information, thus the actual purpose of our work is to improve the
universality of a given representation, at a minimal cost.

Given a reference universal representation, a straightforward
way to increase its universality, is undoubtedly the use of more
training data (tasks and domains). For instance, [4], [37], [38]
proposed to simultaneously learn a wide set of different visual
domains, by better considering the additional data, through the
use of scaling parameters that learns the statistics of each domain.
In the same vein, Subramanian et al. [45] considered multiple
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Fig. 1. A universal representation is a set of features learned on a
source-problem (SP), that exhibit good performances when it is trans-
fered on many target-problems (TPs). A universal representation RA is
obtained by a reference method (A) that consists in training a networkN
on a SP (a). When it is transfered on a large set of TPs (e), it leads to a
high aggregated performance PA on it. In this paper, we propose to build
a more universal representation RB by: (i) normalizing and combining
the features of (A) with those of a network (yellow N block) learned
after a source-problem variation (SPV) (c) – that, transforms an initial
SP (a) into a new one (b) – and (ii) re-training both networks on their
initial SP through focused self fine-tuning denoted FSFT (d). Since our
method (B) is more universal than (A), it has a higher universality score
according to the proposed evaluation-metric.

datasets with different tasks and proposed to find which of the
available multi-task learning algorithms and set of tasks provides
the best universal level. Note that, this approach of adding more
data is limited by availability of data. Hence, here we are interested
by increasing universality from a fixed set of data (tasks and
domains). Conneau et al. [9], [10], [11] have also the same goal.
However, while their approach consists to find the best algorithm,
we argue that we could structure the training-data in a way that
provides different tasks to learn more or better features.
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The overall contribution of this article (illustrated in Fig. 1)
consist in a method that increases universality from a fixed set of
data. In the vein of MuCale [47], we proposed MuLDiP-Net that:
(i) variates the initial source-problem (SP); (ii) uses its resulting
SPs to train new features; and (iii) combines all the features to
form a more universal representation. By construction, MulDiP-
Net learns new discriminative features without any additional
images or annotations. Regarding the variation, we propose a
formalism that consist to start from a set of specific categories
(e.g., rottweiler, pit-bull) and group them in more generic ones
(e.g., dog), according to the upper-levels of a given hierarchy (e.g.,
WordNet, hierarchy obtained by clustering the specific categories,
or categorical-levels relating to Human-categorization [24], [40]).
The proposed formalism is quite general and makes MuCale a
particular case of our method, that groups categories according to
categorical-levels only. We also introduce a new method named
focused self fine-tuning (FSFT), based on self-training [58] of
CNNs on the same SP. This approach increases the universality
without any additional data, and more interestingly, at the same
network-capacity. FSFT can also be used to reduce the dimension
of representations. Combined to MulDiP-Net, it thus improves the
performances while reducing the network-capacity.

We also address the problem of universality evaluation. Rebuffi
et al. [37] proposed an interesting Visual Decathlon Challenge
(VDC) to measure universality on multiple domains. Furthermore,
they proposed a VDC metric that coherently aggregates the scores
on the multiple domains. However, they restricted their evaluation
in a classical end-to-end scheme: learn the representation on
the train-set and evaluate on the test-set. Such scheme do not
completely match with the claim of Atkinson1, that is, learning on
one environment and use the learned representation on different
problems. Hence, we propose to go further by evaluating univer-
sality in a transfer-learning (TL) scenario [3], [58]. TL, naturally
fits with [2], with the source-problem that corresponds to the
“infancy learning environment” and the target-problems to those
“solved later in life”. Also, while the VDC metric respects some
desirable criteria, we argue that more are required for universality,
and thus proposed a new metric that respects more of them.

The present manuscript differs in many ways from our previ-
ous work on this topic [47]. In particular, it includes the following
new contributions: (1) a new universalizing method based on self-
training of neural-networks [58] (Sec. 3); (2) a more general
formalism of the MulDiP-Net approach based on the principle
of source-problem variation by grouping (Sec. 4), allowing the
use of multiple variations and thus making [47] a special case of
our approach; (3) the formalization of FSFT as a dimensionality
reduction method and its combination with MulDiP-Net (Sec. 4.5),
making this latter more performing while significantly reducing
its network-capacity; (4) the evaluation of universality in a TL
scheme, that better fits the claim of [2] and the highlight of
four desirable criteria for universality evaluation as well as the
proposition of a new metric (Sec. 5); and (5) more extensive and
detailed experimental results, including a comparison to the state-
of-the-art based on ten available target-problems (Sec. 6), as well
as an in-depth analysis of our approach including an ablation study
and the impact of some important component of our approach
(Sec. 6.3 and supplementary material).

1. In all the document, the “claim of Atkinson” states for: “the ability of
humans to develop a universal and powerful internal representation of images
in the early years of their development and re-use it (almost) as is later in life
for solving multiple kind of different problems” [2].

2 RELATED WORK

2.1 Learning Universal Representations
With UberNet, Kokkinos [26] considered a unified architecture
that is trained end-to-end to tackle several vision tasks (universal
model) and addressed resulting technical challenges. In the same
vein, Subramanian et al. [45] used multiple datasets with different
NLP tasks and proposed to find which of the available multi-
task learning algorithms and set of tasks are the best to learn
universal representations. Alternatively, Bilen and Vedaldi [4]
rather considered that a universal representation should be able
to address multiple visual domains. They proposed to learn a
compact representation able to perceive a wide set of domains,
using scaling parameters to learn the statistics of each. It has
been extended in [37], [38] by respectively using sequential and
parallel residual adapters. All these works use more data, and it
is undoubtedly the most straightforward way towards universality,
but it is limited by its availability. It is thus interesting to improve
universality from a fixed set of data, which is our goal as well
as that of Conneau et al. [9], [11]. However, in contrast to their
approach, that consists to find the best task and algorithm for uni-
versality, ours is to structure the data in a way that automatically
provides different tasks to learn more or better features.

All the above works consider multiple source-problems (e.g.,
tasks [45], domains [37] or problems with same images but differ-
ent categories as our work) to learn the universal representation.
It is important to note that learning the representation with one
network (using multi-task, multi-label or recursive [53] learning)
is just a way to do it. In this paper we proposed to rely on multiple
networks through independent learning, and the advantages and
drawbacks of these methods will be detailed in Sec. 2.2.2.

2.2 Approaches for Universalizing Methods
Many works can be considered as universalizing methods, in the
sense that they diversify and increase feature detectors, either by
modifying the source-problem (SP) on which a network is learned,
or relying on ensemble models that learn several networks on dif-
ferent problems. We propose a unified view of these approaches,
using the notion of Source-Problem Variation (SPV, Sec. 4.1).

2.2.1 Learning one Network on a Modified SP
To diversify an initial problem, a first approach consists in adding
new categories and corresponding annotated images. Three kinds
of categories are added: specific [3], [4], [37], [59] (e.g. rot-
tweiler), generic [28], [31], [49] (e.g. dog) and noisy [25], [51].
In some cases, the categories added contain data from multiple
domains [4], [37]. These methods slightly increase the capacity
of the network by adding parameters specific to each domain.
In all cases, this approach can be quite powerful to increase the
universality, but at a high cost since it requires many additional
data and corresponding annotations. Another limitation lies in the
learning methodology. Indeed, the network is often trained jointly
on the generic and specific data, resulting into a mix of generic
and specific features in the intermediate layers. Since a softmax
loss is often used, it considers generic and specific categories
as mutually exclusive, that is not the case. At the opposite, we
propose to group the categories according to their level and
separately learn the features on each to respect the real-world
semantics. Alternatives to this proposal are the works of [6], [23]
that respectively group hierarchically or by clustering. However
(as shown in the experiments), for the sake of universality, it is
preferable to group at categorical-levels as we propose.
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2.2.2 Learning a Set of Networks on a Set of SPs

The methods of the second approach [1], [22], [32], [35], [55], [56]
give an answer to the problem that in joint training, different kinds
of features are undesirably mixed. Indeed, all the works in this
approach use an ensemble-model on different source problems and
a sequential training procedure. They train a network on an initial
problem (that contains specific or generic categories) and they
fine-tune it on another problem or on a set of smaller problems.
As a consequence, even if the scope of the new representation
is increased by this process, all the features learned on the new
problems are biased toward those of the model previously learned
on the initial problem. Thus, due to their sequential learning
procedure, these approaches do not combine different types of
knowledge (specific and generic categories) but only consider one
of them, that of the last problem used for training. A consequence
of the latter point is that, they need many models (i.e., more than
10) to get significant diversity in the set of features, which is very
costly. The proposed MulDiP-Net method, provides an answer
to this limitation by carrying independent network training (one
network per problem).

From the point-of-view of the strategy used to vary the source
problem, all the methods [1], [22], [35], [56] from this approach
re-label specific categories into non-semantic generic ones, that is
to say categories that do not exist in the real world) [6] and capture
the common properties among many object classes independently
of an actual common semantics. These generic categories are built
using hierarchical clustering on low/mid-level features (obtained
from a network trained on the initial SP) of images among the
initial set of categories. As a consequence, these methods are
dependent to the visual low/mid-level features that can lead to
irrelevant categories when low/mid-level features fail to capture
the dissimilarity between different categories. For the sake of
universality, it is preferable to rely on a grouping process that
uses explicit human categorization expertise in order to reflect
semantically-real relations between categories.

2.3 Universality Evaluation

Inspired by studies on the visual brain (claim of [2]), authors
of [4], [37], [38] evaluated universality of representations as their
ability to simultaneously cover a large range of visual domains.
Their evaluation consists in learning and testing on the same
problem and only the visual domain differs. Moreover, since many
problems are considered, they proposed a metric to aggregate
the scores in each task, that respects their proposed criterion
of significance. While such criterion is undoubtedly useful for
universality evaluation, it should be noted that their classical eval-
uation framework does not completely match with [2]. In contrast
to our transfer-learning scheme, their scheme do not consider
the terms “re-used later in life” which means that multiple and
different problems should be solved by a universal representation.
Moreover, in addition to their criterion of significance and the
coherent aggregation considered in [45], we proposed a total of six
additional criteria important for universality evaluation, as well as
two metrics that respect almost all the criteria. Nevertheless, while
such TL scheme has been already used in the NLP community [8],
[9], [11], [45] for universal representations, to the best of our
knowledge, we are the first to propose it in the vision community
and more importantly, to link it to the claim of [2].

2.4 Cognitive Studies in Computer Vision
A last line of work deals with the inspiration from cognitive stud-
ies in computer vision [13], [30], [34], [46]. Generally, their goal is
to output basic-level concepts of an image from a set of predicted
finer ones. An exception is the work of [46], that is closest to ours
since they consider categorical-levels in their representation. As in
our work, their system reflects the psychological hint stating that,
even if humans tend to categorize objects at the subordinate-level,
they are still aware of the other categorical-levels [40]. However,
the key difference is how we integrate that hint as well as the
purpose of its consideration. Indeed, our goal is to diversify the
features learned in CNNs, while they aim at solving the problem
of generic categories that output low scores because of their high
intra-class variance, in order to force their beneficial consideration.
Moreover, we opt for an integration at three levels (data, learning
and representation), while they do it only after the computation of
their semantic representation [18], [48].

3 FOCUSED SELF FINE-TUNNING

We propose a new method that takes advantage of the principle
of the re-training of neural networks on the same problems, and
thus does not need more data [3], [31], [49], nor increasing the
network capacity [1], [44], [47], [54]. Our approach relates to the
work of [58] who proposes an extensive study of the effect of
different self-training methods (i.e., re-training a neural network
on the same problem it was trained originally). They explored
two learning-strategies: (i) frozen-based re-training (that we call
Frozen Self-Training and denote FrST) and (ii) fine-tuning based
re-training (that we call Self Fine-Tuning and denote SFT). More
precisely, both methods re-train an initial network (that we denoted
initNet), with Θa=(θa1 , θ

a
2) being its set of trained weights. Both

methods consist in three steps: (i) the weights of FrST and SFT
are splitted into two sets (θb1 and θb2), with θb1 containing the
weights of the first L layers and θb2, the weights of the last ones
(ii) the two sets of weights are initialized differently – in FrST
and SFT, the first layers are initialized with the weights of the
pre-trained initNet and the last layers are initialized randomly –
; and finally (iii) the re-training of the weights – FrST retrains
only last layers and “frozes” the first ones, while SFT retrains
them all with the same learning-rate. Their extensive study leads
to some interesting conclusions that motivate our approach. In
particular, they showed that: (i) FrST hurts the performances of
initNet because“initNet contained fragile co-adapted features on
successive layers” (i.e., features that interacted with each other in
a fragile way during initNet learning such that this co-adaptation
could not be relearned by the randomly initialized upper layers
alone) and (ii) SFT slightly increases the performance because
“it aims to recover co-adapted features that were trained by the
initNet”. Simply said, it is important to preserve some knowledge
acquired during the learning of the original network, but it is a
sub-optimal to completely focus the training on the last layers.
As a consequence, we propose a new method called Focused Self
Fine-Tuning (FSFT) that can be seen as an hybrid view of the
two previous ones. As in [58], the re-training principle consists
in dividing the weights learned on the initNet into two sets, ini-
tializing them differently (first with the pre-trained initNet, others
randomly), jointly minimizing them but with different learning-
rates. An illustration is given in Fig. 2.

More formally, let us consider a source training database DS
containing N images xi with their associated labels yi. Let us
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Fig. 2. Focused Self Fine-Tunning (FSFT). An initial network (gray
branch) denoted initNet (first layer’s weights denoted θa1 , last ones θa2
and the classifier Ψa) is trained on a source-database, by minimizing
the loss-function L. Once initNet trained, another network (black branch)
denoted FSFT (first layer’s weights denoted θb1, last ones θb2 and the
classifier Ψb) is trained on the same source-database and solves the
same problem (minimize same loss L). The weights θb1 (black block filled
in gray) of the first layers of FSFT are initialized with the firsts of initNet
(θa1 ) and weakly updated through training. The weights of the last layers
θb2 (black blocks filled in white) are randomly initialized and fully trained.

also consider a network N that was trained on DS by minimizing
a loss function L with a certain optimization algorithm. Let note
Θa=(θa1 , θ

a
2) being its set of trained weights splitted in two sets,

namely θa1 that contains the weights of the first L layers and θa2
that contains those of the remaining layers. FSFT consists to re-
train the network N by minimizing the same loss-function L as
initNet, on the same training database DS , which is expressed by:

arg min
Θb

L((Ψb(x,Θb = (θb1, θ
b
2));y), (1)

where Ψb(x,Θb) is the predicted probability vector for images
x using learnable weights Θb=(θb1, θ

b
2). The set of weights θb1 is

initialized with those of the first layers of initNet (i.e., θb1=θa1 ) and
θb2 is initialized randomly. The individual weights wbij , that forms
the full sets θbj (with j ∈ {1, 2}), are updated through:

wbij ← wbij − ηj
∂L
∂wbij

,∀wbij ∈ θbj , (2)

where, ηj respectively corresponds to the learning-rate of the first
layers (when j=1) and last ones (when j=2). More specifically,
η1=α×η2, with α ∈ [0, 1] is a parameter that can be set
by cross-validation. To summarize, our FSFT method preserves
some knowledge acquired during the learning of the initNet (by
initializing the weights of its first layers, with the firsts of initNet).
It also focuses the training on the last layers (by completely
training the last layers, while allowing, through factor α, some
slight change of the first ones).

4 MULTI DISCRIMINATIVE-PROBLEM NETWORK

The previous method is efficient without needing additional data
nor capacity but always solves the same problem. To learn
more universal representations, one must solve different problems.
In this section, we propose another universalizing method that
combine different but complementary features learned on different
problems. It consists in three components: (i) source problem vari-
ation (SPV) (Sec. 4.1) – that define a new source problems (SPs) –
with a special emphasis on variation with grouping (Sec. 4.2); (ii)
independent training of networks on a set of multiple SPs obtained

by the SPV (Sec. 4.3); and (iii) extraction of features from the
set of trained networks followed by a particular combination to
form the more universal representation (Sec. 4.4). Since each SP
is a discriminative model solved by a neural network, the method
is named “Multi Discriminative Problem Network” (MulDiP-Net,
illustrated in Fig. 3). In Sec. 4.5, we use the FSFT (Sec. 3) as a
dimensionality reduction method in the MulDiP-Net.

4.1 SPV: Source-Problem Variation
A source problem DSk = {(xki , yki )}i=J1,NkK, consists in a set
of Nk pairs (xki , y

k
i ) with xki being a training image and yki its

associated label. The images xki are labeled according a label set
Yk = {ck1 , . . . , ckCk

} of Ck categories. By solving this source
problem (SP), the CNN learns features that discriminate between
the images of the different categories of the given SP. For instance,
if we consider a network that solves a SP containing images of
lemons and green-apples, the network will learn different features
than one that solves a SP containing lemons and strawberries’s
images. Hence, changing the SP to be solved by a CNN can
lead to a change in the set of learned features. Motivated by
this assumption2, we propose the principle of Source Problem
Variation (SPV) that is a variation function ϑk0(·) that transforms
an initial source problem D0 into a new one Dk,k>0. Such a
function has the following form:

ϑk0 : {RSI × {0, 1}C0}N0 → {RSI × {0, 1}Ck}Nk (3)

D0 7→ Dk = {(xki , yki )}i=J1,NkK,

with the following constraints:{
∀i ∈ J1, NkK,∀j ∈ J1, N0K,∃(xki , yki ), xki 6= x0

j or yki 6= y0
j

∀i ∈ J1, NkK,∀j ∈ J1, N0K,∃(xki , yki ), xki = x0
j or yki = y0

j
(4)

where SI = W ×H ×D corresponds to the size of images (i.e.,
width W , height H and depth D with D = 3 for RGB images),
(xki , y

k
i ) is an element of the new SP Dk, with each training

image xki labeled according the label-set Yk = {ck1 , . . . , ckCk
}

containing Ck categories. Regarding the constraints, the first
ensures that at least one element ofD0 has to be variated compared
to the elements of Dk and the second one warrants that at least
one element of D0 has to be in Dk. With these constraints, taking
a dataset completely different than the initial one is not a SPV
and in contrast, changing all the data (images and labels) without
keeping any element from the initial SP is also not a SPV.

In practice, the variations can be of many nature and act both
on the images {x0

i }i∈J1,N0K and/or the labels {y0
i }i∈J1,N0K). We

consider three types of variations: (i) adding images or categories
to the initial SP; (ii) splitting the initial SP ; (iii) grouping
categories (thus images) of the initial SP (Fig. 4).

This principle, although not explicitly described as a SPV, have
been already applied in the literature. For instance, variations on
the image set while preserving the set of categories have been
proposed in [21], [43]; adding variations has been used by [4],
[37], [38] (by adding data labeled among specific categories)
and [31], [49] (by adding data labeled among generic categories);
splitting variations on the set of categories has been performed
in [1], [3], [22], [55], [56] and finally, variation of the categories by
grouping them has been explored in [6], [23], [42]. However, note

2. Assumption empirically validated by [59]. Indeed, they have shown that
a CNN trained on scenes learns different features (i.e., object detectors) than
one trained on objects (which learns object-part detectors).
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Fig. 3. Illustration of our MulDiP-Net method. Let consider an initial source problem (SP) DS0 consisting in a set of images and their associated
labels (x0i , y

0
i )i∈J1,NK. MulDiP-Net consists in three phases: (i) variation (ϑ) of the initial SP (D0) into new ones (Dk); (ii) training networks (φ and

Ψ) on the whole set of SPs ({D0, Dk}); and (iii) normalization (Z) followed by combination (F) of the features extracted from each trained network
in order to form a more universal representation. More precisely, phase (i) is a source problem variation (SPV) (ϑk0 ) applied on the initial SP (DS0 ),
which outputs a new SP (DSk,k>0). After applying K SPV functions, we get a set of K+1 SPs containing the new SPs and the initial one (only one
variation illustrated here, thus K=1). Phase (ii) consists in the learning of one network for each of the K+1 SPs, resulting in a set of K+1 trained
networks: {Nk}k=J0,KK. Each network Nk (that is a composition of a features-extractor φk and a classifier Ψk) is trained by minimizing the loss
function Lk computed using the output of the predictor Ψk and the ground-truth of the SP DSk . Phase (iii) consists in the extraction of the more
universal representations Ri,τ from images Iτi of a target-task τ . Specifically, it passes the images Iτi into the trained networks and gets features
(through the extractors φk) that are independently normalized (Z) and fused (F ) in order to output the final representation Ri,τ .

Fig. 4. Illustration of three kind of SPV: Splitting, Adding and Grouping
(see figure legend for description of each graphical elements). An initial
source problem (SP)DS0 is illustrated in (A). (B) represents the output of
the splitting SPV (ϑS ) which results into two diminished sets of training-
data (each of them contains less images and categories) compared to
the initial SP DS0 – i.e., Ni < N0 and |Ci| < |C0|, with i ∈ {1.1, 1.2}).
In contrast, as illustrated in (C), an adding SPV (ϑA) results in an
increased set of training data (more images and categories), compared
to DS0 (i.e., N2 > N0 and |C2| > |C0|)). The last example is our
grouping SPV (ϑG), illustrated in (D). It results in the same amount of
training-data (same set of images but labeled according less amount of
categories), compared to DS0 (i.e., {x3i }={x0i } and |C3| < |C0|).

that a SPV can be applied for different goals and as explained in
the beginning of this section, our goal is to learn different features
than those learned on the initial SP, but complementary when
combined together. Thus, with respect to our goal, the SPV has
to be associated to a learning procedure and learn new neurons.
Beyond the stated aim, our work introduce a new type of SPV
based on the grouping of categories and their associated images.

4.2 SPV Based on Grouping
Grouping-SPV consists in the grouping of images through the
grouping of their initial categories. In practice, it can be done
in many ways (e.g., randomly, based on clustering or semanti-
cally). Here, motivated by knowledge on human categorization,
we propose a semantic grouping, through categorical-levels. The
advantage of the semantic-grouping lies in its semantic aspect,
which aims to get a new SP that is highly different than the initial
one but relevant, which is not necessarily the case with random and
clustering-based grouping. Compared to other SPVs, the grouping
one has important advantages. Indeed, compared to adding SPV
(which needs more annotated data, costly to obtain) grouping SPV
does not need more annotated data, and compared to splitting
SPV (which decreases the performances of the networks, since
it decreases considerably the amount of training data), grouping
SPV maintains exactly the same amount of images.

Semantic-grouping SPV consists in the grouping of specific
categories into generic ones, according to a semantic knowledge.
This semantic knowledge is generally represented in the form of
hierarchies. Here, we focus on a particular semantic knowledge,
named categorical-levels [24], [40], [50] that consists in a hier-
archy of categories mostly used by Humans to categorize objects.
Let us consider a semantic hierarchy with hyponymy relations
(i.e., a set of categories organized according to “is-a” relations).
In practice here we use categorical-levels, but hierarchical-levels
(i.e., levels of the ImageNet [12] or WordNet) or clustering-levels
could be used (more details in last paragraph of this section).
Formally, the starting semantic hierarchy (ImageNet) is a directed
acyclic graph H = (V, E) consisting of a set V of nodes and
directed edges E ⊆ V × V . Each node v ∈ V is a label
and (vi, vj) ∈ E is a hierarchy-edge indicating that label vi
subsumes label vj . Let us also consider an initial source-problem
DS0 containing N0 images labeled among C0 specific categories
belonging to CS0 = {c01, c02, . . . , c0C0

}, such that C0 ⊂ V .
We now consider a categorical-level defined according to

human cognition. Let us note BcatL a set of categories that belong
to a categorical-level L (i.e, subordinate level for L=0, basic
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for L=1 and superordinate for L=2). It is important to note that
the categories of BcatL do not correspond to a given level of the
ImageNet hierarchy H. Hence, consider that all ccatLi ∈ BcatL are
mapped into certain nodes of the hierarchy H. Our purpose is
thus, to group the categories of CS0 into G generic categories. This
latter is equivalent to get the partitioning of CS0 into G subsets
i.e., CS0 =

⋃G
i=1 Gi. To do so, we define a partitioning function

according to a categorical-level BcatL as:

PcatL : V → 2C
S
0 (5)

ccatLi 7→ CS0 ∩DH
(
ccatLi

)
,

where DH(ccatLi ) is the set of all descendant nodes of the
categories ccatLi according to H. Using the PcatL function, we
obtain G generic categories, with G� C0.

We can now define our re-labeling function relative to a given
categorical-level BcatL by:

RBcat
L

: 2C
S
0 → BcatL (6)

Ci 7→ BcatL ∩ AV (LCAH (Ci)) ,

where AV(·) is a function that outputs, for all ci categories the set
of all its ancestors in V and is defined asAV(ci) = {δjH(ci)}∞j=1,
with δH(·) being a deductive function that associates to a category
vi of V its direct ancestor, that is to say, the category directly above
vi according to H and δnH(·) its corresponding iterated function
(i.e δH(·) composed with itself n times and for which we assume
that the image of the root node of H is itself).

Simply said, while Eq. (5) partitions the set of specific cate-
gories into “unnamed” generic categories (i.e., do not have asso-
ciation to a humanly understandable word), Eq. (6) re-labels them
into existing (and thus “named”) categories of the categorical-
level BcatL . Importantly, images are also automatically re-labeled
according the same process than the initial categories they belong.
To recap, our ϑG grouping SPV (illustrated in Figure 5) is the
combination of the partitioning and re-labeling functions.

While the above process is applied on the re-labeling of the
specific categories into generic ones belonging to a categorical-
level BcatL , it can also be applied to re-label into generic categories
belonging to hierarchical-levels BhL of H or clustering-levels
(hierarchies constructed based on data, through clustering). For
the former, we need the following two assumptions about H:
descendants of leaf-nodes are themselves (i.e., DH(c0i ) = c0i ) and
if a leaf-node is at a certain hierarchical-level BhL with L 6= 0, its
least common ancestor is itself (i.e., if c0i ∈ BhL, LCA(c0i ) = c0i ).
For the latter, no assumptions are needed and practical details to
construct the clustering-hierarchy are given in Sec. 6.1.3.

In summary, in MulDiP-Net, we consider the initial specific
SP as well as those obtained by three grouping SPVs, namely,
categorical, hierarchical and clustering-based ones. This latter,
results in a set of SPs denoted DΩ.

4.3 MulDiP-Net Training
To describe the training of our Multi Discriminative Problem
Network (MulDiP-Net), let us first consider a set of SPs DSΩ =
{DS0 ,DS1 , · · · ,DSω}, with DS0 being the initial SP and Dk>0,
being the ω SPs obtained from ω different SPVs functions applied
on the initial SP (as depicted in the previous section). MulDiP-Net
consists in training one network per SPDSk,k∈J0,ωK, with a network
architectureNk and a learning procedurePk, ∀k ∈ J0, ωK (i.e., in-
cluding the initial SP). Indeed, each SPDSk = {(xki , yki )}i∈J0,NkK

Fig. 5. Illustration of our grouping SPV. Given a set of specific categories
(leaf nodes of the hierarchy H in white diamonds) and a set of generic
categories (here c1i ) at a certain level (here categorical denoted BcatL ),
our grouping SPV ϑG consists in three steps: computation of all descen-
dants of c1i according to the H (1); computation of the descendants that
belong to the initial set of categories (2), producing a group G0j ; and re-
labeling of the categories (as well as their images) of the latter group (3)
into the categories of BcatL . The first two points correspond to Eq. (5),
while the last one corresponds to Eq. (6).

consists in a set ofNk images xki labeled among Ck categories ckj .
This latter forms a set of training-data which is used to train each
network. It is worth noting that, we can have as many architectures
and learning procedures (one per network) as the number of SPs
in DSΩ, but here we focus on the special case where they are all
the same (Nk=N0

3, Pk=P0 for k>0). Note also that, our method
does not depend on a particular architecture or learning procedure
and can thus directly benefit from the advances in this domain.

Specifically, here we used common CNN architectures
(AlexNet [28], VGG [44] and DarkNet [39]) and follow the classi-
cal learning procedure for P0, that is to say, a random initialization
of the weights (with a Gaussian distribution), optimizing a softmax
loss-function with stochastic gradient descent (SGD). We have as
many cost functions to minimize as the number of SPs in DSΩ
and each cost function Lk(Θ) is minimized independently. Since
the SPV functions are based on grouping, all the SPs contain
the same images as the initial one thus each cost function is
minimized on the same set of training images, but with different
labels. There is thus no cost in terms of additional data, while
the cost to annotate is dramatically reduced since it is reported on
each category and not each image. On ILSVRC for instance, it
means 1, 000 annotations instead of 1.2 million. At convergence,
we obtain a set N ∗Ω = {N ∗0 , . . . ,N ∗ω} of ω+1 networks. Such
an “ensemble-like” learning method could be limited in terms of
network capacity, but it exists solutions to decrease this capacity
while maintaining high performance, as detailed in Sec. 3.

4.4 MulDiP-Net Representation

Let us consider a MulDiP-Net (i.e., a set N ∗Ω of ω+1 trained
networks) and an image Iτi of a target-task τ . To extract the
representation RΩ

i,τ from Iτi , we perform the following two steps:
(i) extraction of the features of Iτi through each subnetwork N ∗k
of MulDiP-Net and (ii) normalization and combination of these
features into a relevant representation (Fig. 3). For the extraction

3. In all the document,N indicates the architecture of a network, whileN ∗
indicates a trained network.
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of the features, let recall that an architecture is a composition
of classifiers Ψ and features-extractor Φ (i.e., N = Ψ ◦ Φ).
Thus, to get the features from an image, the classifier as well
as some of the last layers are discarded, and the Kth first layers
of networkN ∗k filter the images (e.g, {conv1, conv2} when K=2
for AlexNet [28]). Hence, the features-extractor function (denoted
φKk (·)) outputs, for Iτi , a vector (if K points to a fully-connected
layer) or a tensor of activations (if K indicates a convolutional
layer). In the latter case, the tensor is flattened or pooled in order
to get a vector. Formally, the MulDiP-Net representation for the
query image Iτi is thus computed as:

RΩ
i,τ = Fk∈J0,ωK

(
Z(φKk (Iτi ))

)
, (7)

where F is the fusion operator among the ω+1 input vectors, and
Z is a normalization function that returns normalized represen-
tations. In practice for the normalization function, we choose the
L-infinite norm L-∞ and for the fusion functions, we used the
concatenation

⊕
k∈J0,ωK (reasons discussed in next paragraph).

Our goal was to combine features trained separately on specific
and generic labels in order to learn more universal representations
at near-zero cost of annotation, because we hypothesized that their
learned features can be complementary. However, because of the
different training-data, the networks have different behaviors after
training. Indeed, once they are trained, they react differently on the
same input images. More precisely, the features learned on specific
data tend to fire with higher values than those learned on generic
data. Thus, naively concatenating these sub-representations would
restrict the fused representation to the activations of the dominat-
ing features (those learned with specific labels) with an additional
noise from dominated features (those learned with generic labels),
which will result to a degradation of performance. Hence, the
independent normalization step is crucial, because it aims to ho-
mogenize the scales of the sub-representations. The same problem
of dominating values has been observed in [29], [54], who solved
it with a similar normalization process.

4.5 FSFT as a Dimensionality Reduction Method

The more SPs we consider in MulDiP-Net, the more universal
representation we get. However, because of its concatenation
fusion, the dimensionality of the fused representation linearly
increases with the amount of SPs considered. Also, MulDiP-Net
is an ensemble-like method since it is implemented such that
it contains as many networks as the number of SP considered.
This point is generally translated in terms of the amount of
parameters in the final model. Indeed, while the MulDiP-Net aims
at building more universal representations, it contains ω+1 times
more parameters than a standard network. In summary, the actual
form of MulDiP-Net faces two problems: (ii) the high capacity of
its resulting model; and (ii) the high dimensionality of its resulting
representation. To alleviate these drawbacks, we proposed to rely
on the FSFT method (introduced in Sec. 3) and even more, on its
use as a dimensionality reduction method. To do so, we roughly
re-train each of the subnetworks of MulDiP-Net on the same
initial SP, but with the last layers (on which FSFT focuses the re-
training) containing much less neurons. Compared to the classical
FSFT, the “FSFT as a Dimensionality Reduction method” (FSFT-
DR) results in: (i) a final model that has much lower capacity
and (ii) a representation with a lower dimensionality, at a near-
zero decrease of performance, but that still significantly increases

Criterion Avg RG VDC BC mNRG

Coherent aggr. 3 3 3 3

Significance 3

Merit bonus 3 3

Penalty malus 3

Penalty for damage 3 3 3 3

Indep. to outliers 3 3

Indep. to reference 3 3

Time consistency 3 3 3 3

TABLE 1
Comparison of all the universality evaluation-metrics – Avg baseline,

RG [45], VDC [37] and ours, namely BC and mNRG – according all the
criteria mentioned (and highlighted in bold) in Sec. 5.

the performances compared to the initial network (experiments
of Sec. 6.3). Obviously such a behavior is also observed on
the MulDiP+FSFT-DR (FSFT-DR applied on each subnetwork of
MulDiP-Net).

More formally, let us consider a features-extractor φk trained
on a certain SP noted DSk with a network architecture Nk
that has a penultimate layer of dimensionality dim(φk(·))=n.
FSFT-DR consists to re-train (as depicted in Eq. 2 about the
FSFT re-training) the last layers of φk (which results in a new
features-extractor denoted φ′k) on the same source-problem DSk
but with a different network-architectureN ′k that has a penultimate
layer of a dimensionality dim(φ′k(·))=n′ lower than those of
Nk (i.e., n′<n). Note that in the classical formulation of FSFT
n′=n. Note also that, while by construction FSFT-DR reduces
the dimensionality, it also reduces the number of parameters of
the final network N ′k (since N ′k contains less neurons and thus
less weights than Nk). It is all the more true since FSFT-DR is
applied on the last layers, which are generally fully-connected
ones and thus contain the majority of the parameters of the CNN.
For instance, AlexNet contains 62.35 millions parameters with
3.75 millions in the convolutional layers and 58.6 millions in the
fully-connected (FC) ones (about 94% of the total). Regarding
the application of FSFT-DR on the MulDiP-Net method, let first
consider a given set N ∗Ω = {N ∗0 , . . . ,N ∗ω} of ω+1 trained
networks. FSFT-DR is applied on each subnetwork N ∗k∈J0,ωK by
setting the last layer of φ′k to be of size n′ = dn/(ω + 1)e, with
n being the dimensionality of the original sub-representation φk.
The rest of the pipeline remains the same than in MulDiP-Net,
that is, extraction of the penultimate layer from each subnetwork
and merging them after independent normalization. In summary,
compared to MulDiP-Net, MulDiP+FSFT-DR (i) contains much
less parameters and (ii) results into a smaller representation than
the classical MulDiP-Net, while being much more performing.

5 EVALUATION OF UNIVERSALIZING METHODS

Universality is motivated by the claim of Atkinson’s cognitive
study [2]. Inspired by this, authors of [4], [37], [38] evaluated the
universality of representations by their ability to simultaneously
cover a large range of domains, like objects, faces, animals, etc.
However, their evaluation scheme does not completely match
with [2] since learning and testing are conducted on the same
problem and only the image distribution differs (learn on train
images and evaluate on test ones). However, in [2], the terms “re-
used later in life” mean that universality implies to work well on
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many but different problems than those used to learn the represen-
tation. Hence, in this paper, we propose to consider this through
the scheme of transfer-learning (TL) that naturally fits with it.
Indeed, in TL, the source-task is used to learn the representation
(analogically, the universal one developed in the early years) and
the target-tasks are used to evaluate it (analogically, the problems
solved later in life). Moreover, to better match the claim of [2]
(re-use “as-is”), we propose to not modify the representation (do
not fine-tune it) for each target-task, but rather learn a simple task-
predictor on top of it. Nevertheless, when humans develop their
representation, they do not have access to future problems, thus
the target-tasks should not be available during the learning of the
representation. What makes our evaluation framework unique is
that it lies in a TL scheme, closer to [2] than those of [4], [37],
[38] which lies in a classical end-to-end learning scheme.

Evaluating universality requires to aggregate the scores of a
method on multiple target-problems. This step is not straight-
forward, since metrics of each problem could be different (e.g.,
error-rate, mAP, F1-score) or even be increasing (e.g., recall) or
decreasing (e.g., median rank). Thus, naively averaging the scores
would result into incoherences. To get coherent-aggregation,
Subramanian et al. [45] proposed to average the gain over the
scores of a reference universal representation across the set of
multiple problems: relative gain (RG) computed as: URGi =
1
P

∑P
j=1 s

ref
j − sij , with srefj and sij being respectively the

performance of a reference method Mref and the method to
evaluate Mi on the problem Pj . Such aggregation is coherent,
but depends on a reference method that needs to be arbitrar-
ily and manually chosen. Rebuffi et al. [37] went further by
identifying one additional criterion for universality: the metric
should better rewards significant gain compared to the reference
scores (called significance criterion). To do so, they proposed
the Visual Decathlon Challenge (VDC), which is computed as:
UV DCi =

∑P
j=1 αjmax{0, Emaxj − Ej}γj , with Emaxj and Ej

respectively being the error-rate of the actual method Mi and the
best reachable one on the problem Pj , αj is just a normalizing
factor, and γj>1 models the significance.

In addition to the properties already put on evidence, we
introduce four more criteria. The first criteria (merit-bonus)
indicates that the metric should reward proportionally with the
score of the reference method. For instance a jump of 1% is
more rewarding if it starts from a reference at 90% than one at
10%. The second criteria (penalty for damage) is motivated by
the fact that a method could improve the performance on some
tasks but decrease it on others. In such case, the metric should
penalize them. The third proposed criteria (penalty malus) lies
with the fact that, the aggregated improvement (over the reference)
of some methods, could be lower than the aggregated decrease.
Such method should also be penalized. A last important criterion
is that the metric should be independent to outlier methods,
in the sense that it should detect methods that are well suited to
a given benchmark (gain a lot of points) that could compensate
(when aggregated) a insignificant gain on the other benchmarks.

To respect these constraints, we propose the median nor-
malized relative gain (mNRG): UmNRGi = median

j∈J1,P K
(sj −

srefj )/(smaxj −srefj ). The numerator is the simple RG metric, thus
it respects the same criteria (coherent aggregation and penalty for
damage because negative scores are allowed). The denominator
acts as a normalization and naturally handles the merit-bonus and
penalty malus criteria. Finally, instead of an average to aggregate,

we used the median to make our metric independent to outliers.
Note that in VDC, negative values are not allowed (because of

the max), thus it does not respect the penalty for damage nor the
penalty malus. In addition, the significance criterion is modeled
through a power γ, which not only prevents the merit-bonus, but
even exhibits the inverse behavior. Indeed, VDC will reward more
a method that gains 3% starting from a reference at 10%, than one
that gains 2.5% starting from 90%.

Finally, none of the above metrics is independent to a reference
method, thus we propose an alternative metric that we call Borda
Count (BC), which is based on a voting method and the ordinal
scale, with each benchmark considered as an independent voter.
First, each voter can use its own measure to estimate the per-
formance of the methods, which provides coherent aggregation.
Second, it becomes insensitive to some outliers such as the
exceptional fit of a method to a particular benchmark. Moreover,
we consider that reporting the number of times a method M1

is better than a method M2 can be a more reliable information
than the average difference of scores (as long as these score
are actually comparable). Note that, BC lacks the consistency
with time since its score differs with the chosen comparison
methods. Formally, let us consider M methods to rank, relying
on the information provided by P problems. Each method is
then ranked according to each problem, resulting into a rank rji
with M ∈ J1, iK and P ∈ J1, jK. It is converted into a score
M−rji that is itself averaged to give the final score of the method:
Si =

∑P
j=1M − r

j
i .

All the metrics are compared in Table 1 according to all the
mentioned criteria. None of them address all the criteria but the
proposed mNRG is the most complete of them.

6 EXPERIMENTAL RESULTS

6.1 Experimental Settings

6.1.1 Transfer-Learning Protocol
As mentioned above, the evaluation of all the methods is carried
in a transfer-learning scheme on multiple target-problems. The
methods are trained with standard architectures: AlexNet [28]
(default), VGG [44] and DarkNet [39]). By default, we train on
ILSVRC* (see Sec. 6.1.2) because it is smaller than ILSVRC,
making the process faster. The network on the source-problem is
used to extract the image signatures on the target-problem. Here
we focus on the classification task for the target-problems and
learn each of their classes with a one-vs-all linear SVM classifier.
Note that, as mentioned in Sec. 5, to match the claim of [2], there is
no fine-tuning. The cost parameter of the classifiers is optimized
on each dataset through cross-validation with the usual train/val
splits. The performances of each target-problem are evaluated
with standard splittings and metrics, namely the mean Average
Precision (mAP) for multi-label datasets and Accuracy (Acc.) for
mono-label ones. To evaluate the universality, we use the proposed
mNRG evaluation-metric (Sec. 5).

6.1.2 Source and Target-datasets
For the source-problem, we used two subsets of ImageNet [41]:
ILSVRC and ILSVRC* that contains half of the former. The
characteristics of the datasets are presented on top of Table 2.
Regarding the target-problems, we used ten image classifica-
tion benchmarks from different visual domains (actions, scenes,
objects, birds, plants, etc.). Specifically, five of them contain
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Datasets (1) (2) (3) (4) (5) (6)

ILSVRC∗ objects 483 7 569,000 48,299 Acc.
ILSVRC objects 1K 7 1.2M 50,000 Acc.

VOC07 objects 20 3 5,011 4,952 mAP
VOC12 objects 20 3 11,540 10,991 mAP
NWO objects 31 3 21,709 14,546 mAP
CA101 objects 102 7 3,060 3,022 Acc.
CA256 objects 257 7 15,420 15,187 Acc.
MIT67 scenes 67 7 5,360 1,340 Acc.
stACT actions 40 7 4,000 5,532 Acc.
CUB birds 200 7 5,994 5,794 Acc.
stCA cars 196 7 8,144 8,041 Acc.
FLO plants 102 7 1,020 6,149 Acc.

TABLE 2
Source-datasets (top) and target datasets (bottom) used in this paper.

The columns report some characteristics: (1) images-domain; (2)
number of categories; (3): multiple categories per image (3) or not (7);

(4) number of training samples; (5): number of test samples; and (6)
evaluation-metric (Acc. or mAP).

coarse categories – Pascal VOC 2007 (VOC07) [14], Pascal
VOC 2012 (VOC12) [15], Caltech-101 (CA101) [16], Caltech-
256 (CA256) [19] and Nus-Wide Objects (NWO) [7] –, three
contain fine categories – Stanford Cars (CARS) [27], CUB-200
Birds (CUB) [52] and Flowers-102 (FLO) [33] –, one contain
scenes – MIT Indoor 67 (MIT67) [36] – and one contain actions –
Stanford Actions (stACT) [57]. Their characteristics are presented
at the bottom of Table 2. For all the benchmarks, we follow
standard protocols (i.e., common splits and metrics). For VOC12
and stCAR, we used the official evaluation-servers.

6.1.3 Implementation Details

For the SPV, we started with ILSVRC (and ILSVRC*) as initial
source-problem and variated at generic levels with three generic
grouping methods: categorical, hierarchical and clustering. For the
two first methods, we used the ImageNet hierarchy in the functions
of partitioning (Eq. (5)) and re-labeling (Eq. (6)). Practically,
in the first method, a part of the categorical-level categories of
ILSVRC is obtained from the list released in [41] and the other
part is re-labeled by ourselves as depicted in [47]. This latter
results into 480 generic categories for the 1, 000 specific ones
of ILSVRC (200 generic for the 483 specific of ILVRC*). For the
hierarchical-method, we follow the bottom-up approach of [23]
and re-labeled the categories to higher levels of the ImageNet
hierarchy. For the clustering method, we follow [6] and clustered
the data of the categories with a Kmeans algorithm (K from 50 to
300 with steps of 50). Regarding the extraction and combination
of the features (Eq. 7), we used one label-set per grouping SPV
(i.e., basic-level, 7th hierarchical and the clustering with K=100).
The latter choice results in a set of four SPs (including the
initial one). For the extraction of the representations of images
of target-tasks, we always use the penultimate layer from each
subnetwork. Regarding the normalization step before combining
the representations, we used the infinite-norm (L∞). In the FSFT
methods, we choose the following settings: L=6, meaning that
we focus the retraining on the two last layers; η2=10−2, as
the learning-rate used to train the original network; and α=0.1,
meaning that we train the last layers 10 times faster than the
firsts. Note that, for FSFT we also use the penultimate layer as
representation of the target-images.

6.2 Comparison to the State-Of-The-Art

We compare the proposed FSFT and MulDiP+FSFT to state-of-
the-art methods that could be used as universalizing methods:

• REFERENCE [28]: A CNN trained on the initial source-
problem, that contains specific categories (here 483). Since
it is a classical method that works quite well on many
problems, we use it as reference to evaluate universality of
other methods.

• SPVspe
A [3], [4], [59]: A method that consists in a adding

SPV followed by the training on the obtained SP. Specifically,
we added 100 specific categories (randomly obtained from
the leaf nodes of ImageNet) with their 100K images. Simply
said, the method is trains a network on 583 specific classes.

• SPVgen
A [28], [31], [49]: Same as the previous method but

with a generic adding SPV that adds 100 generic categories
(with their 100K images). This results in training a network
on 583 specific and generic classes. The generic ones were
obtained from random internal-nodes of the ImageNet hier-
archy.

• WhatMakes [23]: A grouping SPV followed by the training
of a network on the obtained SP. Specifically, the grouping
SPV corresponds to a relabeling of specific categories into
internal hierarchical-levels of the ImageNet hierarchy. We
performed it for all the levels and report the results for the
best one (6th level starting from the leaf-node’s one).

• AMECON [6]: Similar to the previous method but differs by
its kind of grouping SPV. Indeed, the grouping is performed
by clustering. Specifically, all the images of each specific
categories are used to compute the mean features (obtained
through the fc7 layer of the pre-trained reference network)
for the categories. Then, a Kmeans algorithm is used to
cluster this set of category mean features. We applied this
method with different amount of clusters (K from 50 to 300
with a step of 50) and report the best results (K=100).

• ISM [55]: This method trains an ensemble-model with N
networks, one for each SP obtained from a splitting SPV.
Here, we applied the method with half splitting (we split the
initial SP in two balanced subsets). Note that, we chose two
subsets to limit the method to a maximum of two networks for
fair comparisons. Once the networks trained, we normalize
and concatenate the features extracted from each of them.

• GrowBrain-WA [54]: This recent method consists to fine-
tune a trained network on the same source-problem it was
trained originally, by growing the network capacity (wider
or deeper). The best setting is the width augmented (WA)
growing that consists to add 2, 048 neurons to the fc7 layer.
We also implemented their normalization and scaling step
for the new and old layers, because they are crucial to make
this method performing. The final representation corresponds
to the 6, 192-dimensional fc7 layer. GrowBrain-RWA is
an extended version that performs a recursive growing of the
network capacity. The best setting they report is to add 1, 024
neurons on the fc6 layer and 2, 048 on the fc7 one.

• MuCaLe-Net [47]: It consists to perform a normalization
step followed by the concatenation of the features extracted
from two CNN-models, one trained on data labeled according
specific categories and one according categorical-levels. It
results in a 8, 192-dimensional representation.

[37], [38] explicitly tackled the universal representations prob-
lem and could be used for comparison. However, it is important
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Method
VOC07 VOC12 CA101 CA256 NWO MIT67 stACT CUB stCA FLO

mNRG
mAP mAP Acc. Acc. mAP Acc. Acc. Acc. Acc. Acc.

REFERENCE 66.8 67.3 71.1 53.2 52.5 36.0 44.3 36.1 14.4 50.5 0.0

SPVspe
A [3], [4], [59] 66.6 67.5 74.7 54.7 53.2 37.4 45.1 36.0 13.7 51.9 +1.5

SPVgen
G [28], [31], [49] 67.7 68.1 73.0 54.3 50.5 37.1 44.9 36.8 14.6 50.3 +1.4

AMECON [6] 61.1 62.1 58.7 40.6 45.8 24.3 32.7 26.1 13.1 36.4 -17.7

WhatMakes [23] 64.0 62.7 69.4 50.1 45.6 33.7 41.9 15.0 12.5 42.8 -7.5

ISM [55] 62.5 65.4 68.8 50.7 28.5 37.9 42.6 34.0 13.3 50.0 -4.3

GrowBrain-WA [54] 68.4 68.3 73.1 54.7 49.3 38.4 46.5 37.5 14.7 54.8 +3.5

GrowBrain-RWA [54] 69.1 69.0 74.8 55.9 50.4 40.0 48.4 38.6 14.8 56.1 +6.0

MuCaLe-Net [47] 69.5 69.8 76.0 56.8 54.7 41.3 48.5 35.6 15.7 54.8 +7.7

FSFT (Ours) 67.5 67.4 73.9 55.0 44.6 40.4 47.1 38.7 15.8 56.8 +4.0

MulDiP+FSFT (Ours) 69.8 70.0 77.5 58.3 47.9 43.7 50.2 37.4 16.1 59.7 +9.8

TABLE 3
Comparison of our methods (bottom) to state-of-the-art universalizing-methods (top). The comparison is carried in a transfer-learning scheme
on ten target-datasets. Methods are compared in terms of their individual scores on each benchmark (with standard metrics) and especially their

aggregated scores, with our nMRG (blue scores in last column). The universalizing methods are compared to a reference one for which we
colored its scores in red. In each column, we highlight the highest score in bold, and the second one is underlined. All the methods have been

learned with the same AlexNet architecture on the same initial SP (ILSVRC*).

to note that their goal was to improve universality by adding data
from multiple domains, while our goal is to improve universality
from a fixed set of data (one domain), making their methods not
comparable to ours, since they use more annotated data.

As depicted in Sec. 5, the methods are evaluated in terms of
the proposed mNRG score, in a transfer-learning scheme on a set
of ten target-datasets from different domains. The results of the
comparison are presented in Table 3. As expected, the methods
that consist to add images and their annotations (SPVspeA and
SPVgenA ) as well as those that increase the capacity of the network
(GrowBrain) aim to learn more universal representation compared
to the reference method (positive mNRG score). Surprisingly, the
ISM method is not as performing as reported in their context. This
might be due to the fact that it is designed for very large source-
problems, and the half-million images used here are not sufficient,
highlighting a clear limitation of their method. The same behavior
can be observed with AMECON and WhatMakes. The former
could be because the specific categories we used (leaf node of Ima-
geNet) are not as specific as the ones (captions) used in their paper.
The latter was rather a study that highlighted that a network trained
on data labeled among generic categories is almost as performing
as one trained on specific categories, through the evaluation
on three target-tasks distributed among three domains (general
objects, actions and scenes). However, we clearly observe here
that on more domains, and especially fine-grained objects, such
behavior is not observed anymore (highly negative mNRG score).
Finally, we observe that our MulDiP+FSFT method significantly
performs better than all other methods (highest mNRG score),
meaning that it is clearly the most performing universalizing
method. Note that, it also significantly outperforms MuCaLe-Net
(by 2 points of mNRG), which clearly highlight the interest of
combining MulDiP-Net with the proposed FSFT method.

Another salient observation is that our FSFT only is quite
powerful, especially because it outperforms the methods that
consist to add data and their annotations (SPVspeA and SPVgenA ) as
well as one that increase the network-capacity (GrowBrain-WA).
It is worth noting that FSFT does need more data neither more
capacity. Thus, it increases universality at zero cost of capacity
and annotation, which is quite promising.

6.3 Comparison with Baseline Methods

Here, we take further experiments to analyse the performances
achieved by the proposed methods (MulDiP-Net and FSFT),
through their comparison to several baseline-methods. All the
baselines are described below, illustrated in Fig. 6 and the re-
sults are reported in Table 4. Note that, in this section (and
supplementary), the comparisons are conducted on eight of the ten
target-datasets presented in Sec. 6.1 (VOC12 and stCAR removed
because evaluation-servers limited to 1 run per day needed).

We first assess whether the gain of universality obtained by our
MulDiP-Net method is caused by the ensemble-model component.
To do so, we compare it to a baseline that consists in an ensemble-
model with two network trained on the same specific SP but with
different random initializations of the weights (Ensemble). While
Ensemble is significantly increasing universality compared to the
reference, our MulDiP-Net is provides much better results. This
latter, means that the performances of our method does not come
from the ensemble-model aspect only, but also by the combination
of features learned with data labeled among generic and specific
categories. Hence, another baseline is to compare our method
without the ensemble-model, but by jointly training a network
on the two SPs (generic and specific). Indeed, we tested three
variants: (i) training the set of SPs with a sum of softmax losses,
i.e., one for each SP (Multi-Task); (ii) training the set of SPs
with a multi-label loss layer (e.g., hinge loss), where the labels for
each image contain both annotations, namely generic and specific
(Multi-Label); and (iii) recursively training the SPs by training
the network on the generic SP, then continuing the training on the
specific SP (Recursive). Globally, the first two baselines, which
belongs to the joint-training approach, strongly hurts performance
compared to the reference method. The Recursive method is
almost as performing as the reference one and we assume this
is due to catastrophic forgetting [17], i.e., when the network is
trained on the second specific problem, it forgets the features
learned on the former generic one. In summary, the latter baselines
clearly demonstrate the utility of the independent-learning (in our
method) compared to the joint one. In other words, the growing
capacity of the ensemble-model aspect is crucial to make our
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Method
VOC07 CA101 CA256 NWO MIT67 stACT CUB FLO

mNRG
mAP Acc. Acc. mAP Acc. Acc. Acc. Acc.

REFERENCE 66.8 71.1 53.2 52.5 36.0 44.3 36.1 50.5 0.0

Ensemble 67.8 72.2 54.5 52.0 37.2 45.0 34.7 51.8 +2.3

Multi-Task 61.5 61.8 45.4 49.4 30.7 36.4 25.6 38.7 -16.2

Multi-Label 44.7 46.8 26.4 25.1 27.2 28.0 15.2 38.1 -45.0

Recursive 65.3 68.6 50.8 52.4 33.4 50.8 29.4 45.5 -4.8

MulDiP-Net* 69.5 76.0 56.8 54.7 41.3 48.5 35.6 54.8 +7.9

FrST 62.3 64.3 47.3 50.0 30.9 38.4 29.3 41.1 -11.6

SFT 67.0 71.5 52.5 49.8 36.2 44.0 36.4 50.1 -0.1

FSFTDR* 67.6 73.3 54.8 47.2 37.9 46.9 38.2 56.3 +3.4

FSFT* 67.5 73.9 55.0 44.6 40.4 47.1 38.7 56.8 +4.5

MulDiP+FSFTDR* 69.8 76.6 57.3 49.9 41.6 48.7 38.0 59.2 +8.8

MulDiP+FSFT* 69.8 77.5 58.3 47.9 43.7 50.2 37.4 59.7 +10.7

TABLE 4
Comparison of our universalizing-methods with baseline methods. Methods are compared in terms of their mNRG score (last column in blue). All

the methods have been learned with the same AlexNet architecture on the same initial SP (ILSVRC*). Methods marked with * are ours.

Fig. 6. Illustration of the different baseline methods.

method benefiting from multiple SPs.
For our FSFT method, we mainly compare it to the two

methods (namely, Frozen Self Training (FrST) and Self Fine-
Tuning (SFT)) studied by [58], that also re-train a network on
the same problem. More precisely, FrST consists in retraining the
last layers only with the previous layers being “frozen”, while FST
re-trains all the layers with the same learning-rate. As highlighted
in [58], we observe a performance drop of FrST compared to the
reference. As mentioned, in Sec. 3, this is due to the fragile co-
adaptation neurons learned in the original network. A slight drop
of performance is also observed for FST, meaning that fine-tuning
does not always recovers all the co-adapted neurons. In contrast,
our FSFT method increases performance, even when we compact
its representation to 2, 048 (FSFTDR), clearly highlighting its
capacity to recover co-adapted neurons of the original network
and even the training of others.

Finally, we also assess the utility of combining MulDiP-
Net with FSFT and even considering FSFT as a dimensionality
reduction method (FSFTDR), compared to the reference and es-
pecially the MulDiP-Net method. As shown above, MulDiP+FSFT
performs much better than MulDiP-Net, but more surprisingly,
when MulDiP-Net is combined with FSFTDR, it is almost as
performing as the former, at a much lower capacity. Hence, by
using FSFT as a dimensionality reduction method (FSFTDR), we
not only get a jump of performance (compared to MulDiP-Net),
but also significantly alleviate the higher capacity produced by the
ensemble-model aspect of MulDiP-Net.

Let note that supplementary materials are available and
roughly contain: (i) a comparison of our methods to the state-
of-the-art according all the universality evaluation-metrics of the

literature; (ii) an evaluation of the impact of more and different
grouping SPVs used in our MulDiP-Net; and (iii) the evaluation
of MulDiP-Net with more training data and deeper architectures.

7 CONCLUSION

In this paper, we proposed four contributions: (i) a new challenge
of learning more universal representations from a fixed set of
data (domains and tasks); (ii) the evaluation of universality in a
more suitable scheme (transfer-learning), as well as a new metric
respecting most of the highlighted desirable criteria; (iii) a new
method based on the re-training of networks, by focusing the
training on some parameters; and finally (iv) a new method based
on a general formalism of source problem variation and training
of multiple networks. We demonstrated the effectiveness of our
universalizing methods, in a transfer-learning scheme, through our
evaluation-metric, on ten target-datasets from different domains.
An in-depth analysis has also been conducted to highlight some
important insights of our methods. We hope that our contributions
will further support the creation of other methods to get more
universal representations and open doors for many less explored
aspects of transfer-learning such as, learning the source-problem,
using Human knowledge or even through more realistic multi-
modal and dynamic environments such as HOME [5].

APPENDIX

In the Sec. 5 of the main paper, we proposed the mNRG
universality evaluation metric and used it for the comparison
of our methods with state-of-the-art. However, since our metric
is novel, it is important to also perform the same comparison
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according the metrics of the literature, and compare the advantages
and drawbacks of each metric. Such comparison is provided in
Table 5 and should be analyzed with Table 3 of the main paper,
which contain the detailed results on each benchmark. First of
all, from the results we see that our MulDiP+FSFT method is
the best universalizing method regardless the evaluation-metric.
Moreover, still regardless the evaluation-metric, our FSFT is quite
promising, since it significantly outperforms SPV speA , SPV genG
and GrowBrain-WA at zero cost of annotation and without adding
any additional parameter.

Regarding the comparison of the metrics, we can observe that
our mNRG metric respects some of the properties highlighted in
Sec. 5 of the main paper (e.g., merit bonus, penalty for damage,
penalty malus), which is not the case for the baseline Avg, the
RG [45], the VDC [37], the BC and the aNRG (being our method
with an average operator instead of the median). For instance,
compared to Avg and RG that gives almost the same universality
scores to GrowBrain-WA and FSFT, our mNRG is able to give
more points to FSFT since it gives significantly better results than
GrowBrain-WA on seven of the ten datasets. Moreover, beside the
significantly better results on the seven benchmarks, mNRG gives
only +0.5 compared to GrowBrain-WA, since it penalizes its loose
of performance on the NWO dataset.

We also observe that the VDC do not penalize the methods that
performs less than the reference on some benchmarks (e.g., it gives
to our MulDiP+FSFT almost twice the universality-score than
MuCaLe-Net, while compared to the former, the latter never de-
creases performance in any of the benchmarks), while our mNRG
is able to penalize it (MulDiP+FSFT outperforms MuCaLe-Net
by only 2.1 points in terms of our mNRG metric). This is even
more visible on the ISM method that should clearly give negative
universality scores. Indeed, compared to the reference, ISM gives
lower results on nine of the ten benchmarks (higher results only
on the MIT67 benchmark), but since VDC do not perform penalty
for damage, it gives 0.0 points on the the nine benchmarks and 0.9
points on the MIT67 one, which undesirably results in a positive
universality-score. Moreover, VDC perform neither penalty for
damage nor penalty malus, and as a consequence, is unable to
say which method between AMECON and WhatMakes performs
worse. A metric that has such ability (say method A is worse
than B, even if they are both lower than the reference) could
be interesting in a case, were for example, the methods A and
B have some practical advantages compared to the reference
and we would like to know which of these practically advan-
tageous methods should be used as a reference for improving
universality. Finally, regarding the VDC metric, we observe that
compared to the scores (around 2000) reported in their paper,
the scores reported in this experiment are much lower (around
100). It is important to note that, this is due to the fact that our
evaluation scheme (transfer-learning: training the representation
in the source-problem and evaluate on target-problem unseen
during training) is much more challenging than theirs (end-to-
end learning: training the representation in the source-problem
and evaluate on the test-set of the same source-problem). Simply
said, while we do not have access to the target-problems during
the learning of the representation, they have, making it easier.

We also observe that compared to aNRG, our mNRG is able to
decrease the SPVspeA to a similar universality score than SPVgenG ,
since the former seems to be well suited on some datasets like
CA101 and CA256 (compared to other absolute improvements).
Finally, while not visible here, by construction, the Avg do not

Fig. 7. Impact of the different grouping SPV and more levels consid-
ered in our MulDiP-Net. Net-S (red dashed line) is used as reference.

provide coherent aggregation. For the same reason, our BC do
not provide the same results according the comparison methods,
making it not consistent with time. Note however that, as the best
universality metric (our mNRG), BC has some good advantages
like penalty for damage or independence to outliers.

Our MulDiP-Net method is based on a grouping SPV using
categorical-levels. Here, we assess what is the impact of using
different grouping methods. In particular, we compared it to
grouping based on hierarchical-levels [23] of WordNet, clustering
ones [6] and also random. For every grouping method (Random,
Clustering, WordNet and our Categorical), we also compare
MulDiP-Net to each of its subnetworks alone – i.e., the one trained
on specific classes (Net-S) and the one trained on the generic ones
(Net-G). In the main paper, we always used only two levels for
fair comparisons, but as depicted in Sec. 4.4 of the main paper, our
method could benefit from multiple levels. Thus, we implemented
MulDiP-Net with more levels, namely Multi-3: initial specific
SP and generic SPs obtained from from categorical and Wordnet
grouping SPVs; and Multi-4: same as Multi-3 with an additional
clustering-based grouping SPV. The results are presented in Fig. 7.

From the results, a first observation is that, whatever the
grouping SPV, the Net-G is much less performing than Net-
S, which contradicts the work of [23] (limited to few domains
on target-datasets). Even if below than Net-S, our categorical
one is the best grouping SPV, clearly highlighting the interest
to introduce a grouping inspired by cognitive studies. Second,
whatever the grouping, MulDiP-Net always performs better than
its subnetworks (Net-G and especially the reference Net-S), which
demonstrates the interest of combining specific and generic knowl-
edge, in the way we do it. Third, in MulDiP-Net, while the best
results are achieved with our categorical grouping (confirming
its interest), it is worth noting that, the performance of random
grouping is very close to Net-S, which highlights the utility of
semantic grouping SPV. Finally, it is clearly observable that, the
more levels we use in MulDiP-Net, the better performance we get.

Increasing network capacity (wider or deeper layers) can
be a very efficient universalizing method, since it can learn to
perceive more elements or configuration through its new features.
However, it is important to note that, it is not easy to modify
the architecture (many costly experiments are needed to set all
the hyper-parameters as well as the architecture itself) and no
certainty of convergence is promised. In all cases, our contribution
is orthogonal to this domain, and our aim here is to demonstrate
this orthogonality. To do so, we implemented the reference, as
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Method Avg RG VDC BC aNRG mNRG

REFERENCE 49.2 0.0 0.0 50 0.0 0.0

SPVspe
A [3], [4], [59] 50.1 +0.9 18.3 62 +2.3 +1.5

SPVgen
G [28], [31], [49] 49.7 +0.5 6.7 56 +1.4 +1.4

AMECON [6] 40.1 -9.1 0.0 17 -20.2 -17.7

WhatMakes [23] 43.8 -5.4 0.0 22 -10.8 -7.5

ISM [55] 45.4 -3.8 0.9 32 -8.8 -4.3

GrowBrain-WA [54] 50.6 +1.4 20.1 71 +3.0 +3.5

GrowBrain-RWA [54] 51.7 +2.5 50.9 87 +5.6 +6.0

MuCaLe-Net [47] 52.3 +3.1 69.6 92 +7.0 +7.7

FSFT (Ours) 50.7 +1.5 36.7 76 +3.0 +4.0

MulDiP+FSFT (Ours) 53.1 +3.9 136.9 103 +8.6 +9.8

TABLE 5
Comparison to state-of-the-art, according different universality evaluation metrics (those mentioned in Sec. 5 of the main paper). Note that, for

a set of 11 methods and 10 datasets, the best achievable BC score is 110, while the worse is 10.

Method Network
VOC07 CA101 CA256 NWO MIT67 stACT CUB FLOW

mNRG
mAP Acc. Acc. mAP Acc. Acc. Acc. Acc.

Net-S (Ref.) AlexNet 71.7 79.7 62.4 58.3 46.9 51.2 36.3 58.4 0.0
Net-G AlexNet 71.5 77.4 60.4 57.8 42.8 49.3 19.5 52.4 -7.7
MulDiP-Net AlexNet 74.4 82.5 65.2 60.8 47.4 54.2 36.1 62.5 +7.4
Net-S VGG-16 86.1 88.8 78.0 71.8 66.7 73.5 69.8 78.9 +44.8
Net-G VGG-16 85.7 87.6 76.9 70.3 65.8 72.2 67.0 75.0 +38.9
MulDiP-Net VGG-16 87.5 92.0 80.9 72.6 68.9 75.0 71.5 81.9 +55.3
Net-S DarkNet-20 82.7 91.0 78.4 70.5 64.8 72.2 59.5 80.0 +38.9
Net-G DarkNet-20 83.2 91.5 78.1 73.2 64.4 72.6 52.5 78.9 +40.6
MulDiP-Net DarkNet-20 84.1 92.7 80.1 73.9 66.4 74.5 61.2 82.1 +47.1

TABLE 6
MulDiP-Net performances with different network architectures and more training data. To compute the mNRG scores (last column in blue), we

used the Net-S of AlexNet as reference. All the methods have been learned on the same initial SP (whole ILSVRC).

well as our MulDiP-Net method with three popular architectures,
namely the basic AlexNet (5 convolutional and 2 fully-connected
layers), the deep and wide VGG-16 (16 convolutional and 2
fully-connected layers) and the fast and very-deep DarkNet-20
(20 convolutional layers followed by average pooling). Another
important question is whether our approach of learning from a
fixed set of training data could benefit from more data if they
are available (adding-data approach. Thus, in this experiment,
instead of using ILSVRC* (containing half-million images and
483 categories) as the initial source-problem, we used the whole
ILSVRC which contains 1.2M images and 1K categories. The
results of these experiments are presented in Table 6.

Four observations can be made. First, even with twice more
data than in Table 3, MulDiP-Net still significantly increases
universality compared to the reference. This demonstrates the
orthogonality of our approach with the works that adds more
data (domains [4], [37], [38] or tasks [45]). Second, the deeper
architecture do not learn the more universal representation (Net-S
with VGG-16 is better than Net-S with DarkNet-20). This clearly
highlights that, compared to diversifying the source-problem,
naively increasing the capacity is not safe for improving univer-
sality. Third, we clearly observe that MulDiP-Net outperforms its
subnetworks regardless the architecture, which demonstrates that

our approach could benefit from the field of network architectures.
Last but not least, we can observe that Net-G is always below
Net-S, except for DarkNet. This is surprising since one could
have the intuition that the finer categories we use for training, the
better results we get. However, it seems that this depends on the
architecture, or maybe on the ratio between the number of units in
the representation and the number of classes used for training.
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