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A Fast Hyperplane-Based Minimum-Volume
Enclosing Simplex Algorithm for Blind

Hyperspectral Unmixing
Chia-Hsiang Lin∗, Chong-Yung Chi, Yu-Hsiang Wang, and Tsung-Han Chan

Abstract

Hyperspectral unmixing (HU) is a crucial signal processingprocedure to identify the underlying
materials (or endmembers) and their corresponding proportions (or abundances) from an observed hy-
perspectral scene. A well-known blind HU criterion, advocated by Craig in early 1990’s, considers the
vertices of the minimum-volume enclosing simplex of the data cloud as good endmember estimates, and
it has been empirically and theoretically found effective even in the scenario of no pure pixels. However,
such kind of algorithms may suffer from heavy simplex volumecomputations in numerical optimization,
etc. In this work, without involving any simplex volume computations, by exploiting a convex geometry
fact that a simplest simplex ofN vertices can be defined byN associated hyperplanes, we propose a
fast blind HU algorithm, for which each of theN hyperplanes associated with the Craig’s simplex of
N vertices is constructed fromN − 1 affinely independent data pixels, together with an endmember
identifiability analysis for its performance support. Without resorting to numerical optimization, the
devised algorithm searches for theN(N−1) active data pixels via simple linear algebraic computations,
accounting for its computational efficiency. Monte Carlo simulations and real data experiments are
provided to demonstrate its superior efficacy over some benchmark Craig-criterion-based algorithms
in both computational efficiency and estimation accuracy.

Index Terms—Hyperspectral unmixing, Craig’s criterion, convex geometry, minimum-volume enclosing
simplex, hyperplane

I. INTRODUCTION

Hyperspectral remote sensing (HRS) [2]–[4], also known as imaging spectroscopy, is a crucial tech-

nology to the identification of material substances (or endmembers) as well as their corresponding

fractions (or abundances) present in a scene of interest from observed hyperspectral data, having various

applications such as planetary exploration, land mapping and classification, environmental monitoring,

and mineral identification and quantification [5]–[7]. The observed pixels in the hyperspectral imaging
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data cube are often spectral mixtures of multiple substances, the so-calledmixed pixelphenomenon [8],

owing to the limited spatial resolution of the hyperspectral sensor (usually equipped on board the satellite

or aircraft) utilized for recording the electromagnetic scattering patterns of the underlying materials in

the observed hyperspectal scene over about several hundreds of narrowly spaced (typically, 5-10 nm)

wavelengths that contiguously range from visible to near-infrared bands. Occasionally, the mixed pixel

phenomenon can result from the underlying materials intimately mixed [9].Hyperspectral unmixing(HU)

[8], [10], an essential procedure of extracting individualspectral signatures of the underlying materials

in the captured scene from these measured spectral mixtures, is therefore of paramount importance in

the HRS context.

Blind HU, or unsupervised HU, involves two core stages, namely endmember extraction and abundance

estimation, without (or with very limited) prior knowledgeabout the endmembers’ nature or the mixing

mechanism. Some endmember extraction algorithms (EEAs), such as alternating projected subgradients

(APS) [11], joint Bayesian approach (JBA) [12], and iterated constrained endmembers (ICE) [13] (also the

sparsity promoting ICE (SPICE) [14]), can simultaneously determine the associated abundance fractions

while extracting the endmember signatures. Nevertheless,some EEAs perform endmember estimation,

followed by abundance estimation using such as the fully constrained least squares (FCLS) [15] to

complete the entire HU processing.

The pure-pixel assumption has been exploited in devising fast blind HU algorithms to search for the

purest pixels over the data set as the endmember estimates, and such searching procedure can always

be carried out through simple linear algebraic formulations; see, e.g., pixel purity index (PPI) [16] and

vertex component analysis (VCA) [17]. An important blind HUcriterion, called Winter’s criterion [18],

also based on the pure-pixel assumption, is to identify the vertices of the maximum-volume simplex

inscribed in the observed data cloud as endmember estimates. HU algorithms in this category include

N-finder (N-FINDR) [18], simplex growing algorithm (SGA) [19] (also the real-time implemented SGA

[20]), and worst case alternating volume maximization (WAVMAX) [21], to name a few. However, the

pure-pixel assumption could be seriously infringed in practical scenarios especially when the pixels are

intimately mixed, for instance, the hyperspectral imagingdata for retinal analysis in the ophthalmology

[9]. In these scenarios, HU algorithms in this category could completely fail; actually, it is proven that

perfect endmember identifiability is impossible for Winter-criterion-based algorithms if the pure-pixel

assumption is violated [21].

Without relying on the existence of pure pixels, another promising blind HU approach, advocated

by Craig in early 1990’s [22], exploits the simplex structure of hyperspectral data, and believes that
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the vertices of the minimum-volume data-enclosing simplexcan yield good endmember estimates, and

algorithms developed accordingly include such as minimum-volume transform (MVT) [22], minimum-

volume constrained nonnegative matrix factorization (MVC-NMF) [23], and minimum-volume-based

elimination strategy (MINVEST) [24]. Moreover, some linearization-based methods have also been

reported to practically identify Craig’s minimum-volume simplex, e.g., the iterative linear approximation

in minimum-volume simplex analysis (MVSA) [25] (also its fast implementation using the interior-point

method [26], termed as ipMVSA [27]), and the alternating linear programming in minimum-volume

enclosing simplex (MVES) [28]. Empirical evidences do wellsupport that this minimum-volume approach

is resistant to lack of pure pixels, and can recover ground truth endmembers quite accurately even

when the observed pixels are heavily mixed. Very recently, the validity of this empirical belief has been

theoretically justified; specifically, we show that, as longas a key measure concerning the pixels’ mixing

level is above a certain (small) threshold, Craig’s simplexcan perfectly identify the true endmembers

in the noiseless scenario [29]. However, without the guidance of the pure-pixel assumption, this more

sophisticated criterion would generally lead to more computationally expensive HU algorithms. To the

best of our knowledge, the ipMVSA algorithm [27] and the simplex identification via split augmented

Lagrangian (SISAL) algorithm [30] are the two state-of-the-art Craig-criterion-based algorithms in terms

of computational efficiency. Nevertheless, in view of not only the NP-hardness of the Craig-simplex-

identification (CSI) problem [31] but also heavy simplex volume computations, all the above mentioned

HU algorithms are yet to be much more computationally efficient. Moreover, their performances may

not be very reliable owing to the sensitivity to regularization parameter tuning, non-deterministic (i.e.,

non-reproducible) endmember estimates caused by random initializations, and, most seriously, lack of

rigorous identifiability analysis.

In this work, we break the deadlock on the trade-off between asimple fast algorithmic scheme and the

estimation accuracy in the no pure-pixel case. We have observed that when the pure-pixel assumption

holds true, the effectiveness of a simple fast HU algorithmic scheme could be attributed to that the desired

solutions (i.e., pure pixels) already exist in the data set.Inspired by this observation, we naturally raise

a question:Can Craig’s minimum-volume simplex be identified by simply searching for a specific set of

pixels in the data set regardless of the existence of pure pixels? The answer is affirmative and will be

given in this paper.

Based on the convex geometry fact that a simplest simplex ofN vertices can be characterized by

theN associated hyperplanes, this paper proposes an efficient and effective unsupervised Craig-criterion-

based HU algorithm, together with an endmember identifiability analysis. Each hyperplane, parameterized
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by a normal vector and an inner product constant [26], can then be estimated fromN − 1 affinely

independent pixels in the data set via simple linear algebraic formulations. The resulting hyperplane-

based CSI (HyperCSI) algorithm, based on the above pixel search scheme, can withstand the no pure-pixel

scenario, and can yield deterministic, non-negative, and,most importantly, accurate endmember estimates.

After endmember estimation, a closed-form expression in terms of the identified hyperplanes’ parameters

is derived for abundance estimation. Then some Monte Carlo numerical simulations and real hyperspectral

data experiments are presented to demonstrate the superiorefficacy of the proposed HyperCSI algorithm

over some benchmark Craig-criterion-based HU algorithms in both estimation accuracy and computational

efficiency.

The remaining part of this paper is organized as follows. In Section II, we briefly review some essential

convex geometry concepts, followed by the signal model and dimension reduction. Section III focuses

on the HyperCSI algorithm development, and in Section IV, some simulation results are presented for its

performance comparison with some benchmark Craig-criterion-based HU algorithms. In Section V, we

further evaluate the effectiveness of the proposed HyperCSI algorithm with AVIRIS [32] data experiments.

Finally, we draw some conclusions in Section VI.

The following notations will be used in the ensuing presentation. R (RN , RM×N ) is the set of real

numbers (N -vectors,M ×N matrices).R+ (RN
+ , RM×N

+ ) is the set of non-negative real numbers (N -

vectors,M ×N matrices).R++ (RN
++, RM×N

++ ) is the set of positive real numbers (N -vectors,M ×N

matrices).X† denotes the Moore-Penrose pseudo-inverse of a matrixX. 1N and 0N are all-one and

all-zeroN -vectors, respectively.ei denotes the unit vector of proper dimension with theith entry equal

to unity. IN is theN ×N identity matrix.� and≻ stand for the componentwise inequality and strictly

componentwise inequality, respectively.‖ · ‖ denotes the Euclidean norm. The distance of a vectorv to

a setS is denoted bydist(v,S) , infv∈S ‖v − v‖ [26]. |S| denotes the cardinality of the setS. The

determinant of matrixX is represented bydet(X). IZ stands for the set of integers{1, . . . , Z}, for any

positive integerZ.

II. CONVEX GEOMETRY AND SIGNAL MODEL

In this section, a brief review on some essential convex geometry will be given for ease of later use.

Then the signal model for representing the hyperspectral imaging data together with dimension reduction

preprocessing will be presented.

A. Convex Geometry Preliminary

The convex hullof a given set of vectors{a1, . . . ,aN} ⊆ R
M is defined as [26]
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R
3

a0

a1

a2

a3

b

aff{a0, a1} aff{a1, a2, a3} ≡ H(b, h)

, {x ∈ R
3
∣∣ bTx = h}

conv{a0, a3}

conv{a1, a2, a3}

Fig. 1. A graphical illustration inR3 for some convex geometry concepts, where the line segment connectinga0 anda3 is

the convex hull of{a0,a3}, the straight line passinga0 anda1 is the affine hull of{a0,a1}, the shaded triangle is the convex

hull of {a1,a2,a3}, and the plane passing the three points{a1,a2,a3} is the affine hull of{a1, a2,a3}. As an affine hull in

R
3 is called a hyperplane if its affine dimension is2, aff{a1,a2,a3} is a hyperplane, whileaff{a0,a1} is not.

conv{a1, . . . ,aN} ,

{
x =

N∑

i=1

θiai

∣∣∣∣ θ ∈ R
N
+ ,1TNθ = 1

}
,

whereθ = [θ1, . . . , θN ]T (cf. Figure 1). A convex hullconv{a1, . . . ,aN} is called an(N−1)-dimensional

simplexwith N vertices{a1, . . . ,aN} if {a1, . . . ,aN} is affinely independent, or, equivalently, if{a1 −
aN , . . . ,aN−1−aN} is linearly independent, and it is called asimplest simplexin R

M whenM = N−1

[33]. For example, a triangle is a2-dimensional simplest simplex inR2, and a tetrahedron is a3-

dimensional simplest simplex inR3 (cf. Figure 1).

For a given set of vectors{a1, . . . ,aN} ⊆ R
M , its affine hull is defined as [26]

aff{a1, . . . ,aN} ,

{
x =

N∑

i=1

θiai

∣∣∣∣ θ ∈ R
N ,1TNθ = 1

}
,

whereθ = [ θ1, . . . , θN ]T (cf. Figure 1). This affine hull can be parameterized by a 2-tuple (C,d) ∈
R
M×P ×R

M using the following alternative representation [26]:

aff{a1, . . . ,aN} ≡ A(C,d) ,
{
x = Cα+ d

∣∣ α ∈ R
P
}
,

whereP , rank(C) (the rank ofC) is the affine dimensionof aff{a1, . . . ,aN}. Moreover, an affine

hull aff{a1, . . . ,aN} ⊆ R
M is called ahyperplaneif its affine dimensionP = M − 1 (cf. Figure 1).

B. Signal Model and Dimension Reduction

Consider a scenario where a hyperspectral sensor measures solar electromagnetic radiation overM

spectral bands fromN unknown materials (endmembers) in a scene of interest. Based on the linear mixing
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model (LMM) [2]–[8], [10], [28], where the measured solar radiations are assumed to reflect from the

explored scene through one single bounce, and the endmembers’ spectral signature vectorsai ∈ R
M are

assumed to be invariant with the pixel indexn, each pixelx[n] ∈ R
M in the observed data set can then

be represented as a linear mixture of theN endmembers’ spectral signatures1

x[n] = As[n] =

N∑

i=1

si[n]ai, ∀n ∈ IL, (1)

whereA = [a1 · · · aN ] ∈ R
M×N is the spectral signature matrix,s[n] = [s1[n] · · · sN [n]]T ∈ R

N is the

abundance vector, andL is the total number of pixels. The following standard assumptions pertaining

to the model in (1), which also characterize the simplex structure inherent in the hyperspectral data, are

used in our HU algorithm development later [2]–[8], [10], [28]:

(A1) (Non-negativity)si[n] ≥ 0, ∀ i ∈ IN and∀ n ∈ IL.

(A2) (Full-additivity)
∑N

i=1 si[n] = 1, ∀ n ∈ IL.

(A3) min{L,M} ≥ N andA ∈ R
M×N
+ is full column rank.

Moreover, like most benchmark HU algorithms (see, e.g., [23], [25], [28], [30]), the number of endmem-

bersN is assumed to be known a priori, which can be determined beforehand by applying model-order

selection methods, such as hyperspectral signal subspace identification by minimum error (HySiMe) [36],

and Neyman-Pearson detection theory-based virtual dimensionality (VD) [37].

We aim to blindly estimate the unknown endmembers (i.e.,a1, . . . ,aN ), as well as their abundances

(i.e., s[1], . . . , s[L]), from the observed spectral mixtures (i.e.,x[1], . . . ,x[L]). Due to the huge dimen-

sionalityM of hyperspectral data, directly analyzing the data may not be very computationally efficient.

Instead, an efficient data preprocessing technique, calledaffine set fitting (ASF) procedure [38], can be

applied to compactly represent each measured pixelx[n] ∈ R
M in a dimension-reduced (DR) space

R
N−1 as follows:

x̃[n] = C†(x[n]− d) =

N∑

i=1

si[n]αi ∈ R
N−1, (2)

1Note that there is a research line considering non-linear mixtures for modeling the effect of multiple reflections of solar

radiation [34]. Moreover, the endmember spectral signatures may be spatially varying, hence leading to the full-additivity in (A2)

being violated [10]. However, studying these effects is outof the scope of this paper, and the representative LMM is sufficient

for our analysis and algorithm development; interested readers are referred to the magazine papers [34] and [35], respectively,

for the non-linear effect and the endmember variability effect.
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where

d =
1

L

L∑

n=1

x[n] ∈ R
M (mean of data set) (3)

C = [ q1(UUT ), . . . , qN−1(UUT ) ] ∈ R
M×(N−1) (4)

αi = C†(ai − d) ∈ R
N−1 (DR endmembers) (5)

in which qi(UUT ) ∈ R
M denotes theith principal eigenvector (with unit norm) of the square matrix

UUT ∈ R
M×M , andU = [ x[1]−d, . . . ,x[L]−d ] ∈ R

M×L is the mean-removed data matrix. Actually,

like other dimension reduction algorithms [39], ASF also performs noise suppression in the meantime. It

has been shown that the above ASF best represents the measured data in an(N − 1)-dimensional space

in the sense of least-squares fitting error [38], while such fitting error vanishes in the noiseless scenario

[38]. Note that the data mean in the DR space is the origin0N−1 (by (2) and (3)).

Because ofN − 1 ≪ M in typical HU applications, the HyperCSI algorithm will be developed in the

DR spaceRN−1 wherein the DR endmembersα1, . . . ,αN are estimated. Then, by (5), the endmember

estimates in the original spaceRM can be restored as

âi = C α̂i + d, ∀ i ∈ IN , (6)

whereα̂i’s are the endmember estimates in the DR space.

III. H YPERPLANE-BASED CRAIG-SIMPLEX-IDENTIFICATION ALGORITHM

First of all, due to (2) and(A1)-(A2), the true endmembers’ convex hullconv{α1, . . . ,αN} itself is

a data-enclosing simplex, i.e.,

X , { x̃[1], . . . , x̃[L] } ⊆ conv{α1, . . . ,αN}. (7)

According to Craig’s criterion, the true endmembers’ convex hull is estimated by minimizing the volume

of the data-enclosing simplex [22], namely, by solving the following volume minimization problem (called

the CSI problem interchangeably hereafter):

min
βi∈R

N−1,∀i
V (β1, . . . ,βN )

s.t. x̃[n] ∈ conv{β1, . . . ,βN}, ∀n,
(8)
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whereV (β1, . . . ,βN ) denotes the volume of the simplexconv{β1, . . . ,βN} ⊆ R
N−1. Under some mild

conditions on data purity level [29], the optimal solution of problem (8) can perfectly yield the true

endmembersα1, . . . ,αN . 2

Besides in the HU context, the NP-hard CSI problem in (8) [31]has been studied in some earlier works

in mathematical geology [40] and computational geometry [41]. However, their intractable computational

complexity almost disable them from practical applications for larger problem size [41], mainly owing

to calculation of the complicatednonconvexobjective function [28]

V (β1, . . . ,βN ) =
1

(N − 1)!
·

∣∣∣∣∣∣
det




 β1 · · · βN

1 · · · 1





∣∣∣∣∣∣

in (8). Instead, the HyperCSI algorithm to be presented can judiciously bypass simplex volume cal-

culations, and meanwhile the identified simplex can be shownto be exactly the “minimum-volume”

(data-enclosing) simplex in the asymptotic sense (L → ∞).

First of all, let us succinctly present the actual idea on which the HyperCSI algorithm is based.

As the Craig’s minimum-volume simplex can be uniquely determined byN tightly enclosed(N − 2)-

dimensional hyperplanes, where each hyperplane can be reconstructed fromN − 1 affinely independent

points on itself, we hence endeavor to search forN − 1 affinely independent pixels (referred to asactive

pixels in X ) that are as close to the associated hyperplane as possible.We begin withN purest pixels

that defineN disjoint proper regions, each centered at a different purest pixel. Then for each hyperplane

of the minimum-volume simplex, the desiredN − 1 active pixels, that are as close to the hyperplane as

possible, are respectively sifted fromN − 1 subsets ofX , each enclosed in one different proper region

(cf. Figure 2). Then the obtainedN − 1 pixels are used to construct one estimated hyperplane. Finally,

the desired minimum-volume simplex can be determined from the obtainedN hyperplane estimates.

A. Hyperplane Representation for Craig’s Simplex

The idea of solving the CSI problem in (8), without involvingany simplex volume computations, is

based on the hyperplane representation of a simplest simplex as stated in the following proposition:

2In [29], γ̃ , max{r′ ≤ 1 | Te ∩ B(r′) ⊆ conv{s[1], . . . , s[L]}} is used to measure the data purity level ofX , where

Te , conv{e1, . . . , eN} ⊆ R
N andB(r′) , {x ∈ R

N | ‖x‖ ≤ r′}; the geometric interpretations of̃γ can be found in [29].

Simply speaking, one can show thatγ̃ ∈ [ 1√
N
, 1], and the most heavily mixed scenario (i.e.,s[n] = 1

N
1N , ∀n ∈ IL) will lead

to the lower bound [29]. On the contrary, the pure-pixel assumption is equivalent to the condition of̃γ = 1 (the upper bound)

[29], comparing to which a mild condition of onlỹγ > 1√
N−1

is sufficient to guarantee the perfect endmember identifiability

of problem (8) [29].
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R
2 α1

α2α3

b1
b̃1 b̂1

α̃1

α̃2

α̃3H̃1

H1

x̃[n]

02

p
(1)
1p

(1)
2

R(1)
1

R(1)
2

q

Fig. 2. An illustration of hyperplanes and DR data inR2 for the case ofN = 3, whereα̃3 is a purest pixel inX (a purest

pixel α̃i can be considered as the pixel closest toαi) but not necessarily very close to hyperplaneH1 = aff{α2,α3}, leading

to nontrivial orientation difference betweeñb1 andb1. However, the active pixelsp(1)
1 andp(1)

2 identified by (17) will be very

close toH1 (especially, for largeL), and hence the orientations ofb̂1 andb1 will be almost the same. On the other hand, one

can see that the pixels identified by (21) are{p
(1)
2 ,q} (that are very close to each other) whose corresponding normal vector

estimate is obviously far away from the trueb1.

Proposition 1 If {α1, . . . ,αN} ⊆ R
N−1 is affinely independent, i.e.,T = conv{α1, . . . ,αN} ⊆ R

N−1

is a simplest simplex, thenT can be reconstructed from the associatedN hyperplanes{H1, . . . ,HN},

that tightly encloseT , whereHi , aff( {α1, . . . ,αN} \ {αi} ).

Proof: It suffices to show that{α1, . . . ,αN} can be determined by{H1, . . . ,HN}. It is known that

hyperplaneHi can be parameterized by a normal vectorbi ∈ R
N−1 and an inner product constant

hi ∈ R as follows:

Hi(bi, hi) =
{
x ∈ R

N−1
∣∣ bT

i x = hi
}
. (9)

As αi ∈ aff( {α1, . . . ,αN}\{αj} ) = Hj for all j 6= i, we have from (9) thatbT
j αi = hj for all j 6= i,

i.e.,

B−iαi = h−i, (10)

whereB−i ∈ R
(N−1)×(N−1), h−i ∈ R

(N−1) are defined as

B−i , [b1, . . . ,bi−1,bi+1, . . . ,bN ]T , (11)

h−i , [h1, . . . , hi−1, hi+1, . . . , hN ]T . (12)

As T is a simplest simplex inRN−1, B−i must be of full rank and hence invertible [26]. Hence, we

have from (10) that

αi = B−1
−i h−i, ∀ i ∈ IN , (13)
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implying thatαi can be reconstructed. The proof is therefore completed. �

As it can be inferred from(A3) that the set of DR endmembers{α1, . . . ,αN} is affinely independent,

one can apply Proposition 1 to decouple the CSI problem (8) into N subproblems of hyperplane

estimation, namely, estimation ofN parameter vectors(bi, hi) in (9). Then (13) can be utilized to

obtain the desired endmember estimates. Next, let us present how to estimate the normal vectorbi and

the inner product constanthi from the data setX , respectively.

B. Normal Vector Estimation

The normal vectorbi of hyperplaneHi can be obtained by projecting the vectorαj − αi (for any

j 6= i) onto the subspace that is orthogonal to the hyperplaneHi [42], i.e.,

bi ≡ vi(α1, . . . ,αN ) (14)

,
(
IN−1 −P(PTP)−1PT

)
· (αj −αi), for any j 6= i,

whereP , Q − αj · 1TN−2 ∈ R
(N−1)×(N−2), and Q ∈ R

(N−1)×(N−2) is the matrix [α1 · · ·αN ] ∈
R
(N−1)×N with its ith and jth columns removed. Besides (14) for obtaining the normal vector bi of

Hi, we also need another closed-form expression ofbi in terms ofN − 1 distinct points as given in the

following proposition.

Proposition 2 Given any affinely independent set{p(i)
1 , . . . ,p

(i)
N−1} ⊆ Hi, bi can be alternatively

obtained by (except for a positive scale factor)

bi = vi(p
(i)
1 , . . . ,p

(i)
i−1,0N−1,p

(i)
i , . . . ,p

(i)
N−1), (15)

wherevi(·) is defined in(14).

The proof of Proposition 2 can be shown from the fact that0N−1 is the data mean in the DR space

R
N−1 (by (2) and (3)), and is omitted here due to space limitation.

Based on Proposition 2, we estimate the normal vectorbi by findingN − 1 affinely independent data

points

Pi , {p(i)
1 , . . . ,p

(i)
N−1} ⊆ X

that are as close toHi as possible. To this end, an observation from (7) is needed and given in the

following fact:

Fact 1 Observing that (i)bT
i p ≤ hi, ∀p ∈ X (i.e., all the pointsp ∈ X lie on the same side ofHi; cf.

(7)), and that (ii)dist(p,Hi) = |hi − bT
i p|/‖bi‖, the pointp ∈ X closest toHi is exactly the one with

November 2, 2015 DRAFT



11

maximum ofbT
i p, provided thatbi points outward from the true endmembers’ simplex (cf. Figure 2 and

(14)).

Suppose that we are givenN “purest” pixelsα̃i ∈ X , which basically maximize the simplex volume

inscribed inX , and they can be obtained using the reliable and reproducible successive projection

algorithm (SPA) [10], [43, Algorithm 4]. Sõαi can be viewed as the pixel inX “closest” to αi (cf.

Figure 2). Letb̃i be the outward-pointing normal vector of hyperplaneH̃i , aff( {α̃1, . . . , α̃N}\{α̃i} ),

i.e.,

b̃i , vi(α̃1, . . . , α̃N ). (cf. (14)) (16)

Considering Fact 1 and the requirement that the setPi must containN − 1 distinct elements (otherwise,

Pi is not affinely independent), we identify the desired affinely independent setPi by:

p
(i)
k ∈ argmax {b̃T

i p | p ∈ X ∩R(i)
k }, ∀ k ∈ IN−1, (17)

whereR(i)
1 , . . . ,R(i)

N−1 areN − 1 disjoint sets defined as

R(i)
k ≡ R(i)

k (α̃1, . . . , α̃N ) ,





B(α̃k, r), k < i,

B(α̃k+1, r), k ≥ i,

(18)

in which B(α̃k, r) , {x ∈ R
N | ‖x− α̃k‖ < r} is the open Euclidean norm ball with centerα̃k ∈ R

N

and radiusr , (1/2) ·min{‖α̃i − α̃j‖ | 1 ≤ i < j ≤ N} > 0. Note that the choice of the radiusr is to

guarantee thatR(i)
1 , . . . ,R(i)

N−1 areN −1 non-overlapping regions, thereby guaranteeing thatPi contains

N −1 distinct points. Moreover, each hyperballR(i)
k must contain at least one pixel (as it contains either

α̃k or α̃k+1; cf. (18)), i.e.,X ∩ R(i)
k 6= ∅, and hence problem (17) must be a feasible problem (i.e., a

problem with non-empty feasible set [26]).

If the N − 1 points extracted by (17) are affinely independent, then the estimated normal vector

associated withHi can be determined as (cf. Proposition 2)

b̂i = vi(p
(i)
1 , . . . ,p

(i)
i−1,0N−1,p

(i)
i , . . . ,p

(i)
N−1). (19)
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Fortunately, the obtainedPi by (17) can be proved (in Theorem 1 below) to be always affinelyindependent

with one more assumption:3

(A4) The abundance vectors{s[n]} ⊆ R
N (defined below (1)) are independent and identically distributed

(i.i.d.) following Dirichlet distribution with parameterγ = [γ1, . . . , γN ] ∈ R
N
++ whose probability

density function (p.d.f.) is given by [44]:

f(s) =





Γ(γ0)∏
N

i=1
Γ(γi)

·∏N
i=1 s

γi−1
i , s ∈ dom f,

0, otherwise,
(20)

where s = [s1, . . . , sN ] ∈ R
N , γ0 =

∑N
i=1 γi, dom f = {s ∈ R

N
++ | 1TNs = 1}, and Γ(γ) =

∫∞

0 xγ−1e−x dx denotes the gamma function.

Theorem 1 Assume(A1)-(A4) hold true. Letp(i)
k ∈ Pi be a solution to(17) with R(i)

k defined in(18),

for all i ∈ IN and k ∈ IN−1. Then, the setPi is affinely independent with probability1 (w.p.1).

The proof of Theorem 1 is given in Appendix A.

Note that the orientation difference betweenb̃i and the truebi may not be small (cf. Figure 2). Hence,

b̃i itself may not be a good estimate forbi either. On the contrary, it can be shown that the orientation

difference between̂bi andbi tends to be small for largeL, and actually such difference vanishes asL

goes to infinity (cf. Theorem 2 as well as Remark 1 in Subsection III-E). On the other hand, if the pixels

with maximum inner products inPi are jointly sifted from the whole data cloudX , i.e.,

Pi ∈ argmax {b̃T
i (p1 + · · · + pN−1) | P ⊆ X}, (21)

whereP , {p1, . . . ,pN−1}, rather than respectively from different regionsX ∩ R(i)
k , ∀k ∈ IN−1, as

given in (17), the identified pixels inPi may stay quite close, easily leading to large deviation in normal

vector estimation as illustrated in Figure 2 wherePi = {p(1)
2 ,q} are the identified pixels using (21). This

is also a rationale of findingPi using (17) for better normal vector estimation.

3The rationale of adopting Dirichlet distribution in(A4) is not only that it is a well known distribution that capturesboth the

non-negativity and full-additivity ofs[n] [44], but because it has been used to characterize the distribution of s[n] in the HU

context [45], [46]. However, the statistical assumption(A4) is only for analysis purpose without being involved in our geometry-

oriented algorithm development. So even if abundance vectors are neither i.i.d. nor Dirichlet distributed, the HyperCSI algorithm

can still work well; cf. Subsection IV-D. Furthermore, we would like to emphasize that, in our analysis (Theorems 1 and 2),

we actually only use the following two properties of Dirichlet distribution: (i) its domain isdom f = {s ∈ R
N

++ | 1T

Ns = 1},

and (ii) it is a continuous multivariate distribution with strictly positive density on its domain [47]; cf. AppendixesA and B.

Hence, any distribution with these two properties can be used as an alternative in(A4).
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C. Inner Product Constant Estimation

For Craig’s simplex (the minimum-volume data-enclosing simplex), all the data inX should lie on

the same side ofHi (otherwise, it is not data-enclosing), andHi should be as tightly close to the data

cloudX as possible (otherwise, it is not minimum-volume); the onlypossibility is when the hyperplane

Hi must be externally tangent to the data cloud. In other words,Hi will incorporate the pixel that has

maximum inner product witĥbi, and hence it can be determined asHi(b̂i, ĥi), whereĥi is obtained by

solving

ĥi = max { b̂T
i p | p ∈ X }. (22)

However, it has been reported that when the observed data pixels are noise-corrupted, the random noise

may expand the data cloud, thereby inflating the volume of theCraig’s data-enclosing simplex [21], [33].

As a result, the estimated hyperplanes are pushed away from the origin (i.e., the data mean in the DR

space) due to noise effect, and hence the estimated inner product constant in (22) would be larger than

that of the ground truth. To mitigate this effect, the estimated hyperplanes need to be properly shifted

closer to the origin, so instead,Hi(b̂i, ĥi/c), ∀ i ∈ IN , are the desired hyperplane estimates for some

c ≥ 1. Therefore, the corresponding DR endmember estimates are obtained by (cf. (13))

α̂i = B̂−1
−i ·

ĥ−i

c
, ∀ i ∈ IN , (23)

where B̂−i and ĥ−i are given by (11) and (12) withbj and hj replaced byb̂j and ĥj , ∀ j 6= i,

respectively. Moreover, it is necessary to choosec such that the associated endmember estimates in the

original space are non-negative (cf.(A3)), i.e.,

âi = C α̂i + d � 0M , ∀ i ∈ IN . (cf. (6)) (24)

By (23) and (24), the hyperplanes should be shifted closer tothe origin withc = c′ at least, where

c′ , min
c′′≥1

{c′′ | C (B̂−1
−i · ĥ−i) + c′′ · d � 0M , ∀ i} (25)

which can be further shown to have a closed-form solution:

c′ = max
{
1,max{−vij/dj | i ∈ IN , j ∈ IM}

}
, (26)

wherevij is thejth component ofC (B̂−1
−i · ĥ−i) ∈ R

M anddj is thejth component ofd.

Note thatc′ is just the minimum value forc to yield non-negative endmember estimates. Thus, we can

generally setc = c′/η ≥ c′ for someη ∈ (0, 1]. Moreover, the value ofη = 0.9 is empirically found to

be a good choice for the scenarios where signal-to-noise ratio (SNR) is greater than20 dB; typically, the
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value of SNR in hyperspectral data is much higher than20 dB [32]. Let us emphasize that the larger the

value of η (or the smaller the value ofc), the farther the estimated hyperplanes from the origin0N−1,

or the closer the estimated endmembers’ simplexconv{â1, . . . , âN} to the boundary of the nonnegative

orthantRM
+ . On the other hand, we empirically observed that typical endmembers in the U.S. geological

survey (USGS) library [48] are close to the boundary ofR
M
+ . That is to say, a reasonable choice of

η ∈ (0, 1] should be relatively large (i.e., relatively close to1), accounting for the reason why the preset

value ofη = 0.9 can always yield good performance. The resulting endmemberestimation processing of

the HyperCSI algorithm is summarized in Steps 1 to 6 in Table I.

TABLE I

PSEUDO-CODE FORHYPERCSI ALGORITHM

Given Hyperspectral data{x[1], . . . ,x[L]}, number of endmembersN , andη = 0.9.

Step 1. Calculate(C,d) using (3)-(4), and obtain the DR dataX = {x̃[1], . . . , x̃[L]} using (2).

Step 2. Obtain{α̃1, . . . , α̃N} using SPA [43].

Step 3. Obtain b̃i using (16),∀ i, andR(i)
k

using (18),∀ i, k.

Step 4. Obtain (Pi, b̂i, ĥi) by (17), (19), and (22),∀ i.

Step 5. Obtainc′ by (26), and setc = c′/η.

Step 6. Calculateα̂i by (23) andâi = C α̂i + d by (24),∀ i.

Step 7. Calculateŝ[n] = [ŝ1[n] · · · ŝN [n]]T by (30),∀ n.

Output The endmember estimates{â1, . . . , âN} and abundance estimates{ŝ[1], . . . , ŝ[L]}.

D. Abundance Estimation

Though the abundance estimation is often done by solving FCLS problems [15], which can be

equivalently formulated in the DR space as (cf. [49, Lemma 3.1])

min
s
′∈RN

‖x̃[n]− [α̂1 · · · α̂N ]s′‖

s.t. s′ � 0N , 1TNs′ = 1,

(27)

it has been reported that some geometric quantities, acquired during the endmember extraction stage, can

be used to significantly accelerate the abundance estimation procedure [50]. With similar computational

efficiency improvements taken into account, we aim at expressing the abundancesi[n] in terms of readily

available quantities (e.g., normal vectors and inner product constants) obtained when estimating the

endmembers, in this subsection. The results are summarizedin the following proposition:
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Proposition 3 Assume(A1)-(A3) hold true. Thens[n] = [s1[n] · · · sN [n]]T has the following closed-form

expression:

si[n] =
hi − bT

i x̃[n]

hi − bT
i αi

, ∀ i ∈ IN , ∀ n ∈ IL. (28)

Proposition 3 can be derived from some simple geometrical observations (cf. items (i) and (ii) in Fact 1)

and the following well known formula in theAlgebraic Topologycontext

si[n] =
dist(x̃[n],Hi)

dist(αi,Hi)
, (29)

and its proof is omitted here due to space limitation; note that the formula (29) has been recently derived

again using different approach in the HU context [50, Equation (12)].

Based on (28), the abundance vectors[n] can be estimated as

ŝi[n] =

(
ĥi − b̂T

i x̃[n]

ĥi − b̂T
i α̂i

)+

, ∀ i ∈ IN , ∀ n ∈ IL, (30)

where(y)+ , max{y, 0} is to enforce the non-negativity of abundance fractionss[n] (cf. Step 7 in Table

I). One can show that wheñx[n] ∈ conv{α̂1, . . . , α̂N}, the abundance estimates obtained using (30) is

exactly the solution to the FCLS problem in (27), while using(30) has much lower computational cost

than solving FCLS problems. Nevertheless, one should be aware of a potential limitation of using (30).

Specifically, if x̃[n] is too far away from the endmembers’ simplexconv{α̂1, . . . , α̂N} (i.e., b̂T
i x̃[n]

is much larger than̂hi for somei), the zeroing operation in (30) could cause nontrivial deviation in

abundance estimation. This can happen ifx̃[n] is an outlier or the SNR is very low. However, as the

SNR is reasonably high (like in AVIRIS data [21], [32]), mostpixels in the hyperspectral data are expected

to lie inside or very close to the endmembers’ simplexconv{α̂1, . . . , α̂N} (cf. (A1)-(A2))—especially

when the endmembers are extracted based on Craig’s criterion. Hence, with the endmembers estimated by

the Craig-criterion-based HyperCSI algorithm, simply using (30) to enforce the abundance non-negativity

is not only computationally efficient, but also still capable of yielding good abundance estimation as will

be demonstrated in the simulation results (Table III in Subsection IV-C and Table IV in Subsection IV-D)

later.

Unlike most of the existing abundance estimation algorithms, where all theN abundance maps must be

jointly estimated (e.g., FCLS [15]), the proposed HyperCSIalgorithm offers an option of solely obtaining

the abundance map of a specific material of interest (say theith material)

si , [si[1] · · · si[L]]T ∈ R
L
+, (31)
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to save computational cost, or obtaining all the abundance mapss1, . . . , sN by parallel processing (cf.

(30)). Moreover, when calculatingsi using (30), the denominator̂hi − b̂T
i α̂i is a constant for all pixel

indicesn ∈ IL and hence only needs to be calculated once regardless ofL (which is usually large).

E. Identifiability and Complexity of HyperCSI

In this subsection, let us present the identifiability and complexity analyses of the proposed HyperCSI

algorithm. Particularly, the asymptotic identifiability of the HyperCSI algorithm can be guaranteed as

stated in the following theorem with the proof given in Appendix B:

Theorem 2 Under (A1)-(A4), the noiseless assumption andL → ∞, the simplex identified by HyperCSI

algorithm withc = 1 (in Step 5 in Table I) is exactly the Craig’s minimum-volume simplex (i.e., solution

of (8)) and the true endmembers’ simplexconv{α1, . . . ,αN} w.p.1.

Two noteworthy remarks about the philosophies and intuitions behind the proof of this theorem are given

as follows:

Remark 1 With the abundance distribution stated in(A4), theN − 1 pixels in Pi can be shown to be

arbitrarily close toHi as the pixel numberL → ∞, and they are affinely independent w.p.1 (cf. Theorem

1). Therefore,̂bi can be uniquely obtained by (19), and its orientation approaches to that ofbi w.p.1.

Remark 2 Remark 1 together with (7) implies thatĥi is upper bounded byhi w.p.1 (assuming without

loss of generality that‖b̂i‖ = ‖bi‖), and this upper bound can be shown to be achievable w.p.1 as

L → ∞. Thus, asc = 1, we have that̂hi/c = hi w.p.1.

It can be further inferred, from the above two remarks, thatα̂i is exactly the trueαi w.p.1 (cf. (23))

as L → ∞ in the absence of noise. Although the identifiability analysis in Theorem 2 is conducted

for the noiseless case andL → ∞, we empirically found that the HyperCSI algorithm can yieldgood

endmember estimates for a moderateL and finite SNR, to be demonstrated by simulation results and

real data experiments later.

Next, we analyze the computational complexity of the HyperCSI algorithm. The computation time of

HyperCSI is primarily dominated by the computations of the feasible setsX ∩R(i)
k (in Step 3), the active

pixels in Pi (in Step 4), and the abundancesŝ[n] (in Step 7), and they are respectively analyzed in the

following:

Step 3: Computing theN(N−1) feasible setsX ∩R(i)
k , ∀i ∈ IN , ∀k ∈ IN−1, is equivalent to computing

the N setsX ∩ B(α̃i, r), ∀i ∈ IN ; cf. (18). SinceB(α̃i, r) is an open Euclidean norm ball, the
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computation of each setX ∩B(α̃i, r) can be done by examining|X | = L inequalities‖x̃[n]− α̃i‖ < r,

∀n ∈ IL. However, examining each inequality requires (i) calculating one Euclidean 2-norm (inRN−1),

which costsO(N), and (ii) checking whether this 2-norm is smaller thanr, which costsO(1). Hence,

Step 3 costsO(N(N + 1)L).

Step 4: To determinePi, we have to identify the pixelp(i)
k from the setX ∩R(i)

k (∀k ∈ IN−1), whose

complexity amounts to computing|X ∩R(i)
k | inner products inRN−1 (each costsO(N)), and performing

the point-wise maximum operation among the values of these inner products (cf. (17)), and hence the

complexity of identifyingp(i)
k is easily verified asO(N · |X ∩ R(i)

k | + |X ∩ R(i)
k | − 1). Moreover,

gatheringPi = {p(i)
1 , . . . ,p

(i)
N−1} requires the complexity

∑N−1
k=1 O(N · |X ∩R(i)

k |+ |X ∩R(i)
k | − 1) =

O((N +1) ·∑N−1
k=1 |X ∩R(i)

k |) ≤ O((N +1) · |X |) = O((N +1)L); the inequality is due to thatR(i)
k s

are disjoint. Repeating the above forPi, ∀i ∈ IN , Step 4 costsO(N(N + 1)L).

Step 7: Estimation of the abundances requires to compute the fraction in (30)NL times. Each fraction

involves2 inner products (inRN−1), 2 scalar subtractions, and1 scalar division, and thus costsO(N).

So, this step costsO(N2L).

Therefore, the overall computational complexity of HyperCSI is O(2N(N + 1)L+N2L) = O(N2L).

Surprisingly, the complexity orderO(N2L) of the proposed HyperCSI algorithm is the same as (rather

than much higher than) that of some pure-pixel-based EEAs; see, e.g., [17], [21], [43], [51]. Moreover,

to the best of our knowledge, the MVES algorithm [28] that approximates the CSI problem in (8) as

alternating linear programming (LP) problems, and solves the LPs using primal-dual interior-point method

[26], is the existing Craig-criterion-based algorithm with lowest complexity orderO(τN2L1.5), where

τ is the number of iterations [28]. Hence, the introduced hyperplane identification approach (without

simplex volume computations) indeed yields a smaller complexity than most existing Craig-criterion-

based algorithms.

Let us conclude this section with a summary of some remarkable features of the proposed HyperCSI

algorithm (given in Table I) as follows:

(a) Without involving any simplex volume computations, theCraig’s minimum-volume simplex is recon-

structed fromN hyperplane estimates, i.e., theN estimates(b̂i, ĥi), which can be obtained in parallel (cf.

Step 4 in Table I) by searchingN(N−1) most informative pixels fromX . The reconstructed simplex in

the DR spaceRN−1 is actually the intersection ofN halfspaces{x ∈ R
N−1 | b̂T

i x ≤ ĥi}, i = 1, . . . , N .

(b) By noting thatsi[n] = 0 if, and only if, x[n] ∈ Hi, the potential requirement ofN(N − 1) pixels

lying on, or close to, the associated hyperplanes is considered not difficult to be met in practice because
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hyperspectral images are often with highly sparse abundances. This will be discussed in more detail in

experiments with AVIRIS data in Section V.

(c) All the processing steps (including SPA in Step 2 of TableI; cf. Algorithm 4 in [43]) can be

carried out either by simple linear algebraic formulationsor by closed-form expressions, and so its high

computational efficiency can be anticipated.

IV. COMPUTER SIMULATIONS

This section demonstrates the efficacy of the proposed HyperCSI algorithm by Monte Carlo simulations.

In the simulation, endmember signatures withM = 224 spectral bands randomly selected from the USGS

library [48] are used to generateL noise-free synthetic hyperspectral datax[n] according to linear mixing

model in (1), where the abundance vectors are i.i.d. and generated following the Dirichlet distribution

with γ = 1N/N (cf. (20)) as it can automatically enforce(A1) and (A2) [28], [33]. Then we add i.i.d.

zero-mean Gaussian noise with varianceσ2 to the noise-free synthetic datax[n] for different values of

SNR defined as SNR, (
∑L

n=1 ‖x[n]‖2)/(σ2ML), and those negative entries in the generated noisy data

vectors are artificially set to zero, so as to maintain the non-negativity nature of hyperspectral imaging

data.

The root-mean-square (rms) spectral angle error between the true endmembers{a1, . . . ,aN} and their

estimates{â1, . . . , âN} defined as [17], [28]

φen = min
π∈ΠN

√√√√ 1

N

N∑

i=1

[
arccos

(
aTi âπi

‖ai‖ · ‖âπi
‖

)]2
, (32)

is used as the performance measure of endmember estimation,whereΠN = {π = (π1, . . . , πN ) ∈
R
N | πi ∈ {1, . . . , N}, πi 6= πj for i 6= j} is the set of all permutations of{1, . . . , N}. Similarly, the

performance measure of abundance estimation is the rms angle error defined as [28]

φab = min
π∈ΠN

√√√√ 1

N

N∑

i=1

[
arccos

(
sTi ŝπi

‖si‖ · ‖ŝπi
‖

)]2
, (33)

wheresi and ŝi are the true abundance map ofith endmember (cf. (31)) and its estimate, respectively.

All the HU algorithms under test are implemented in Mathworks Matlab R2013a running on a desktop

computer equipped with Core-i7-4790K CPU with 4.00 GHz speed and 16 GB random access memory,

and all the performance results in terms ofφen, φab, and computational timeT are averaged over 100

independent realizations.

Next, we show some simulation results for the endmember identifiability for moderately finite data

length (cf. Theorem 2), the choice of the parameterη, and the performance evaluation of the proposed

HyperCSI algorithm, in the following subsections, respectively.
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Fig. 3. The endmember identifiability of the HyperCSI algorithm with finite data lengthL.

A. Endmember Identifiability of HyperCSI for Finite Data

In Theorem 2, the perfect endmember identifiability of the proposed HyperCSI algorithm (withc = 1

in Step 5 in Table I) under the noise-free scenario is proved in the asymptotic sense (i.e., the data

length L → ∞). In this subsection, we would like to show some simulation results to illustrate the

asymptotic identifiability of the HyperCSI algorithm and its good endmember estimation accuracy even

with a moderately finite number of pixelsL.

Figure 3 shows some simulation results ofφen versusL for N ∈ {4, 8, 12, 16}. From this figure,

one can observe that for a givenN , φen decreases asL increases, and the HyperCSI algorithm indeed

achieves perfect identifiability (i.e.,φen = 0, cf. (32)) asL → ∞. On the other hand, the HyperCSI

algorithm needs to identifyN(N − 1) essential pixelsp(i)
k for the construction of the Craig’s simplex,

which indicates that the HyperCSI algorithm would need morepixels to achieve good performance for

largerN . Intriguingly, the results shown in Figure 3 are consistentwith the above inferences, where a

largerN corresponds to a slightly slower convergence rate ofφen. However, these results also allude to

a high possibility that the HyperCSI algorithm can yield accurate endmember estimates with a typical

data lengthL (i.e., several ten thousands) for high SNR in HRS applications.

B. Choice of the Parameterη

The simulation results forφen versusη obtained by the proposed HyperCSI algorithm, forL = 10000,

SNR ∈ {20, 30, 40} (dB), andN ∈ {3, 4, 5, 6} are shown in Figure 4. From this figure, one can observe

that for a fixedN , the best choice ofη (i.e., the one that yields the smallestφen) decreases as SNR

decreases. The reason for this is that the larger the noise power, the more the data cloud is expanded,

and hence the more the desired hyperplanes should be shiftedtowards the data center (implying a larger
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Fig. 4. The average r.m.s. spectral angle errorφen versus different values ofη.

c or a smallerη). Moreover, one can also observe from Figure 4 that for each scenario of(N,SNR), the

best choice ofη basically belongs to the interval[0.8, 1], a relatively large value in the interval(0, 1],

as discussed in Subsection III-C. It is also interesting to note that for a given SNR, the best choice ofη

tends to approach the value of 0.9 asN increases. For instance, forSNR = 20 dB, the best choices of

η for N ∈ {3, 4, 5, 6} are{0.87, 0.89, 0.89, 0.9}, respectively.

The above observations also suggest thatη = 0.9, the only parameter in the proposed HyperCSI

algorithm, is a good choice. Next, we will evaluate the performance of the proposed HyperCSI algorithm

with the parameterη preset to0.9 for all the simulated scenarios and real data tests, though it may not

be the best choice for some scenarios.

C. Performance Evaluation of HyperCSI Algorithm

We evaluate the performance of the proposed HyperCSI algorithm, along with a performance compar-

ison with five state-of-the-art Craig-criterion-based HU algorithms, including MVC-NMF [23], MVSA

[25], MVES [28], SISAL [30], and ipMVSA [27]. As the operations of MVC-NMF, MVSA, SISAL, and

ipMVSA are data-dependent, their respective regularization parameters have been well selected in the

simulation, so as to yield their best performances. In particular, the regularization parameter involved in

SISAL is the regression weight for robustness against noise, and hence has also been tuned w.r.t. different

SNRs. The implementation details and parameter settings for all the algorithms under test are listed in

Table II.

The purity indexρn for each synthetic pixelx[n] [28], [29], [33] has been defined asρn , ‖s[n]‖ ∈
[1/

√
N, 1] (due to(A1) and (A2)); a larger indexρn means higher pixel purity ofx[n] =

∑N
i=1 si[n]ai.

Each synthetic data set in the simulation is generated with agiven purity level denoted asρ, following
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TABLE II

SIMULATION SETTINGS FOR THE ALGORITHMS UNDER TEST.

Algorithms Implementation details and parameter settings

MVC-NMF

Dimension reduction: Singular value decomposition;

Regularization parameter:10−3; Max iteration:500;

Initialization: VCA-FCLS; Convergence tolerance:10−6.

MVSA
Dimension reduction: Principal component analysis;

Regularization parameter:10−6; Initialization: VCA.

MVES
Dimension reduction: ASF; Convergence tolerance:10−8;

Initialization: Solving feasibility problem.

SISAL

Dimension reduction: Principal component analysis;

Regularization parameter:0.015, 0.02, 0.025, 0.03, 0.035

w.r.t SNR=20, 25, 30, 35, 40 (dB); Initialization: VCA.

ipMVSA
Dimension reduction: Principal component analysis;

Regularization parameter:10−6; Initialization: VCA.

HyperCSI Dimension reduction: ASF;η = 0.9.

the same data generation procedure as in [28], [29], [33], whereρ is a measure of mixing level of a data

set. Specifically, a pool of sufficiently large number of synthetic data is first generated, and then from

the pool,L pixels with the purity indexρn not greater thanρ are randomly picked to form the desired

data set with a purity level ofρ.

In the above data generation, six endmembers (i.e., Jarsoite, Pyrope, Dumortierite, Buddingtonite,

Muscovite, and Goethite) with224 spectral bands randomly selected from the USGS library [48]are

used to generate10000 synthetic hyperspectral datax[n] (i.e., N = 6, M = 224, L = 10000) with ρ ∈
{0.8, 0.9, 1} andSNR ∈ {20, 25, 30, 35, 40} (dB). The simulation results forφen, φab, and computational

time T are displayed in Table III, where bold-face numbers correspond to the best performance (i.e., the

smallestφen, φab, andT ) of all the HU algorithms under test for a specific(ρ,SNR).

Some general observations from Table III are as follows. Forfixed purity levelρ, all the algorithms

under test perform better for larger SNR. As expected, the proposed HyperCSI algorithm rightly performs

better for higher data purity levelρ, but this performance behavior does not apply to the other five algo-

rithms, perhaps because the non-convexity of the complicated simplex volume makes their performance

behaviors more intractable w.r.t. different data purities.

Among the five existing benchmark Craig-criterion-based HUalgorithms, MVC-NMF yields more
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TABLE III

PERFORMANCE COMPARISON, IN TERMS OFφen (DEGREES), φab (DEGREES), AND AVERAGE RUNNING TIME T (SECONDS),

OF VARIOUS HU ALGORITHMS FOR DIFFERENT DATA PURITY LEVELSρ AND SNRS, WHERE ABUNDANCES ARE I.I .D. AND

DIRICHLET DISTRIBUTED.

Methods ρ

φen (degrees) φab (degrees)

T (seconds)SNR (dB) SNR (dB)

20 25 30 35 40 20 25 30 35 40

MVC-NMF

0.8 2.87 2.31 1.63 1.23 1.14 13.18 9.83 7.14 5.58 5.04

0.9 2.98 1.78 0.98 0.57 0.40 12.67 8.00 4.64 2.85 2.16 1.68E+2

1 3.25 1.91 1.00 0.52 0.21 12.30 7.45 4.14 2.26 1.11

MVSA

0.8 11.08 6.23 3.41 1.87 1.03 21.78 14.49 8.71 5.00 2.85

0.9 11.55 6.46 3.48 1.90 1.05 21.89 14.51 8.63 4.91 2.82 3.54E+0

1 11.64 6.51 3.54 1.93 1.06 21.67 14.21 8.49 4.81 2.72

MVES

0.8 10.66 6.06 3.39 1.91 1.16 21.04 14.21 9.04 5.51 3.33

0.9 10.17 6.06 3.48 1.97 1.12 21.51 14.48 9.28 5.69 3.45 2.80E+1

1 9.95 5.96 3.55 2.19 1.30 22.50 15.34 10.32 7.11 4.49

SISAL

0.8 3.97 2.59 1.59 0.94 0.53 13.70 8.68 5.22 3.09 1.80

0.9 4.18 2.70 1.64 0.95 0.54 13.55 8.54 5.11 3.00 1.75 2.59E+0

1 4.49 2.87 1.73 0.99 0.54 13.40 8.43 5.03 2.93 1.66

ipMVSA

0.8 12.03 7.05 4.04 2.02 1.16 21.81 14.89 9.58 5.32 2.23

0.9 12.63 7.55 4.04 2.05 1.25 22.33 15.36 9.37 5.21 3.31 9.86E-1

1 12.89 7.80 4.00 2.13 1.28 22.16 15.20 9.06 5.25 3.28

HyperCSI

0.8 1.65 1.20 0.79 0.54 0.37 11.17 7.35 4.32 2.65 1.64

0.9 1.37 1.03 0.64 0.45 0.32 10.08 6.40 3.62 2.25 1.38 5.39E-2

1 1.21 0.83 0.57 0.39 0.27 9.28 5.46 3.23 1.92 1.15

accurate endmember estimates than the other algorithms at the highest computational cost, while ipMVSA

is the most computationally efficient one with lower performance as a trade-off. Nevertheless, the proposed

HyperCSI algorithm outperforms all the other five algorithms when the data are heavily mixed (i.e.,

ρ = 0.8) or moderately mixed (i.e.,ρ = 0.9). As for high data purityρ = 1, the HyperCSI algorithm

also performs best except for the case of(ρ,SNR) = (1, 40 dB). On the other hand, the computational

efficiency of the proposed HyperCSI algorithm is about1 to 4 orders of magnitude faster than the other

five HU algorithms under test. Note that the computational efficiency of the HyperCSI algorithm can be

further improved by an order ofO(N) if parallel processing can be implemented in Step 4 (hyperplane

estimation) and Step 7 (abundance estimation) in Table I. Moreover, ipMVSA is around 4 times faster

than MVSA, but performs slightly worse than MVSA, perhaps because ipMVSA [27] does not adopt the

hinge-type soft constraint (for noise resistance) as used in MVSA [25].
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D. Performance Evaluation of HyperCSI Algorithm with Non-i.i.d., Non-Dirichlet and Sparse Abundances

In practice, the abundance vectorss[n] may not be i.i.d. and seldom follow the Dirichlet distribution,

and, moreover, the abundance maps often show large sparseness [52]. In view of this, as considered

in [52], [53], two sets of sparse and spatially correlated abundance maps displayed in Figure 5 were

used to generate two synthetic hyperspectral images, denoted as SYN1 (L = 100 × 100) and SYN2

(L = 130× 130). Then all the algorithms listed in Table II are tested againwith these two synthetic data

sets for which the abundance vectors are obviously neither i.i.d. nor Dirichlet distributed.

(a) Ground truth abundance maps of SYN1

(b) Ground truth abundance maps of SYN2

Fig. 5. Two sets of sparse and spatially correlated abundance maps, where each subblock in subfigure (b) contains10 × 10

pixels.

The simulation results, in terms ofφen, φab, and computational timeT , are shown in Table IV, where

bold-face numbers correspond to the best performance amongthe algorithms under test for a particular

data set and a specificSNR ∈ {20, 25, 30, 35, 40} (dB). As expected, for both data sets, all the algorithms

perform better for larger SNR.

One can see from Table IV that for both data sets, HyperCSI yields more accurate endmember estimates

than the other algorithms, except for the case of SNR= 40 (dB). As for abundance estimation, HyperCSI

performs best for SYN1, while MVC-NMF performs best for SYN2. Moreover, among the five existing
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TABLE IV

PERFORMANCE COMPARISON, IN TERMS OFφen (DEGREES), φab (DEGREES) AND RUNNING TIME T (SECONDS), OF

VARIOUS HU ALGORITHMS USING SYNTHETIC DATA SYN1 AND SYN2 FOR DIFFERENTSNRS, WHERE ABUNDANCES ARE

NON-I .I .D., NON-DIRICHLET AND SPARSE(SEEFIGURE 5).

Methods

φen (degrees) φab (degrees)

T (seconds)SNR (dB) SNR (dB)

20 25 30 35 40 20 25 30 35 40

SYN1

MVC-NMF 3.23 1.97 1.05 0.55 0.25 13.87 8.51 4.79 2.65 1.34 1.74E+2

MVSA 10.65 6.12 3.38 1.88 1.05 22.93 15.13 9.34 5.52 3.19 3.53E+0

MVES 9.55 5.49 3.60 1.96 1.22 23.89 17.35 14.49 7.78 5.66 3.42E+1

SISAL 4.43 2.89 1.81 1.18 0.86 15.85 10.39 6.89 5.29 4.65 2.66E+0

ipMVSA 11.62 6.82 3.38 2.01 1.05 24.05 16.28 9.34 5.98 3.19 1.65E+0

HyperCSI 1.55 1.22 0.79 0.52 0.35 12.03 6.92 4.16 2.49 1.46 5.56E-2

SYN2

MVC-NMF 2.86 1.71 0.97 0.54 0.23 22.86 15.52 9.39 5.27 2.67 2.48E+2

MVSA 10.21 5.55 3.08 1.71 0.95 29.86 22.72 15.57 9.78 5.83 5.65E+0

MVES 10.12 5.19 3.15 2.04 3.77 29.43 22.13 15.66 10.42 13.17 2.22E+1

SISAL 3.25 2.18 1.48 0.96 0.63 24.79 17.49 11.51 7.00 4.21 4.45E+0

ipMVSA 11.34 8.26 3.34 1.94 1.01 30.23 30.38 16.29 10.30 6.39 8.14E-1

HyperCSI 1.48 1.08 0.71 0.44 0.31 22.64 15.98 11.10 7.25 4.40 7.48E-2

benchmark Craig-criterion-based HU algorithms, ipMVSA and SISAL are the most computationally

efficient ones. However, in both data sets, the computational efficiency of the proposed HyperCSI

algorithm is at least more than one order of magnitude fasterthan the other five algorithms. These

simulation results have demonstrated the superior efficacyof the proposed HyperCSI algorithm over the

other algorithms under test in both estimation accuracy andcomputational efficiency.

V. EXPERIMENTS WITH AVIRIS DATA

In this section, the proposed HyperCSI algorithm along withtwo benchmark HU algorithms, i.e.,

the MVC-NMF algorithm [23] developed based on Craig’s criterion, and the VCA algorithm [17] (in

conjunction with the FCLS algorithm [15] for the abundance estimation) developed based on the pure-pixel

assumption, are used to process the hyperspectral imaging data collected by the Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS) [32] taken over the Cuprite mining site, Nevada, in 1997. We consider

this mining site, not only because it has been extensively used for remote sensing experiments [54], but

also because the available classification ground truth in [55], [56] (though which may have coregistration
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issue as it was obtained earlier than 1997, this ground truthhas been widely accepted in the HU context)

allows us to easily verify the experimental results. The AVIRIS sensor is an imaging spectrometer with

224 channels (or spectral bands) that cover wavelengths ranging from0.4 to 2.5 µm with an approximately

10-nm spectral resolution. The bands with low SNR as well as those corrupted by water-vapor absorption

(including bands 1-4, 107-114, 152-170, and 215-224) are removed from the original 224-band imaging

data cube, and hence a total ofM = 183 bands is considered in our experiments. Furthermore, the

selected subscene of interest includes 150 vertical lines with 150 pixels per line, and its 50th band is

shown in Figure 6(a), where the 10 pixels marked with yellow color are removed from the data set as

they are outlier pixels identified by the robust affine set fitting (RASF) algorithm [57].

Fig. 6. The subimage of the AVIRIS hyperspectral imaging data cube for the 50th band, where the locations of the ten outliers

identified by the RASF algorithm are marked with yellow color.

The numberN of the minerals (i.e., endmembers) present in the selected subscene is estimated using

a virtual dimensionality (VD) approach [37], i.e., the noise-whitened Harsanyi-Farrand-Chang (NWHFC)

eigenvalue-thresholding-based algorithm with false-alarm probabilityPFA = 10−3. The obtained estimate

is N̂ = 9 and used in the ensuing experiments for all the three HU algorithms under test.

The estimated abundance maps are visually compared with those reported in [17], [23], [28] as well

as the ground truth reported in [55], [56], so as to determinewhat minerals they are associated with.

The nine abundance maps obtained by the proposed HyperCSI algorithm are shown in Figure 7, and

they are identified as mineral maps of Muscovite, Alunite, Desert Varnish, Hematite, Montmorillonite,

Kaolinite #1, Kaolinite#2, Buddingtonite, Chalcedony, respectively, as listed in Table V. The minerals

identified by MVC-NMF and VCA are also listed in Table V, whereMVC-NMF also identifies nine

distinct minerals, while only eight distinct minerals are retrieved by VCA, perhaps due to lack of pure

pixels in the selected subscene or randomness involved in VCA. Owing to space limitation, their mineral
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maps are not shown here.

Muscovite Alunite Desert varnish

Hematite Montmorillonite Kaolinite #1

Buddingtonite ChalcedonyKaolinite #2

Fig. 7. The abundance maps of minerals estimated by HyperCSIalgorithm.

The mineral spectra extracted by the three algorithms undertest, along with their counterparts in the

USGS library [48], are shown in Figure 8, where one can observe that the spectra extracted by the

proposed HyperCSI algorithm hold a better resemblance to the library spectra. For instance, the spectrum

of Alunite extracted by HyperCSI shows much clearer absorption feature than MVC-NMF and VCA,

in the bands approximately from2.3 to 2.5 µm. To quantitatively compare the endmember estimation

accuracy among the three algorithms under test, the spectral angle distance between each endmember

estimatêa and its corresponding library spectruma serves as the performance measure and is defined as

φ = arccos

(
aT â

‖a‖ · ‖â‖

)
.

The values ofφ associated with the endmember estimates for all the three algorithms under test are also

shown in Table V, where the number in the parentheses is the value of φ associated with Kaolinite#1
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TABLE V

THE COMPUTATIONAL TIMEST (SECONDS) AND SPECTRAL ANGLE DISTANCEφ (DEGREES) BETWEEN LIBRARY SPECTRA

AND ENDMEMBERS ESTIMATED BY HYPERCSI, MVC-NMF, AND VCA. THE BOLD FACE NUMBERS CORRESPOND TO THE

SMALLEST VALUES OFφ OR T AMONG THE THREE ALGORITHMS UNDER TEST.

HyperCSI MVC-NMF VCA

Muscovite 3.03 3.96 4.54

Alunite 7.48 6.23 6.57

Desert Varnish 9.49 4.91 7.92

Hematite 7.83 12.94 7.24

Montmorillonite 4.84 7.44 6.59

Kaolinite #1 8.63 7.56 13.80 (11.71)

Kaolinite #2 7.39 - -

Buddingtonite 6.55 8.16 6.46

Chalcedony 5.92 7.97 8.25

Andradite - 7.43 -

Averageφ (degrees) 6.80 7.40 8.12

T (seconds) 0.12 988.67 5.40

repeatedly classified by VCA. One can see from Table V that theaverage ofφ of the proposed HyperCSI

algorithm is the smallest. The good performance of HyperCSIin endmember estimation intimates to that

the potential requirement of sufficient number (i.e.,N(N − 1) = 72, in this experiment) of pixels lying

close to the hyperplanes associated with the actual endmembers’ simplex, has been met. However, we

are not too surprised with this observation, since the number of minerals present in one pixelx[n] is

often small (typically, within five [10]), i.e., the abundance vectors[n] often shows sparseness [52] (cf.

Figure 7), indicating that a non-trivial portion of pixels are more likely to lie close to the boundary of

the endmembers’ simplex (note thatsi[n] = 0 if, and only if, x[n] ∈ Hi). Moreover, as the pure pixels

may not be present in the selected subscene, as expected the two Craig-criterion-based HU algorithms

(i.e., HyperCSI and MVC-NMF) outperform VCA in terms of endmember estimation accuracy. On the

other hand, in terms of the computation timeT as given in Table V, in spite of parallel processing not

applied, the HyperCSI algorithm is around 2.5 times faster than VCA (note that VCA itself only costs

0.31 seconds (out of the 5.40 seconds), and the remaining computation time is the cost of the FCLS)

and almost four orders of magnitude faster than MVC-NMF.
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Fig. 8. (a) The endmember signatures taken from the USGS library, and signatures of the endmember estimates obtained by

(b) HyperCSI, (c) MVC-NMF and (d) VCA.

VI. CONCLUSIONS

Based on the hyperplane representation for a simplest simplex, we have presented an effective and

computationally efficient Craig-criterion-based HU algorithm, called HyperCSI algorithm, given in Table

I. The proposed HyperCSI algorithm has the following remarkable characteristics:

• It never requires the presence of pure pixels in the data.

• It is reproducible without involving random initialization.

• It only involves simple linear algebraic computations, andsuitable for parallel implementation. Its

computational complexity (without using parallel implementation) isO(N2L), which is also the

complexity of some state-of-the-art pure-pixel-based HU algorithms.
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• It estimates Craig’s minimum-volume simplex by finding onlyN(N−1) pixels (regardless of the data

lengthL) from the data set for the construction of the associated hyperplanes, without involving any

simplex volume computations, thereby accounting for its high computational efficiency in endmember

estimation.

• The estimated endmembers are guaranteed non-negative, andthe identified simplex was proven to

be both Craig’s simplex and true endmembers’ simplex w.p.1.asL → ∞ for the noiseless case.

• The abundance estimation is readily fulfilled by a closed-form expression, and thus is computationally

efficient.

Some simulation results were presented to demonstrate the analytic results on the asymptotic endmem-

ber identifiability of the proposed HyperCSI algorithm, andits superior efficacy over some state-of-the-art

Craig-criterion-based HU algorithms in both solution accuracy and computational efficiency. Finally, the

proposed HyperCSI algorithm was tested using AVIRIS hyperspectral data to show its applicability.

APPENDIX

A. Proof of Theorem 1

For a fixedi ∈ IN , one can see from (18) thatR(i)
k ∩ R(i)

ℓ = ∅, ∀ k 6= ℓ, implying that theN − 1

pixelsp(i)
k , ∀ k ∈ IN−1, identified by solving (17) must be distinct. Hence, it suffices to show thatP is

affinely independent w.p.1 for anyP , {p1, . . . ,pN−1} ⊆ X that satisfies

pk 6= pℓ, for all 1 ≤ k < ℓ ≤ N − 1. (34)

Then, aspk ∈ X , ∀ k ∈ IN−1, we have from(A4) and (34) that there exist i.i.d Dirichlet distributed

random vectors{s1, . . . , sN−1} ⊆ dom f such that (cf. (2))

pk = [α1 · · ·αN ] sk, for all k ∈ IN−1. (35)

For ease of the ensuing presentation, letPr{·} denote the probability function and define the following

events:

E1 The setP is affinely dependent.

E2 The set{s1, . . . , sN−1} is affinely dependent.

E3(k) sk ∈ aff {{s1, . . . , sN−1} \ {sk}}, ∀ k ∈ IN−1.

Then, to prove thatPi is affinely independent w.p.1, it suffices to provePr{E1} = 0.

Next, let us show thatE1 impliesE2. AssumeE1 is true. Thenpk ∈ aff{P\{pk}} for somek ∈ IN−1.

Without loss of generality, let us assumek = 1. Then,

p1 = θ2 · p2 + · · ·+ θN−1 · pN−1, (36)
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for someθi, i = 2, . . . , N − 1, satisfying

θ2 + · · ·+ θN−1 = 1. (37)

By substituting (35) into (36), we have

[α1, . . . ,αN ] s1 = [α1, . . . ,αN ] t, (38)

wheret ,
∑N−1

m=2 θm ·sm. For notational simplicity, let[u]1:N−1 , [u1, . . . , uN−1]
T for any given vector

u = [u1, . . . , uN ]T . Then, from the facts of1TNt = 1 (by (37)) and1TNs1 = 1, (38) can be rewritten as

Θ [s1]1:N−1 = Θ [t]1:N−1, (39)

whereΘ , [α1−αN , . . . ,αN−1−αN ]. As {α1, . . . ,αN} is affinely independent (by(A3)), the matrix

Θ is of full column rank [26], implying that[s1]1:N−1 = [t]1:N−1 (by (39)). Then, by the facts of

1TNt = 1 and 1TNs1 = 1, one can readily come up withs1 = t =
∑N−1

m=2 θm · sm, or, equivalently,

s1 ∈ aff{s2, . . . , sN−1} (by (37)), implying thatE2 is true [26]. Thus we have proved thatE1 implies

E2, and hence

Pr{E1} ≤ Pr{E2}. (40)

As Dirichlet distribution is a continuous multivariate distribution [47] for a random vectors ∈ R
N

to satisfy (A1)-(A2) with an (N − 1)-dimensional domain, any given affine hullA ⊆ R
N with affine

dimensionP must satisfy [44]

Pr{ s ∈ A } = 0, if P < N − 1. (41)

Moreover, as{s1, . . . , sN−1} are i.i.d. random vectors and the affine hullaff {{s1, . . . , sN−1} \ {sk}}
must have affine dimensionP < N − 1, we have from (41) that

Pr{E3(k)} = 0, for all k ∈ IN−1. (42)

Then we have the following inferences:

0 ≤ Pr{E1} ≤ Pr{E2} (by (40))

= Pr{∪N−1
k=1 E3(k)} (by the definitions ofE2 andE3(k))

≤
N−1∑

k=1

Pr{E3(k)} = 0, (by the union bound and (42))

i.e., Pr{E1} = 0. Therefore, the proof is completed. �
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B. Proof of Theorem 2

It can be seen from (20) that the p.d.f. of Dirichlet distribution satisfies

f(s) =
Γ(γ0)∏N
i=1 Γ(γi)

·
N∏

i=1

sγi−1
i > 0, ∀ s ∈ dom f. (43)

Moreover, by the facts ofAei = ai and

dom f = {s ∈ R
N
++

∣∣ 1TNs = 1} = int conv{e1, . . . , eN},

whereint U denotes the interior of a setU , the linear mapping (i.e.,x = As) of the abundance domain

dom f full fills the interior of the true endmembers’ simplexconv{a1, . . . ,aN}, namely

{x = As
∣∣ s ∈ dom f} = int conv{a1, . . . ,aN}. (44)

Then, from (43)-(44) and(A4), it can be inferred that

Pr{conv{x[1], . . . ,x[L]}|L→∞ = int conv{a1, . . . ,aN}} = 1,

which, together with the fact that the affine mapping (cf. (2)) preserves the geometric structure of

{x[1], . . . ,x[L]} [38] (note thatCTC = IN−1), further implies

Pr{ convX = int conv{α1, . . . ,αN} } = 1, (45)

where X = {x̃[1], . . . , x̃[L]}|L→∞ throughout the ensuing proof. It can be inferred from (45) that

there is always a pixel̃x[n] ∈ X that can be arbitrarily close to the extreme pointαi of the simplex

conv{α1, . . . ,αN}, i.e., for all i ∈ IN ,

Pr{ B(αi, ǫ) ∩ X 6= ∅ } = 1, for any ǫ > 0. (46)

Let MVES(U) denote the set of all minimum-volume enclosing simplexes ofU (i.e., Craig’s simplex

containing the setU ). Then, one can infer from the convexity of a simplex that (cf. [29, Equation (32)])

MVES(X ) = MVES(convX ). (47)

Moreover, by the fact that any simplexT must also be a closed set and the fact that the closure of

int(conv{α1, . . . ,αN}) is exactlyconv{α1, . . . ,αN}, it can be seen thatconv{α1, . . . ,αN} ⊆ T if and

only if int(conv{α1, . . . ,αN}) ⊆ T [58], and hence

MVES(conv{α1, . . . ,αN}) = MVES(int conv{α1, . . . ,αN}). (48)

Thus, it can be inferred from (45), (47) and (48) that

Pr{ MVES(X ) = MVES(conv{α1, . . . ,αN}) } = 1. (49)
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As conv{α1, . . . ,αN} itself is a simplex,MVES(conv{α1, . . . ,αN}) = {conv{α1, . . . ,αN}}, which

together with (49) yields

Pr{ MVES(X ) = {conv{α1, . . . ,αN}} } = 1. (50)

In other words, we have proved that the Craig’s minimum-volume simplex is always the true endmembers’

simplex conv{α1, . . . ,αN}. To complete the proof of Theorem 2, it suffices to show that the true

endmembers’ simplex is always identical to the simplex identified by the HyperCSI algorithm, i.e., for

all i ∈ IN ,

Pr{ α̂i ∈ B(αi, ǫ) } = 1, for any ǫ > 0, (51)

whereα̂1, . . . , α̂N are the estimated DR endmembers using HyperCSI algorithm.

To this end, let us first show that, for alli ∈ IN ,

Pr{ α̃i ∈ B(αi, ǫ) } = 1, for any ǫ > 0, (52)

where{α̃1, . . . , α̃N} are the purest pixels identified by SPA (cf. Step 2 in Table I).However, directly

proving (52) is difficult due to the post-processing involved in SPA (cf. Algorithm 4 in [43]). In view

of this, let x̃[ℓ1], . . . , x̃[ℓN ] be those pixels identified by SPAbeforepost-processing. Because the post-

processing is nothing but to obtain the purest pixelα̃i by iteratively pushing each̃x[ℓi] away from the

hyperplaneaff{x̃[ℓj ]
∣∣ j 6= i} [43], we have the following simplex volume inequalities

V (x̃[ℓ1], . . . , x̃[ℓN ]) ≤ V (α̃1, . . . , α̃N ) ≤ V (α1, . . . ,αN ), (53)

where the last inequality is due tõαi ∈ X ⊆ conv{α1, . . . ,αN}. Hence, by (53), to prove (52), it

suffices to show that, for alli ∈ IN ,

Pr{ x̃[ℓi] ∈ B(αi, ǫ) } = 1, for any ǫ > 0. (54)

However, the SPA before post-processing (cf. Algorithm 4 in[43]) is exactly the same as the TRIP

algorithm (cf. Algorithm 2 in [51]), and it has been proven in[51, Lemma 3] that (46) straightforwardly

yields (54) forǫ = 0; note that the condition “(46) withǫ = 0” is equivalent to the pure-pixel assumption

required in [51, Lemma 3]. One can also show that (46) yields (54) for any ǫ > 0, and the proof

basically follows the same induction procedure as in the proof of [51, Lemma 3] and is omitted here for

conciseness. Then, recalling that (54) is a sufficient condition for (52) to hold, we have proven (52).

By the fact thatvi is a continuous function (cf. (14)) and by (16) and (18), we see that

lim
α̃i→αi, ∀i

b̃i = vi(α1, . . . ,αN ) = bi,

lim
α̃i→αi, ∀i

R(i)
k = R(i)

k (α1, . . . ,αN ).

(55)
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Moreover, we have from (43), (52), (55) andL → ∞ that the pixelp(i)
k identified by (17) can be

arbitrarily close toHi. Furthermore, by Theorem 1, we have that the vectors{p(i)
1 , . . . ,p

(i)
N−1} are

not only arbitrarily close toHi, but also affinely independent w.p.1, which together with Proposition

2 implies that the estimated̂bi (cf. (19)) is arbitrarily close to the truebi w.p.1, provided that the

outward-pointing normal vectorŝbi andbi have the same norm without loss of generality. Then, from

(43), (22), and the premises ofL → ∞ and c = 1, it can be inferred that the estimated hyperplane

Ĥi ≡ Hi(b̂i, ĥi/c) = Hi(b̂i, ĥi) is arbitrarily close to the trueHi ≡ Hi(bi, hi) (cf. (9)); precisely, we

have

Pr{ [b̂T
i , ĥi]

T ∈ B([bT
i , hi]

T , ǫ) } = 1, for any ǫ > 0. (56)

Consequently, by comparing the formulas ofαi (cf. (13)) andα̂i (cf. (23)), we have, fromc = 1 and

(56), thatα̂i is always arbitrarily close toαi, i.e., (51) is true for alli ∈ IN , and hence the proof of

Theorem 2 is completed. �
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