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Abstract—A novel adaptable accurate way for calculating the polar FFT and the log-polar FFT is developed in this paper, namely,

Multilayer Fractional Fourier Transform (MLFFT). MLFFT is a necessary addition to the pseudopolar FFT for the following reasons: It

has lower interpolation errors in both polar and log-polar Fourier transforms, it reaches better accuracy with the nearly same computing

complexity as the pseudopolar FFT, and provides a mechanism to increase the accuracy by increasing the user-defined computing

level. This paper demonstrates both MLFFT itself and its advantages theoretically and experimentally. By emphasizing applications of

MLFFT in image registration with rotation and scaling, our experiments suggest two major advantages of MLFFT: 1) Scaling up to 5

and arbitrary rotation angles or scaling up to 10 without rotation can be recovered by MLFFT, while, currently, the result recovered by

the state-of-the-art algorithms is the maximum scaling of 4. 2) No iteration is needed to recover large rotation and scaling values of

images by MLFFT; hence, it is more efficient than the pseudopolar-based FFT methods for image registration.

Index Terms—Image processing and computer vision, signal processing, computation of transforms, pattern matching.

Ç

1 INTRODUCTION

IMAGE registration is an old yet still hot topic [1] and it is
involved in many different research areas [2] from image

mosaic [22] to image compression [20] and video enhance-
ment [21], to name a few. Current methods are mainly pixel
gradient methods [5], [10], correlation methods [25], Fourier
transform methods [2], [3], [7], and feature-based methods
[27], [28].

Compared with other modern spatial image registration
techniques such as matching key points with the SIFT method
[27], [28], the log-polar mapping followed by a Levenberg-
Marquardt (LM) nonlinear least-squares solution [6], the
boot-strap method [26], etc. Fourier-based spectral methods
generally have poor performance and limited applications.
For instance, Fourier-based methods cannot support large
scales with arbitrary rotations (i.e., over 4x), while scholars in
[6], [26] accomplished such registrations with ease. Besides,
Fourier-based methods cannot recover perspective images.
However, it must be mentioned here that there are a few cases
in which Fourier-based methods demonstrate advantages
over the traditional spatial registration algorithms:

1. Fourier-based methods are robust to noise and time
varying illumination disturbances.

2. They have a low computational complexity and take
a fixed period of time in registering any images. On
the contrary, most spatial methods have high
computational costs and the time used in registering

two images with spatial methods is unpredictable,
depending on the images to be registered.

3. They are easy to implement and parallelize.
4. They could be used for generating an initial value for

nonlinear optimization based spatial registration
methods (e.g., in [10]).

We will explain the above three advantages in detail

later.
The theory background of Fourier image registration is

described in [3] and [9]. Two major techniques in Fourier-

based image registration are the phase correlation and the

log-polar transform. The translation between two images

can be determined by the phase correlation method, which

has excellent accuracy and robustness [9] and recently was

extended to the subpixel translation level [7]. We give a

brief introduction of the phase correlation first.
Consider two infinite signals f1ðx; yÞ and f2ðx; yÞ and

f2ðx; yÞ is a translated replica of f1ðx; yÞ:

f2ðx; yÞ ¼ f1ðx� x0; y� y0Þ: ð1Þ

Their Fourier transforms are related by

F2ðu; vÞ ¼ e�j2�ðux0þvy0Þ � F1ðu; vÞ: ð2Þ

The cross-power spectrum holds that

F1ðu; vÞF �2 ðu; vÞ
F1ðu; vÞF �2 ðu; vÞ
�� �� ¼ e�j2�ðux0þvy0Þ: ð3Þ

Since the inverse transform of e�j2�ðux0þvy0 is a Dirichlet

function at ðx0; y0Þ, we can simply determine the ðx0; y0Þ by

finding the pulse peak on the inverse Fourier transform of

the cross-power spectrum.
To recover rotation and scaling parameters, a common

way is the log-polar Fourier transform; let II1 and II2 be two

images, and II2 be a translated, rotated, and zoomed replica

of II1, that is,
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I2ðx; yÞ ¼ I1ðsðx cos �0 þ y sin �0Þ þ�x;

sð�x sin �0 þ y cos �0Þ þ�yÞ;
ð4Þ

where s, �0, and ð�x;�yÞ are the scale factor, rotation angle,
and translation parameters, respectively.

After applying the infinite continuous Fourier transform
to II1 and II2 [3] and replacing !!x and !!y with the following
equations:

!x ¼ r cos �;

!y ¼ r sin �;
ð5Þ

(4) turns to

Î2 ¼ ejð!x�xþ!y�yÞs�2Î1ðs�1r; �þ �0Þ: ð6Þ

Supposing that the magnitudes of II1 and II2 are MM1 and MM2,
we have

M2ðr; �Þ ¼ s�2M1ðs�1r; �þ �0Þ: ð7Þ

Moreover, by applying the log operation to the radius r, we
have

M2ðlog r; �Þ ¼ s�2M1ðlog r� log s; �þ �0Þ: ð8Þ

Then, the phase correlation is again applied on MM1 and MM2

to determine s and ��0.
In real applications, the discrete Fourier transform (DFT)

is used instead of the infinite continuous Fourier transform
in (4)-(8). Thus, the calculation can be processed by the Fast
Fourier Transform (FFT).

Such an FFT registration algorithm is introduced in [3]
and researchers succeeded in recovering any rotation at
scales up to 2. With a more careful study on the error due to
using DFT as an approximate method of the infinite
continuous Fourier transform, Stone et al. suggested in
[11] that a better filter and a window function should be
applied to the original images, which could reduce the alias
caused by rotation and recover scales up to 2.5 with any
rotation.

The FFT algorithm’s largest challenge is to evaluate the
log-polar Fourier transform efficiently and accurately, and
different ideas have been proposed in recent years to solve
such a problem. Two methods were developed in the past to
calculate polar or log-polar Fourier transforms [2]: the image
warping [25] followed by a 2D FFT [16] and the interpolation
directly in the 2D Cartesian FFT domain [3]. However, due to
the interpolation error, FFT-based image registration meth-
ods cannot recover the values of rotation angles and scale
factors accurately; it cannot even recover large scale factors
and it often suffers from the false peak during the phase
correlation. Although by using the Unequally-Spaced FFT
(USFFT) [4] and related interpolation methods, the interpola-
tion error can be reduced, USFFT is very slow for high
accuracy and it is hard to choose the parameter of the
oversampling rate S as well. The pseudopolar FFT was then
proposed and tested in image registration [2]. It significantly
decreases the interpolation error in calculating the polar
Fourier transform with the same complexity as the 2D FFT
and, under certain conditions [14], [2], even no interpolation
is needed for the pseudopolar method. The pseudopolar FFT-
based algorithm(PPFFT) suggested in [2] can recover scales

up to 4 by an iteration process. Though the pseudopolar is a
tremendous improvement in the fast polar Fourier transform,
the pseudopolar grid is still unsatisfying in image registration
because it is not suitable for the log-polar Fourier transform
(still needs interpolation [2]) and is unstable (fails in large
scale factor cases [2]) and inaccurate (fails in an accurate
rotation angle recovering) performance. To increase the
accuracy of pseudopolar-based image processing, research-
ers in [14] and [19] proposed the angular difference algorithm
to estimate the rotation angle of an image. The method in [14]
is quite similar to the signature method described in [11] and
avoids the interpolation step. However, this method is not
reliable for certain images because it reduces 2D correlations
to 1D correlations, which certainly causes a loss of the
correlation information; it puts uncertainty in the rotation
recovering because pseudopolar grids are not distributed
angular-uniformly, and the most important thing is that it still
cannot handle images scaled by a large scale factor.

The pseudo-log-polar FFT was proposed in [8]. For the
pseudo-log-polar is still based on interpolation in calculat-
ing a pseudo-log-polar grid, it fails in reducing the
interpolation error, which is also covered in this paper.

Our research started with implementing the above
pseudopolar FFT-based registration methods. While we
successfully apply the pseudopolar FFT to artificial images
in Figs. 7, 8, and 10 as [2] suggests, it fails in real
applications with actually hand-taken pictures (described
in detail in Section 4). Why does the pseudopolar FFT work
well in [2] and in our tests in Fig. 8? It is because these
image pairs registered are derived from a single image, and
as a result, the tests cannot fully testify the performance of
the registration algorithm fairly as there are no noise,
distortions and effects of other transforms (e.g., the
perspective transform) in the corresponding images at all
besides scaling, rotating, and translation. In addition, in real
pictures, scenes originally outside the photo boundaries
come into the photos when we zoom out the camera focus
length, and these additional scenes turn to noises in
registration. For real photos, it is unreasonable to suggest
that pictures should be as perfect as these artificial test
benchmarks used in [2] and our experiments, and FFT-
based algorithms must be more robust. Under such a
circumstance, we decided to search for a better way for
image registration. Recall the phase correlation method in
(1)-(3). Most unsuccessful registrations are due to the false
peaks during the phase correlation step for recovering the
scale factor and the rotating angle. However, in real
applications, there will always be some other peaks in the
results rather than one peak. It is difficult to tell false peaks
from the true peak besides taking the peak that has the
largest value as the true one; thus, FFT-based algorithm
may be unsuccessful once unexpected large false peak
values occur.

In Section 3, we will prove that the true peak value is
related to SNR (defined in Section 3.2) of the log-polar
magnitude spectrum in detail; thus, we will show limita-
tions for Fourier-based methods in detail. However, it is
important to mention here that there are four main factors
that affect Fourier-based methods in image registration with
only rotation and scaling transforms:
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1. The rotation aliasing [11]. We use DFT to approach
the infinite Fourier transform, but, in images with
rotations, such approximating approach generates
aliasing in the results.

2. The scaling overlapping. (We will discuss below.)
3. The interpolation error.
4. Other errors (due to perspective projections and

distortions introduced by cameras).

Rotation aliasing is difficult to overcome; the scaling

overlapping will be inevitable and critical for registering

images with large-scale factors, as stated in Section 3.2. We

also cannot expect real images to be free of distortions and

perspective projections. Nevertheless, we realized that we

can still improve the pseudo-log-polar technique and push

it to its limit by reducing the interpolation error.

In this paper, a new technique for calculating both the

polar and the log-polar Fourier transforms in two dimen-

sions is presented, and it is easy to port the algorithm to a

higher dimension. Our belief is that interpolation does not

necessarily lead to inaccuracy and our novel algorithm has

an interpolation process from a multilayer method to the

real polar or log-polar grid, so we named it Multilayer

Fractional Fourier Transform (MLFFT). This paper will

demonstrate that MLFFT has advantages over the pseudo-

polar-based image registration described in [2], [14] in the

following aspects:

1. high accuracy in recovering large scale factors and
large rotation angles,

2. adaptability, for different precision requirements,
3. working well with both the log-polar and the polar

transforms,
4. easy implementation, and
5. fast and parallellable computing with just serial

fractional FFT algorithms.

This paper contains five sections: Section 1 introduces

the previous work. MLFFT is described in Section 2. Some

discussions on improving the registration precision of

MLFFT are given in Section 3. All of the experimental

results are in Section 4. Section 5 concludes this paper.

2 DESCRIPTION OF MLFFT

2.1 2D Discrete Fractional Fourier Transform

It is well known how DFT works. After an infinite
continuous signal is sampled and windowed, its sampled
Fourier transform in frequency domain can be calculated as
follows [13]:

F ðej!Þ ¼
XN�1

n¼0

fðnÞe�j!n: ð9Þ

It should hold that 0 � ! � 2�. Suppose 0 � k < N and we
simply rewrite

F ej
2�k
N

� �

as F ðkÞ, then we have

F ðkÞ ¼
XN�1

n¼0

fðnÞe�j2�k
N n: ð10Þ

Formula (9) is known as DFT. The fastest way to
calculate DFT is FFT. We recommend FFTW [15] C library
when FFT needs to be embedded in real programs. The FFT
returns the value of F ðkÞ. Note that if k is not an integer,
(10) still holds.

Based on (10), the fractional Fourier transform is defined
as follows, where � is an additional parameter to the typical
Fourier transform:

F�ðkÞ ¼
XN�1

n¼0

fðnÞe�j2�kN �n: ð11Þ

We introduce the centered fractional Fourier transform
here, which is used in MLFFT instead of (11). Given a vector
f ¼ fðxÞ, �N=2 � x � N=2, the fractional Fourier transform
is defined as

F�ðkÞ ¼
XN=2

n¼�N=2
fðnÞe�j 2�k

Nþ1�n; ð�N=2 � k � N=2Þ: ð12Þ

1. When � ¼ 1, the fractional Fourier transform is
equal to DFT, thus we get the values of the N þ 1
frequencies that are distributed uniformly in �� �
! � � in the frequency domain.

2. When 0 < � < 1, the fractional Fourier transform
returns the values of the N þ 1 frequencies that are
scattered uniformly in ��� � ! � �� in the fre-
quency domain.

Based on the chirp-Z transform [12], [18], the computa-
tional complexity of the fractional Fourier transform is three
times that of the 1D FFT, within the same magnitude.

Now, we define the 2D fractional Fourier transform.
Given an ðN þ 1Þ � ðN þ 1Þ discrete signal

fðn1; n2Þ;�N=2 � n1; n2 � N=2;

where N is an even number, the 2D fractional Fourier
transform is defined as follows:

F�ðk1; k2Þ ¼
XN=2

n1¼�N=2

XN=2

n2¼�N=2

fðn1; n2Þe�j
2�n1
N �k1�j

2�n2
N �k2 : ð13Þ

Calculating the 2D fractional Fourier transform is similar to
calculating a 2D FFT, that is, first, applying a 1D fractional
Fourier transform to each row, then applying a 1D
fractional Fourier transform to each column.

To help understand the 2D fractional Fourier transform,
we have the following conclusion by combining (9) and
(13). Suppose F is the Fourier transform of a 2D discrete
signal, we have the following:

Theorem 1. For 0 < � � 1, we have

F ð�u; �vÞ ¼ F�ðu; vÞ: ð14Þ

Proof. Expanding both sides of (14) using (11) and (13) in
two dimensions [13], we have
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F�ðu; vÞ ¼
XN=2

n1¼�N=2

XN=2
n2¼�N=2

fðn1; n2Þe�j
2�n1
N �u�j2�n2

N �v;

F ð�u; �vÞ ¼
XN=2

n1¼�N=2

XN=2
n2¼�N=2

fðn1; n2Þe�j
2�n1
N �u�j2�n2

N �v:

It is clear that the left of (14) is equal to the right. tu

2.2 The MLFFT Grid

The accuracy of the MLFFT grid depends on two user-

specified parameters: the number of approaching levels and

the approximating set fCutg. In the following, we will

describe their meanings and finally reach our description of

MLFFT grid.
The number of approaching levels is defined as

LLAYER ¼ L; L � 1: ð15Þ

The approximating set fCutg is defined as

fCutg ¼ f�i; 0 < �1 < �2 < . . . < �L�1 < �L ¼ 1g: ð16Þ

Note that the cardinality of fCutg is equal to LLAYER.

These two parameters are manually given in our definition

of the MLFFT grid, but we will discuss the methods for

deciding and optimizing these values in Section 3.
Now, we define the MLFFT grid on the frequency

domain. Given LLAYER and fCutg, we define the grid as

follows:

Pi ¼ ð�iu; �ivÞ;�N=2 � u; v � N=2f g;
�i 2 fCutg; 1 � i � LLAYER:

ð17Þ

Each point in Set PPi corresponds to a certain frequency

on the 2D frequency domain plane. Suppose we have an

image of size ðN þ 1Þ � ðN þ 1Þ centered at (0, 0), (N is an

even number), then, by applying the 2D fractional Fourier

transform, we can calculate the value at any frequency in PPi

by (14).
It should be emphasized that the computation of

different layers is independent, and it is easy to compute

each layer in a parallel way on multi-CPU systems.

Finally, we get the MLFFT grid P (Fig. 1):

P ¼
[LLAYER
i¼1

Pi: ð18Þ

Fig. 1 explains how a three-layer MLFFT grid is

constructed through the three individual grids.
Fig. 2 demonstrates why MLFFT is much close to a log-

polar grid than other methods qualitatively.
Based on the grid in Fig. 2d, we are able to generate the

polar/log-polar Fourier transform at different resampling

rates by interpolating on the MLFFT grid. We will see in

Section 2.3 that such an interpolation leads to a significant

improvement, compared with other methods in both the

polar and the log-polar grids.

2.3 The Interpolation Error

This section discusses the interpolation error of the 2D

Cartesian FFT, the pseudopolar FFT, and our method,

MLFFT. We will explain advantages of our method over

other methods in three respects: 1) MLFFT performs better

than other methods for the polar Fourier transform,

2) MLFFT performs better than other methods for the log-

polar Fourier transform, and 3) MLFFT performs even

much better for the log-polar Fourier transform in image

registration.
For a certain image’s spectrum magnitude M, we define

the first-order interpolation error [2] as

"1
P=LP �

X
i;j

"Gridðri; �jÞ
�� �� rMðri; �jÞ�� ��; ð19Þ

where "Gridðri; �jÞ is the distance between the actual point in

frequency plane and the closest point in the grids:

"2
Gridðri; �jÞ ¼ ðX̂closest �Xreal�polarÞ2 þ ðŶclosest � Yreal�polarÞ2:

ð20Þ

Because jrMðri; �jÞj are different for different signals, we

substitute jrMðri; �jÞj with maxfjrMðri; �jÞjg, the upper

bound of all the jrMðri; �jÞj of different signals that is a
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Fig. 1. The construction of an MLFFT grid with fCutg ¼ f0:1; 0:6; 1g.
(a) PP 1 grid. (b) PP 2 grid. (c) PP3 grid. (d) PP grid.

Fig. 2. (a) The log-polar grid. (b) The polar grid. (c) The pseudopolar

grid. (d) The MLFFT grid with three layers. The MLFFT grid is much

closer to the log-polar grid.
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constant for a group of signals to calculate the maximum
interpolation error, and we have

"1
P=LP � max "1

P=LP

n o
�
X
i;j

"Gridðri; �jÞ
�� ���maxf rMðri; �jÞ

�� ��g: ð21Þ

By calculating (21) with such a constant, we are able to

compare the max interpolation errors of different polar

transform methods without considering the signal itself.

However, for signals in an image, jrMMðri; �jÞj is much

higher in low frequency than in high frequency. We will

prove that MLFFT works even better with images that have

high low-frequency energy in Fig. 4c.
We will test all of the grids in Fig. 3 on the polar and log-

polar transforms. The sampling rates of the polar and the
log polar are given as follows: In the polar case, we test with
two angular sampling rates: �� ¼ 0:1 and �� ¼ 0:01. In the
log-polar case, we test the same two angular sampling rates,
and we use 1.047 as the log-base, which is calculated
according to that in [3]. It should be pointed out that, for
MLFFT, both the layer number and fCutg are critical to a
low interpolation error and our tests will demonstrate that.
In our tests, the fCutg is casually chosen for cases C, D, and
E to show the performance of MLFFT with an almost
arbitrary fCutg, while case F takes an optimized parameter
using the method described in Section 3.2. Figs. 4a and 4b
are the maximum interpolation errors calculated by (21).
Fig. 4c is the first-order interpolation error for the Lena
image (256 � 256) calculated by (19).

The results in Fig. 4 can be understood in four respects:

1. MLFFT achieves a lower interpolation error than the
pseudopolar when the layer number is greater than
2 for general polar and log-polar Fourier transforms.

2. MLFFT can approach better interpolation accuracy
by increasing the layer number.

3. A lower interpolation error can be achieved by
optimizing fCutg.

4. MLFFT even outperforms in evaluating the image’s
log-polar Fourier transform, which results in suc-
cessful recovery in the extreme cases in the experi-
ments of Section 4.

2.4 Complexity Analysis

For the 1D fractional Fourier transform, the computing cost is
three times as the normal 1D FFT. Therefore, for each layer of
MLFFT, the complexity is still OðN �N logNÞ. Considering
the precise computing cost, a three-layer Fourier transform
costs about three times as much as the pseudopolar FFT.
However, Keller et al. [2] suggests that 3 or 4 iterations are

needed for better accuracy, but, by MLFFT, the same accuracy

can be achieved without any iteration process.

2.5 A Framework for Image Registration with
MLFFT

Here, we introduce our MLFFT-based algorithm for image

registration with large scaling, rotation, and translation. It is

the same as the algorithm in [3] except for Steps 3 and 4.

1. Input images II1 and II2 apply a high-pass filter and a
Blackman window function to them.

2. Choose the proper NLAYER and fCutg.
3. Calculate the MLFFT magnitudes of II1 and II2 and

we get M
L;fCutg
1 and M

L;fCutg
2 .

4. Calculate the log-polar Fourier transform magnitude
spectrums of II1 and II2 by interpolation on the
MLFFT grid.

5. Calculate the scale factor and the rotation angle by
the phase correlation technique on the log-polar
Fourier transform spectrums of both images.

6. Apply the scale factor and the rotation angle to the
original image and use the phase correlation again to
detect the translation.
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Fig. 3. Cases tested for their first interpolation error.

Fig. 4. The first-order max interpolation errors with angular sampling

rates (a) 0.1 and (b) 0.01 for polar and log-polar Fourier transforms.

(c) The interpolation error for the real-image Lena by formula (19). All of

the results are normalized for better presentation.
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3 SOME DISCUSSIONS ON ACCURACY

3.1 Choose the Correct Layer Number and fCutg
MLFFT is designed to be adaptable through the adjustable
parameters. We can adjust the parameters to maximize both
the speed and the accuracy performances of MLFFT under
different precisions and polar/log-polar resampling rates.

Choosing the proper layer number. The layer number
depends on the kind of its application.

A two-layer MLFFT grid has the same number of points
as the pseudopolar grid and the difference between these
grids are how these points are located. In our experiments
in Section 2.4, we have already shown that the two-layer
MLFFT performs better than the pseudopolar. However,
generally, for more stable and satisfying image registration,
we recommend 3-4 layers for most cases and it should
exceed the performance of the pseudopolar a lot. To sum
up, the right way is to increase the level number if the
accuracy level is unsatisfying or the registration fails. On
the contrary, if the pseudopolar fails, one can do nothing
about it. Thus, we say that MLFFT is adaptive.

Choosing the proper fCutg set. Once the layer number
is decided, how to determine the fCutg is critical.
Differently from the pseudopolar FFT, one can choose
fCutg properly for different polar/log-polar resampling
rates on the 2D Cartesian MLFFT grid, while the pseudo-
polar FFT only works well with certain nonextreme cases
[2]. The idea of fCutg comes from the partitioned function
imitation technique in numerical analysis.

Choosing fCutg is actually a nonlinear optimizing
problem. fCutg can be optimized for the least interpolation
error described in (21) in Section 2. Numerical methods like
the L-M method [23] can be applied to calculate fCutg as a
vector to minimize the error.

However, the numerical methods for nonlinear optimi-
zation are relatively slow, so we recommend two approx-
imate models that calculate the interpolation error only for a
few resampling points rather than all the points in the log-
polar grid. In most cases, we use a set of partial points
fð�; �Þ; 1 < � < N=2; 0 < � < �=4g and (21) for calculating
the interpolation error with a certain fCutg. (Suppose we
have an image of size N �N). In addition, it is reasonable to
use points on a line fð�; �Þ; 1 < � < N=2; � ¼ 0g for unde-
manding cases.

We present here an example of MLFFT on a 200 � 200
image, where layer ¼ 2 and the resampling rate is
log base ¼ 1:047 (calculated according to [3]) and �� ¼ 0:1.
fCutg is evaluated with both partial-interpolation-error
L-M method and whole-interpolation-error L-M method.
The approximate best fCutg is {0.24, 1}, while the real best
fCutg is {0.17, 1}. Fig. 5 shows the interpolation errors of
points of the whole grid and the interpolation errors of
points on part of the whole frequency domain correspond-
ing to different �1 in a two-layer fCutg ¼ f�1; 1g. The L-M
will converge at the nadir. In addition, using a line model
fð�; �Þ; 1 < � < N=2; � ¼ 0g for the optimization, the result
will still be acceptable. In the previous case, line-interpola-
tion-based L-M optimizing results in fCutg ¼ f0:22; 1g.
Fig. 5 is also helpful in understanding the affect of different
fCutg on interpolation accuracy: If the deviation from the

optimized fCutg is not large, the interpolation error does

not raise much.
To sum up, we suggest three interpolation models for

nonlinear optimization of fCutg: the whole grid, the partial

grid, and the line grid. If, after optimizing fCutg, the

interpolation error is still unsatisfying, we can increase the

layer number and choose an optimized fCutg again. Once

the two parameters are set according to the requirements in

an application, we do not need to adjust them during the

image registration process.

3.2 SNR and True Peak Value

First, we will introduce the definition of PeakER and SNR

here and show their relations in the phase correlation.

Suppose f2 and f1 are two images that actually are the log-

polar transform magnitude results after Step 6 in Section 2.5

and n is the white Gaussian noise (WGN) function. F1, F2,

and N are their spectrums after the Fourier transform:

f2ðx; yÞ ¼ f1ðx� x0; y� y0Þ;
fNOISE2 ðx; yÞ ¼ f2ðx; yÞ þ nðx; yÞ:

ð22Þ

We define SNR as

SNR ¼DEF Signal Energy

Noise Energy
¼
RR
f2ðx; yÞj j2dxdyRR
nðx; yÞj j2dxdy

: ð23Þ

Notice (23) does not involve a log operation which the

normal SNR definition always does.
SNR is a key factor to the peak energy value while using

the phase correlation to determine the rotation angle and

the scale factor, as we can see in the following theorem. We

also give a simple mathematical proof based on the Parseval

Theorem. It should be noted that our concept of Peak

Energy Ratio (PeakER) is different from the peak value,

because PeakER indicates the possibility of identifying the

true peak from noise besides the peak value itself.

Theorem 2. In the inverse Fourier transform result of the phase

correlation method, the PeakER defined as follows holds:
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Fig. 5. The first-order interpolation error with different fCutg and

different grids. The interpolation error of a partial grid is multiplied by 8

as it only includes 1/8 of the points of the whole grid.
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PeakER ¼DEF Peak energy

Energy not at the peak
� k� SNR

ðk is a constantÞ:
ð24Þ

Proof. After applying the Fourier transform to (22), we can
calculate the cross-power spectrum as follows:

P ðu; vÞ ¼
F1 F

NOISE
2

� ��
kF1k kFNOISE

2 k
¼ F1 �N� þ F2 � F �1
kF1k kFNOISE

2 k

¼ F2 � F �1
kF1k kFNOISE

2 k
þ F1 �N�
kF1k kFNOISE

2 k
:

ð25Þ

We know that, after applying the inverse Fourier
transform to P ðu; vÞ, the first term on the right-hand
side of (25),

F2 � F �1
kF1k kFNOISE

2 k
;

should be transformed into a single pulse on the plane
and, by the Parseval theorem, the energy of this part will
concentrate at the true peak in the inverse Fourier
transform result; the last term of (25),

F1 �N�
kF1k FNOISE

2

�� �� ;
will be scattered all over the plane uniformly by the
Parseval theorem as it is merely WGN. Suppose pðx; yÞ is
calculated by applying the inverse Fourier transform to
P ðu; vÞ, then we have

PeakER ¼DEF Peak energy

Energy not at the peak

¼

RR
peakpoint

pðx; yÞj j2dxdy
RR

outsidepeak

pðx; yÞj j2dxdy
�
ZZ

F2 � F �1
F1 �N�

����
����

2

dudv;

ð26Þ

¼
ZZ

F2

N

����
����

2

dudv ¼ k
ZZ

f2ðx; yÞ
nðx; yÞ

����
����
2

dxdy

¼ k Signal Energy

Noise Energy
¼ kSNR:

ð27Þ

Thus, Theorem 2 is proven. tu

Theorem 2 is very important in unveiling the relation
between SNR and the peak value. A low SNR results in a
low PeakER, which means more false peaks and a low-value
true peak.

Next, we will discuss the source of the noise nðx; yÞ.
Besides the well-known rotating aliasing [11], which is an
important reason for noise, here we propose another reason
that causes a significant noise: the scaling overlapping factor.

For a signal sampled with the highest frequency,
fhighest < fs=2, the signal could be retrieved from its inverse
DFT with no loss, which is known as the Nyquist sampling
principle. The sampling principle is based on the fact that DFT
of a discrete signal is periodical and the energy in high
frequency may overlap the high-frequency energy in the next
period. If one image is zoomed in by a certain scale factor, its

spectrum is also scaled by the same scale factor. Since DFT is
periodical, the high-frequency part of the image spectrum in
one period will certainly overlap the frequency in the adjacent
periods; thus noise is produced due to the overlapping in the
frequency domain. The formal expression of this idea is
described as follows:

Suppose F ðu; vÞ is the log-polar magnitude spectrum of
an image, in Step 5 of the algorithm described in Section 2.5.
We apply a scaling operation with a scale factor s to the
image and determine what part of F ðu; vÞ is overlapped and
what part of F ðu; vÞ is not overlapped in the periodical DFT
spectrum after the scaling. Then, we have the following
conclusion:

SNRs ¼
DEF

RR
NotOverlapped F ðu; vÞj j2dudvRR
Overlapped F ðu; vÞj j2dudv

� SNR: ð28Þ

For an image that is scaled with the scale factor s, during
FFT-based registration of the scaled image and the original
one, the PeakER holds:

PeakER � k� SNRs: ð29Þ

It is hard to present a mathematical analysis for the
above conclusion, but here we present a general explanation
with experimental results: In the cases without any rotation
and translation, it is obvious that the main trouble in the
phase correlation method is the overlapping noise due to
scaling [24]; thus the overlapping noise is dominant and the
first part of the conclusion, i.e., (28), is right. By combining
Theorem 2 and (28), we reach the second part of the
conclusion, i.e., (29).

Our experiment in Fig. 6a also suggests that this
conclusion is correct. In our tests, we first apply different
scale factors to the famous Lena image and register the
scaled image with the original one. Then, both PeakER and
SNRs of the registrations with different scale factors are
calculated, normalized, and showed in Fig. 6a.

The experimental results in Fig. 6a indicate that the
relation between the true PeakER and the SNRs matches the
above conclusion and prove again that SNRs is the
dominant factor for the peak energy in the cases without
rotation. We also give vivid examples of the peak values of
images with different scale factors in Figs. 6b and 6c.

Such overlapping could be avoided by applying low-
pass filters, but, in very large scales, the band limit for such
filters is hard to decide and such filters will eliminate useful
information.

However, for the case of rotated and scaled images, the
overlapping noises and the rotating aliasing noises are the
dominant sources of noises and the true phase correlation
peak is merged in the noise peaks by Theorem 2 in the
extreme cases of large scaling and rotating factors.

Though there are some approaches in reducing noises,
they are not perfect. In [24], the scholars tried to reduce
noises by applying a projecting operator in the phase
correlation process under the assumption that the noise
energy is a magnitude lower than the total energy. Such a
statement is not true in most cases, where there exists larger
noise energy. In [11], [3], the researchers suggested a filter to
reduce noises that also eliminate the signal energy.
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As a conclusion, MLFFT largely removes noises caused

by the interpolation errors, but it is still hard to reduce the

scaling overlapping, rotation aliasing, and other minor

factors that make FFT-based image registration methods in

[2], [11], [14], [3] unsuccessful.

3.3 Why Pseudo-Log-Polar [8] Does Not Work

Other scholars presented the pseudo-log-polar method [8]

for image registration, which, from our point of view,

cannot achieve a better result compared with the pseudo-

polar method. Here, we will not include their techniques

completely but only to point out its internal problems. The

idea is to separate the plane to BH and BV (BH and BV are

the two subsets of points defined in [8]). Take BV as an

example, the process of the pseudo-log-polar applies the

1D FFT to each column of the image and then the 1D FFT to

each row of the result obtained by the 1D FFT. However, the

pseudo-log-polar chooses nonintegral elevation direction

frequencies like F ð0:2Þ and F ð1:7Þ rather than integral

elevation direction frequencies like F ð0Þ and F ð1Þ after the

1D FFT step. Notice that it is impossible to get the exact

value of arbitrary nonintegral frequencies by the ordinary

1D FFT, so such an algorithm in [8] requires another

inaccurate interpolation operation on the ordinary FFT grid

which results in an underlying error. However, for the

pseudopolar and MLFFT, each point’s value on both the

pseudopolar grid and the MLFFT grid is from the exact

Fourier-transform results of the corresponding frequencies

rather than the interpolated results.

4 EXPERIMENTS AND RESULTS

In this section, MLFFT is tested along with the pseudopolar
and the traditional 2D Cartesian FFT in image registration,
and we will use these algorithms to recover the scale
factors, rotation angles, and translation parameters of two
images (demonstrated in Fig. 7). All of the test pictures are
preprocessed by a high-pass filter and a Blackman window
according to [3] and [11]. The tested picture groups are
shown in Figs. 8 and 10. We will recover the scale factor,
rotating angle, and translation for the left and right images
in each group (Fig. 8). We use a bilinear interpolation for all
the experiments, but we can use the nearest neighbor
interpolation instead. All our experiments are accomplished
on a 32-bit AMD Windows XP platform with the Intel
Image Process Library 2.5. All images in Figs. 7, 8, 10, 14, 15,
and 16 are at the resolution of 256 � 256.

We first present in Fig. 9 the results of the experiments of
Fig. 8. The real scaling and rotation factors are listed in the
second column in Fig. 9. The registration results for
different algorithms are listed in the other following
columns.

Take a close look at the numbers in Fig. 9. For the images
of groups A, B, and C, MLFFT succeeds in retrieving the

PAN ET AL.: AN ADAPTABLE-MULTILAYER FRACTIONAL FOURIER TRANSFORM APPROACH FOR IMAGE REGISTRATION 407

Fig. 7. The image registration. Determining the transform parameter of

the left two images. The third image is produced by combing the left two

images after applying the inverse transform with the parameter we just

recovered and a Sobel edge detecting process to one of them.

Fig. 8. The five benchmark groups for different image registration

methods. The results are listed in Figs. 9 and 11.

Fig. 6. (a) SNR, PeakERs at different scale factors of Lena image.
(b) Phase correlation results of Step 5 of the algorithm described in
Section 2.5, the left one is an image with scale factor 1.20, the right one
is an image with scale factor 4.50. We can see that a larger scale factor
results in more noise dots around the peak. (c) The phase-correlation
results of a 1.2x Lena image using the five-layer MLFFT (left) and the
pseudopolar (right), the interpolation error is largely reduced by MLFFT,
as we can see that there are fewer noise dots around the peak in the left
image than in the right image.
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parameters of rotations and scaling, while other methods
failed. Our experiments show that, actually, MLFFT can
recover scale factors up to 10 without rotation or up to 5
with arbitrary rotation, while the current best result [2] is
only up to 4. Recall that it has been covered in Section 3.2
why it is hard to recover a larger scale factor.

In groups D and E, MLFFT reaches more accurate results
without any iteration, unlike [2], and its rotation error is
below 1� (as accurate as [14]). In addition, the experiment
indicates that the normal three-layer or four-layer MLFFT
performs well enough in image registration.

We also have done experiments of MLFFT using other
images in Fig. 10 to test MLFFT’s accuracy and we
randomly rotate them to different angles and enlarge them
to different scales in acceptable range that these algorithms
do not fail. The overall accuracy statistics for all of the
benchmark images in Figs. 8 and 10 are available in Fig. 11.
Note that only the images registered successfully are
counted in Fig. 11. By analyzing the data in Fig. 11, we
realize that the angular accuracy of MLFFT is as good as
[14] and the scaling accuracy is enough satisfying. How-
ever, unlike MLFFT, [14] works only for rotation estimation,
it cannot be applied to the estimation of both translations
and scaling in images. The experiments fully demonstrate
the advantages of MLFFT over all other current Fourier-
based methods, including pseudopolar Fourier transforms.

We also used the research image data set from the
University of Southern California (USC) [26] for the

benchmark and converted all USC images to a size of

256 � 256. This data set has around 300 pictures from

textures to aerial pictures and its wide coverage made us

believe that it is a good test suitable for our purpose. We use

all of these images by synthesizing many rotated and scaled

images from the original images and registering them.

Thus, we could build up thousands of test cases. Rather

than running through the whole data set with different

algorithms for image registration, we choose to separate our

benchmark into two experiments.
In the first experiment, we test only two extreme cases

(5x zoom with rotation and 10x zoom without rotation) to

see the performance and the success rates are listed in

Fig. 12. We also tested the SIFT method by using the

matched key points to calculate the transformation ma-

trices. Notice in our tests that we did not use any iteration,

while, in [2], the researchers applied several times of the

pseudopolar-based registrations iteratively on two images

to reach the correct results.
From Fig. 12, we can tell that the MLFFT is much better

than the pseudopolar method in the extreme cases, which is

enough to prove that the MLFFT does eliminate much more

interpolation noises in registration tasks than the pseudo-

polar method. In addition, in cases with large scale factors,

MLFFT stands out from all three algorithms.
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Fig. 9. The registration results of benchmark pictures in Fig. 8.

Fig. 10. Other benchmark images.

Fig. 11. Mean error statistics for all benchmark images in Figs. 8 and 10.

Fig. 12. Success rate of the USC image registration benchmark tests

under two circumstances.
Fig. 13. We perform massive tests on the three categories of the USC

image library. (a) Repeated textures. (b) and (c) Scenes.
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Another test we conducted is that we manually categor-

ize the whole USC image library to two categories, repeated

textures and scenes, since the database is mainly consisted

of these two kinds of images, as shown in Fig. 13.
We run SIFT and MLFFT on randomly selected rotation

angles and scaling values, as described in Fig. 14a, with

moderate translations and calculate the overall success rate
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Fig. 15. (a) Gaussian noises are added to the right image and SIFT fails

in such registration tasks. (b) The repeated texture is also a bad case for

the SIFT method.

Fig. 16. Two images (a) and (b) taken by a handheld camera are combined into one picture, shown in (c) and (d), using MLFFT and the pseudopolar

FFT, respectively.

Fig. 14. Success rate on categorized images with MLFFT and SIFT

method over the USC image database. (a) All test cases. (b) Success

rates over the USC image database.
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for MLFFT and SIFT, as described in Fig. 14b. Small
translations mean over 1/5 of the images are translated out
of the picture, while large translations mean more than half
of the images are translated out of the picture.

This experiment suggests the nearly equal performance
of MLFFT and SIFT in the typical cases. For the cases with
simple textures and cases with large translations, MLFFT
and SIFT’s overall success rates are not perfect. However, in
most typical cases with moderate translations and usual
images, both MLFFT and SIFT could reach a success rate
over 90 percent.

To conclude, comparing Fourier-based methods with the
state-of-the-art SIFT-based spatial image registration tech-
niques, we realized that SIFT, as a representative of current
spatial registration techniques, is generally the best option
for image registration: It supports any transformation
models besides perspective models; it has a high success
rate in our tests. However, we see three advantages for the
MLFFT method over SIFT: 1) For large scaled image, SIFT
does not work at all. 2) For noised image and texture-like
image, e.g., in Figs. 15a and 15b, the SIFT method fails,
while the MLFFT succeeds in retrieving the transforming
parameters. 3) The computational complexity for spatial
methods is high, while FFT-based methods have a fixed and
lower computational complexity, especially for high-resolu-
tion pictures.

As a conclusion as well as a guideline for readers, we
learn from our attempts and experiments that MLFFT is
accurate on images with rich high-frequency component,
like the aerial images of the USC image database, in which
values vary significantly from pixel to pixel. MLFFT works
less satisfyingly on smooth images like human face in
Fig. 13b, which fails in our tests. Both MLFFT and SIFT
methods suffer from huge translations. However, MLFFT is
more suitable for the cases with significant scaling, noise
interference, or texturelike images.

Here we present a couple of image mosaicking examples
in Figs. 16, 17, 18, and 20, produced by the framework
presented in this paper. In Fig. 20, we present a panorama,
which is a combination of 13 pictures by using MLFFT.
Three sets of pictures taken casually with a hand-held
camera in Figs. 16, 17, and 18 are combined to three larger
images by using the results recovered by the PPFFT [2] and
the MLFFT algorithm in Section 2.5, respectively. The
parameter values of the translating, rotating, and scaling
transforms recovered in Figs. 16, 17, and 18 are shown in
Fig. 19. If not using MLFFT, we cannot combine them with
such accuracy. The current state-of-the-art pseudopolar FFT
does not work so accurately for such image mosaics and
even fails in some cases. In Fig. 16, we demonstrate the
rotation accuracy of MLFFT. In contrast, the pseudopolar
FFT failed to recover the correct transform parameters.
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Fig. 17. Using MLFFT to recover transforms among the above pictures (a), (b), and (c), which were hand-taken with various focus lengths.

(d) Registration Result of MLFFT. (e) Registration Result of the pseudo-polar FFT.
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Notice that there are two-to-three-pixel errors in the
registration results in Fig. 17 and this is mainly because
the camera-taken pictures have a more complex transform
model, which the MLFFT cannot handle, rather than simple
rotating, scaling, and translating. This example presents the
ability of MLFFT in recovering scale factors. However, the
pseudopolar FFT performs less accurately: Mismatches are
remarkable in the top-left corner in Fig. 17e. Although there
are errors at the top-right corner in Fig. 18d, Fig. 18
illustrates that the MLFFT can handle situations in which
rotation, scaling, and translation are all involved and the
pseudopolar FFT failed to get a satisfying result (see
Figs. 18e and 19).

In the experiments in Figs. 8, 9, 10, and 11, we have
successfully repeated the experiments in [2], [3] and
recovered scale factors over 4 with the pseudopolar FFT,
again proving the results in [2]. We further demonstrate the
power of MLFFT by recovering even larger scale factors. As
we stated in the introduction, the pseudopolar FFT could

not handle cases involving real images well, but, in our
experiments, we fully demonstrate that our MLFFT method
is able to register images taken casually by a handheld
camera. Our target of minimizing the interpolation error is
achieved and we believe that MLFFT is a strong candidate
among Fourier-based registration methods and could be
used as a stand-alone tool and a bootstrap for image-
mosaicking applications.

For a normal 256 � 256 image, it takes 1.5 seconds to go
through the entire algorithm with a three-layer MLFFT on a
2 GHz PC. The short interval persuades us that our
algorithm may be suitable for interactive applications with
a dual-core CPU platform for the MLFFT algorithm can run
concurrently for each independent layer.

5 CONCLUSIONS

In this paper, a novel method MLFFT is presented for the
fast and accurate polar/log-polar Fourier transforms. Its

PAN ET AL.: AN ADAPTABLE-MULTILAYER FRACTIONAL FOURIER TRANSFORM APPROACH FOR IMAGE REGISTRATION 411

Fig. 18. Using MLFFT to register the above three pictures (a), (b), and (c), which are taken casually. (d) Result registered by MLFFT. (e) Result

registered by the pseudo-polar FFT: The recovered parameters of (c) result in a huge deviation (with an unreasonable scale factor, see Fig. 15), so

(c) is not visible in the result.

Fig. 19. The detailed registration results of the images in Fig. 12 with PPFFT and our algorithm, MLFFT. PPFFT failed in the row with a star *. For the

case of that in Figs. 14b and 14c, the deviation of the scale factor by PPFFT is so large that there is no need to do phase correlation to detect

translations. The central point is used as the axis point in rerotating and rescaling the image before the translation estimation.

Authorized licensed use limited to: MIT Libraries. Downloaded on September 16, 2009 at 12:47 from IEEE Xplore.  Restrictions apply. 



advantages over other fast polar and log-polar Fourier
transform methods and its efficiency are proven theoreti-
cally and experimentally. In addition, the presented method
is applied to image registration and succeeds in recovering
scale factors up to 10 and rotation angles with high accuracy
than results in [2], [14], which demonstrates MLFFT’s
accuracy again. Unlike other pseudopolar-based registra-
tion schemes [2], our method does not require any
interpolation and iteration. Thus, it is more accurate and
significantly faster. We believe that the MLFFT method can
also be applied to other research that involves fast polar/
log-polar 2D Fourier transforms not only in image registra-
tion. In addition, as the multicore CPU architecture is
becoming more popular today, parallel computing each
layer in a multicore CPU system may make the MLFFT
more applicable and useful.

In the future, we will extend MLFFT to other signal
processing applications. We will also continue to improve
FFT-based image registration techniques and extend them
to more complicated situations (e.g., efficiently registering
videos into panoramic mosaics, 3D object recognition, etc.)
besides image mosaics.
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