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Abstract-Multiple views of a scene can provide important infor-
mation about the structure and dynamic behavior of three-dimensional
objects. Many of the methods that recover this information require the
determination of optical flow-the velocity, on the image, of visible
points on object surfaces. An important class of techniques for esti-
mating optical flow depend on the relationship between the gradients
of image brightness. While gradient-based methods have been widely
studied, little attention has been paid to accuracy and reliability of the
approach.

Gradient-based methods are sensitive to conditions commonly en-
countered in real imagery. Highly textured surfaces, large areas of
constant brightness, motion boundaries, and depth discontinuities can
all be troublesome for gradient-based methods. Fortunately, these
problematic areas are usually localized can be identified in the image.
In this paper we examine the sources of errors for gradient-based tech-
niques that locally solve for optical flow. These methods assume that
optical flow is constant in a small neighborhood. The consequence of
violating in this assumption is examined. The causes of measurement
errors and the determinants of the conditioning of the solution system
are also considered. By understanding how errors arise, we are able to
define the inherent limitations of the technique, obtain estimates of the
accuracy of computed values, enhance the performance of the tech-
nique, and demonstrate the informative value of some types of error.

Index Terms-Computer vision, dynamic scene analysis, error anal-
ysis, motion, optical flow, time-varying imagery.

I. INTRODUCTION
T HE velocity field that represents the motion of object

points across an image is called the optical flow field.
Optical flow results from relative motion between a cam-
era and objects in the scene. Most methods which esti-
mate image motion lie within two general classes. Gra-
dient-based approaches utilize a relationship between the
motion of surfaces and the derivatives of image brightness
[2], [3], [6], [14], [11], [13], [15], [17], [18], [19], [21].
Matching techniques locate and track small, identifiable
regions of the image over time. A third approach that has
recently received attention examines the dynamic varia-
tion of image structures such as contours [22].
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The appropriateness of a motion estimation technique
depends on the nature of the processes that will interpret
the estimates. Each approach has its strengths and weak-
nesses. Since the success of the interpretive and subse-
quent processes depends on the properties the motion
measurements, it is very important to understand the char-
acteristics of motion estimation techniques. The perfor-
mance dependencies of motion estimation techniques have
rarely been examined. In this paper we analyze one
method to determine the sources of error and methods to
cope with error.
For many problems gradient-based methods offer sig-

nificant advantages over matching techniques. Matching
techniques are highly sensitive to ambiguity among the
structures to be matched. Optical flow can be accurately
estimated for only highly distinguishable regions. This
means that flow can only be determined at a sparse sam-
pling of points across the image. Furthermore, it is com-
putationally impractical to estimate matches for a large
number of points. The gradient-based approach allows
optical flow to be simply computed at a more dense sam-
pling of points than can be obtained with matching meth-
ods.

Gradient-based techniques avoid the difficult task of
finding distinguishable regions or points of interest. The
gradient approach leads to algorithms which are charac-
terized by simple computations localized to small regions
of the image. These techniques can be applied over the
entire image. As we shall see in the analysis that follows,
the gradient technique is also sensitive to ambiguous
areas-it is impossible to locally determine the motion of
a homogeneous region. However, gradient-based esti-
mates are typically available over a greater area than those
obtained reliably by matching. In addition, the loss of
precision for gradient-based estimates in ambiguous areas
can be quantified. Accuracy measurements can be used to
weight the contribution of motion estimates in further
analysis or to filter poor estimates from the flow field.
These accuracy measurements can be obtained as a by-
product of the flow estimation process and require little
additional computation.
While gradient-based methods have been widely stud-

ied, little attention has been paid to the accuracy and re-
liability of the approach. A major difficulty with gradient-
based methods is their sensitivity to conditions commonly
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encountered in real imagery. Highly textured surfaces,
motion boundaries, and depth discontinuities can all be
troublesome for gradient-based methods. Fortunately,
these problematic areas can be identified in the image. In
this paper we examine the conditions that lead to errors,
methods to reduce errors, and the estimation of measure-
ment errors for one class of gradient-based techniques. By
understanding how errors arise we are able to define the
inherent limitations of the gradient-based technique, ob-
tain estimates of the accuracy of computed values, en-
hance the perfornance of the technique, and demonstrate
the informative value of some types of errors.

II. THE GRADIENT CONSTRAINT EQUATION
The gradient constraint equation relates optical flow-

velocity on the image (u, v)-and the image brightness
function I(x, y, t). The common assumption of gradient-
based techniques is that the observed brightness-inten-
sity on the image plane-of any object point is constant
over time. Consequently, any change in intensity at a point
on the image must be due to motion. Relative motion be-
tween the object and camera will cause the position of a
point located at point (x, y) at time t to change position
on the image over a time interval 6t. By the constant
brightness assumption, the intensity of the object point
will be the same in images sampled at times t and t + 6t.
The constant brightness assumption can be formally stated
as

I(x, y, t) = I(x + 6x, y + 6y, t + 6t). (1)

Expanding the image brightness function in a Taylor's
series around the point (x, y, t) we obtain

I(x + 6x, y + 6y, t + 6t)

=I(x, y, t)+ a ax + a 6y + at + h.o.t. (2)ax ay at
A series of simple operations leads to the gradient con-
straint equation:

0 = Ixu + IA,v + I, (3)

where

ax' = ay
I

at

A detailed derivation is given by Horn and Schunck [6].

III. GRADIENT-BASED ALGORITHMS
The gradient constraint equation does not by itself pro-

vide a means for calculating optical flow. The equation
only constrains the value of u and v to lie on a line when
plotted in flow coordinates.

The gradient constraint is usually coupled with an as-
sumption that nearby points move in a like manner to ar-
rive at algorithms which solve for optical flow. Groups of
neighboring constraint equations are used to collectively
constrain the optical flow at a pixel. Constraint lines are
combined in one of three ways. Methods of local opti-

mization [13], [15], [17], [18], [21] solve a set of con-
straint lines from a small neighborhood as a system of
equations. Global optimization [5], [6], [19] techniques
minimize an error function based upon the gradient con-
straint and an assumption of local smoothness of optimal
flow variations over the entire image. The clustering ap-
proach [2], [3] operates globally, looking for groups of
constraint lines with coinciding points of intersection in
flow space.
We will examine the local optimization technique in de-

tail. Some implications of this analysis for other methods
will be discussed in the summary section. The analysis is
further extended to global methods in [8], [9].

IV. LOCAL OPTIMIZATION
The method of local optimization estimates optical flow

by solving a group of gradient constraint lines obtained
from a small region of the image as a system of linear
equations. Two constraint lines are sufficient to arrive at
a unique solution for (u, v). More than two equations
may be included in the system to reduce the effects of
errors in the constraint lines. The solution to the over-
determined system may be found by any of a number of
error minimization techniques.
We will examine errors in the solution of two equation

systems. In practice one should solve an overdetermined
system by some method of best fit, such as least squares.
The analysis presented here is extended to over-deter-
mined systems in [7].
The sources of errors for two equation systems will be

examined in Section V. Error reduction techniques and
methods to determine the accuracy of optical flow esti-
mates will be discussed in Section VI. The techniques
presented in Section VI were implemented and tested with
real imagery. The results of this analysis are presented in
Section VII.

V. ERROR ANALYSIS

The pair of equations which we will solve to estimate
optical flow at point pi = (xi, yi, ti ) is

(i) IM')U + I0V = -I(

(j) 4jU + J)V = -I(i) (4)

where the gradients Ix, Iy, and I, in equations i and j are
evaluated at pi and a nearby point pj.
The gradients in the system (4) are estimated from dis-

crete images and will be inaccurate due to noise in the
imaging process and sampling measurement error. Also,
the values of (u, v) at pi and pj are assumed to be the
same. The formulation will be incorrect to the extent that
optical flow differs between the two points. The error in
the optical flow estimate will depend on the measurement
errors in the gradient estimates, the local variation in op-
tical flow, and the error propagation characteristics of the
linear system. A system which is very sensitive to small
perturbations in the constraint equations is said to ill-con-
ditioned.
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We will examine the factors that contribute to gradient
measurement errors and consider how violations of the
constant flow assumption lead to errors in the estimated
flow vector. Next, we will examine the factors that deter-
mine the conditioning of the linear system. Finally, we
will discuss how all these factors together determine the
accuracy of optical flow estimates.

A. Gradient Measurement Error
The estimates of the intensity gradients Ix, Iy, and It will

be corrupted by errors in the brightness estimates and in-
accuracies introduced by sampling the brightness function
discretely in time and space. The error in the brightness
function is random and results from a variety of sources
such as channel noise and quantization of brightness lev-
els. We assume that the brightness error is approximately
additive and independent among neighboring pixels. The
gradient, estimated from changes in the brightness esti-
mates, will contain a component of random error which
is distributed like the error in the brightness function. The
random component of the gradient error will be additive
and independent of the magnitude of the gradient to the
extent that the brightness noise is additive.
The brightness function is sampled discretely in time

and space and this will introduce a systematic measure-
ment error into the estimates Ix, IY, and I, of the gradients.
The gradient sampling error depends on the second and
higher derivatives of the brightness function. To examine
the sampling error in Ix we expand the brightness function
evaluated at (x + Ax, y, t) around the point (x, y, t)
producing

I(x + Ax, y, t) (5)
- I(x, y, t) ± 4Ax ± IxAx2 + h.o.t.

where Ix, IXX are the partial derivatives of brightness in the
x direction evaluated at (x, y, t). Rearranging terms we
obtain an estimate for the brightness gradient in the x di-
rection:

I(x + Ax, y, t,) -I(x, y, t)
x Ax (6)

= Ix + I Ax + h.o.t.

The error EIx(sampling) is defined as Ix-Ix, the difference
between the computed and true values. From (6), we ob-
tain the approximate relationship

IEIx(sampling) z:J Ax.X* (7)

Likewise, the sampling error in the estimates of IY and It
are approximately given by

C6Iv(sampling) IyyAY (8)

-EIt(sampling) IttA t. (9)
The sampling error for the spatial gradients depends upon
the spatial resolution of the camera, Ax and Ay, and the
second spatial derivatives of the brightness function, Ixx,
Iyy. The sampling error for the temporal gradient,

6I(sampling)' is influenced by the frame rate, A/t, and the
higher order derivatives of the brightness function over
time.
We can express EI,(sampling) purely in terms of spatial de-

rivatives and motion. Differentiating the gradient con-
straint equation (3) with respect to x, y, and t we obtain
the following three equations:

,IX u + ix au + Iyxv + I, a =- -IxAu avaxUI~Ix v+I ax

au av
Ixy u + Ix - + Iyyv + Iy =-IYxay +ay

au av
kxtu +Ix-+ itv±+ y---it

(10)

(11)

(12)

Where the second derivatives of the brightness function
exist and are continuous, the left-hand side of (10) and
(11) can be substituted for I.t and Iy, in (12). Collecting
terms we see that

-[u v] I ] L -] uIU ax ax L;]

I

au av
+]
[ au Ia

ay ay -I rat atj Iv -i
-i

(13)
The first term in (13) depends upon optical flow while the
rest of the left-hand side depends upon the derivatives of
optical flow over time and space. If optical flow is ap-
proximately constant in a small neighborhood and ap-
proximately constant over time at each point on the image
then

W he u v]L Y ] v Itt (14)

We have derived a constraint equation for second deriv-
atives that is analogous to gradient constraint equation (3).
Without loss of generality, we can rotate our coordinate

system so that the flow vector at a point lies along the x-
axis. In the new coordinate system we have

U2Ixx Itt (15)
It is evident from (15) that the magnitude of I, depends
upon the second derivative of the brightness function in
the direction of motion and the magnitude of motion. The
temporal derivative will be well estimated only where the
spatial brightness function is nearly linear in the direction
of motion.

In summary, the systematic errors in the gradients
which make up the coefficients of (4) are given by (7),
(8), and (9). In general, the systematic error in estimating
I, is influenced by the magnitude of optical flow and the
derivatives of optical flow and the first and second spatial
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derivatives of brightness. When the x-axis of the coordi-
nate system is aligned with motion and optical flow is
nearly constant over time and space we can characterize
the systematic error in the temporal derivative by

E It (satil)lpitig) U-M ,- ( 16 )
If there is significant optical flow, the error given by

(16) can become quite large in regions which contain non-
linearities in the brightness function and substantially al-
ter our estimate of It.

B. Nonuniformity in the Flow Field

The estimation scheme we have been analyzing as-
sumes that velocity on the image plane is constant in some
small neighborhood. This will be true only for very spe-
cial surfaces and motions. When optical flow is not con-
stant the method can provide a good approximation where
flow varies slowly over small neighborhoods.
The true set of equations in (4) should actually be

4 U + IM v = -I(i)

IJ()(u + Au) + I(J)(v + A v) -I(i) (17)

where the actual flow vectors at points pi and pj are (u,
v) and (u + Au, v + Av), respectively, and the gra-
dients are estimated at points pi and p1. The difference
between the true solution and our estimate can be treated
as an error on the right-hand side of (17) by distributing
the multiplication on the left-hand side of the system and
rearranging terms as

li)u + I(,iv = -I(i)

where 0l is the angle between the gradient vector, g ),
and the local change in optical flow, Ai , and 02 is the
angle between the gradient vector, g(J), and the vector Ao
+ Co.

The relative error in I, depends on the relative lengths
of the vectors X and Aw and relative magnitudes of the
cosines of the angles 01 and 02. In general, the orientations
of the spatial gradient, optical flow, and the local change
in optical flow will be independent. Therefore, we expect
the relative error in I, to be strongly related to the relative
magnitudes of the flow and change of flow vectors.

In most scenes, flow will vary slowly over most of the
image. At surface boundaries we can expect to frequently
find discontinuities in optical flow due to discontinuities
in motion or depth. Here, the variation in flow will con-
tribute a substantial error and flow estimates will usually
be quite poor. However, much of the image will consist
of smoothly varying surfaces. When neighboring image
points lie on the same smooth surface, flow will generally
be similar and hence, the error contributed by variations
in flow will be small.
We will consider an example which allows arbitrary

three-dimensional translation of a planar surface to dem-
onstrate the important factors influencing the error con-
tributed by variations in optical flow. We consider two
neighboring image points that lie on a surface translating
with velocity (U, V, W) in three-dimensional space (see
Fig. 4). Let the surface be defined by the planar equation

Z(X, Y) = R +cX + 3Y. (23)

In Appendix A we derive the following approximate
bound

IVilu + Il1lv = EIjAfloxi

6Aflow [Ii), Y
-,

v
l.

(18)

(19)

It,) < tan y k11(a, ) + VW)
where

Thus, the error caused by violation of the constant flow
assumption can be treated as an additional error in the
estimate of I.
To examine the significance of this error, we will con-

sider the size of Afli,, relative to I(J). But first we will
convert to vector notation. Let

-()= j(i)]' Lul and s

Frteconstraint equation at pj, we know from (17) and

(19) that

6-Aflow (21)
II(j) * (Aco +61

IA +\ 11 C os (22)

IIAO) + X) 11 COS 02

tan y, 11 (Ax, AY)11
f

(25)

The angle -y is the angle subtended by (Ax, Ay) with a

focal length off; this is simply the size of the neighbor-
hood measured in degrees of visual angle. The length of
the change-of-flow vector relative to the length of the flow
vector depends upon the size of the neighborhood, the
slope of the surface viewed, and the ratio of velocity along
the line of sight to velocity perpendicular to the line of
sight.

Recall that the value given by (24) represents a rough
measure of the proportion of error on the right-hand side
contributed by variations in optical flow. If the neighbor-
hood is small we expect random errors in the temporal
gradient to usually be larger than the error caused by flow
variation. The gradient measurement errors discussed in
the last s.--tion may lead to a much larger degradation.
So, for most of the image the error caused by variation in
flow should not constitute a problem. However, at surface

where ) (24)
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boundaries optical flow can change dramatically, espe-
cially when object motions are allowed. Here, the local
optimization result will be a very poor measure of optical
flow.

C. Conditioning

The accuracy of the estimates ui and v will depend on
the measurement errors in the gradient constraint equa-
tions and the error propagation characteristics of the lin-
ear system. When a system of linear equations is very
sensitive to small errors in the coefficients or right-hand
side it is said to be ill-conditioned. If the spatial intensity
gradients change slowly, then the linear system will con-
tain constraint lines that are nearly parallel. As a conse-
quence, the system will be nearly singular and small er-
rors in the gradient measurements may result in large
changes in the estimated flow value. We will find that the
conditioning of the linear system largely depends upon
nonlinearities in the brightness function which are per-
pendicular to the brightness gradient.

If the gradients are known exactly and optical flow is
constant then

G = -b (26)

where

) I) C) = L and b = )

(27)

As before, the rows of G and b are taken from a point pi
and its neighbor pj. The vector X will be in error to the
degree that the gradient measurements are inaccurate and
optical flow varies between points pi and pj. The previous
section showed that the error accrued when u and v are
not constant is the same as that which would be obtained
if the b vector is suitably modified as in (18). This error
will be absorbed on the right-hand side of (26). Thus, the
system which is actually solved is

(G + E)(w + b6o) = -(b + 6b) (28)
where

E(i e(i)E= ,

6b= l and b6=KL (29)

The errors in the spatial and temporal gradients arise from
both systematic and random measurement errors.
A number of measures of conditioning have been pro-

posed [23]. The most widely used index of conditioning
is the condition number, condo), which is defined as

for a matrix of coefficients G. The condition number
roughly estimates the extent to which relative errors in
the coefficients and the right-hand side are magnified in
the estimate of optical flow. For the problem at hand, the
conditioning of the matrix G is determined by the nature
of the spatial brightness function over the interval (pi,
pj).

The inverse of G can be directed calculated as

G- l I yI()-(x
MI(iIj) -I()()LIOTO-)2

1 F ~IU) - I( 1

- g(i) 11g(j) sin 0 L-I(i) JMj)

(31)

(32)

where g(') is the spatial gradient vector at pi and 4 is the
angle between g(i) and g().

Before we can evaluate the condition number we must
select a matrix norm. We will use the Frobenius norm.1
We will continue to use the || * 112 norm to evaluate vector
norms. From the definition of 11 IIF and the results above
we have

11 g(i) 2 + 11g(j)1 2
cond(G) = 11 g(') 11 11 g(i) 11 sin o (33)

I lg` 11 + Wl lA (4
sinr (1g(i)l1+ 1g(i) (34)

The magnitude of cond(G) depends on the orientations
and relative magnitudes of the two spatial gradient vec-
tors. The value of cond(G) is minimized when the spatial
gradients are perpendicular and have the same magnitude.
As the spatial gradients become more nearly parallel the
magnitude of cond(G) is increased, and hence, error
propagation is worsened. Increases in the relative differ-
ence in the magnitudes of the spatial gradients also cause
cond(G) to increase. The magnitude of this effect will not
usually be important. If neither of the gradients is very
small, then the relative sizes of the gradients will not dif-
fer enormously. The gradients will be poorly estimated
where they are small, so for multiple reasons estimates
will be error prone in these regions.
The most important factor determining conditioning is

the angle between the gradients. Where the gradients are
nearly parallel, conditioning will be a problem. Thus, if
both points lie along a straight edge, we cannot obtain a
solution. (This is an example of the aperture problem [5].)
Some higher derivatives of brightness must be large for

there to be a significant change in gradient orientation over

'The Frobenius norm, |I IF, is defined as the square root of the sum of
the squares of all the elements. The Frobenius norm can be used to bound
the more familiar || * 112 norm [20]. It can be shown that

cond(G) = |IGII GIG-'1 (
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a small neighborhood. Let Ag be the difference between
the two gradient vectors. We can expand the gradient in
a Taylor series

(j,~ ~ J(j, r,i ; Axl
g () = Q i ) j [AY] + h.o. t. (35)

Consequently,

A\g ~ji) (l) Ay. (36)

The angle between the gradients depends on the compo-
nent of Ag that is perpendicular to g(l). If optical flow is
to be accurately estimated in a small region around p(i),
then at least one component of the second derivative per-
pendicular to the gradient must be large. There must be
at least some direction in which we can select a neighbor
so that the gradient orientation g(J) will differ from g(l).
The importance of variations in the spatial gradient for
motion detection has been recognized by others. The
change in the direction of the spatial gradient has been
used to identify corners that can act as feature points for
matching algorithms [10]. A similar corner detector has
been used to identify a sparse set of locations where a
local gradient-based algorithm might yield acceptable re-
sults [14]. The examination of conditioning provides an
analytical basis for attending to variations in the spatial
gradient and a quantitative measure of the error propaga-
tion characteristics of a local system of constraint equa-
tions.

D. Combining the Sources of Error
We now face a dilemma. We have just shown that some

component of the second spatial derivative of the bright-
ness function must be large to minimize error propaga-
tion. However, we earlier showed that sampling errors in
the gradients were proportional to the magnitude of the
second derivative. There is a tradeoff between the gra-
dient measurement errors and conditioning. The problem
would not be too serious if we were only concerned about
errors in the spatial gradients. If we let the sampling in-
terval be reasonably small with respect to the neighbor-
hood from which we select our equations, we can poten-
tially satisfy both goals-the gradient can change slowly
from pixel-to-pixel but the total variation over the neigh-
borhood can be large enough to allow acceptable condi-
tioning.
A serious conflict can arise in the tradeoff between con-

ditioning and sampling errors in the temporal derivative.
Recall that the systematic measurement error in I, is pro-
portional to nonlinearities in the spatial brightness func-
tion (15). To achieve acceptable conditioning, the spatial
gradients in the local set of constraint equations must dif-
fer significantly in orientation. For this to happen the spa-
tial brightness function must be nonlinear in some direc-
tion. If optical flow is oriented in this direction, then the

condition number and measurement errors will be in-
versely related. Increases in the magnitude of the second
spatial derivatives will reduce the condition number and
increase the measurement error. Note that there need not
be a conflict; optical flow can be perpendicular to direc-
tion in which the gradient orientation is varying.
The problem is heightened by the sensitivity of gradient

measurements where the flow vector is large. The system-
atic measurement error in the temporal derivative in-
creases as the square of flow magnitude (15). Where flow
is large, even small nonlinearities can contribute signifi-
cant measurement errors. However, where object points
are stationary or moving slowly, the measurement error
in the temporal gradient will be negligible and most ac-
curate estimates will be obtained when the orientation of
the spatial gradients is highly variable.
As an illustration of the interplay between the concerns

of conditioning and measurenment error, consider an irm-
age painted with an isotropic texture. If the region is sta-
tionary then a large amount of detail will be desirable to
minimize conditioning. If optical flow is significantly
greater than zero, then too much detail will lead to un-
acceptably large measurement errors. A balance must be
struck between these two sources of error.
The conditioning of G can be improved by using a large

neighborhood. The risk in choosing neighbors over too
great a distance is that the error due to nonconstant flow
can become very large. If the neighbors lie on a single
surface the contribution of errors due to nonconstant flow
will usually grow slowly with neighborhood size. But if
neighbors lie on different surfaces their motions may dif-
fer substantially. As neighborhood size is increased it be-
comes more likely that neighbors will lie across a surface
boundary and the difference in optical flow will lead to
significant errors.
The total error in the flow estimate is determined by the

characteristics of the optical flow field, the nature of the
brightness function, and the selection rule for construct-
ing the linear system. The sources of error are summa-
rized in Table I. These factors interact in a complex way
to determine the accuracy of the local optimization
scheme. Only where the contribution of these sources of
error is balanced will good estimates be obtained.

VI. ALGORITHM EXTENSIONS BASED UPON THE ERROR
ANALYSIS

We next consider how knowledge about the causes of
errors can be used to reduce errors and introduce tech-
niques to judge the accuracy of estimates. The improve-
ments in performance are based upon parameter selection
and preprocessing of the image to extract the most infor-
mation from a region while minimizing the intrusions of
error. A method of iterative refinement [13], [16] is also
described.
By examining the image sequence for the conditions

which lead to errors we can judge the accuracy with which
estimates can be made before the estimate is actually
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TABLE I
THE SOURCES OF ERROR IN LOCAL ESTIMATES OF OPTICAL FLOW

Error Source D e te rm in an ts

1 Gradient Measurement Error

(a) random (0)It ) (i t sensor noise

(ii) 1t quantization noise

(b) systematic (I,) (i) tt nonlinearities in the brightness
function in the direction of
optical flow

(ii) tt optical flow magnitude

29 Non-constant Flow (i) tt neighborhood size

(ii) 1t surface slant

(iii) tt ratio of velocity along the
line of sight to velocity
perpendicular to the line
of sightl

3 Ill-conditioning (i) tl neighborhood size

(ii) tl sin of the angle between the
spatial gradient vectors

(Tii)t relative difference in the
magnitudes of the spatial
gradient vectors

14 error increases with determinant

tl error decreases with determinant
t for translating surfaces

made. Examination of the flow estimate itself can provide
additional information about the precision of the estimate.
Together, a priori and a posteriori estimates of accuracy
provide a useful heuristic for evaluating the precision of
optical flow estimates.

A. Error Reduction Techniques

1) Smoothing: Blurring the image will lead to a
smoother, more linear brightness function. Blurring will
diminish the systematic error in the gradient estimates by
reducing the second and higher derivatives of the spatial
brightness function. Random errors will also tend to be
reduced by the averaging. An unfortunate consequence of
the smoothing is that the error propagation characteristics
of the linear system will tend to be worsened. The
smoothing will reduce the variation of the gradient, lead-
ing to a more ill-conditioned system. The loss of detail is
desirable from the standpoint of gradient measurement but
undesirable with respect to conditioning. Hence, blurring
is most desirable in regions where the systematic error is
predominant.
As noted in Section V-A, the systematic error in the

gradients depends upon the nonlinearity of the brightness
function over the sampling interval. For the temporal gra-
dient, the systematic measurement error depends upon the
linearity of the brightness function over the region which
moves past a point of observation on the image and the
variations of optical flow over time and space. Blurring
will be most effective in portions of the image which
undergo a significant motion and contain large nonlinear-
ities in the brightness function. The degree of blurring

should be sufficient to approximately linearize the bright-
ness function over the region of translation.
The damage which blurring does to the conditioning of

the linear system can be counterbalanced by increasing
the size of the neighborhood over which the system is
constructed. The risk incurred by enlarging the area from
which the constraint equations are drawn is that the mo-
tions of the points may differ significantly, as could hap-
pen if points are on two different surfaces. The selection
of the radius of blur and the neighborhood size must be
made judiciously so as to avoid increasing the error in the
solution vector.

2) Overdetermined Systems: Until this point we have
ignored the problem of selecting the direction in which
the neighbor is to be chosen to form the linear system.
From our previous discussion of error propagation it is
clear that the choice of direction can dramatically affect
the error in the optical flow estimate. One way to circum-
vent the difficulty of choosing an appropriate direction is
to construct an overdetermined set of equations from
points in many directions. The overdetermined system can
be solved by minimizing the residual over possible values
of optical flow. The choice of the norm to be minimized
and the minimization scheme may be an important deter-
minant of the error, but are not analyzed here. As with
two equation systems, conditioning will be important for
overdetermined systems and conditioning will be related
to the same characteristics of the image as in the two
equation case. Another approach is to perform the anal-
ysis separately in a number of directions and then seek a
consensus among the solutions [4].

3) Iterative Registration: If optical flow is known ap-
proximately then this knowledge can be used to reduce
the error in the local optimization technique. We develop
a more general form of the gradient constraint equation
that solves for the difference between an approximate es-
timate and the actual flow. Our derivation abbreviates an
analysis presented by Paquin and Dubois [16].

Consider the image sequence that samples the three-
dimensional function. We actually estimate the displace-
ment of a point between successive samples of the image
sequence. If velocity is constant then the displacement
observed on the image over the time interval A t is (uA t,
vA t). Let d be a displacement vector in three-dimensional
x, y, t-space. Let d be an estimate of d. Given a displace-
ment estimate

F aAt]
L At

x-component of displacement

y-component of displacement

L t-component of displacement]
(37)

we can estimate optical flow by (ui, v).
The vector d/l d is a unit vector in the direction of
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the estimated displacement. The gradient of I in this di-
rection is

Id
LAjiiy| i (IAd + IJt' + At)At (38)

=ld (IAu ± I) - IXu -A,v)Ai\t (using(3)) (39)

= (I +(I 3u + I,iv)A3t (40)

where 3u = u - a andv v = v-2J are the errors in the
estimated flow velocities. Finally, we get an expression
that relates the error in the displacement estimate to mea-
surable brightness gradients.

|| 'IlId = Ix 6uAt + A,,6vAt = (II, 0) Ad (41)

where

FUA t

Ad = d - d = 6vAt . (42)

We can compute an estimate of the quantity (41) by using
the Taylor expression

I(x + ua'At, y + v'At, t1 + At) (43)
I(x, y, t,) + d

Solving for Id and combining with (41) yields the approx-
imation

(IX, A,) At

I(x + ua'At, y + v['At, t1 + At) - I(x, y, tl).

(44)
The new constraint equation (41) is a more general form

of the gradient constraint equation. The more general form
relates the gradient in an arbitrary direction to the spatial
gradients and optical flow. If the displacement estimate is
(0, 0, At), then Id = It.
The general form of the gradient constraint equation

can be used to refine an estimate d by solving for Ad.
The spatial components of displacement, (6uA t, 6vA t),
can be estimated with (44) using local optimization. This
process can be performed iteratively to find successively
better estimates of optical flow. An improvement can be
expected, on the average, whenever successive registra-
tions are closer to the true displacement vector:

11Adi+l> || ' |Adill i= 1,2,

The improvement arises from successively better esti-
mates of Id. As was demonstrated earlier in (13) the sys-

tematic error in the estimate of temporal derivative grows

as the square of flow magnitude. The same relationship is

true for directional derivative Id and the flow difference in
the general constraint equation.

Solving for the difference between an estimate of opti-
cal flow and the true optical flow is computationally
equivalent to registering a portion of an image pair and
estimating the change of position in the adjusted se-
quence. For this reason the technique has been called it-
erative registration [13]. The estimate of optical flow may
be derived from estimates made at some previous time or
from prior processing on a single frame pair.
Note that if the inequality of (45) does not hold, then

the error might be expected to increase. If an estimate of
optical flow is poor then the refinement effort may lead to
an even larger error. The next section is devoted to meth-
ods to evaluate the quality of optical flow estimates. A
measure of the accuracy of a flow estimate can be used to
judge whether or not the estimate should be used for reg-
istration. Alternatively, the degree of registration can be
based on the confidence put in the flow estimate, the more
accurate the estimate is judged to be, the more that the
frame pair should be adjusted in the direction of the esti-
mate.
The iterative registration technique can be combined

with variable blurring to produce a coarse-to-fine system
for estimating optical flow [13]. Flow is roughly esti-
mated with an image sequence which has been blurred so
that the brightness function is approximately linear over
areas the size of the maximum expected displacement. The
coarse estimate of optical flow is used, at each point, to
register a small region of the image at a finer level of
resolution. This process is repeated at successively finer
levels of resolution.
How much advantage can be gained from iterative reg-

istration? The spatial variation of optical flow will not be
affected by registration. Thus, the error due to incompat-
ibilities among equations in the linear system is unaf-
fected by iterative registration. Also, the estimate of the
directional gradient will contain some amount of random
measurement error even if successive frames are in per-
fect registration. The propagation of these errors depends
primarily upon the conditioning of || G ||, which is not in-
fluenced by registration. We cannot expect to reduce the
error in d below that caused by random error in Id and
nonconstant flow through iterative registration.
While performing a coarse-to-fine registration the de-

gree of blurring at each stage should be appropriate to the
expected error in optical flow at the next more coarse level
of analysis. In the absence of knowledge about the mo-
tions of individual points the blurring must be performed
uniformly across the image. While the error will, on the
average, be reduced for points which translate signifi-
cantly, the error will tend to be increased for points which
are stationary or move very little. No benefit is obtained
by linearizing the brightness function at stationary regions
and the error propagation characteristics are worsened.
Some of the accuracy lost at stationary regions during
coarse processing might be recovered at finer levels but,
in general, the best estimates could be obtained at a fine
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level without registration. In the next section methods are
developed to estimate the accuracy of optical flow esti-
mates. This information can be used in the coarse-to-fine
system of iterative registration to judge whether an im-
provement has been obtained at each level. A priori esti-
mates of the magnitude of flow are also developed in the
next section. The iterative registration technique can be
improved by adapting the technique to knowledge about
the accuracy of estimates and the magnitude of motion.

B. Estimating Error

Many of the factors which lead to errors in the local
optimization estimation technique can be identified and
measured from the image. The error propagation charac-
teristics of the linear system can be estimated from the
matrix of spatial gradients. The degree to which relative
errors are magnified is indicated by cond ( G). Regions of
the image for which the propagation characteristics are
poor will be very sensitive to small measurement errors
in the gradients. The optical flow estimates obtained in
these regions are likely to be inaccurate.
The systematic measurement error in I, was shown to

depend upon the linearity of the brightness function in the
direction of motion (13). One way to measure of the non-
linearity of the brightness function is to compare the spa-
tial gradients of brightness in successive frames [3], [13].
If Ix (x, y, t) is significantly different from I (x, y, t +
6t) then it can be inferred that the estimate of the temporal
gradient is likely to be in error.
Once an estimate has been obtained we can bound the

error by referring back to the image. The following a pos-
teriori error bound can be derived from (44):

(6u, 3v) 11 At
I(x + UaAt, y + bAAt, t1 + At) - I(x, y, t1)

(46)
If the norm of the spatial gradient is not too small, this
will provide a good measure of the magnitude of the error
in the flow estimate.

If an overdetermined set of equations is used to estimate
optical flow, then measurement errors in the gradients and
incompatibilities among the constraint equations due to
differential motion will be reflected in the residual of the
solution. The residual vector can be estimated by

Gw + b = r (47)
where i is the estimated optical flow and r is the residual.
A large residual indicates that substantial errors exist in
the system and that the estimated flow vector is likely to
be inaccurate.
The residual vector will be especially large at occlusion

edges where the change in flow is discontinuous. It has
been proposed that the residual error be used as an indi-
cation of the presence of an occlusion edge [21]. To be
identifiable, the change in optical flow across an occlu-

sion edge must lead to an error which is greater than that
normally encountered from other measurement errors. A
threshold on the residual must be established which will
normally be exceeded only at significant discontinuities
in the flow field. The error accrued from a change in the
flow vector is equivalent to a measurement error on the
right-hand side of the local optimization system. Since the
equivalent error on the right-hand side is magnified by the
size of the spatial gradients, the threshold for identifying
large residual errors should be adaptive to the spatial gra-
dients. Likewise, it was shown that the systematic mea-
surement errors in the gradients were related to the second
derivatives of brightness, so the threshold on the residual
should depend upon the second derivatives, as well.

VII. METHODS

The gradient-based approach is demonstrated with two
versions of the local optimization technique. The first
method implements a simple local optimization. The sec-
ond method combines local optimization with iterative
registration. Both methods assign a confidence to optical
flow estimates.

A. Simple Local Optimization
The basic local optimization method performs a least

squares minimization on an overdetermined set of gra-
dient constraint equations to estimate optical flow at each
point. Each image is first blurred with a Gaussian blurring
function. The standard deviation of the blurring function
used to collect the data presented here was about 2 pixels.
The blurring serves to reduce the noise in the image and
linearize the brightness function.

Constraint equations from a group of neighboring points
are gathered to produce an overdetermined system of lin-
ear equations of the form

Go = -b

where

I1)
GI(2) j(2)

I(n) I(n)
LX I

(48)

P()

(49)
Each row of G and b, is evaluated at a different point. To
ensure that the equations are sufficiently distinct we se-
lected neighbors from a 5 x 5 window centered around
the point to be estimated.

In general, the overdetermined system (48) has no exact
solution. An approximate solution is found by minimizing
the residual vector r, defined in (47). The flow estimate
is chosen to be the vector X which minimizes some cri-
teria function of r. In our work we minimize r12 by let-
ting

X = G+b (50)
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where G + is the pseudo inverse of G [20]. Calculation of
the pseudo inverse requires the inversion of the 2 x 2
matrix Gt-G. The inverse will not exist where the local
gradients do not sufficiently constrain optical flow to al-
low for an exact solution. In this case the confidence of
the flow estimate is set to zero and u and v are undefined.
A confidence is assigned to each flow estimate on the

basis of:
1) an estimate of the measurement error in the temporal

gradient,
2) an estimate of the conditioning,
3) the size of the residual vector r, and
4) the a posteriori bound given by (46).
The importance of each of these factors in determining

the accuracy of estimates is discussed above. That anal-
ysis does not, however, provide us with a formula for es-
timating the total error in the flow vector (u, v). We must
find a means to combine several factors which each indi-
cate the presence of conditions which can be lead to er-
rors.

Recall how each factor outlined above relates to the er-
ror in (u, v). The systematic measurement error in the
temporal gradient depends on the linearity of the bright-
ness function. The change in the spatial gradients between
successive frames provides an indication of the linearity
of the brightness function over the region which has trans-
lated by a point [131. To obtain an estimate of the contri-
bution of this error to errors in (6), we divide the magni-
tude of the change in the spatial gradients by the magni-
tude of the spatial gradient.
The error propagation characteristics of the linear sys-

tem GW = b can be determined by examining the matrix
of spatial gradients. If linear system is ill-conditioned,
small measurement errors will tend to produce large er-
rors in (u v.
The residual vector indicates the degree to which the

estimated flow vector jointly satisfies the system of con-
straint equations. But the value of the residual vector is
not easy to interpret because the size of the residual is
dependent on the overall magnitude of the brightness gra-
dients. We normalize the residual by determining, for each
equation, the minimum distance between the estimate and
the equation. This is equal to the distance between the
estimate and the constraint equation along a line perpen-
dicular to the constraint equation that passes through the
estimate. The average minimum distance is used as an
index of the degree to which the equations are satisfied.
Once an estimate has been obtained, the a posteriori

error bound given by (46) can be used to judge the accu-
racy of the estimate. In locations where this bound is large
the computed optical flow vector is likely to be in error.
Each of the measurements described above provides an

index of the expected error in the flow estimate. The four
error estimates are not independent. The residual error and
the a posteriori bound measure the accumulative error,
from all sources, in the flow estimate. The variation in
the spatial gradient and the conditioning of G measure

conditions which are likely to lead to poor estimates: non-
linearity in the spatial brightness function is particularly
troublesome for gradient measurement and the condition-
ing of G conveys the error propagation characteristics of
the linear system. Even though the four estimates are not
independent we found that they were best treated as sep-
arate sources of information and best combined multipli-
catively. We examined a number of combination rules and
found that the results were not highly sensitive to the par-
ticular rule for combining error estimates. A measure of
confidence was obtained from the inverse of the error es-
timates. The confidence value can be interpreted as a
rough measure of the likelihood that an optical flow esti-
mate is correct.

B. Local Optimization with Iterative Registration
The simple method of local optimization can be ex-

tended by a method of iterative refinement. Flow esti-
mates are used to register the frame pair on each succes-
sive iteration of the estimation procedure. It was earlier
shown that the measurement error in the temporal gradient
could be significantly reduced if the registration locally
reduced the displacement of the image frames. Since the
optical flow field will usually contain variations, the pre-
dicted registration will differ across the image. To obtain
a consistent linear system, a small region of the first frame
must be registered with the second frame on the basis of
the predicted flow at the point for which optical flow is to
be estimated. A system of linear equations is constructed
from the registered region.

This process can be performed iteratively, using the op-
tical flow estimated at the previous stage to register the
frame pair on the next iteration. It is important to empha-
size that, at each stage, the registration can only be ex-
pected to improve performance when the new registration
is an improvement over the registration in the last itera-
tion. Otherwise, the new estimate of optical flow will, in
general, be worse then the previous estimate. Since it is
desirable to register the image only where the flow esti-
mates are believed to be correct, we register in proportion
to the confidence in the flow estimate. A flow field of zero
flow vectors is used to initialize the first iteration.
The iterative registration technique is employed with

variable blurring to produce a coarse-to-fine system of
analysis. Images are blurred with a Gaussian weighting
function. In early iterations the standard deviation of the
Gaussian weighting function is large. The standard devia-
tion of the weighting function is reduced in each succes-
sive iteration. At each level, the radius of the blurring
function should be large enough to guarantee that the
brightness function is approximately linear over the max-
imum expected flow from the registered images.
The size of the neighborhood from which the constraint

equations are selected must depend upon the amount
which the images are blurred. At a coarse level of analysis
there is little detail which distinguishes nearby points. To
obtain sufficiently different constraint equations, the sep-
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TABLE 11
TIHE COARSE ro-FINE ANALYSIS

Iteration Blur Radius e Neighborhood Size

1 7 6

2 5 4

3 :3.5 3

I2 2

aration between observation points must be increased;
otherwise, the conditioning of the linear system will de-
generate.
Our system contains four iterations which correspond

to four levels of coarseness. The neighbor size and the
value of the standard deviation for the approximation to
the Gaussian weighting function are given in Table II for
each of the four iterations.
A difficulty with the coarse-to-fine system is that the

flow estimates for stationary and slowly moving points
made at coarse levels may be worse than the initially as-
sumed zero vector. To ensure that the new flow estimate
made at one level is not worse than the value input into
the level, we examine the error bound given by (46) for
both the initial and new estimates. If the error bound for
the new estimate is significantly larger than the bound for
the old estimate, it is ignored.

C. Results
The two methods described above were tested with the

two image pairs presented in Fig. 1. In the first sequence
the camera was stationary. The two toy trains in the center
of the first image move toward each other in the second
image. The second sequence simulates a view from an
aircraft flying over a city. The scene is actually a model of
downtown Minneapolis. (This picture originally appeared
in Barnard's thesis II].)
The optical flow fields obtained with the simple local

optimization technique are shown in Fig. 2(a) and (b) for
the moving trains and flyover scenes. Associated with
each vector is a confidence in the correctness of the value.
A threshold on confidence was established which pro-
duced a reasonably dense sampling of mostly correct val-
ues. Only vectors which exceeded the confidence thresh-
old are displayed. The resulting field was too dense to
clearly display the entire field. Consequently, only 20
percent of the vector fields are shown in Fig. 2.
The results of the coarse-to-fine method of iterative re-

finement are shown in Fig. 2(c) and (d). Confidence
thresholds were established which produced vector dens-
ities which were comparable to that obtained with simple
local optimization. Both techniques produce reasonably
accurate results with the moving train sequence.
The two techniques are more easily distinguished on the

basis of their performance with the flyover sequence. The
simple local optimization method produces a large num-
ber of errors even for the relatively sparse sampling of

(a)

(b)

Fig. 1. Image sequences.

vectors displayed in Fig. 2(b). The method of iterative
registration generated many fewer errors in fields which
are much more dense than that obtained with the simple
local optimization approach.
Note the areas where very few vectors are displayed.

Optical flow is poorly estimated in these regions and low
values of confidence are assigned to the estimates ob-
tained there. The problematic regions are usually fit into
one or more of the following characterizations:

1) largely homogeneous regions,
2) highly textured regions which are moving, or
3) regions which contain large discontinuities in the

flow field.
Optical flow estimates obtained in homogeneous areas are
likely to be in error because of the poor conditioning of
linear systems constructed in these regions. The temporal
gradient is poorly measured in highly textured regions
which undergo significant motion. In regions which con-
tain large discontinuities in the flow field the temporal
gradient is poorly estimated and the systems of equations
from the region are likely to contain inconsistencies.
The success with which confidence estimates predict the

accuracy of flow estimates is demonstrated in Fig. 3. The
flow field produced by the simple local optimization tech-
nique with the moving trains sequence is displayed with
a low threshold on confidence in Fig. 3(a) and a high
threshold in Fig. 3(b). As before, only 20 percent of the
vectors which exceed the threshold are displayed. Similar
thresholds are shown for the method of iterative registra-
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Fig. 2. Optical flow estimates.

tion in Fig. 3(c) and (d). For both methods confidence
provides a reasonable index of the accuracy of flow esti-
mates. A sparse sampling of accurate estimates exceeds
the high confidence threshold. When the threshold is low-
ered, more dense fields are obtained with a significantly
greater number of bad vectors.

VIII. SUMMARY

Gradient-based methods that locally solve for optical
flow suffer from three principal sources of error. The first
difficulty is that the brightness gradients will be poorly
estimated in regions that are highly textured. This prob-

lem is most significant for estimates of the temporal
brightness gradient in moving regions. Secondly, varia-
tions in optical flow across the image violate the assump-

tion of locally constant optical flow. The analysis pre-

sented here suggests that changes in optical flow will
contribute a significant error only at discontinuities in the
flow field. Finally, there must be sufficient local variation
in the orientation of the brightness gradient to avoid poor

error propagation characteristics associated with ill-con-
ditioned systems.
The problems discussed here apply to other gradient-

based methods, as well. All methods require that the gra-

dient constraint equation be accurately determined. The
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Fig. 3. The accuracy of confidence estimate. Optical flow estimates ex-
ceeding low and high thresholds on confidence are displayed.

brightness gradients will be susceptible to the same mea-

surement errors for all the methods. If the estimation tech-
nique can be structured to iteratively refine optical flow
estimates then iterative registration may greatly improve
performance. If the registration reduces the magnitude of
the displacement of a region between successive frames,
then the temporal brightness gradient will usually be bet-
ter estimated.

Large variations in optical flow can be disruptive for
any method that assumes smoothness or constancy of op-
tical flow. The local and global methods rely on a similar
smoothness assumption. Both methods require that flow
vary slowly across the image. The locally constructed
system of constraint equations is solved as if optical flow

is constant over the neighborhood from which the con-

straint lines are collected. When optical flow is not con-

stant the local method can provide a good approximation
where flow varies slowly over small neighborhoods. The
global method seeks a solution which minimizes local
variation in flow. There are contrasting aspects in the per-

formance of the two approaches that are directly related
to the difference in the scope of interactions across the
image.
The narrow focus of local methods leads to a major

problem over portions of the image. In regions where the
spatial gradients change slowly the local system will be
poorly conditioned. This problem is reduced in the global
optimization method. Information is propagated over the
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image, so regions which have insufficient local con-
straints will benefit from the estimates at surrounding re-
gions.
The local and global methods share a common weak-

ness. Where flow changes sharply estimates will be very
inaccurate. The affect of these errors is limited by the
neighborhood size in the local method. In contrast, global
methods may propagate these errors throughout the im-
age. While the global sharing of information is beneficial
for constraint sharing, it is detrimental with respect to er-
ror propagation. The problem is quite severe. Without
some capability to constrain interactions to separate re-
gions that satisfy the smoothness assumption, global op-
timization methods are practically useless for most real
imagery. In another paper we describe a global method
whereby the influence of a point on its neighbor is pro-
portional to the judged correctness of the information to
be shared [9]. In this way the mutual constraint of neigh-
bors is controlled and the propagation of errors limited.
The empirical results presented in this paper demon-

strate the potential for gradient-based methods. Reason-
ably dense sets of accurate flow vectors were obtained for
both image sequences. The best success was achieved with
an approach that combined a coarse-to-fine analysis with
iterative registration.
The results demonstrate the feasibility of measuring the

quality of optical flow estimates. The local method is sus-
ceptible to a variety of problems and tends to produce very
poor estimates in troublesome areas of the image. Without
accurate estimates of confidence, good estimates cannot
be distinguished from bad and the local techniques are of
little use.

This work emphasizes the importance of understanding
the mechanisms which underlie computational methods.
An awareness of the strengths and weaknesses of methods
and the way in which they operate can lead to adaptations
and enhancements which are of great practical value.

APPENDIX A
OPTICAL FLOW VARIATIONS

Several papers have examined the relationship between
the three-dimensional motion of objects and observers and
the characteristics of the optical flow field. We will con-
sider an example which allows arbitrary three-dimen-
sional translation of a planar surface to demonstrate the
important factors influencing changes in optical flow over
the image.

Let the three-dimensional coordinate system be at-
tached to the camera as in Fig. 4 which is redrawn from
Longuet-Higgins and Prazdny [12]. All motion is asso-
ciated with the camera. Let U, V, and W be the transla-
tional velocities of the observer in the X, Y, and Z direc-
tions. When motion is constrained to translation, the
components of the three-dimensional velocity vector are

x'= -u Y'= -V z'= -W. (A.1)

Using a perspective projection, the position of an object
point on the image is related to its three-dimensional po-

B

Vt

A

p
x

-U
c

z

Fig. 4. The camera-based coordinate system.

sition by
fX fY

X=-z y= (A.2)

where f is the focal length of the camera. Velocity on the
image plane (u, v) at a point (x, y) is

u=x' v= y'. (A.3)
Substituting from (A.2) into the right-hand side of (A.3)
and differentiating we obtain

Xf( XZi) -fU + xW
u = f * z - Z2 ) = Z

and

v = f (xz - Z2
_-f V + yW

z

(A.4)

(A.5)

Consider a point PO on the surface of a rigid body which
projects to po on the image. We orient the coordinate sys-

2tem so that PO lies on the observer's line of sight. The
three-dimensipnal coordinates of PO are (0, 0, R) and the
position of po on the image is (0, 0). We assume that the
surface is planar so that

Z(X, Y) = R + aX + 3Y (A.6)
for points on the surface near PO.

Following Longuet-Higgins and Prazdny, we introduce
the dimensionless coordinate

z=f. (Z=R) a (A.7)

The components of optical flow formalized in (A.4) and
(A.5) can be rewritten as

U - -fU±xw ( -z
V R J f1-

(A.8)

2This coordinate transformation is not strictly correct for a planar retina
as pictured in Fig. 4. The change of coordinates can be justified in several
ways. It can be assumed that the retina is globally spherical, but can locally
be modeled as planar. Or, it can be assumed that the distance of po from
the origin is sufficiently small relative to the focal length that the distortion
introduced by the transform will be minimal. Or finally, we can simply
restrict our attention to points along the line of sight.
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and where

v -f V + YW)V =
R

( -Z;) (A.9)

The surface is assumed to be planar, so the derivatives of
u and v with respect to x and y are well defined. At the
point po, where x = y = z = 0, u and v are

u= -f and v - fV (A.10)
R R

The derivatives of u and v are given by
oU+ W

u =

UtV
vx =

R and

Uy =-y R

3V+ W
VY= R

(A. I 1)

since

zx = a and zy =i. (A.13)

Recall that the error incurred by assuming constant flow
could be treated as measurement error in I, on the right-
hand side of (1 8). The magnitude of this error, relative to
I,, is strongly dependent on the ratio of the magnitude of
the change in optical flow to the magnitude of the flow
vector. We can now express the ratio of change-of-flow
to flow in terms of the three-dimensional parameters of
shape and motion, and the viewing angle. The change in
optical flow between two points separated by (Ax, Ay) is

(Au, Av) = (Axu5 + AyuY, Axvx + Ayvy). (A.14)

Inserting the appropriate terms from (A. 11) and (A. 12)
into (A. 14) and dividing by optical flow as given by
(A. 10), we arrive at an expression for the ratio of change-
of-flow to flow at a point:

L(atU + W)Ax + JUAy1

~Au oVAX (fV + W)AY]
(A. 15)

K21 fLU

11 Ia,R o] [Ax0 + w Ax11

fL>]
< tan y([oe 3] + Wj)

Ax]

Ayi
tan ~y (A. 18)

The angle -y is the angle subtended by (Ax, Ay) with a
focal length off; this is simply the size of the neighbor-
hood measured in degrees of visual angle. The length of
the change-of-flow vector relative to the length of the flow
vector depends upon the size of the neighborhood, the
slope of the surface viewed, and the ratio of velocity along
the line of sight to velocity perpendicular to the line of
sight.
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