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Abstract

We propose novel finite-dimensional spaces of well-behaved ℝn → ℝn transformations. The latter 

are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity 

fields. The proposed method is simple yet highly expressive, effortlessly handles optional 

constraints (e.g., volume preservation and/or boundary conditions), and supports convenient 

modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed 

approach, partly due to its rapid likelihood evaluations and partly due to its other properties, 

facilitates tractable inference over rich transformation spaces, including using Markov-Chain 

Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more 

generally, optimization over monotonic functions); modeling cumulative distribution functions or 

histograms; time-warping; image warping; image registration; real-time diffeomorphic image 

editing; data augmentation for image classifiers. Our GPU-based code is publicly available.
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1 Introduction

Diffeomorphisms are important in many fields such as computer vision, medical imaging, 

graphics, and robotics. Unfortunately, current representations of highly-expressive 
diffeomorphism spaces are overly complicated. Thus, despite their potential and 

mathematical beauty, their applicability is limited, especially in large datasets or when 

computing time is restricted. Moreover, in such spaces, owing to their complexity, using 

powerful inference tools, e.g., Monte Carlo Markov Chain (MCMC), still presents 

challenges, although some encouraging recent progress has been made in this active field of 

research (e.g., [1], [2], [3]). Lastly, seemingly-formidable mathematical preliminaries render 

these spaces accessible to only a small group of geometry experts. This hinders the exchange 

of ideas between communities and unnecessarily limits the potential impact of 

diffeomorphism-based methods; e.g., while certain machine-learning areas can benefit from 

such methods, little work has been done in this direction, partly since practical 

computational tools have yet to become available.

Motivated by practicalities of probabilistic modeling and statistical inference as well as a 

desire to make diffeomorphisms broadly accessible, in this work, which expands [4], we 

propose a representation that (as we will show in Section 4) combines simplicity, 

expressiveness, and efficiency. Particularly, we propose new spaces of transformations that 
are based on (fast, highly-accurate) integration of Continuous Piecewise-Affine (CPA) 
velocity fields. Importantly, as we will show, their benefits go beyond speed and accuracy.

Possible applications of the proposed representation are numerous, as we demonstrate here 

with: image editing and shape manipulation; unconstrained optimization over monotonic 

functions; modeling of Cumulative Distribution Functions (CDFs) and histograms with 

order-preserving geometry; time warping; image registration; landmark-based image 

warping/animation; “prettifying” results of (non-diffeomorphic) dense-correspondence tools. 

Moreover, we recently used the proposed representation as a key component in a learned 
data-augmentation scheme [5], improving the results of image classifiers. Finally, our code 

is available at https://github.com/freifeld/cpabDiffeo.

2 Related Work

Pattern Theory and Differential Geometry

Representing objects via transformations acting on them is a Pattern-Theoretic cornerstone 

[6]. Our work is influenced by many impressive works in this field, primarily in the 

geometry-oriented areas of computer vision and medical imaging. Due to space limits, we 

can mention only a few: [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], 

[19]. Most of these works are based on complicated, usually ∞-dimensional, spaces, and the 

associated representations and computations are, in practice, discretized and/or otherwise 

approximated. We take a more practical approach and start from a finite-dimensional space, 

in which discretizing the representation is unneeded, while computations require no 

approximations in the 1D case and almost no approximations in higher dimensions. The 

result is a simple, efficient, and practical machinery for working with a rich space of 

diffeomorphisms. The rapidness and high accuracy of Algorithm 1 (see Section 4), together 
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with the fact that the machinery is easily implemented on GPU, let us evaluate 

transformations fast. This, in turn, together with the fact that the representation effortlessly 

supports coarse-to-fine analysis and the use of smoothness priors, allows the use of general-

purpose powerful inference methods such as MCMC. See also other recent approaches for 

MCMC on diffeomorphisms, e.g., [1], [2], [3].

In applications involving landmark pairs, most methods above can deal with only a small 

number of landmarks as their inference complexity grows super-linearly with the number of 

landmarks. Consequently, they cannot leverage the success of popular tools for dense-

correspondence extraction (e.g., [20], [21]), highlighting a disconnect with the larger 

computer-vision community. Our algorithms have linear complexity and are 

(embarrassingly) parallelizable, yielding sub-linear running times in practice.

Note that our representation, despite the fact it involves tessellations, is not not based on 

control points (such as, e.g., [2], [19]); e.g., in cases where we either impose volume 

preservation or use type-II tessellations (see Section 4), one cannot simply define arbitrary 

velocities at the tessellation vertices as there are too few degrees of freedom.

PA and CPA Affine Maps in Computer Vision

Cootes et al. [22] use PA transformations. The latter, while simple and efficient, are neither 

continuous nor invertible. Several other works use CPA transformations (e.g.,[23]; see also 

[24]), sometimes with additional constrains (e.g., [25]). Common to those works is the direct 
use of PA (or CPA) maps as transformations. Those are not differentiable (and are often not 

invertible), hence not diffeomorphisms. In contrast, by integrating CPA velocity fields, we 

obtain transformations–which themselves are not PA (hence not CPA)–that are (orientation-

preserving) diffeomorphisms. Lin et al. [26] work with CPA velocity fields but, rather than 

integrating them, they use them to model motion pattens.

Closer to ours is the elegant log-Euclidean polyaffine method proposed by Arsigny et al. 

[27] (see also [28], [29]) that, similar to ours, uses finitely-many affine building blocks to 

build flexible velocity fields. They use a spatial averaging with smoothly-decaying weights 

of the blocks to ensure a smooth velocity field whose integration yields trajectories that 

define a diffeomorphism. However, as their integral has no closed form they must use an 

approximation throughout; i.e. they must numerically approximate the entire trajectory. This 

is computationally demanding and can cause substantial approximation errors. Their method 

is based on approximating the integral of a weighted sum of affine velocity fields via a 

weighted sum of the affine diffeomorphisms associated with these fields. To reduce errors, 

they divide the field by a large 2#steps as the approximation holds only for near-zero velocity. 

To keep the number of steps not too large, they smartly generalize the scaling-and-squaring 

method. The result is, however, still exact only if a single affine component is used. For 

expressiveness, however, a larger number is needed, and accuracy drops. It is thus 

unsurprising they focus on a small number of affine components, and that to achieve 

reasonable timings, they use their method only in the last stage of inference; till then they 

resort to a non-diffeomorphic fusion. In contrast, we use affine building blocks in a different 

way; i.e., we use them in a piecewise manner, but, using linear constraints, force them to 

yield everywhere-continuous velocity fields. This seemingly-subtle difference has profound 
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implications. In 1D, it yields a closed-form integration; in higher dimensions it lets us 

integrate almost the entire trajectory in closed form using large (hence few) steps which are 

exact, and only in small portions of the trajectory do we resort to a numerical solver. This 

virtually eliminates numerical issues and allows construction of substantially more 

expressive transformations; e.g., Arsigny et al. [27] report using 7 affine blocks, while we 

routinely use tens or hundreds while neither accuracy nor computational cost becomes an 

issue. Though this indirect comparison of integration methods (as their method is 

inapplicable to our velocity fields and vice versa, a direct comparison is impossible) favors 

ours, it is just part of the story. Our representation has additional advantages over theirs, 

including simplicity, better suitability for a GPU implementation, trivial handling of 

boundary constraints and volume preservation, and simpler encoding of statistical priors and 

coarse-to-fine analysis.

Discrete Representations and Approximations

Allassonnière et al. [13] efficiently approximate diffeomorphisms. Unlike our 

transformations, their non-differentiable transformations are not diffeomorphisms. While we 

focus on a general-purpose representation, diffeomorphic demons [16] is a registration 

method, popular due to its speed, based on discretely-defined fields. As its authors note, 

these may be inconsistent with a diffeomorphic framework and may not preserve orientation. 

They also cannot easily impose volume preservation, though some success was reported 

[30]. Also, a computer representation of a discrete-field sequence needs plenty of memory. 

These issues can be obviated by adapting their method to use our compact and continuously-

defined fields. More generally, approximations based on discretely-defined fields and/or 

discrete diffeomorphisms are widely used, e.g., in medical imaging [16], [31], robotics [32], 

[33], [34], geometric modeling [35] and fluid dynamics [36]. Unlike these works, both our 

fields and transformations are continuously-defined and more compact.

Statistics on Manifolds and Tangent Spaces

Like many authors (including of some aforementioned works), we handle the nonlinearity of 

a space via the linearity of the tangent space at the identity [11], [27], [29], [37], [38], [39], 

[40], [41]. Other tools (not explored here) for statistics on manifolds that either use other 

tangent spaces or work on the manifold itself [42], [43], [44], [45], [46], [47], [48] may also 

be applied to our spaces. Particularly, parallel-transport tools may be especially relevant here 

[49], [50], [51], [52], [53], [54], [55].

CDF/Histogram Modeling

In modeling distributions, it is better to work with cummulative distribution functions over 

densities since the latter might not exist and inter-density Lp (or sphere-based) distances can 

be arbitrarily large even if their probability measures are essentially the same. One approach 

to CDF representation uses p-Wasserstein spaces, usually p ∈ {1, 2}, the p = 1 case is tied to 

Earth Mover’s Distance [56]. A limitation of this approach is that it needs bounded pth-

moments and hard computations. 1-Wasserstein methods also lack easy synthesis of new 

points that are valid histograms/CDFs. While it is less of an issue for spherical methods [57], 

they suffer from two issues. 1) They do not respect the ordering of the bins or of ℝ. While, 

for histograms, bin ordering is sometimes immaterial, the ordering of ℝ matters. 2) Large 
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moves on the sphere lead to CDFs/histograms with negative values. The problems above do 

not exist in our representation.

Image Warping and Shape Manipulation

Related to ours are works on image warping ([58], [59], [60], [61], [62]) and shape 

manipulation (e.g., [63]). Unlike most methods, ours is fast, invertible and handles 

constraints effortlessly.

Benefits of the Proposed Representation

To summarize, existing spaces of diffeomorphisms offer only subsets of the following list: 1) 

high expressiveness; 2) ease of implementation; 3) modest mathematical preliminaries (basic 

linear algebra and ODE); 4) ease of handling optional constraints (e.g., volume 

preservation); 5) convenient modeling choices (coarse to fine, easy-to-use smoothness 

priors); 6) finite dimensionality; 7) fast and highly-accurate computations. These benefits, 

especially the last three, render more tractable the use of inference tools that are usually too 

expensive in the context of rich diffeomorphisms.

3 High-Level Summary

The section provides a summary of the proposed representation, laying the ground for the 

formal treatment (Section 4). Let Ω be either ℝn or a certain type, to be defined later, of a 

proper subset of ℝn (i.e., Ω⊊ℝn). A popular way to obtain a diffeomorphism, T : Ω → Ω, is 

via the integration of velocity fields; see Fig. 1a. The choice of velocity-field family affects 

the dimensionality, structure, and expressiveness of the space of the resulting 

diffeomorphisms, as well as the accuracy and computational complexity of the integration. 

Thus, this choice crucially affects which probabilistic models can be used and the tractability 

of the statistical inference.

CPA Velocity Fields

We base our representation on spaces of Ω → ℝn CPA velocity fields (Fig. 1). The term 

‘piecewise’ is w.r.t. a certain tessellation (Section 4.1), denoted by 𝒫. Let 𝒱Ω, 𝒫 be such a 

space. While 𝒱Ω, 𝒫 depends on Ω and 𝒫, we will usually notationally suppress these 

dependencies, and will just write 𝒱. One appeal of these spaces is that they are finite-
dimensional and linear (although their elements, i.e., the velocity fields, are usually 

nonlinear). Let d = dim(𝒱). The spaces ℝd and 𝒱 are identified with each other (as we will 

explain in Section 4.2, Eq. (11)), where every θ ∈ ℝd is identified with exactly one element 

of 𝒱, denoted by vθ, and vise versa. Symbolically, we write

θ vθ where vθ ∈ 𝒱, θ ∈ ℝd . (1)

Likewise, θ + θ′ vθ + vθ′ ≜ vθ + θ′ and αθ ↔ αvθ ≜ vαθ where θ; θ′ ∈ ℝd and α ∈ ℝ. 

Note that d depends on 𝒫 (and typically grows with n). A finer 𝒫 implies a higher d and 

richer velocity fields and vice versa (Figs. 4, 2, and 3).
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Remark 1—There are many finite-dimensional linear spaces of continuous velocity fields 

(e.g., [27] or other spaces based on splines). We will show that CPA spaces, however, have 

additional useful properties in our context.

From CPA Velocity Fields to Trajectories

Modulo a detail (to be explained in Section 4.4) related to the case Ω⊊ℝn, any continuous Ω 
→ ℝn velocity field, whether Piecewise-Affine (PA) or not, defines differentiable ℝ → Ω 
trajectories. If x ∈ Ω then vθ ∈ 𝒱 defines a trajectory, t ↦ ϕθ(x, t), such that ϕθ(x, 0) = x and 

ϕθ(x, t) solves the integral equation

ϕθ(x, t) = x + ∫
0

t
vθ(ϕθ(x, τ))dτ where vθ ∈ 𝒱 . (2)

The equivalent ODE (with an initial condition x) is

dϕθ(x, t)/dt = vθ(ϕθ(x, t)) . (3)

Remark 2—Eq. (2), whose unknown ϕθ(x, ·) is both inside and outside the integral, should 

not be confused with the piecewise-quadratic Ω → ℝn map, y ↦ ∫0n × 1

y
vθ(x)dx. The latter, a 

popular tool in computer-vision [24] and numerical analysis, is unrelated to our work. 

Particularly, both x ↦ ϕθ(x, t) and t ↦ ϕθ(x, t) are not piecewise quadratic.

CPA-Based (CPAB) Transformations

Modulo that detail, any continuous Ω → ℝn velocity field, whether PA or not, defines a 

transformation; i.e., a map whose input and output are viewed as points, not vectors. Letting 

x vary and fixing t, x ↦ ϕθ(x, t) is an Ω → Ω transformation. Without loss of generality 

(Section 4), we may set t = 1 and define

Tθ( ⋅ ) ≜ ϕθ( ⋅ , 1), θ ∈ ℝd . (4)

Since we integrate CPA velocity fields, we coin our transformations CPA-Based.

Remark 3—CPAB transformations are not CPA (unless the CPA field is affine): while Tθ is 

continuous, it is not PA.

The notation Tθ = exp(vθ) indicates that Tθ is defined by integrating vθ ↔ θ for t = 1 (see 

Section 4.9). We let

M ≜ exp(𝒱) ≜ exp(vθ):vθ ∈ 𝒱 (5)
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denote the space of CPAB transformations, where we notationally suppressed that both M 
and 𝒱 depend on both Ω and 𝒫 (i.e., more formally we should write MΩ, 𝒫). Note that M is 

nonlinear: i.e., both Tθ + Tθ′ and αTθ are usually not in M. The linearity of 𝒱, together with 

exp: M 𝒱, however, provides a convenient way to handle this nonlinearity.

CPAB Transformations are Well Behaved

E.g., they are diffeomorphisms; moreover, (Tθ)−1 ∈ M and the inversion is simple. 

Appealingly, useful subsets of M (e.g., volume-preserving CPAB transformations) are easily 

obtained via linear subspaces of 𝒱 (we will return to this point in Section 4).

Remark 4—x ↦ ϕθ(x, t = 1) should not be confused with (the non-diffeomorphism, 

parametric optical-flow-like representation) x ↦ x + vθ(x), the latter being only a Taylor 
approximation of the former. Thus, the way we utilize flexible parametrized vector fields is 

different from, e.g., [64], [65].

Integration of CPA Velocity Fields

Integral equations usually lack analytic solutions. Since CPA velocity fields are Lipschitz 

continuous and almost-everywhere smooth, generic integration solvers are quite effective for 

them. However, we can do even better. One of our contributions is showing that integration 
of such fields is given in either closed form (n = 1) or almost closed form (n > 1). Besides its 

obvious pluses (accuracy, computing time), this analytic solution makes it easier to interpret 

the resulting trajectories/transformation and is key to the theorems in Section 4.

A Specialized Numerical Solver

There is a shortcoming to that solution: as we will explain after Theorem 2, it requires 

tedious bookkeeping (if n > 1) and invoking certain routines (easy if n = 1 but hard if n > 1). 

This is especially a hurdle with GPU. We thus propose a practical alternative, a specialized 
solver for integrating CPA velocity fields, which is faster and more accurate than non-

specialized solvers.

Convenient Modeling, Tractable Inference

Smoothness priors on M are easy to build and use. As is common with nonlinear spaces of 

nonlinear transformations, the nonlinearity of (θ, x) ↦ Tθ(x) prohibits closed forms for the 

posterior or Maximum Likelihood (ML) estimation. However, since our transformations are 

evaluated fast, we rapidly evaluate θ↦p(data|Tθ). This, together with the relatively-modest 

dimensionality and ease of using priors, facilitates the use of inference methods that require 

multiple likelihood evaluations (e.g., MCMC). Lastly, spaces of CPA velocity fields support 

coarse-to-fine approaches.

4 The Mathematical Representation

Let Ω be a Cartesian product of n compact intervals; i.e., Ω is a closed n-orthotope, also 

called a (closed) hyperrectangle. The lemmas/theorems below are proved in our 

supplemental material, which can be found on the Computer Society Digital Library at 
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http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2646685, henceforth referred to as 

Sup. Mat., available online.

4.1 Tessellations

A (finite) tessellation, denoted by 𝒫 = Uc c = 1
N𝒫  (where N𝒫 is a positive integer), is a set of 

N𝒫 closed subsets of Ω, also called cells, such that their union is Ω and the intersection of 

any pair of adjacent cells is their shared border (see Figs. 2 and 3). Henceforth we will 

always assume the cells are convex n-polytopes (namely, a subset of ℝn whose sides are 

flat). We define 3 cell types. Type-I cells have n + 1 vertices; i.e., intervals (if n = 1), 

triangles (n = 2), tetrahedral (n = 3), etc. Type-II cells are n-orthotopes (i.e., 

hyperrectangles). Note intervals fit both these types. Type-III includes all other convex n-

polytopes. We say that 𝒫 is of type I (respectively, II, III) if all its cells are of type I (II, III). 

A type-II tessellation is called regular if its cells are evenly spaced along each of the n 
dimensions. As we will show, type-I tessellations are special, having benefits possessed by 

neither type II nor III. Mathematically, there is no difference (for our purposes) between 

types II and III; all theoretical results below that apply to type-II cells also apply to type-III 

cells. Type-II cells, however, lead to faster computations and simpler implementations than 

both other types, especially when compared with type III. Thus, unless stated otherwise, we 

restrict our attention to types I and II. Let

𝒫vert = ξ:ξ is a vertex of some Uc ∈ 𝒫 (6)

and let Nv denote its cardinality; e.g., see Fig. 2 and Table 1. Henceforth we will view 𝒫vert
as an ordered Nv-tuple; the ordering is arbitrary, but assumed fixed. Let N𝒫′ > N𝒫. An N𝒫′-

cell tessellation, P′ = Uc′ c′ = 1
NP′ , is a refinement of 𝒫, a relation denoted 𝒫 ≺ P′, if each 

Uc′ ∈ P′ is a (possibly-improper) subset of some Uc ∈ 𝒫.

Algorithm 1

Integrating vθ ∈ 𝒱. See Text for Details:

Input: 𝒫 = Cc c = 1
N𝒫 , (A1, θ, …, AN𝒫, θ); U = a sequence of Npts points in Ω; t > 0; Nsteps, nsteps ∈ ℤ+

Output: ϕθ(U, t) ≜ ϕθ(x, t)
x ∈ U

⊂ Ω

  1: Δt ← t/Nsteps; δt ← Δt/nsteps

  2:
for c ∈ 1, …, N𝒫  do in parallel

  3:
  T Ac, θ, Δt

exp(ΔtAc, θ
∼ )
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  4: for x ∈ U do in parallel

  5:  x0 ← x

  6:  for i ∈ {1, …, Nsteps} do

  7:

   x∼temp = [xtemp
T 1]T T Aγ(xi − 1), θ, Δt

x∼i − 1

  8:   if γ(xi−1) == γ(xtemp) then

  9:    xi ← xtemp // analytic update

10:   else

   // inter-cell bdry crossed

11:
   xi ← genericODEsolver(ini.con.=xi−1, step size=δt, nsteps, v( ⋅ ): x ↦ Aγ(x), θx∼)

12:  (ϕ)θ(x, t) ← xi

4.2 CPA Velocity Fields

Fix 𝒫, let x ∈ Ω, and define the membership function γ :Ω 1, …, N𝒫 , γ : x↦min{c : x ∈ 

Uc}. i.e, if x is not on an inter-cell border, then γ(x) = c⇔x ∈ Uc, while a border point is 

(arbitrarily) assigned to the cell of the lower index.

Definition 1—A map, f : Ω → ℝn, is called PA(w . r . t . 𝒫) if f |Uc c = 1

N𝒫
 are affine; i.e., 

f (x) = Aγ(x)x
∼ where

x∼ ≜ x
1 ∈ ℝn + 1, Ac ∈ ℝn × (n + 1)∀c ∈ 1, …, N𝒫 . (7)

Definition 2—f is called CPA if it is continuous and PA.

Fact 1—If f is CPA w.r.t. 𝒫 it is CPA w.r.t. any P′ ≻ 𝒫.

A vector field v (on Ω) is an Ω → ℝn map viewed as the mapping of points to vectors; i.e., 

if x ∈ Ω then v(x) is viewed as an n-dimensional “arrow”. The terms velocity field and 

vector field will be used interchangeably.

Definition 3—A vector-field space is a linear space whose elements are vector fields.

Let 𝒱Ω, 𝒫′  and 𝒱Ω, 𝒫 be the spaces of PA and CPA velocity fields on Ω w.r.t. 𝒫. Note 

𝒱Ω, 𝒫 ⊂ 𝒱Ω, 𝒫′ . We will often write 𝒱′ and 𝒱, suppressing the dependencies on Ω and 𝒫.

Lemma 1— 𝒱′ and 𝒱 are linear spaces, D ≜ dim(𝒱′) = (n2 + n) × N𝒫, d ≜ dim(𝒱) ≤ nNv

with equality if and only if 𝒫 is of type I, and d ≤ D with equality if and only if N𝒫 = 1.
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The values of D and d for the tessellations in Fig. 2 appear in Table 1. A generic element of 

𝒱′ is denoted by vA where A ≜ (A1, …, AN𝒫
) consists of its associated matrices (see Eq. (7)). 

If A ∈ ℝn×(n+1), then vec(A) ∈ ℝn2 + n is its row-by-row flattening to a column vector. 

Likewise, vec(A) ≜ [(vec(A1))T⋯(vec(AN𝒫
))T]T ∈ ℝD. Both vec(·) and vec(·) are linear 

bijections. An inner product on 𝒱′ is defined by vA1
, vA2

= vec(A1)Tvec(A2).

We now explain how to build an orthonormal basis for 𝒱, how its elements are parametrized 

by θ ∈ ℝd, and how PA velocity fields are projected onto 𝒱.

Lemma 2—An element of 𝒱 is any vA ∈ 𝒱′ such that vec(A) satisfies a linear system of 

constraints, denoted by L vec(A) = 0.

Proof—For concreteness, we prove it for n = 2 and type-I tessellations, the other cases 

being similar. Let vA ∈ 𝒱′. While vA is continuous on every cell, it is (usually) 

discontinuous on cell boundaries. Consider two adjacent cells, Ui and Uj. Let xa and xb be 

their 2 shared vertices and let Ai and Aj denote the corresponding 2 × 3 matrices. Continuity 

of vA at xa implies 2 (more generally, n) linear constraints on Ai and Aj. Similarly, 

continuity at xb implies another constraint pair. Thus, the continuity at both xa and xb 

implies the following 4 linear constraints:

x∼a
T 01 × 3 −x∼a

T 01 × 3

01 × 3 x∼a
T 01 × 3 −x∼a

T

x∼b
T 01 × 3 −x∼b

T 01 × 3

01 × 3 x∼b
T 01 × 3 −x∼b

T

4 × 12

vec(Ai)
vec(A j)

12 × 1

= 04 × 1 . (8)

Continuity at xa and xb implies continuity throughout their join, i.e., Aix
∼

a = A jx
∼

a and 

Aix
∼

b = A jx
∼

b imply (∀λ ∈ [0, 1])

Ai(λx∼a + (1 − λ)x∼b) = A j(λx∼a + (1 − λ)x∼b) . (9)

Any vA whose Ai and Aj satisfy Eq. (9) is thus continuous on Ui ∪ Uj. Similar constraints 

for other pairs of adjacent cells can be stacked together in an analogous equation:

L
4Ne × 6N𝒫

vec(A)
6N𝒫 × 1

= 04Ne × 1 (10)
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where Ne is the number of shared line segments in 𝒫 and L is the constraint matrix. Any vA 

whose A satisfies Eq. (10) is thus everywhere continuous. We conclude that the null space of 

L, denoted by null(L), coincides with 𝒱. □

Let the columns of B = [B1 … Bd] ∈ ℝD×d denote the particular orthonormal basis of 

null(L) which is obtained via SVD of L. Let θ = [θ1 … θd]T ∈ ℝd. If vec(A) = Bθ then vA : 

Ω → ℝn is CPA. Particularly, for every j ∈ {1, …, d}, v
vec−1(B j)

:Ω ℝn is CPA and 

v
vec−1(B j) j = 1

d

 is a basis for 𝒱. For a visualization of this basis, see Sup. Mat., available 

online Regardless of whether vA ∈ 𝒱′ is CPA or not, v
vec−1(BBTvec(A))

, its projection on 𝒱, is 

CPA. When earlier we denoted a generic element of 𝒱 by vθ we meant that θ stands for the 

coefficients w.r.t. v
vec−1(B j) j = 1

d

:

vθ(x) = Aγ(x), θx∼ = ∑ j = 1
d θ jvvec−1(B j)

x∼ (11)

where Aθ ≜ (A1, θ, …, AN𝒫, θ) ≜ vec−1(∑ j = 1
d θ jB j). This basis is orthonormal w.r.t. the inner 

product

⋅ , ⋅ B:𝒱 × 𝒱 ℝ, (v
θ1, v

θ2) ↦ θ1
Tθ2 . (12)

We refer to it as a global basis since each v
vec−1(B j)

 impacts vθ on the entirety of Ω. We will 

soon describe another orthonormal basis which is more local in nature.

Let vvert
θ ≜ vθ(ξ) ξ ∈ 𝒫vert

 denote the (ordered) Nv-tuple of n-dimensional values vθ takes at 

the Nv points in 𝒫vert.

Lemma 3—Let L
θ ↦ vvert

θ  denote the map that sends θ to vvert
θ . L

θ ↦ vvert
θ  is a linear injection 

and its associated d × (nNv) matrix is given in closed form. If 𝒫 is of type I, the map is 

invertible. In which case, we denote its inverse by L
vvert
θ ↦ θ

.

Let ∂Ω be the border of Ω and n : ∂Ω → Sn−1 be the unit normal to it. We now discuss linear 

subspaces of 𝒱.
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Lemma 4—Optional constraints such as 〈vθ(x), n(x)〉 = 0 on ∂Ω and/or tr(Ac) = 0
c = 1
N𝒫 , are 

linear and can thus extend L (from Lemma 2) to have more rows. The null space of the 

extended L is a linear subspace (whose dimension is denoted by d′ < d) of the null space of 

the original L. Reusing the symbol B = [B1…Bd′] ∈ ℝD × d′ to denote the particular 

orthonormal basis of this new null space which is obtained via SVD of the extended L, we 

get a d′-dimensional basis of CPA velocity fields, v
vec−1(B j) j = 1

d′
, whose elements satisfy 

the new constraint(s).

The corresponding linear subspaces of 𝒱 are denoted 𝒱∂ and 𝒱tr. We also define their 

intersection, 𝒱∂, tr ≜ 𝒱∂ ∩ 𝒱tr. We reuse the symbol vθ to denote an element of any of these 

subsets, with the understanding that then θ ∈ ℝd′ for some d′ < d. We now define, similarly 

to Eq. (5), subsets of M:

M∂ ≜ exp(vθ):vθ ∈ 𝒱∂ ⊂ M; (13)

Mvp ≜ exp(vθ):vθ ∈ 𝒱tr ⊂ M; (14)

M∂, vp ≜ exp(vθ):vθ ∈ 𝒱∂, tr ⊂ M . (15)

If 𝒫 is of type I (so d = nNv) then, by viewing vvert
θ  as a point in ℝd, the standard basis for 

ℝd defines another basis for 𝒱 (there is a linear bijection between the (n + 1)-tuple of the n-

dimensional velocities at the vertices of a type-I Uc and the n × (n + 1) matrix Ac). Naturally, 

we refer to this vertex-based basis as a localized basis of 𝒱. It is orthonormal w.r.t. the 

following inner product, obtained by summing the dot products between pairs of velocities 

at the vertices:

⋅ , ⋅ vert: (v
θ1, v

θ2) ↦ ∑ξ:ξ ∈ 𝒫vert
v

θ1(ξ) ⋅ v
θ2(ξ) . (16)

For 𝒱∂, we can build a similar (d′-dimensional) localized basis; however, for 𝒱tr (and 

𝒱∂, tr) this is not possible. We conclude Section 4.2 with the following fact.
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Algorithm 2

A Greedy Algorithm for (Landmark-based) Inference over a Transformation Obtained by 

Integrating a Non-Stationary Field where the Field is Piecewise-Constant w.r.t. Time. See 

Text for Details:

Input : Npts pairs of Ω-valued points: (xi, yi) i = 1
Npts , ε; kmax

1: for i ∈ {1, …, Npts} do in parallel

2:
  xi

[0] xi

3: for k ∈ {1, …, kmax} do

4:

  obsk (xi
k − 1, yi) i = 1

Npts
 // observations

5:

 θk ← arg maxθp(θk)Lv(vθ; obsk) where Lv(vθk
; obsk) ∝ e

− 1
σ2 ∑i = 1

Npts xi
k − 1 + vθ(xi

k − 1) − yi
2

// closed-form optimization; see text

6:

  αk argmaxαp(αθk)LT(Tαθk
; obsk) where LT(Tαθk

; obsk) ∝ e
− 1

σ2 ∑i = 1
Npts Tαθk

(xi
k − 1) − yi

2

/* the 1D optimization can be done by, e.g., a line search; 

Tαθk
(xi

k − 1)
i = 1

Npts
 is computed by Algorithm 1

7:  if ‖θkαk‖ < ε then break

Output T̂ ≜ (T
αkθk

∘ ⋯ ∘ T
α1θ[1]

)
// T̂  is a concatenation of points in M

Fact 2—〈·,·〉B and Bvary with translations of Ω while 〈·,·〉vert and the localized basis are 

invariant to them.

4.3 Smoothness Priors on CPA Velocity Fields

Adopting a Bayesian approach, we now present two complementary methods to construct 

priors on CPA fields.

I: Project a prior from 𝒱′ onto 𝒱—On 𝒱′, it is easy to build a smoothness prior that 

also penalizes large values; e.g., we use a zero-mean Gaussian with a D × D covariance, ΣPA, 

whose correlations decay with inter-cell distances, and write vec(A) 𝒩(0D × 1, ∑PA ). Next, 

we use the 𝒱′ 𝒱 projection, A↦θ = BTvec(A), to induce a prior on 𝒱:
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p(θ) = 𝒩 (0d × 1, ∑CPA ) (17)

where ΣCPA = BTΣPAB. See Fig. 4 for samples from p(θ). By Fact 2, p(θ) depends on the 

origin of Ω.

II: Let a prior on vvert
θ  induce a prior on vθ ∈ 𝒱—If the prior on v vert

θ  is invariant to the 

origin of Ω then so is the resulting p(θ = L
vvert
θ ↦ θ

vvert
θ ); e.g., such is the case for either a 

zero-mean Gaussian whose covariance is fully determined by inter-vertex distances, or for 

an MRF of the form ∏i, j:ξinbrs~ ξψ(vθ(ξi), vθ(ξ j)) where ψ is some pairwise potential. Method 

II does not require the computation of B. Unlike method I, however, it is applicable only if 

𝒫 is of type Iand volume preservation is not imposed. Another advantage of method I over 

method II (or, for that matters, over most regularizers/priors people often place on velocity 

fields in the context of diffeomorphisms) is that by defining the prior in terms of the Ac’s (as 

opposed to the vvert
θ  values they generate), we avoid introducing fictitious variance. For 

example, if vθ is purely affine then the Ac’s are all the same. Thus, w.r.t. the prior defined 

using the global basis (i.e., method I), vθ is considered very smooth (in the machine-learning 

sense, not calculus one). However, w.r.t. the localized basis (i.e., method II), vθ is less 

smooth since the values of vvert
θ  vary with the vertex location.

4.4 CPA-Based Transformations

Recall from Section 3 that, via Eq. (2), vθ ∈ 𝒱 implies Tθ ∈ M, a relation denoted Tθ = 

exp(vθ) (see Eq. (5)). The detail alluded to in Section 3 is that for Eq. (2) to be well defined, 

ϕθ(x, τ) must always be in Ω, the domain of vθ. This trivially holds if Ω = ℝn. It also holds if 

Ω⊊ℝn and vθ ∈ 𝒱∂. If Ω⊊ℝn and vθ ∈ 𝒱\𝒱∂, it might not. Also, some of the results below 

require both the continuity and PA properties of vθ. This brings us to the following lemma.

Lemma 5—If Ω⊊ℝn, we can extend 𝒫 and constrain the velocity fields such that we will 

obtain a linear subspace of 𝒱 whose elements extend to CPA fields on the entirety of ℝn. In 

which case, we also redefine Ω to be equal to (the whole of) ℝn.

Henceforth, if Ω⊊ℝn and we use 𝒱 (or 𝒱tr) and not 𝒱∂ (or 𝒱∂, tr), we will assume the 

procedure from Lemma 5 has been applied. Thus, Eq. (2) is well defined, Tθ is always an Ω 
→ Ω map and vθ is indeed CPA. Either way, ϕθ(x, 0) = x for every x ∈ Ω while {x : vθ(x) = 

0} are fixed points of Tθ.

Fact 3—If A ∈ ℝn (n+1), let A
∼ = A

01 × (n + 1)
∈ ℝ(n + 1) × (n + 1). The last row of exp m(A

∼)

(where expm is the matrix exponential) is [01×n 1]. Also, det exp m(A
∼) > 0.
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If n = 1 (so A
∼

 is 2-by-2) or if A has a special structure (e.g., if A1:n,1:n+1 is either 

diagonalizable, idempotent, or a 3-by-3 skew-symmetric matrix), then exp m(A
∼) has a closed 

form. Otherwise, since n is usually small and due to the structure of A
∼

, a generic expm 

routine typically approximates it well. Let t ∈ ℝ and let ψθ, c
t :Ω ℝn be the solution to an 

ODE with an ℝn → ℝn affine velocity field, ξ ↦ Ac, θξ
∼

, and an initial condition, x:

ψθ, c
t (x)

1 ≜ T Ac, θ, tx
∼, T Ac, θ, t ≜ exp m(tAc, θ

∼ ) . (18)

We note that the solution to Eq. (2) is the composition of a finite number, denoted by m, of 

such solutions:

ϕθ(x, t) = (ψθ, cm

tm ∘ … ∘ ψθ, c2

t2 ∘ ψθ, c1

t1 )(x) . (19)

As mentioned earlier, Tθ is defined via Tθ(x ≜ ϕθ(x, 1). The compact form of Eq. (19) hides 

a difficulty: the number of the trajectory segments, m, their durations, ti i = 1
m , and the 

indices of the cells involved, ci i = 1
m  (where a cell may appear more than once), all depend 

on x. Except the index of the first cell, c1 = γ(x), they also depend on θ and t. Thus, a more 

precise and cumbersome notation would be:

ψθ, cmx, θ, t
(x, θ, t)

tmx, θ, t(x, θ, t)
∘ … ∘ ψθ, c2(x, θ, t)

t2(x, θ, t)
∘ ψθ, c1(x)

t1(x, θ, t)
(x) .

Remark 5—While invertible affine matrices form a group, ϕθ(·, t) : Ω → Ω is not affine, 

exactly because of the x-dependencies mentioned above. In fact, since the above quantities 
vary with x even within a cell, the continuous x↦ϕθ(x, t) is not PA, hence not CPA. the term 

CPA-based.

A map, T : Ω → Ω, is a called a (C1) diffeomorphism (on Ω) if T−1 exists and both T and T
−1 are differentiable. Let G be the space of (orientation-preserving) diffeomorphisms on Ω. 

Let H ⊂ G be its restriction to those diffeomorphisms that can be obtained, via integration, 

from uniformly-continuous stationary velocity fields; i.e., T(·) = ϕ(·,t) where 

ϕ(x, t) = x + ∫0

t
v(ϕ(x, τ))dτ for a uniformly-continuous v : Ω → ℝn. Both G and H are ∞–

dimensional nonlinear spaces.

Theorem 1—(i) If α ∈ ℝ then vθ = vαθ/α and ϕθ(·, t) = ϕαθ(·, t/α). (ii) (Tθ)−1 exists, is in 

M, and equals to T−θ. (iii) M ⊂ G. (iv) If Tθ ∈ Mvp then Tθ is volume-preserving (hence the 

superscripted vp). (v) M is a d-dimensional nonlinear space; similar statements hold for M∂, 
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Mvp and M∂,vp, with their respective values of d′. (vi) If 𝒫1 ≺ 𝒫2 ≺ … is a tessellation 

sequence such that eventually all the cells become arbitrarily small, then MΩ, 𝒫k
k ∞→ H.

Remark 6.3—Since M is nonlinear, it is easier to work in the linear 𝒱 and then, via exp, 

move from 𝒱 to M. This (tangent-space-based) approach is popular in the context of 

nonlinear differentiable manifolds and, particularly, is used extensively in various spaces of 

diffeomorphisms (e.g., [27]).

Corollary 1—If n = 1, Tθ is increasing. Let J ⊂ ℝ be an interval. If F0 : J → Ω is either 

non-decreasing, increasing, right-continuous, continuous, differentiable, a diffeomorphism, 

or a step function (7 non-mutually-exclusive cases), then so is Fθ ≜ Tθ ∘ F0 : J → Ω. If, in 

addition, Ω = [0, 1], vθ ∈ 𝒱∂ and F0 is a CDF, then Fθ is a CDF. The (trivial) proof is 

omitted.

This gives an unconstrained parametrization of large classes of increasing functions and 

CDFs/histograms via a finite-dimensional linear space (Figs. 5 and 6). In the CDF case, F0 

need have neither a density nor finite moments.

4.5 Integration Details

Equation (19) justifies and simplifies the proof of Theorem 1, provides an insight into the 

structure of t↦ϕθ(x, t), and, for n = 1, yields a closed-form solution for x↦Tθ(x). If n > 1, 

it suggests a practical, essentially-exact solution.

Theorem 2—If n = 1 then mx,θ,t, ti(x; θ, t)
i = 1
mx, θ, t, and ci(x; θ, t)

i = 2
mx, θ, t have closed forms. 

Thus, so does Tθ(x).

Proof—The notation below drops the θ-dependencies. Without loss of generality, let t > 0. 

For c ∈ ci(x; t)
i = 2
mx, t , let Ac = [ac, bc] and let Uc = xc

min, xc
max . It can be shown that

ψc
t (x) = e

tacx +
bc(e

tac − 1)
ac

if ac ≠ 0

x + tbc if ac = 0
. (20)

Note c1 = γ(x) and suppose v(x) > 0. Let t1(x) be the hitting time of the right boundary of 

Uc1
:

t1 ≜ min t:ψc1
t (x) = xc1

max (21)
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where, by convention, the minimum of an empty set is ∞. If v(xc1
max) ≤ 0 then t1 = ∞. 

Otherwise,

t1 =

1
ac1

log
xc1

+
bc1
ac1

x +
bc1
ac1

if ac1
≠ 0

xc1
− x

bc1
if ac1

= 0

. (22)

If t1 > t, we are done: ϕθ(x, t) = ψc1
t (x). Otherwise, we entered the next interval to the right, 

Uc1 + 1 (so c2 = c1 + 1), and the process (i.e., solving for t2, but this time with xc1
max as the 

new starting point instead of x, with t − t1 instead of t, and c2 instead of c1) is redone 

iteratively till convergence (the number of such steps, mx,t, is finite since t is finite). A loose 

upper bound on mx,t is N𝒫 − c1 + 1. The case where v(x) < 0 is handled similarly. Taken 

together,

ϕ(x; t) = (ψcm

tm ∘ … ∘ ψc2

t2 ∘ ψc1

t1 )(x) (23)

where for 2 ≤ i ≤ mx,t, ci = ci−1 + sign(v(x)), while mx,t and ti i = 1
mx, t  are found as describe 

above. □

If n > 1 then Tθ(x) is given essentially in closed from in the sense that Eq. (19) still holds, 

but there is the mild issue that a generic expm is needed (see also the matrix decomposition 

suggested in [27]) and, much more importantly, to find the quantities from Theorem 2 one 

needs, for every x, to sequentially solve, an x-dependent number of problems of the form 

arg mint > 0 γ([ exp m(tA∼)]1:n, 1:n + 1ξ
∼) ≠ γ(ξ) where the pair (ξ, A) ∈ Ω×ℝn×(n+1) is (in 

general) different in each problem. Doing this for n = 1 is easy, fast, and accurate. But for n 
≥ 2, partly since ϕθ(x, ·) may reenter a cell (prohibiting, e.g., a binary-search method), this 

requires tedious bookkeeping, multiple expm calls, and multiple invocations of a numerical 

solver. This yields slow approximated solutions that are also hard to implement in GPU.

Inference over diffeomorphisms (CPAB included) often requires evaluating Tθ for multiple 

values of θ (e.g., 10,000), and a high Npts, where Npts is number of points to be transformed 

(e.g., the number of image pixels). Preferring a more practical alternative, we propose a 

specialized solver for integrating CPA fields. This solver, summarized in Algorithm 1, 

alternates between the analytic solution (with neither bookkeeping nor need to solve 
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explicitly for mx,θ,1, ci(x; θ, 1)
i = 2
mx, θ and ti(x; θ, 1)

i = 1
mx, θ) and a generic solver. Thus, the 

proposed specialized solver is both faster and more accurate than a generic solver since most 

of the trajectory is solved exactly, while only in small portions of the trajectory does our 

solver resort to the generic one. Importantly, in Algorithm 1, the required number of expm 
calls is constant, N𝒫, and grows with neither Npts nor t. In fact, since Algorithm 1 is highly 

accurate, fast, and simple, and since usually N𝒫 ≪ Npts, we prefer to use it even when n = 1. 

Lower/upper bounds on the algorithm’s complexity are O(C1) + O(C2 × Nsteps) and O(C1) + 

O(C2 × Nsteps × nsteps) where C2 = Npts/#cores and C1 = expm′s cost × N𝒫/ # cores. Usually, 

the O(C1) term is negligible. N𝒫 and θ affect inter-cell moves hence which bound is tighter; 

usually it is the lower one.

Remark 7—Consecutive analytic updates (for the same ΔtAc
∼

) amount to taking powers of 

expm ( ΔtAc
∼

). While ( exp m(ΔtAc
∼ ))k = exp m(kΔtAc

∼ ), on a computer numerical errors accrue 

and the equality may not hold [66], [67]. This issue is most noticeable when the matrices are 

large (and dense) and when k is large. Here, however, this issue does not arise in practice 

since both the matrices (which also have zeros in the last row) and k are small.

In Algorithm 1, γ is called often (though far less often than when using a generic solver 

throughout). In our implementation, we decided against a lookup-table approach since, once 

the trajectories start evolving, the argument to γ takes values in the continuum. Besides their 

simplicity, a key advantage of type-II cells, most notably when compared with type-III cells, 

is that evaluating γ is easy and fast, especially when 𝒫 is also regular (since we can then use 

rounding and modulo operations). Thus, e.g., we construct our type-I tessellations as a 

refinement of regular type-II tessellation. If n = 2, we split each rectangle into 4 triangles 

while if n = 3 we split each box into 5 tetrahedra. When evaluating γ, we first find the 

“parent” hyperrectangle and then pick the correct type-II cell among those within that hyper-

rectangle. For n > 3, we avoided implementing type-I cells; rather, in such cases we use only 

type-II tessellations.

4.6 Adaptive Tessellations

It is possible to use CPAB transformations with a data-adaptive 𝒫; e.g., placing more cells in 

certain regions. The potential expressiveness gain, however, needs to be compared against: 

1) the slowdown in evaluating γ and thus in evaluating x ↦ Tθ(x); 2) the need to recompute 

B (unless one is content with a localized basis and priors obtained via method II). In any 

case, while for high values of n (say, n > 3) this may be a reasonable approach to mitigate 

the curse of dimensionality, we prefer, to keep computing time low and implementation 

simple, to use fixed tessellations and handle scarce-data regions via the smoothness prior.

4.7 Computing Derivatives of Tθ(x) w.r.t. θ

One of our main motivations was facilitating tractable MCMC inference over latent 

diffeomorphisms. While we empirically found MCMC methods to be easier to tune and to 

produce better results than gradient-based optimization, for completeness we provide the 
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details for computing dTθ(x)/dθ. While one can also use finite differences, the derivation 

below leads to better accuracy and some computational savings (e.g., no additional expm 

calls are needed). Let θj denote the jth component of θ. Define y(x, t) ≜ d
dθ j

ϕθ(x, t). It can be 

shown that y(x, t) satisfies

y(x, t)
n × 1

= ∫
0

t
Bc, j

n × (n + 1)

ϕθ(x, τ∼ )
(n + 1) × 1

+ Ac, θ
n × (n + 1)

y(x, τ∼ )
(n + 1) × n

dτ (24)

where c = γ(ϕθ(x, τ)) and Bc,j is the cth matrix in vec−1(B j) = (B1, j, …, BN𝒫, j). Setting t = 1, 

the solution of these d equations (for j ∈ {1, …; d}) yields dTθ(x)
dθ . Any generic numerical 

solver for integral equations can be used to solve these equations, where the required values 

of ϕθ(x, τ) can be computed using Algorithm 1. We omit the details, but our implementation 

includes this derivative.

4.8 Time-Dependent Fields and Their Inference

This paper focuses on stationary CPA fields but, more generally, θ may vary with t. In which 

case, however, Algorithm 1 and Eq. (19) no longer apply (but note that most of the other 

advantages of the proposed approach will still apply; e.g., relatively-low dimensionality, 

compact representation, etc.). While we are unaware of a way to exploit the structure of 

general non-stationary CPA fields for better integration, we can still apply any generic 

integration technique to them. That said, one useful case of non-stationary fields is special: if 

θ(t) is piecewise constant w.r.t. t, then we (trivially) apply Algorithm 1 consecutively, once 

within each time interval. Here is a usage example. Given Npts pairs of Ω-valued points, 

(xi, yi) i = 1
Npts , consider an optical-flow-like representation, x↦x + vθ(x), together with the 

following Gaussian likelihood model,

yi
I . I . D .𝒩(xi + vθ(xi), σ2In × n) (25)

(σ > 0), and a Gaussian prior for θ as in, e.g., Eq. (17). The following Ω × ℝd → ℝn map,

(x, θ) ↦ x + vθ(x) =Eqn . (11) x + ∑ j = 1
d θ jvvec−1(B j)

x∼, (26)

is affine w.r.t. θ = [θ1, …, θd]T. It follows that there is a closed-form MAP solution for θ 
(obtained by applying the standard result of computing the conditional mean of one random 

variable given the other, when both are jointly Gaussian). Let θ̂MAP denote this solution. 

Importantly, the Ω → ℝn map,
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x ↦ x + v
θ̂MAP(x), (27)

is (usually) not a diffeomorphism; however, for any real scalar α, the Ω → Ω map,

x ↦ T
αθ̂MAP(x) = exp(v

αθ̂MAP)(x), (28)

is a (CPAB) diffeomorphism. This suggests a practical greedy approach for a quick-and-

dirty inference over (a transformation obtained by the integral of) a CPA velocity field which 

is piecewise-constant w.r.t. time. This method, summarized in Algorithm 2, may be adjusted 

to the case of no-correspondences image registration setting.

4.9 Some Differential-Geometric Aspects

Readers less interested in differential geometry may safely skip this section. As many 

readers must have recognized, 𝒱 is the tangent space at the identity to M; i.e., 𝒱 = TIM. 

Like the transformation space from [27], M is not a Lie group (lack of closure under 

composition); equivalently, 𝒱 is not a Lie algebra (lack of Lie-bracket closure). Note that 𝒱
is a finite-dimensional linear subspace of the (∞-dimensional) Lie algebra, TIG (the Lie 

group G was defined before Theorem 1), and that exp : 𝒱 M is the restriction of the Lie-

group exponential map, exp : TIG → G, to 𝒱 TIG. This approach, of restricting a Lie 

group exponential map to a linear subspace (of the Lie algebra) lacking a Lie-bracket 

closure, was found useful, e.g., in the context of Symmetric Positive-Definite (SPD) 

matrices (SPD is not closed under the standard binary operation of matrix Lie groups; 

likewise, TISPD is not closed under the Lie Bracket.) [39]. The inner product (on 𝒱 = TIM) 

in Eq. (16) is close in spirit to the oft-used inner product (on TIG):

v1, v2 = ∫
Ω

v1(ξ) ⋅ v2(ξ)dξ v1, v2 ∈ T IG . (29)

As we pointed out, one of the advantages of Eq. (12) over Eq. (16), is related to eliminating 

fictitious noise. We are unaware of works (including those using Sobelev spaces) suggesting 

an inner product on TIG with a similar property. While here we adopt an approach exploiting 

(the restriction of) the Lie group exponential of G ⊃ M, future work should explore 

Riemannian geometries of M (with their Riemannian exponential maps) and their relations 

to those of G. While one can define M-specific Riemannian metrics, note that M may also 

inherit a Riemannian metric from G.
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5 Experiments

Sections 5.1, 5.2 and 5.3 focus on synthesis, Section 5.4 pertains to analysis by synthesis, 

Section 5.5 addresses large numbers of landmarks, Section 5.6 is related to Algorithm 2, and 

Section 5.7 illustrates representation of CDFs.

5.1 Integration Accuracy and Timings

The two parameters in Algorithm 1, Nsteps and nsteps, imply two step sizes, one large, Δt = 

t/Nsteps, used for exact updates, and one small, δt = Δt=nsteps, used for the generic-solver 

subroutine. The reason we can make large (hence few) steps is that we use an exact analytic 

update when possible. In our experiments, the generic solver was the modified Euler 

Method, which requires (i) the ability to evaluate a velocity field at a given location and (ii) 

specifying the step size and number of steps. By construction, Algorithm 1 is more accurate 

(due to the analytic updates) and faster (due to the smaller number of steps) than any generic 

solver used as its subroutine. We also verified this empirically, comparing the algorithm 

against simply running the generic solver step size δt and Nsteps × nsteps steps. For accuracy, 

in 1D, we compared the integration error (that we can compute this error at all, is by the 

virtue of our closed-form solution; see Theorem 2) averaged over random CPA velocity 

fields; i.e., for each value of N𝒫, we drew 100 CPA fields form the prior, v
θi

i = 1

100
, sampled 

(uniformly) 1000 points in Ω, x j j = 1
1000

 and then computed the error:

ε = 1
100 ∑i = 1

100 1
1000 ∑i = j

1000 |Texact
θ (x j) − Tsolver

θ (x j)| . (30)

Table 2 shows the relative improvements, 
εgeneric − εalgorithm

εgeneric
, for different values of N𝒫 (the 

number of intervals). For higher dimensions, where closed form is unavailable, such error 

analysis is impossible. The results of our timing experiments appear in the Sup. Mat., 

available online. Note that our implementation can be further optimized. e.g., use a C+ + 

wrapper instead of a Python one. Moreover, most of the computing time is spent on 

evaluating γ (γ is continuously-defined, so discretely-defined lookup tables will not do); 

with some tricks, the number of such calls can be drastically reduced.

5.2 Real-Time Diffeomorphic Image Editing

To highlight the speed at which CPAB transformations are computed, our code includes a 

GUI where a user chooses velocities at some/all vertices of 𝒫4. Using Lemma 3, the 

Gaussian priors on vθ, and the fast integration, we compute, in real time, the conditional 

warp, exp(E(vθ|user’s choice)). For a demo, please see the video in the Sup. Mat., available 

online.
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5.3 Expressiveness

While simple, CPAB transformations capture a wide range of diffeomorphisms (obviously, 

like any other work on diffeomorphisms, we make no claims about capturing non-

diffeomorphisms such as occlusions). One way to see this is by inspecting samples from 

p(θ) (Fig. 4). M also contains what is sometimes called large deformations (an overloaded 

term: used in some texts for elements of G outside its identity component). One way to show 

a nominal space captures these is a rectangle-to-horseshoe morphing, achieved easily here 

(see Sup. Mat., available online). Expressiveness is also exemplified by the experiments 

below (Figs. 7 and 8) and the demo (Section 5.2). As another example, Fig. 9 shows a 

volume-preserving transformation sampled from the prior applied to a 3D shape. Here, Tθ ∈ 
M∂,vp, where 𝒫 consists of N𝒫 = 320 cells (a layout of 4×4×4 cubes, each divided into 5 

tetrahedra) and Nv = 125. The dimension, dim(M∂,vp), is 20 (and not 375 = 3Nv) due to the 

additional constraints.

5.4 Inference: Analysis-by-Synthesis

Real-world signal analysis requires 3 oft-confounded parts: a representation; a probabilistic/

deterministic model (e.g., a likelihood); inference. While the first affects the second which in 

turn affects the third, when judging a new choice for any of these, it is crucial to distinguish 

between them. For example, as noted in [68], Horn and Schunk’s representation+model of 

optical flow had been regarded highly inaccurate, till modern inference rendered it almost 

state-of-the-art. Since the present work is focused on representations, we avoid advocating a 

particular likelihood model or inference method, and instead use, in a coarse-to-fine manner 

(recall that if vθ is CPA w.r.t. 𝒫 it is CPA w.r.t. P′ ≻ 𝒫), simple choices such as Gaussian 

likelihood and either conjugate-gradient optimization or the MCMC Metropolis algorithm 

(where, in the proposal step, we use either global or local moves, utilizing Lemma 3). 

Without claiming these choices are optimal, these turned out to be effective.

Latent transformations arise in two typical settings: with and without known 

correspondences. In the first, also called (exact/inexact) diffeomorphic point matching [10], 

[14], one has a set of landmark pairs, (xi, yi) i = 1
Npts and seeks T : Ω → Ω such that 

T(xi) ≈ yi i = 1
Npts. We observe that for n = 1, by Corollary 1, our ability to easily solve this 

problem using CPAB transformations lets us solve a monotonic regression problem, as Fig. 

5 demonstrates. Particularly, by adding boundary constraints and simulated annealing, we 

can well fit a CPAB transformation to any reasonable CDF. More generally, but still for n = 

1, our method can be used to solve statistical/optimization problems over monotonic 

functions, CDFs and (cumulative sums of) histograms/filters while respecting bin ordering. 

The case of n > 1 appears, e.g., in landmark-based image warping. As shown in Fig. 7, using 

real images and landmarks from an online hands dataset (http://www.imm.dtu.dk/pubdb/

p.php?403), we infer a transformation between different hands in different poses. We then 

apply it to the whole source image, creating new hands, whose appearance belongs to the 

source hands, with geometry akin to the destination hands. We also animate the source 

image by evaluating ϕθ for different t’s (including outside of [0, 1]); e.g., Fig. 7e shows 

animated frames for the example in the second row of Fig. 7a–7d.
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In the no-known-correspondences case, there are two subsets of Ω, denoted Usrc and Udst, 

and two feature maps, Isrc:Usrc ℱ and Idst:Udst ℱ, where ℱ is some feature space (e.g., 

color), and one seeks T : Ω → Ω such that Idst ∘ T−1 ≈ Isrc (or such that Isrc ∘ T ≈ Idst). This 

is, e.g., the case for time warping (when n = 1) and landmark-free image registration (n > 1). 

Fig. 8 (left and middle) shows inferred time warps for motion-capture data from [69]. A 

similar procedure can be applied to 2D images, in which case it is known as image 

registration. Fig. 10 shows some results for registrations of images of digits using a 

pixelwise Gaussian likelihood model and MCMC inference over CPAB transformations. We 

used 10K iterations for each single registration which took 10 [sec] (i.e., ~ 0.001 [sec] per 

each MCMC iteration).

As an example for statistics on the inferred transformations, Fig. 8 (right) shows a 1D 

warping of u (defined in the figure’s caption) along the 1st eigen warp (computed using PCA 

on inferred velocity fields); i.e., we use euclidean statistics in the linear 𝒱 and map the 

results to the nonlinear M. For a 2D example in the same spirit, we first performed 

thousands of within-class pairwise registrations of images of digits as described above. 

Overall we estimated ~ 30, 000 transformations i.e., ~ 3, 000 per class (class of 1’s, class of 

2’s, etc.). Next, we computed PCA on the inferred CPA velocity fields; Fig. 11 shows the 

first eigen wrap of each class. The Sup. Mat., available online includes a video showing the 

result of applying the first 3 eigen warps (per class) applied to 100 random images from the 

training set.

5.5 Handling a Large Number of Landmarks

In the hand experiment we showed inference for landmark-based warping using a relatively 

small set of landmarks on real data. The inference technique used there was MAP estimation 

using the Metropolis algorithm. Here we show, using synthetic data, that the framework can 

easily utilize a large set of landmark for inference over the latent transformation between the 

landmark sets; see Fig. 12. The technique used here is ML estimation using the Metropolis 

algorithm. It is not surprising that with more data the results improve, suggesting empirical 

evidence that the estimation procedure is consistent. However, our point here is that most 

other methods cannot easily utilize a large set of landmarks.

5.6 Inference over a CPA Field Piecewise w.r.t. t

As a proof-of-concept for the utility of Algorithm 2, we used it to “prettify” the output of a 

dense-correspondence tool. We extracted dense correspondences, (xi, yi) i = 1
Npts , between two 

images using SIFT-Flow [20]. Then, we discarded the images and treated the 

correspondences as noisy observations fed as input to Algorithm 2. Finally, for visualization 

purposes, we used the output of Algorithm 2 to warp the source image. Fig. 14 shows a 

typical result.

5.7 Representing a CDF Using a CPAB Transformation

Fig. 13 shows results (using Metropolis’ algorithm) for fitting Fθ ≜ Tθ ∘ F0, where F0 is the 

CDF of the uniform distribution on J = [−7, 7], to a 3-component Gaussian mixture. Note Fθ 

well approximates the target CDF.
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6 CONCLUSION

We proposed new classes of diffeomorphisms that are simple, expressive, efficient, and have 

many applications. We showed these objects are evaluated fast and with high accuracy (exact 

in 1D) and that they are highly expressive. While we required Ω to be a hyperrectangle it is 

not hard to see that, more generally, Ω may be any finite intersection of closed half spaces of 

ℝn. Like the space in [27], our spaces lack closure under composition; but since 

T
θ2 ∘ T

θ1 ∈ G, our representation can still be used within frameworks that apply consecutive 

transformations [16]. In fact, Algorithm 2 deals exactly with such scenarios. While this work 

focused on representation it was primarily motivated by modeling-and-inference 

considerations: e.g., the ability to quickly run MCMC inference over diffeomorphisms is a 

hallmark of the method, showing that simplicity pays off.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a) Integration of sufficiently-nice velocity fields is widely used to generate well-behaved 

nonlinear transformations. The choice of using CPA velocity fields, among other benefits, 

reduces computational costs, increases integration accuracy, and simplifies modeling and 

inference. A CPAB transformation, x ↦ ϕθ(x, t), is one that is based (via integration) on a 

CPA velocity field, vθ. (b) A 1D example. (c–d) Two 2D examples, where in (d) there are 

also additional constraints. Top row: a continuously-defined vθ in select locations. Middle: 

Visualizing the horizontal ( vh
θ, left) and vertical ( vv

θ, right) components as heat maps 

highlights the CPA property; blue = −λ, green=0, and red=λ where 

λ = maxx ∈ Ω max ( |vh
θ(x) | , |vv

θ(x) | ). Bottom: Isrc ∘ ϕθ( ⋅ , 1).
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Fig. 2. 
Several type-I tessellations of a 2D region.
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Fig. 3. 
Several type-II tessellations of a 2D region.
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Fig. 4. 
Samples from the prior (Section 4). (a–h) The top 3 rows echo those in Fig. 1c and Fig. 1d. 

The 4th row shows a deformed grid overlaid on the image. The 5th row shows select 

trajectories. Note that the trajectories and transformations are differentiable (hence 

continuous) but not piecewise affine. The tessellation in (e–h) is a refinement of the one in 

(a–d). (a) & (e): Tθ ∈ M. (b) & (f): Tθ ∈ Mvp. (c) & (g): Tθ ∈ M∂. (d) & (h): Tθ ∈ M∂,vp. 

See Section 4 for details.
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Fig. 5. 
Monotonic regression on synthetic data (top) by inferring CPA fields (bottom), defined over 

100 equal-length cells. We used a squared loss in the 4 leftmost columns and a robust one 

(Geman-McClure) in the 2 others. Col. 1, 3, and 5 show ML solutions. Col. 2, 4 and 6 show 

MAP solutions with a smoothness prior. In all cases, the function is increasing, as obtained 

effortlessly from the representation.
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Fig. 6. 
CDF/histogram representation. 1st row: N𝒫 = 10. 2nd row: N𝒫 = 100. F0, not shown, is a 

CDF of a uniform distribution on J = [−3, 3]. (a) vθ ∈ 𝒱∂([0, 1], 𝒫). (b) F = Tθ ∘ F0. (c) d
dxF. 

Note it is not piecewise constant. H0, not shown, is a cumsum of a 20-bin uniform 

histogram. (e) H = Tθ ∘ H0, a cumsum of a new histogram h (f) h.
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Fig. 7. 
Landmark-based warping. One example in each row. (a) Isrc (and src landmarks). (b) Isrc 

(and src/dst landmarks). (c) The inferred vθ. (d) A new image is synthesized by warping Isrc 

using Tθ (and dst & Tθ
(src) landmarks). (d) Animation.
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Fig. 8. 
Nonlinear time warping in real MoCap Data. Left: a reference signal, s0, 5 other signals, 

si i = 1
5 , and their mean, s = 1

5 ∑i = 1
5 si. The mean is smeared since si i = 1

5  are misaligned. 

Center: having inferred the warps, T
θi

i = 1

5
, we unwarp the signals, setting ui = si ∘ T

−θi. 

Note ui i = 1
5  are better aligned, as is evident by the details preserved in their mean, 

u = 1
5 ∑i = 1

5 ui. Right: warping u by T
θ + jσ1ξ1 where θ = 1

5 ∑i = 1
5 θi, j ∈ {−6, −4, −2, 0, 2, 4, 

6}, ξ1 is the first principal component of θi − θ
i = 1
5 , and σ1 is the corresponding standard 

deviation.
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Fig. 9. 
A 3D example. Left: Source shape (taken from the Tosca Dateset: http://

tosca.cs.technion.ac.il). Right: Result of applying a volume-preserving transformation, 

sampled from the prior, to the source.
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Fig. 10. 
Example registrations of images from the MNIST dataset.
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Fig. 11. 
The 1st eigen wrap of class. Center row: the mean (identity) transform. Top row: the mean 

plus 3 standard devidations. Bottom row: the mean minus 3 standard deviations.
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Fig. 12. 
Landmark-based Maximum Likelihood (ML) estimates of latent transformations. The 

dimension of the transformation space in this example is d = 38. Rows differ in the number 

of landmarks, Npts. Top row: Npts = 30. Middle: Npts = 100. Bottom: Npts = 10, 000. Colors: 

green=src, blue=dst, red=Tθ(src), where Tθ is the ML transformation, found by Metropolis’ 

algorithm. (a) original grid lines + src landmarks; (b) grid lines deformed by the Ground-

Truth (GT) transformation + dst landmarks. (c) grid lines deformed by the GT 

transformation. (d) grid lines deformed by the ML transformation. (e) grid lines deformed by 

the GT transformation (blue) and grid lines deformed by the ML transformation (red). (f) dst 

landmarks (blue) and the src landmarks transformed by the ML transformation (red).
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Fig. 13. 
CDF Representation. The source is the CDF of the uniform distribution. The target is the 

CDF of a 3-component Gaussian mixture. The setting and the inference procedure, where 

we used a Maximum Likelihood (ML) solution obtained using MCMC, are virtually the 

same as in the monotonic-regression experiment, except here we also used simulated 

annealing, gradually reducing the standard deviation of the “noise” to zero. Typical to an 

ML solution, the inferred vθ is non-smooth. MAP estimation (not shown) leads to a 

smoother field, analogously to the results in Fig. 5.
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Fig. 14. 
“Prettifying” the result of a dense-correspondence tool. From left to right: Isrc; Idst; warping 

Isrc according to SIFT-Flow [20]; warping Isrc using the output of Algorithm 2 where the 

SIFT-Flow was the input.
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TABLE 1

Values of N𝒫, Nv, D = dim(𝒱Ω, 𝒫′ ), and d = dim(𝒱Ω, 𝒫) for the 𝒫’s shown in Fig. 2. See also Section 4.

𝒫 N𝒫
Nv D = 6N𝒫

d = 2Nv

𝒫1
4 5 24 10

𝒫2
16 13 96 26

𝒫3
64 41 384 82

𝒫4
256 145 1536 290

𝒫5
1024 1025 6144 1090
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