arxXiv:1510.08917v1 [cs.CG] 29 Oct 2015
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Abstract

Hyperspectral unmixing (HU) is a crucial signal processprgcedure to identify the underlying
materials (or endmembers) and their corresponding prigmsri{or abundances) from an observed hy-
perspectral scene. A well-known blind HU criterion, advwecaby Craig in early 1990’s, considers the
vertices of the minimum-volume enclosing simplex of theadelbud as good endmember estimates, and
it has been empirically and theoretically found effectiverein the scenario of no pure pixels. However,
such kind of algorithms may suffer from heavy simplex voluooenputations in numerical optimization,
etc. In this work, without involving any simplex volume coutptions, by exploiting a convex geometry
fact that a simplest simplex oV vertices can be defined by associated hyperplanes, we propose a
fast blind HU algorithm, for which each of th& hyperplanes associated with the Craig’s simplex of
N vertices is constructed fronV — 1 affinely independent data pixels, together with an endmembe
identifiability analysis for its performance support. With resorting to numerical optimization, the
devised algorithm searches for thg§ N — 1) active data pixels via simple linear algebraic computatjon
accounting for its computational efficiency. Monte Carlonsiations and real data experiments are
provided to demonstrate its superior efficacy over some Hreack Craig-criterion-based algorithms
in both computational efficiency and estimation accuracy.

Index Terms—Hyperspectral unmixing, Craig’s criterion, convex geomeaninimum-volume enclosing
simplex, hyperplane

. INTRODUCTION

Hyperspectral remote sensing (HRS) [2]-[4], also knownmaaging spectroscopy, is a crucial tech-
nology to the identification of material substances (or esmahpers) as well as their corresponding
fractions (or abundances) present in a scene of interast dtaserved hyperspectral data, having various
applications such as planetary exploration, land mappimd) @assification, environmental monitoring,
and mineral identification and quantificatidn [5]-[7]. Theserved pixels in the hyperspectral imaging
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data cube are often spectral mixtures of multiple substartbe so-calleanixed pixelphenomenon]8],
owing to the limited spatial resolution of the hyperspddemsor (usually equipped on board the satellite
or aircraft) utilized for recording the electromagneti@tering patterns of the underlying materials in
the observed hyperspectal scene over about several hendfathrrowly spaced (typically, 5-10 nm)
wavelengths that contiguously range from visible to ne#nrared bands. Occasionally, the mixed pixel
phenomenon can result from the underlying materials irtegamixed [9]. Hyperspectral unmixingHU)

[8], [10], an essential procedure of extracting individspkectral signatures of the underlying materials
in the captured scene from these measured spectral mixigrédserefore of paramount importance in
the HRS context.

Blind HU, or unsupervised HU, involves two core stages, rigrmedmember extraction and abundance
estimation, without (or with very limited) prior knowledgdout the endmembers’ nature or the mixing
mechanism. Some endmember extraction algorithms (EEAs)) as alternating projected subgradients
(APS) [11], joint Bayesian approach (JBA) [12], and itecht®nstrained endmembers (ICE)[[13] (also the
sparsity promoting ICE (SPICE) [14]), can simultaneougdyedmine the associated abundance fractions
while extracting the endmember signatures. Neverthekmsae EEAs perform endmember estimation,
followed by abundance estimation using such as the fullysttamed least squares (FCLS) [15] to
complete the entire HU processing.

The pure-pixel assumption has been exploited in devisisgbind HU algorithms to search for the
purest pixels over the data set as the endmember estimattsuah searching procedure can always
be carried out through simple linear algebraic formulatiosee, e.g., pixel purity index (PPI)_]16] and
vertex component analysis (VCA) [17]. An important blind Hidterion, called Winter’s criterior [18],
also based on the pure-pixel assumption, is to identify tbeices of the maximum-volume simplex
inscribed in the observed data cloud as endmember estintdteslgorithms in this category include
N-finder (N-FINDR) [18], simplex growing algorithm (SGA)) 9] (also the real-time implemented SGA
[2Q]), and worst case alternating volume maximization (WAX) [21], to name a few. However, the
pure-pixel assumption could be seriously infringed in pcat scenarios especially when the pixels are
intimately mixed, for instance, the hyperspectral imagitaga for retinal analysis in the ophthalmology
[9]. In these scenarios, HU algorithms in this category datdmpletely fail; actually, it is proven that
perfect endmember identifiability is impossible for Wintgiterion-based algorithms if the pure-pixel
assumption is violated [21].

Without relying on the existence of pure pixels, anothernging blind HU approach, advocated

by Craig in early 1990's[[22], exploits the simplex struetuwf hyperspectral data, and believes that
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the vertices of the minimum-volume data-enclosing simplar yield good endmember estimates, and
algorithms developed accordingly include such as mininmafime transform (MVT) [[2R], minimum-
volume constrained nonnegative matrix factorization (MM®IF) [23], and minimum-volume-based
elimination strategy (MINVEST)[[24]. Moreover, some limzation-based methods have also been
reported to practically identify Craig’s minimum-volumenplex, e.g., the iterative linear approximation
in minimum-volume simplex analysis (MVSA) [25] (also itsstamplementation using the interior-point
method [26], termed as ipMVSA_[27]), and the alternatingein programming in minimum-volume
enclosing simplex (MVES) [28]. Empirical evidences do veipport that this minimum-volume approach
is resistant to lack of pure pixels, and can recover grounthtendmembers quite accurately even
when the observed pixels are heavily mixed. Very recenttig, validity of this empirical belief has been
theoretically justified; specifically, we show that, as laga key measure concerning the pixels’ mixing
level is above a certain (small) threshold, Craig's simptex perfectly identify the true endmembers
in the noiseless scenarip |29]. However, without the guigaof the pure-pixel assumption, this more
sophisticated criterion would generally lead to more cotapenally expensive HU algorithms. To the
best of our knowledge, the ipMVSA algorithrn [27] and the siexpidentification via split augmented
Lagrangian (SISAL) algorithm [30] are the two state-of-tiré Craig-criterion-based algorithms in terms
of computational efficiency. Nevertheless, in view of notyothe NP-hardness of the Craig-simplex-
identification (CSI) problem [31] but also heavy simplexwmle computations, all the above mentioned
HU algorithms are yet to be much more computationally efficiédMoreover, their performances may
not be very reliable owing to the sensitivity to regulariaatparameter tuning, non-deterministic (i.e.,
non-reproducible) endmember estimates caused by randtializations, and, most seriously, lack of
rigorous identifiability analysis.

In this work, we break the deadlock on the trade-off betwesmgple fast algorithmic scheme and the
estimation accuracy in the no pure-pixel case. We have vbddhat when the pure-pixel assumption
holds true, the effectiveness of a simple fast HU algorithetheme could be attributed to that the desired
solutions (i.e., pure pixels) already exist in the data besfpired by this observation, we naturally raise
a questionCan Craig’s minimum-volume simplex be identified by simphrehing for a specific set of
pixels in the data set regardless of the existence of purelgixhe answer is affirmative and will be
given in this paper.

Based on the convex geometry fact that a simplest simple¥ ofertices can be characterized by
the V associated hyperplanes, this paper proposes an efficidrafiactive unsupervised Craig-criterion-

based HU algorithm, together with an endmember identiftsitdinalysis. Each hyperplane, parameterized
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by a normal vector and an inner product constant [26], can the estimated fromlV — 1 affinely
independent pixels in the data set via simple linear algeldoamulations. The resulting hyperplane-
based CSI (HyperCSl) algorithm, based on the above pixetsesaheme, can withstand the no pure-pixel
scenario, and can yield deterministic, non-negative, arakt importantly, accurate endmember estimates.
After endmember estimation, a closed-form expressionrimngeof the identified hyperplanes’ parameters
is derived for abundance estimation. Then some Monte Carieenical simulations and real hyperspectral
data experiments are presented to demonstrate the supfitacy of the proposed HyperCSI algorithm
over some benchmark Craig-criterion-based HU algorithmimith estimation accuracy and computational
efficiency.

The remaining part of this paper is organized as follows.dnt®n[Il, we briefly review some essential
convex geometry concepts, followed by the signal model anteudsion reduction. Sectidnlll focuses
on the HyperCSil algorithm development, and in Sedtign IVneaimulation results are presented for its
performance comparison with some benchmark Craig-asitelbased HU algorithms. In Sectiéd V, we
further evaluate the effectiveness of the proposed Hyplea@8rithm with AVIRIS [32] data experiments.
Finally, we draw some conclusions in Sectfod VI.

The following notations will be used in the ensuing presémaR (RY, RM*N) is the set of real
numbers {V-vectors,M x N matrices).R, (RY, RJX[XN) is the set of non-negative real numbené-(
vectors,M x N matrices).R, (Rf 4 Rf +XN ) is the set of positive real numberd’{vectors,M x N
matrices). X! denotes the Moore-Penrose pseudo-inverse of a matrid y and 0y are all-one and
all-zero N-vectors, respectively; denotes the unit vector of proper dimension with ttieentry equal
to unity. Iy is the N x N identity matrix. = and > stand for the componentwise inequality and strictly
componentwise inequality, respectively- || denotes the Euclidean norm. The distance of a veettr
a setS is denoted bydist(v,S) £ infyes ||[v — v|| [26]. |S| denotes the cardinality of the s&t The
determinant of matrixX is represented bylet(X). Z, stands for the set of integefs, ..., Z}, for any

positive integerZ.

II. CONVEX GEOMETRY AND SIGNAL MODEL

In this section, a brief review on some essential convex gignwill be given for ease of later use.
Then the signal model for representing the hyperspectrading data together with dimension reduction

preprocessing will be presented.

A. Convex Geometry Preliminary

The convex hullof a given set of vector§a,,...,ay} C RM is defined as[[26]
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aff{a;,as,a3} = H(b, h)

ff{ay,
aff{ag,a; } 5 (x B blx i}

RB

b

conv{aj, as, as}

conv{ay, az}

Fig. 1. A graphical illustration ifR® for some convex geometry concepts, where the line segmemtectinga, and a; is
the convex hull of{ao, a3}, the straight line passingo anda, is the affine hull of{ao, a:}, the shaded triangle is the convex
hull of {a1, a2, a3}, and the plane passing the three poifis, az, as} is the affine hull of{a:, as,as}. As an affine hull in

R? is called a hyperplane if its affine dimension2saff{a;,as,as} is a hyperplane, whilaff{as,a;} is not.

N
conv{ai,...,ay} = {x = ZQiai

6 cRY, 156 = 1},

i=1
whered = [0y, ...,0y]" (cf. Figurell). A convex huktonv{ay, ..., ay} is called an N —1)-dimensional
simplexwith N vertices{ay,...,ay} if {a;,...,ayx} is affinely independenbr, equivalently, if{a; —
ay,...,ay_1—ay} is linearly independent, and it is callecsimplest simplein RM whenM = N —1

[33]. For example, a triangle is a-dimensional simplest simplex i®?, and a tetrahedron is &
dimensional simplest simplex iR? (cf. Figure[1).
For a given set of vectorfay, ..., ay} C R, its affine hullis defined as[[26]
N
aff{al, ce ,aN} = {X = Zelal
i=1
where@ = [ 0y,...,0x |7 (cf. Figure[d). This affine hull can be parameterized by af@etyC,d)

061&%1%0:1},

RMx*P » RM ysing the following alternative representation][26]:
aff{a;,...,ay} = A(C,d) 2 { x=Ca+d | a e R },
where P £ rank(C) (the rank ofC) is the affine dimensiorof aff{a;,...,ax}. Moreover, an affine

hull aff{a;,...,ay} C RM is called ahyperplaneif its affine dimensionP = M — 1 (cf. Figure[1).

B. Signal Model and Dimension Reduction

Consider a scenario where a hyperspectral sensor measileeskectromagnetic radiation ovér

spectral bands fromV unknown materials (endmembers) in a scene of interest.dBaséhe linear mixing

November 2, 2015 DRAFT



model (LMM) [2]-[8], [10], [28], where the measured soladiations are assumed to reflect from the
explored scene through one single bounce, and the endmgnspectral signature vectoss € RV are
assumed to be invariant with the pixel indexeach pixelx[n] € RM in the observed data set can then

be represented as a linear mixture of tieendmembers’ spectral signatures
N
x[n] = As[n] = ) " si[nla;, Vn €1, (1)
i=1
where A = [a; ---ay] € RM*N is the spectral signature matrixin] = [s1[n]---sy[n]]T € RY is the

abundance vector, anfl is the total number of pixels. The following standard asstiomg pertaining
to the model in[(IL), which also characterize the simplexcstme inherent in the hyperspectral data, are
used in our HU algorithm development latetr [2]-[8], [10]8]2

(Al) (Non-negativity)s;[n] >0,V i € Zy andV n € Zy.
(A2) (Full-additivity) SN s;[n] =1,V n € Zy.
(A3) min{L, M} > N and A € R is full column rank.

Moreover, like most benchmark HU algorithms (see, €.gl, [Z3], [28], [3Q]), the number of endmem-
bers NV is assumed to be known a priori, which can be determined &eéod by applying model-order
selection methods, such as hyperspectral signal subspemgfication by minimum error (HySiMe) [36],
and Neyman-Pearson detection theory-based virtual dimeagy (VD) [37].

We aim to blindly estimate the unknown endmembers (ae,, .., ay), as well as their abundances
(i.e., s[1],...,s[L]), from the observed spectral mixtures (i.[1],...,x[L]). Due to the huge dimen-
sionality M of hyperspectral data, directly analyzing the data may meotdry computationally efficient.
Instead, an efficient data preprocessing technique, caffate set fitting (ASF) proceduré [B8], can be
applied to compactly represent each measured pike] € R in a dimension-reduced (DR) space
RN-1 as follows:

%[n] = CT(x[n] —d) =) _ si[n]a; € RN, )
i=1

INote that there is a research line considering non-lineatturés for modeling the effect of multiple reflections of aol
radiation [34]. Moreover, the endmember spectral sigmstunay be spatially varying, hence leading to the full-addjtin (A2)
being violated[[1D]. However, studying these effects is aiuthe scope of this paper, and the representative LMM iscsefft
for our analysis and algorithm development; interestedeeaare referred to the magazine papers [34] [35], cteply,
for the non-linear effect and the endmember variabilityeetf
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where

L
_ 1 M
d=- nz::lx[n] e RM (mean of data set) (3)
C=[q(UU"),....qv 1 (UUT) ] € RM*(N-1) (4)
a; = Cl(a; —d) e R¥~! (DR endmembers) (5)

in which ¢;(UUT) € RM denotes theth principal eigenvector (with unit norm) of the square nxatr
UUT € RM*M 'andU = [ x[1]—d,...,x[L]—d ] € R®*L is the mean-removed data matrix. Actually,
like other dimension reduction algorithms [39], ASF alsofgens noise suppression in the meantime. It
has been shown that the above ASF best represents the nibdstmen an(N — 1)-dimensional space
in the sense of least-squares fitting erfor| [38], while suttimdi error vanishes in the noiseless scenario
[38]. Note that the data mean in the DR space is the ofigin; (by (2) and [()).

Because ofV — 1 < M in typical HU applications, the HyperCSI algorithm will beekloped in the
DR spaceR”~! wherein the DR endmembers;, ..., ay are estimated. Then, bi](5), the endmember

estimates in the original spa@&" can be restored as
a,=Ca;+d, Viely, (6)

where&;'s are the endmember estimates in the DR space.

1. HYPERPLANE-BASED CRAIG-SIMPLEX-IDENTIFICATION ALGORITHM

First of all, due to[(R) andA1)-(A2), the true endmembers’ convex halbnv{a,...,ay} itself is
a data-enclosing simplex, i.e.,
X = {x[1],...,x[L] } Cconv{a,...,an}. (7)

According to Craig’s criterion, the true endmembers’ conkall is estimated by minimizing the volume
of the data-enclosing simplex [22], namely, by solving thiofving volume minimization problem (called
the CSI problem interchangeably hereafter):
B-Eﬁ%ﬂj\i]l}l Vi V(;Blv s 7BN)
e ®

s.t.  X[n] € conv{p1,...,Bn}, Vn,
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whereV (B34,..., 3x) denotes the volume of the simpleanv{3,..., 8y} € RY~L. Under some mild
conditions on data purity level [29], the optimal solutioh problem [8) can perfectly yield the true
endmembersy, ... ,aN.E

Besides in the HU context, the NP-hard CSI problenin[(8) [&ig been studied in some earlier works
in mathematical geology [40] and computational geométi}.[However, their intractable computational
complexity almost disable them from practical applicasidar larger problem size [41], mainly owing

to calculation of the complicatedonconvexobjective function[[28]

1 Bi -+ By
= |det
PRI A W T

V(Bi,...,0Nn) =
in @). Instead, the HyperCSI algorithm to be presented caliciously bypass simplex volume cal-
culations, and meanwhile the identified simplex can be shtawbe exactly the “minimum-volume”
(data-enclosing) simplex in the asymptotic sense—{ o).

First of all, let us succinctly present the actual idea onclvhihe HyperCSl algorithm is based.
As the Craig’s minimum-volume simplex can be uniquely deieed by N tightly enclosed N — 2)-
dimensional hyperplanes, where each hyperplane can bastegoted from/V — 1 affinely independent
points on itself, we hence endeavor to searchNor 1 affinely independent pixels (referred to astive
pixels in X) that are as close to the associated hyperplane as posAibleegin with N purest pixels
that defineV disjoint proper regions, each centered at a different pynieel. Then for each hyperplane
of the minimum-volume simplex, the desirédd — 1 active pixels, that are as close to the hyperplane as
possible, are respectively sifted from — 1 subsets ofY, each enclosed in one different proper region

(cf. Figure[2). Then the obtainel — 1 pixels are used to construct one estimated hyperplanellysina

the desired minimum-volume simplex can be determined frioenabtainedV hyperplane estimates.

A. Hyperplane Representation for Craig’'s Simplex

The idea of solving the CSI problem inl(8), without involviagy simplex volume computations, is

based on the hyperplane representation of a simplest sinaglatated in the following proposition:

2In [29], 7 £ max{r’ < 1| Tc N B(+") C conv{s[l],...,s[L]}} is used to measure the data purity level Bf where
T & conv{er,...,ex} C RN andB(r') £ {x € RY | ||x|| < r'}; the geometric interpretations &f can be found in[[29].
Simply speaking, one can show that [\/Lﬁ, 1], and the most heavily mixed scenario (i€n] = +1x, Vn € Zr) will lead
to the lower bound[29]. On the contrary, the pure-pixel agstion is equivalent to the condition 6f = 1 (the upper bound)

[29], comparing to which a mild condition of onky > ﬁ is sufficient to guarantee the perfect endmember identiifiabi

of problem [8) [29].
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Fig. 2. An illustration of hyperplanes and DR dataRA for the case ofV = 3, whereés is a purest pixel in¥' (a purest
pixel &; can be considered as the pixel closestwg but not necessarily very close to hyperplaie = aff{a2, a3}, leading
to nontrivial orientation difference betweén andb;. However, the active pixelpgl) and pél) identified by [IT) will be very
close to#, (especially, for largel), and hence the orientations bf andb; will be almost the same. On the other hand, one
can see that the pixels identified By ¥21) a{qegl), q} (that are very close to each other) whose corresponding alorector

estimate is obviously far away from the trive.

Proposition 1 If {a,...,ay} € RV~ is affinely independent, i.€7, = conv{a;,...,ay} C RV-!
is a simplest simplex, thef can be reconstructed from the associat€dhyperplanes(#1,...,Hn},

that tightly encloseT, whereH; £ aff( {au,...,an} \ {a;} ).

Proof: It suffices to show thaf{a;,...,an} can be determined byH;,...,Hx}. It is known that
hyperplane?; can be parameterized by a normal vectgrc RV~! and an inner product constant
h; € R as follows:

Hi(bi,hy) ={ x e RV"" | b]x =h; }. (9)

As o € aff( {a,...,an}\{a;} ) = H; for all j # i, we have from[(D) thabfai = h; for all j # i,
i.e.,

B_;a; =h_, (10)

whereB_; e RW-Dx(N=1) ' . ¢ RV-1 are defined as
B_; 2 [b,....bi_1,bii1,...,bx]T, (11)
h_; 2 [h1,... hi—1, hiz1,..., hn]T. (12)

As T is a simplest simplex iiRV~!, B_; must be of full rank and hence invertible [26]. Hence, we
have from [(ID) that
a; =B~ h;, VicIy, (13)
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implying thata; can be reconstructed. The proof is therefore completed. |
As it can be inferred fronfA3) that the set of DR endmembefa, ..., ay} is affinely independent,
one can apply Proposition] 1 to decouple the CSI problem (8 i§ subproblems of hyperplane
estimation, namely, estimation d¥f parameter vectorgb;, h;) in (@). Then [IB) can be utilized to
obtain the desired endmember estimates. Next, let us grasento estimate the normal vectb; and

the inner product constant from the data sef’, respectively.

B. Normal Vector Estimation

The normal vectob; of hyperplane?; can be obtained by projecting the vecief — «; (for any

j # 1) onto the subspace that is orthogonal to the hyperplanfd?], i.e.,
b; = vi(aq,...,an) (14)
2 (Iy-1 —P@PTP)'PT) - (a; — o), for anyj # i,
whereP £ Q — «; - 14, € RW-Dx(N=2) ' and Q € RIN-1Ux(N=2) js the matrix a1 -+ ay] €
RO-DxN with its ith and jth columns removed. Besides [14) for obtaining the normatareb; of

‘H;, we also need another closed-form expressiob,ah terms of NV — 1 distinct points as given in the

following proposition.

Proposition 2 Given any affinely independent sepgi),...,pN 1+ € H; b; can be alternatively

obtained by (except for a positive scale factor)

bi_ ( (Z)a"'7p§)170N lapg)a"wpg\i[)_l)a (15)

wherew;(-) is defined in(14).
The proof of Proposition]2 can be shown from the fact that ; is the data mean in the DR space
RN=1 (by @) and[(B)), and is omitted here due to space limitation.

Based on Propositidd 2, we estimate the normal velsidsy finding V — 1 affinely independent data
points

that are as close t8{; as possible. To this end, an observation fréth (7) is needéddgaren in the

following fact:

Fact 1 Observing that ()bl p < h;, Vp € X (i.e., all the pointsp € X lie on the same side d#;; cf.
(@), and that (ii) dist(p, H;) = |h; — b?
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maximum ob!'p, provided thatb; points outward from the true endmembers’ simplex (cf. Fég@iand

(14)).

Suppose that we are give¥ “purest” pixelsa; € X', which basically maximize the simplex volume
inscribed in X, and they can be obtained using the reliable and reproduabtcessive projection
algorithm (SPA) [[10], [[48, Algorithm 4]. S@y; can be viewed as the pixel iA" “closest” to «; (cf.
Figure[2). Letb, be the outward-pointing normal vector of hyperpldgeZ aff( {1, ..., an}\{a} ),

i.e.,

b; £ vi(ay,...,ay). (cf. @A) (16)

Considering Fadif]l1 and the requirement that theBanust containV — 1 distinct elements (otherwise,

P; is not affinely independent), we identify the desired afffneddependent sep; by:

p,(f) € argmax {f);rp lpeXn R,(j)}, VkeIn_1, a7
whereRgi), . ,Rg\i,)_l are N — 1 disjoint sets defined as
i i B(dkv T)? k<1,
RY =R (ay,... ay) 2 (18)

B(dk-i-lv’r)? k > iv

in which B(ay,r) = {x € RV | |x — a&|| < r} is the open Euclidean norm ball with cenigf € RY
and radius = (1/2) - min{|l&; — &;|| | 1 <i < j < N} > 0. Note that the choice of the radiusis to
guarantee thaRgi), . ,R%)_l are N — 1 non-overlapping regions, thereby guaranteeing fatontains
N — 1 distinct points. Moreover, each hyperbﬂff) must contain at least one pixel (as it contains either
ay or aiy1; cf. (18)), ie., XN R,(f) # (), and hence probleni_(IL7) must be a feasible problem (i.e., a
problem with non-empty feasible sét [26]).

If the N — 1 points extracted by[(17) are affinely independent, then stenated normal vector
associated withH; can be determined as (cf. Proposit[dn 2)

bi = vi(pgi)a L 7p§?17 0N—17 pgl)a L 7p§\i[)_1)' (19)

A~
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Fortunately, the obtainef; by (I7) can be proved (in Theorér 1 below) to be always affimelgpendent

with one more assumptio:

(A4) The abundance vectofs[n]} C RY (defined below({l1)) are independent and identically diatet
(i.i.d.) following Dirichlet distribution with parametety = [v,...,vn] € RY, whose probability
density function (p.d.f.) is given by [44]:

— 100 TN %7 s € dom f,

fls) =  TLTon " Hi=tme o o
0 otherwise
wheres = [s1,...,sy] € RY, 70 = SN 4, dom f = {s € RY, | 1%s = 1}, andI'(y) =

Jo a7 te~" dx denotes the gamma function.

Theorem 1 AssumgAl)-(A4) hold true. Letp,(j) € P; be a solution to17) with R,(j) defined in(18),
for all i € Zy and k € Zy_1. Then, the seP; is affinely independent with probability (w.p.1).

The proof of Theorerill is given in AppendiX A.

Note that the orientation difference betwdenand the trué; may not be small (cf. Figufd 2). Hence,
b; itself may not be a good estimate by either. On the contrary, it can be shown that the orientation
difference betweem; andb; tends to be small for largé, and actually such difference vanishesias
goes to infinity (cf. Theoreml2 as well as Remalk 1 in SubsefileE). On the other hand, if the pixels

with maximum inner products if®; are jointly sifted from the whole data cloud, i.e.,
Pi € argmax {b] (p1+---+pyx-1) | P C A}, (21)

whereP £ {py,...,py_1}, rather than respectively from different regioAsn R,(f), Vk € In_1, as
given in [17), the identified pixels if?; may stay quite close, easily leading to large deviation imab
vector estimation as illustrated in Figure 2 whéte= {pgl), q} are the identified pixels using (21). This

is also a rationale of findin@; using [17) for better normal vector estimation.

3The rationale of adopting Dirichlet distribution {#\4) is not only that it is a well known distribution that captutssth the
non-negativity and full-additivity ok[n] [44], but because it has been used to characterize thehdisom of s[»] in the HU
context [45], [46]. However, the statistical assumpt{@) is only for analysis purpose without being involved in oubgetry-
oriented algorithm development. So even if abundance x&et@ neither i.i.d. nor Dirichlet distributed, the Hyp&iGlgorithm
can still work well; cf. Subsection TVAD. Furthermore, we wlo like to emphasize that, in our analysis (Theoréims 1[dnd 2)
we actually only use the following two properties of Diriebldistribution: (i) its domain iglom f = {s € RY, | 1%s =1},
and (i) it is a continuous multivariate distribution withristly positive density on its domain [47]; cf. Appendix@sand[B.
Hence, any distribution with these two properties can bel @sean alternative i(A4).
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C. Inner Product Constant Estimation

For Craig's simplex (the minimum-volume data-enclosing@iex), all the data inY’ should lie on
the same side oH,; (otherwise, it is not data-enclosing), aftt] should be as tightly close to the data
cloud X as possible (otherwise, it is not minimum-volume); the gmbgsibility is when the hyperplane
‘H; must be externally tangent to the data cloud. In other wokfswill incorporate the pixel that has
maximum inner product withb;, and hence it can be determined#gb;, h;), whereh; is obtained by
solving

hi = max { blp|pe X }. (22)

However, it has been reported that when the observed dagés@ire noise-corrupted, the random noise
may expand the data cloud, thereby inflating the volume ofataeg’s data-enclosing simplex [21], [33].
As a result, the estimated hyperplanes are pushed away frerorigin (i.e., the data mean in the DR
space) due to noise effect, and hence the estimated innéugiroonstant in((22) would be larger than
that of the ground truth. To mitigate this effect, the estedahyperplanes need to be properly shifted
closer to the origin, so insteaa{i(f)i,l}i/c), Vi € Iy, are the desired hyperplane estimates for some

¢ > 1. Therefore, the corresponding DR endmember estimateskaained by (cf. [(IB))

- h_; .
&; =Bl — VieZIy, (23)

where B_; and h_; are given by [(T1) and_(12) witlb; and h; replaced byb; and hj, ¥V j # i,

respectively. Moreover, it is necessary to choesich that the associated endmember estimates in the

original space are non-negative (¢A3)), i.e.,
a;,=Ca;+d>=0y, VieIy. (cf. @) (24)
By 23) and [24), the hyperplanes should be shifted closénecorigin withc = ¢’ at least, where
Jd L gnznl{c" |C (B2l -h ) +¢"-d= 0y, Vi (25)

which can be further shown to have a closed-form solution:
d = max{l,max{—vij/dj | 1€ln, J€ IM}}, (26)

wherew;; is the jth component ofC (ﬁj . ]?1_,-) € RM andd; is the jth component ofl.
Note thatc’ is just the minimum value for to yield non-negative endmember estimates. Thus, we can
generally set = ¢//n > ¢ for somen € (0, 1]. Moreover, the value ofy = 0.9 is empirically found to

be a good choice for the scenarios where signal-to-noige (8NR) is greater thad0 dB; typically, the
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value of SNR in hyperspectral data is much higher thanlB [32]. Let us emphasize that the larger the
value ofn (or the smaller the value af), the farther the estimated hyperplanes from the oriyin {,

or the closer the estimated endmembers’ simptex{a;,...,ay} to the boundary of the nonnegative
orthantR{‘{. On the other hand, we empirically observed that typicahesmmbers in the U.S. geological

survey (USGS) library[[48] are close to the boundaryRdf. That is to say, a reasonable choice of
n € (0,1] should be relatively large (i.e., relatively closelfp accounting for the reason why the preset
value ofp = 0.9 can always yield good performance. The resulting endmem&ténation processing of

the HyperCSl algorithm is summarized in Steps 1 to 6 in Table |

TABLE |

Pseubo-coDE FORHYPERCSI ALGORITHM

Given  Hyperspectral datdx[1],...,x[L]}, number of endmember®, andn = 0.9.

Step 1. Calculate(C,d) using [3)4{#), and obtain the DR dafa = {x[1],...,%[L]} using [2).
Step 2. Obtain{au,...,an} using SPA[[43].

Step 3. Obtainb; using [I6),Y i, andR\" using [IB),Y i, k.

Step 4. Obtain (P;, by, k) by {@32), [13), and(22)Y .

Step 5. Obtainc’ by (28), and set = ¢ /7.

Step 6. Calculatea; by (23) anda; = C &; +d by (24),V i.

Step 7. Calculates[n] = [51[n] - - - s [n]]” by (30),V n.

Output The endmember estimatéd,,...,any} and abundance estimatés[1],...,s[L]}.

D. Abundance Estimation

Though the abundance estimation is often done by solving F@toblems [[15], which can be
equivalently formulated in the DR space as (cf.|[49, Lemnid)3.

min  [[X[n] — [&1 - Gy]s||
s’eR (27)
st. s >0y, 1%5/ =1,
it has been reported that some geometric quantities, amtjditring the endmember extraction stage, can
be used to significantly accelerate the abundance estimptacedure[[50]. With similar computational
efficiency improvements taken into account, we aim at exgingghe abundancegn| in terms of readily
available quantities (e.g., normal vectors and inner prodwnstants) obtained when estimating the

endmembers, in this subsection. The results are summarizibe following proposition:
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Proposition 3 AssumédA1)-(A3) hold true. Thers[n] = [s1[n]-- - sx[n]]” has the following closed-form
expression:

hi — biTa,- '

SZ[TL] = Viely, Vnel;. (28)

Propositiorf B can be derived from some simple geometrica¢iofations (cf. items (i) and (ii) in Fact 1)
and the following well known formula in thé&lgebraic Topologycontext

i - )
and its proof is omitted here due to space limitation; nos the formula[(29) has been recently derived
again using different approach in the HU contéxtl [50, Equmafil2)].

Based on[(28), the abundance vecipt] can be estimated as

A +
3in] = (%};‘T) , VieIy, VneTL, (30)

where(y)* = max{y, 0} is to enforce the non-negativity of abundance fractising (cf. Step 7 in Table
). One can show that whegi[n| € conv{ay,..., &y}, the abundance estimates obtained uding (30) is
exactly the solution to the FCLS problem [n127), while us@@) has much lower computational cost
than solving FCLS problems. Nevertheless, one should beeavfaa potential limitation of usind_(30).
Specifically, if x[n] is too far away from the endmembers’ simplexnv{é,...,ay} (i.e., bIx[n]
is much larger tharh; for somes), the zeroing operation if(B0) could cause nontrivial dégh in
abundance estimation. This can happe|if] is an outlier or the SNR is very low. However, as the
SNR is reasonably high (like in AVIRIS data [21], [32]), mgstels in the hyperspectral data are expected
to lie inside or very close to the endmembers’ simptexv{a;,...,an} (cf. (Al)-(A2))—especially
when the endmembers are extracted based on Craig’s anitétence, with the endmembers estimated by
the Craig-criterion-based HyperCSlI algorithm, simplyngs{30) to enforce the abundance non-negativity
is not only computationally efficient, but also still capalf yielding good abundance estimation as will
be demonstrated in the simulation results (Table 1l in $ebisn[1V-G and Tabl€1V in Subsecti¢n TViD)
later.

Unlike most of the existing abundance estimation algorghwhere all theV abundance maps must be
jointly estimated (e.g., FCL$ [15]), the proposed Hyper@lgbrithm offers an option of solely obtaining

the abundance map of a specific material of interest (saytthmaterial)

si = [sif1] -+ si[L]]" e RY, (31)
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to save computational cost, or obtaining all the abundanapsmy, ..., sy by parallel processing (cf.
(30)). Moreover, when calculating; using [30), the denominatdr; — b’ &; is a constant for all pixel

indicesn € Z;, and hence only needs to be calculated once regardlesswhich is usually large).

E. Identifiability and Complexity of HyperCSI

In this subsection, let us present the identifiability anthptexity analyses of the proposed HyperCSI
algorithm. Particularly, the asymptotic identifiabilityf the HyperCSlI algorithm can be guaranteed as

stated in the following theorem with the proof given in AppedBl

Theorem 2 Under(Al)-(A4), the noiseless assumption ahd— oo, the simplex identified by HyperCSI
algorithm withc = 1 (in Step 5 in Tabléll) is exactly the Craig’s minimum-volurmepdex (i.e., solution

of (8)) and the true endmembers’ simplexv{as,...,ay} w.p.1.

Two noteworthy remarks about the philosophies and intugtibehind the proof of this theorem are given

as follows:

Remark 1 With the abundance distribution stated(#), the N — 1 pixels in P; can be shown to be
arbitrarily close toH; as the pixel numbef — oo, and they are affinely independent w.p.1 (cf. Theorem

[@). Thereforep, can be uniquely obtained bl {19), and its orientation apghea to that ob; w.p.1.

Remark 2 Remarkl together witH17) implies tha is upper bounded by, w.p.1 (assuming without
loss of generality that/b;|| = ||bs||), and this upper bound can be shown to be achievable w.p.1 as

L — oc. Thus, as: = 1, we have that;/c = h; w.p.1.

It can be further inferred, from the above two remarks, #atis exactly the truen;; w.p.1 (cf. [23))
as L — oo in the absence of noise. Although the identifiability analyims Theorem R is conducted
for the noiseless case ard— oo, we empirically found that the HyperCSI algorithm can yigjdod
endmember estimates for a moderateand finite SNR, to be demonstrated by simulation results and
real data experiments later.

Next, we analyze the computational complexity of the Hy@r@lgorithm. The computation time of
HyperCSl is primarily dominated by the computations of teadible sets’(mR,(j) (in Step 3), the active
pixels in P; (in Step 4), and the abundancgs| (in Step 7), and they are respectively analyzed in the
following:

Step 3: Computing theNV (N —1) feasible setsl’mR,(j), Vi € Iy, Vk € In_1, is equivalent to computing
the N setsX N B(ay,r), Vi € Iy; cf. (18). SinceB(a;,r) is an open Euclidean norm ball, the
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computation of each seét NB(&;, ) can be done by examining’| = L inequalities||x[n] — &;|| < r,
Vn € Zr. However, examining each inequality requires (i) caldotabne Euclidean 2-norm (iRV 1),
which costsO(V), and (i) checking whether this 2-norm is smaller thgrwhich costsO(1). Hence,
Step 3 costO(N(N +1)L).

Step 4: To determineP;, we have to identify the pixqb,(f) from the set¥ N R,(f) (Vk € Zn—1), whose
complexity amounts to computidng,(j)] inner products iRV~ (each cost®(N)), and performing
the point-wise maximum operation among the values of theseriproducts (cf[{17)), and hence the
complexity of identifyingp,(f) is easily verified asO(N - |X N R,(f)| + XN R,(f)| — 1). Moreover,
gatheringP; = {p(i) ...,pN L} requires the complexﬂ@k ON - ]XHR \+ X NR, )\ 1) =

O((N +1)- 3" \XﬂR(l)!) <O((N+1)-|X]) = O((N + 1)L); the inequality is due to thaYE,(c)s
are disjoint. Repeating the above By, Vi € Z);, Step 4 cost®)(N (N +1)L).

Step 7: Estimation of the abundances requires to compute the dradti (30) N L times. Each fraction
involves2 inner products (irRR"V—1), 2 scalar subtractions, aridscalar division, and thus cost3(N).
So, this step cost®(N2L).

Therefore, the overall computational complexity of Hyp8t@s O(2N (N + 1)L + N2L) = O(N2L).

Surprisingly, the complexity orde?(N?2L) of the proposed HyperCSl algorithm is the same as (rather
than much higher than) that of some pure-pixel-based EEdss; s.g.,[[117],[121],[143], [51]. Moreover,

to the best of our knowledge, the MVES algorithm1[28] that rappmates the CSI problem ih](8) as

alternating linear programming (LP) problems, and soltiediPs using primal-dual interior-point method

[26], is the existing Craig-criterion-based algorithm lwibwest complexity orde®©(r N2L!'%), where

7 is the number of iterations [28]. Hence, the introduced hpijame identification approach (without

simplex volume computations) indeed yields a smaller cexipl than most existing Craig-criterion-

based algorithms.
Let us conclude this section with a summary of some remaektgatures of the proposed HyperCSl
algorithm (given in Tablé]l) as follows:

(&) Without involving any simplex volume computations, ig’s minimum-volume simplex is recon-
structed fromV hyperplane estimates, i.e., théestimateif)i, l}i), which can be obtained in parallel (cf.
Step 4 in Tabléll) by searchiny (N — 1) most informative pixels fromX’. The reconstructed simplex in
the DR spac®" ! is actually the intersection o¥ halfspace§x ¢ RN~! | b!x < h;}, i =1,...,N.

(b) By noting thats;[n] = 0 if, and only if, x[n] € #;, the potential requirement V(N — 1) pixels

lying on, or close to, the associated hyperplanes is coresideot difficult to be met in practice because
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hyperspectral images are often with highly sparse aburegaritis will be discussed in more detail in
experiments with AVIRIS data in Sectidn V.

(c) All the processing steps (including SPA in Step 2 of Tdblef. Algorithm 4 in [43]) can be
carried out either by simple linear algebraic formulationdy closed-form expressions, and so its high

computational efficiency can be anticipated.

IV. COMPUTER SIMULATIONS

This section demonstrates the efficacy of the proposed ®laalgorithm by Monte Carlo simulations.
In the simulation, endmember signatures with= 224 spectral bands randomly selected from the USGS
library [48] are used to generafenoise-free synthetic hyperspectral dafa] according to linear mixing
model in [1), where the abundance vectors are i.i.d. andrgetefollowing the Dirichlet distribution
with v = 15 /N (cf. (20)) as it can automatically enfor¢&1) and (A2) [28], [33]. Then we add i.i.d.
zero-mean Gaussian noise with variamceto the noise-free synthetic datdn] for different values of
SNR defined as SNR (>°%_, [x[n]||?)/(¢>M L), and those negative entries in the generated noisy data

vectors are artificially set to zero, so as to maintain the-megativity nature of hyperspectral imaging

data.
The root-mean-square (rms) spectral angle error betweetiik endmembers,, ..., ay} and their
estimates{a,,...,ay} defined as[[17],[[28]
aLTaL7r 2
Pen = NZ{W‘)SQ\ )| 2
is used as the performance measure of endmember estimafti@ie Iy = {7x = (m,...,7n) €

RY | m e {1,...,N}, m # m; for i # j} is the set of all permutations dfL, ..., N}. Similarly, the
performance measure of abundance estimation is the rms angir defined as [28]
N . 2
1 sté,, >]
= min ,| — arccos | ———— , 33
oo = i\ 7 3 [ovcss (5 ¢

i=1
where s; and s; are the true abundance mapitti endmember (cf[{31)) and its estimate, respectively.

All the HU algorithms under test are implemented in MathveoMatlab R2013a running on a desktop
computer equipped with Core-i7-4790K CPU with 4.00 GHz spaed 16 GB random access memory,
and all the performance results in termsgf,, ¢.,, and computational timg are averaged over 100
independent realizations.

Next, we show some simulation results for the endmembetrtifiaility for moderately finite data
length (cf. Theorem]?2), the choice of the parameteand the performance evaluation of the proposed

HyperCSl algorithm, in the following subsections, respey.
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Fig. 3. The endmember identifiability of the HyperCSI algfom with finite data length..

A. Endmember Identifiability of HyperCSI for Finite Data

In Theoreni 2, the perfect endmember identifiability of thegmsed HyperCSI algorithm (with= 1
in Step 5 in Tabld]l) under the noise-free scenario is provethe asymptotic sense (i.e., the data
length L — o). In this subsection, we would like to show some simulatiesuits to illustrate the
asymptotic identifiability of the HyperCSI algorithm and ijood endmember estimation accuracy even
with a moderately finite number of pixels.

Figure[3 shows some simulation results @f, versusL for N € {4,8,12,16}. From this figure,
one can observe that for a givéW, ¢., decreases as increases, and the HyperCSI algorithm indeed
achieves perfect identifiability (i.e¢., = 0, cf. (32)) asL — oo. On the other hand, the HyperCSI
algorithm needs to identifyv (N — 1) essential pixelsp,(f) for the construction of the Craig’s simplex,
which indicates that the HyperCSl algorithm would need nmuixels to achieve good performance for
larger N. Intriguingly, the results shown in Figufé 3 are consisteith the above inferences, where a
larger N corresponds to a slightly slower convergence rate Qf However, these results also allude to
a high possibility that the HyperCSI algorithm can yield @@te endmember estimates with a typical
data lengthL (i.e., several ten thousands) for high SNR in HRS applicatio

B. Choice of the Parameter

The simulation results foo,.,, versusn obtained by the proposed HyperCSI algorithm, for= 10000,
SNR € {20,30,40} (dB), andN € {3,4,5,6} are shown in FigurEl4. From this figure, one can observe
that for a fixedN, the best choice of; (i.e., the one that yields the smallest,) decreases as SNR
decreases. The reason for this is that the larger the noiserpthe more the data cloud is expanded,

and hence the more the desired hyperplanes should be stuftedds the data center (implying a larger
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Fig. 4. The average r.m.s. spectral angle etrgr versus different values of.

c or a smallem). Moreover, one can also observe from Figure 4 that for eaehario of(/V, SNR), the
best choice ofy basically belongs to the interv@.8, 1], a relatively large value in the intervad, 1],
as discussed in Subsection II-C. It is also interestingdterthat for a given SNR, the best choicerpf
tends to approach the value of 0.9 &sincreases. For instance, fSNR = 20 dB, the best choices of
n for N € {3,4,5,6} are{0.87,0.89,0.89,0.9}, respectively.

The above observations also suggest that 0.9, the only parameter in the proposed HyperCSI
algorithm, is a good choice. Next, we will evaluate the perfance of the proposed HyperCSl algorithm
with the parameter, preset t00.9 for all the simulated scenarios and real data tests, thaugfay not

be the best choice for some scenarios.

C. Performance Evaluation of HyperCSI Algorithm

We evaluate the performance of the proposed HyperCSl #éhgorialong with a performance compar-
ison with five state-of-the-art Craig-criterion-based Higogithms, including MVC-NMF [[23], MVSA
[25], MVES |28], SISAL [30], and ipMVSA[[27]. As the operatis of MVC-NMF, MVSA, SISAL, and
ipPMVSA are data-dependent, their respective regulabnaparameters have been well selected in the
simulation, so as to yield their best performances. In paldr, the regularization parameter involved in
SISAL is the regression weight for robustness against naise hence has also been tuned w.r.t. different
SNRs. The implementation details and parameter settingalifdhe algorithms under test are listed in
Table[Tl.

The purity indexp,, for each synthetic pixex[r] [28], [29], [33] has been defined ag = ||s[n]|| €
[1/v/N, 1] (due to(A1) and(A2)); a larger indexp,, means higher pixel purity o[n] = ZiNzl si[n]a;.

Each synthetic data set in the simulation is generated wglven purity level denoted ag, following
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TABLE Il

SIMULATION SETTINGS FOR THE ALGORITHMS UNDER TEST

Algorithms Implementation details and parameter settings

Dimension reduction: Singular value decomposition;
MVC-NMF | Regularization parametet0—2; Max iteration: 500;

Initialization: VCA-FCLS; Convergence tolerance 6.

MVSA Dimension reduction: Principal component analysis;
Regularization parametet0~°: Initialization: VCA.

MVES Dimension reduction: ASF; Convergence tolerant@:®;
Initialization: Solving feasibility problem.

Dimension reduction: Principal component analysis;
SISAL Regularization parameted.015, 0.02,0.025, 0.03, 0.035
w.r.t SNR=20, 25, 30, 35, 40 (dB); Initialization: VCA.

) Dimension reduction: Principal component analysis;
iPMVSA o o
Regularization parametet0~5; Initialization: VCA.

HyperCSl | Dimension reduction: ASFy = 0.9.

the same data generation procedure a5 in [28], [29], [33&rehis a measure of mixing level of a data
set. Specifically, a pool of sufficiently large number of $yetic data is first generated, and then from
the pool, L pixels with the purity indexp,, not greater thamp are randomly picked to form the desired
data set with a purity level o.

In the above data generation, six endmembers (i.e., Jaydeyrope, Dumortierite, Buddingtonite,
Muscovite, and Goethite) witR24 spectral bands randomly selected from the USGS library §8]
used to generate0000 synthetic hyperspectral datdn| (i.e., N = 6, M = 224, L = 10000) with p €
{0.8,0.9,1} andSNR € {20, 25, 30, 35,40} (dB). The simulation results fab.,,, ¢.,, and computational
time T are displayed in Tablelll, where bold-face numbers cowasdpo the best performance (i.e., the
smallestoe,,, ¢, andT’) of all the HU algorithms under test for a specific, SNR).

Some general observations from Tablé Il are as follows. fixad purity levelp, all the algorithms
under test perform better for larger SNR. As expected, tbpgeed HyperCSI algorithm rightly performs
better for higher data purity level, but this performance behavior does not apply to the otherédilgo-
rithms, perhaps because the non-convexity of the complicaimplex volume makes their performance
behaviors more intractable w.r.t. different data purities

Among the five existing benchmark Craig-criterion-based &lgorithms, MVC-NMF yields more
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TABLE I
PERFORMANCE COMPARISONIN TERMS OF ¢¢, (DEGREES, ¢a» (DEGREESY, AND AVERAGE RUNNING TIME T' (SECONDSY,
OF VARIOUSHU ALGORITHMS FOR DIFFERENT DATA PURITY LEVELSp AND SNRS, WHERE ABUNDANCES ARE LI.D. AND
DIRICHLET DISTRIBUTED.

den (degrees) bqp (degrees)
Methods p SNR (dB) SNR (dB) T (seconds)
20 25 30 35 40 20 25 30 35 40

0.8 2.87 231 | 163 | 1.23 | 1.14 | 13.18 9.83 7.14 | 558 | 5.04
MVC-NMF 0.9 2.98 1.78 | 0.98 | 0.57 | 0.40 | 12.67 8.00 464 | 2.85 | 2.16 1.68E+2
1 3.25 191 | 1.00 | 052 | 0.21 | 12.30 7.45 414 | 2.26 | 111
0.8 11.08 | 6.23 | 3.41 | 187 | 1.03 | 21.78 | 1449 | 8.71 | 5.00 | 2.85
MVSA 0.9 1155 | 6.46 | 348 | 1.90 | 1.05 | 21.89 | 1451 | 8.63 | 4.91 | 2.82 3.54E+0
1 1164 | 6,51 | 354 | 1.93 | 1.06 | 21.67 | 1421 | 8.49 | 4.81 | 2.72
0.8 10.66 | 6.06 | 3.39 | 191 | 1.16 | 21.04 | 1421 | 9.04 | 551 | 3.33
MVES 0.9 10.17 | 6.06 | 3.48 | 197 | 1.12 | 2151 | 1448 | 9.28 | 5.69 | 3.45 2.80E+1
1 9.95 596 | 355 | 219 | 1.30 | 22,50 | 15.34 | 10.32| 7.11 | 4.49
0.8 3.97 259 | 159 | 094 | 0.53 | 13.70 8.68 522 | 3.09 | 1.80
SISAL 0.9 4.18 270 | 164 | 095 | 0.54 | 1355 8.54 511 | 3.00 | 1.75 2.59E+0
1 4.49 287 | 1.73 | 099 | 0.54 | 13.40 8.43 5.03 | 293 | 1.66
0.8 12.03| 7.05| 4.04| 202 | 1.16| 2181 | 1489 | 958 | 532 | 223
ipMVSA 0.9 12.63 | 755 | 4.04 205| 125| 2233| 1536| 937 | 521 | 331 9.86E-1
1 1289 | 780 | 400| 213 | 1.28| 2216| 1520| 9.06 | 525| 3.28
0.8 1.65 1.20 | 0.79 | 054 | 0.37 | 11.17 7.35 432 | 2.65 | 1.64
HyperCSlI 0.9 1.37 1.03 | 0.64 | 045 | 0.32 | 10.08 6.40 3.62 | 225 | 1.38 5.39E-2
1 1.21 0.83 | 0.57 | 0.39 | 0.27 9.28 5.46 3.23 | 1.92 | 115

accurate endmember estimates than the other algorithrne highest computational cost, while ipMVSA

is the most computationally efficient one with lower perfamoe as a trade-off. Nevertheless, the proposed
HyperCSl algorithm outperforms all the other five algoriginvhen the data are heavily mixed (i.e.,
p = 0.8) or moderately mixed (i.e,p = 0.9). As for high data purityp = 1, the HyperCSlI algorithm
also performs best except for the casg @fSNR) = (1,40 dB). On the other hand, the computational
efficiency of the proposed HyperCSl algorithm is abbub 4 orders of magnitude faster than the other
five HU algorithms under test. Note that the computation&tiehcy of the HyperCSlI algorithm can be
further improved by an order aP(N) if parallel processing can be implemented in Step 4 (hypeml
estimation) and Step 7 (abundance estimation) in T@ble keber, ipMVSA is around 4 times faster
than MVSA, but performs slightly worse than MVSA, perhapsdgse ipMVSA[[27] does not adopt the

hinge-type soft constraint (for noise resistance) as usdd\ISA [25].
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D. Performance Evaluation of HyperCSlI Algorithm with Nairdi, Non-Dirichlet and Sparse Abundances

In practice, the abundance vectafga] may not be i.i.d. and seldom follow the Dirichlet distrikurij
and, moreover, the abundance maps often show large spsssggig. In view of this, as considered
in [52], [53], two sets of sparse and spatially correlatedratance maps displayed in Figlre 5 were
used to generate two synthetic hyperspectral images, eérast SYN1 [ = 100 x 100) and SYN2
(L = 130 x 130). Then all the algorithms listed in TaHlég Il are tested aggith these two synthetic data

sets for which the abundance vectors are obviously neithér nor Dirichlet distributed.

#,
u 0.4
0

g : '
(a) Ground truth abundance maps of SYN1
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0 0 0

(b) Ground truth abundance maps of SYN2

Fig. 5. Two sets of sparse and spatially correlated aburdaraps, where each subblock in subfigure (b) contains 10

pixels.

The simulation results, in terms @£.,,, ¢.,, and computational tim&', are shown in Table_IV, where
bold-face numbers correspond to the best performance athenglgorithms under test for a particular
data set and a speciftdNR € {20, 25, 30, 35,40} (dB). As expected, for both data sets, all the algorithms
perform better for larger SNR.

One can see from TakllellV that for both data sets, HyperC&lyimore accurate endmember estimates
than the other algorithms, except for the case of SNR (dB). As for abundance estimation, HyperCSI

performs best for SYN1, while MVC-NMF performs best for SY.N@oreover, among the five existing
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TABLE IV
PERFORMANCE COMPARISONIN TERMS OF ¢y, (DEGREES, ¢a» (DEGREEY AND RUNNING TIME T (SECONDS, OF
VARIOUS HU ALGORITHMS USING SYNTHETIC DATASYN1AND SYN2FOR DIFFERENTSNRS, WHERE ABUNDANCES ARE

NON-I.1.D., NON-DIRICHLET AND SPARSE(SEE FIGURE[]).

den (degrees) bap (degrees)
Methods SNR (dB) SNR (dB) T (seconds)
20 25 30 35 40 20 25 30 35 40
MVC-NMF 3.23 197 | 1.05| 055| 0.25 13.87 | 851 4.79 2.65 1.34 1.74E+2
MVSA 1065 | 6.12| 3.38| 188 | 1.05| 22.93| 15.13 9.34 5.52 3.19 3.53E+0
MVES 9.55 549 | 360 | 196 | 122 | 23.89| 17.35 14.49 7.78 5.66 3.42E+1
SYNL SISAL 443 | 289 | 181 | 1.18| 0.86| 15.85| 10.39| 6.89 529 | 4.65 2.66E+0
ipMVSA 1162 | 682 | 3.38| 201 | 1.05| 24.05| 16.28 9.34 5.98 3.19 1.65E+0
HyperCSI 155 | 1.22 | 079 | 052 | 0.35| 12.03 | 6.92 4.16 2.49 1.46 5.56E-2
MVC-NMF 286 | 1.71| 097 | 054 | 0.23 | 2286 | 1552 | 9.39 5.27 2.67 2.48E+2
MVSA 10.21 | 555| 3.08| 1.71| 095 | 29.86| 22.72 15.57 9.78 5.83 5.65E+0
MVES 10.12 | 5.19| 3.15| 204 | 3.77| 29.43| 2213| 1566 | 10.42| 13.17 2.22E+1
SYN2 SISAL 3.25 218 | 1.48 | 0.96 0.63 | 2479 | 17.49| 1151 7.00 4.21 4.45E+0
ipMVSA 11.34| 826 | 3.34| 194 | 101 | 30.23| 30.38| 16.29| 10.30| 6.39 8.14E-1
HyperCSl 1.48 1.08 0.71| 0.44 | 031 | 22.64 1598 | 11.10 7.25 4.40 7.48E-2

benchmark Craig-criterion-based HU algorithms, ipMVSAdaBISAL are the most computationally
efficient ones. However, in both data sets, the computdtieficiency of the proposed HyperCSI
algorithm is at least more than one order of magnitude fatan the other five algorithms. These
simulation results have demonstrated the superior effioltlye proposed HyperCSl algorithm over the

other algorithms under test in both estimation accuracycamdputational efficiency.

V. EXPERIMENTS WITHAVIRIS DATA

In this section, the proposed HyperCSl algorithm along viitto benchmark HU algorithms, i.e.,
the MVC-NMF algorithm [23] developed based on Craig’s cidn, and the VCA algorithm([17] (in
conjunction with the FCLS algorithrh [15] for the abundansgmeation) developed based on the pure-pixel
assumption, are used to process the hyperspectral imagtagdllected by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) [32] taken over the Cupritaimg site, Nevada, in 1997. We consider
this mining site, not only because it has been extensivedyl disr remote sensing experimeritsi[54], but

also because the available classification ground truth5h [56] (though which may have coregistration

November 2, 2015 DRAFT



25

issue as it was obtained earlier than 1997, this ground trathbeen widely accepted in the HU context)
allows us to easily verify the experimental results. The RM sensor is an imaging spectrometer with
224 channels (or spectral bands) that cover wavelengtiggngfrom0.4 to 2.5 xm with an approximately
10-nm spectral resolution. The bands with low SNR as welhasé corrupted by water-vapor absorption
(including bands 1-4, 107-114, 152-170, and 215-224) areved from the original 224-band imaging
data cube, and hence a total &f = 183 bands is considered in our experiments. Furthermore, the
selected subscene of interest includes 150 vertical linés 160 pixels per line, and its 50th band is
shown in Figurd 6(a), where the 10 pixels marked with yellaioc are removed from the data set as

they are outlier pixels identified by the robust affine seinfitt(RASF) algorithm[[57].

Fig. 6. The subimage of the AVIRIS hyperspectral imagingadatbe for the 50th band, where the locations of the ten aositlie
identified by the RASF algorithm are marked with yellow color

The numberN of the minerals (i.e., endmembers) present in the selectiescene is estimated using
a virtual dimensionality (VD) approach [37], i.e., the rishitened Harsanyi-Farrand-Chang (NWHFC)
eigenvalue-thresholding-based algorithm with falseralprobability P-4 = 10~3. The obtained estimate
is N = 9 and used in the ensuing experiments for all the three HU itihgos under test.

The estimated abundance maps are visually compared witle treported in[[17],123],[28] as well
as the ground truth reported in_[55], [56], so as to determvhat minerals they are associated with.
The nine abundance maps obtained by the proposed Hyper@&ithin are shown in Figurgl 7, and
they are identified as mineral maps of Muscovite, Alunites&e Varnish, Hematite, Montmorillonite,
Kaolinite #1, Kaolinite #2, Buddingtonite, Chalcedony, respectively, as listedabl&M. The minerals
identified by MVC-NMF and VCA are also listed in Taldld V, whe/C-NMF also identifies nine
distinct minerals, while only eight distinct minerals amdrieved by VCA, perhaps due to lack of pure

pixels in the selected subscene or randomness involved i. \OWving to space limitation, their mineral
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maps are not shown here.

Muscovite

Hematite Montmorillonite

Kaolinite #2 Buddingtonite Chalcedony

Fig. 7. The abundance maps of minerals estimated by Hypea@8tithm.

The mineral spectra extracted by the three algorithms uteder along with their counterparts in the
USGS library [48], are shown in Figufd 8, where one can olesémat the spectra extracted by the
proposed HyperCSl algorithm hold a better resemblancegdilihary spectra. For instance, the spectrum
of Alunite extracted by HyperCSI shows much clearer absmmpteature than MVC-NMF and VCA,
in the bands approximately frorh3 to 2.5 um. To quantitatively compare the endmember estimation
accuracy among the three algorithms under test, the specigée distance between each endmember
estimatea and its corresponding library spectrunserves as the performance measure and is defined as

a

T/\
¢ = arccos <4> .
all - [[al

The values ofp associated with the endmember estimates for all the thgeeitdms under test are also

shown in Tabld"V, where the number in the parentheses is the @i ¢ associated with Kaolinite#1
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TABLE V
THE COMPUTATIONAL TIMEST (SECONDS AND SPECTRAL ANGLE DISTANCE¢ (DEGREESY BETWEEN LIBRARY SPECTRA
AND ENDMEMBERS ESTIMATED BY HYPERCSI, MVC-NMF, AND VCA. THE BOLD FACE NUMBERS CORRESPOND TO THE
SMALLEST VALUES OF ¢ ORT' AMONG THE THREE ALGORITHMS UNDER TEST

HyperCSl | MVC-NMF VCA
Muscovite 3.03 3.96 4.54
Alunite 7.48 6.23 6.57
Desert Varnish 9.49 4.91 7.92
Hematite 7.83 12.94 7.24
Montmorillonite 4.84 7.44 6.59
Kaolinite #1 8.63 7.56 13.80 (11.71)
Kaolinite #2 7.39
Buddingtonite 6.55 8.16 6.46
Chalcedony 5.92 7.97 8.25
Andradite - 7.43
Average¢ (degrees) 6.80 7.40 8.12
T (seconds) 0.12 988.67 5.40

repeatedly classified by VCA. One can see from Table V thaatleeage ofp of the proposed HyperCSI
algorithm is the smallest. The good performance of Hypeli@®@ndmember estimation intimates to that
the potential requirement of sufficient number (i&.(N — 1) = 72, in this experiment) of pixels lying
close to the hyperplanes associated with the actual endershrdimplex, has been met. However, we
are not too surprised with this observation, since the nurobeninerals present in one pixal[n| is
often small (typically, within five[[10]), i.e., the abundamvectors[n| often shows sparseness[52] (cf.
Figure[T), indicating that a non-trivial portion of pixelseamore likely to lie close to the boundary of
the endmembers’ simplex (note thafn| = 0 if, and only if, x[n] € H;). Moreover, as the pure pixels
may not be present in the selected subscene, as expectadaheraig-criterion-based HU algorithms
(i.e., HyperCSI and MVC-NMF) outperform VCA in terms of endmber estimation accuracy. On the
other hand, in terms of the computation tirieas given in Tabl€V, in spite of parallel processing not
applied, the HyperCSl algorithm is around 2.5 times fagtantVCA (note that VCA itself only costs
0.31 seconds (out of the 5.40 seconds), and the remainingutation time is the cost of the FCLS)

and almost four orders of magnitude faster than MVC-NMF.
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V1. CONCLUSIONS
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(a) The endmember signatures taken from the USG8&rjiband signatures of the endmember estimates obtained by

Based on the hyperplane representation for a simplest sinple have presented an effective and

computationally efficient Craig-criterion-based HU aiigfum, called HyperCSl algorithm, given in Table

[ The proposed HyperCSl algorithm has the following rerahtk characteristics:

November 2, 2015

It never requires the presence of pure pixels in the data.

It is reproducible without involving random initializatio

complexity of some state-of-the-art pure-pixel-based HgbEthms.

It only involves simple linear algebraic computations, auitable for parallel implementation. Its

computational complexity (without using parallel implemtegion) is O(N2L), which is also the
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« It estimates Craig’s minimum-volume simplex by finding oiNy N —1) pixels (regardless of the data
length ) from the data set for the construction of the associate@tpfanes, without involving any
simplex volume computations, thereby accounting for ightdomputational efficiency in endmember
estimation.

« The estimated endmembers are guaranteed non-negativéhedkentified simplex was proven to
be both Craig’s simplex and true endmembers’ simplex wasll. — oo for the noiseless case.

« The abundance estimation is readily fulfilled by a closemrfexpression, and thus is computationally
efficient.

Some simulation results were presented to demonstratentigtia results on the asymptotic endmem-

ber identifiability of the proposed HyperCSI algorithm, arsdsuperior efficacy over some state-of-the-art
Craig-criterion-based HU algorithms in both solution aecy and computational efficiency. Finally, the

proposed HyperCSl algorithm was tested using AVIRIS hypectral data to show its applicability.

APPENDIX
A. Proof of Theorera]1
For a fixedi € Zy, one can see froni_(18) tha?t,(f) N Ry) =0, V k # ¢, implying that theN — 1
pixels p,(f), V k € In_1, identified by solving[(TI7) must be distinct. Hence, it sufido show thaP is
affinely independent w.p.1 for ar? = {py,...,py_1} C & that satisfies

Py #Zpe, foral 1<k </<N-—1. (34)
Then, asp, € X, V k € Zy_1, we have from(A4) and [34) that there exist i.i.d Dirichlet distributed

random vectorgsi,...,sy_1} C dom f such that (cf.[(R))

pr = |1 -an] s, forall ke Zy_;. (35)
For ease of the ensuing presentation,He{-} denote the probability function and define the following
events:
El The setP is affinely dependent.
E2 The set{s;,...,sy_1} is affinely dependent.
E3®) sy eaff{{si,....sy_1}\{sp}}, V k€ In_1.
Then, to prove thaP; is affinely independent w.p.1, it suffices to prove{E1} = 0.
Next, let us show thaEl impliesE2. AssumeE1l is true. Therpy, € aff{P\{py}} for somek € Zn_;.

Without loss of generality, let us assurhe= 1. Then,
p1=0-p2+---+0Nn_1-PnN-1, (36)
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for somef;,i = 2,..., N — 1, satisfying

O+ +0n_1 =1 (37)

By substituting [(3b) into[(36), we have

[ag,...,ay] s1 =[aq,...,apn] t, (38)
wheret 2 "V 4, -s,,. For notational simplicity, lefu].x—1 2 [u1,...,uy_1]" for any given vector
u = [ug,...,uy]T. Then, from the facts ot{t = 1 (by (87)) and1%s; = 1, (38) can be rewritten as

© [s1]in-1= O [t]in-1, (39)
where® £ [a; —ay,...,ay_1 —ay]. As{ai,...,ay} is affinely independent (bgA3)), the matrix

© is of full column rank [26], implying thafs;];.xn—1 = [t]1.v—1 (by (39)). Then, by the facts of

N-1
m=2 0

1%t = 1 and 1§s; = 1, one can readily come up withy = t = > m - Sm, OF, equivalently,

s1 € aff{sy,...,sy_1} (by (37)), implying thatE2 is true [26]. Thus we have proved thBf implies
E2, and hence

Pr{E1} < Pr{E2}. (40)

As Dirichlet distribution is a continuous multivariate tlisution [47] for a random vectos ¢ RY
to satisfy (A1)-(A2) with an (N — 1)-dimensional domain, any given affine hull C RV with affine
dimensionP must satisfy[[44]

Pr{scA}=0if P<N-—1 (41)

Moreover, as{si,...,sy—1} are i.i.d. random vectors and the affine haff {{s;,...,sy_1}\ {sk}}

must have affine dimensioR < N — 1, we have from[(41) that
Pr{E3"™} =0, for all k € Zy_;. (42)
Then we have the following inferences:
0 < Pr{E1} < Pr{E2} (by (40))
= Pr{UM' E3W}  (by the definitions oE2 andE3V)
N—-1
<Y pr{E3®} = 0, (by the union bound and [4#2))

k=1
i.e., Pr{E1} = 0. Therefore, the proof is completed. [ |
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B. Proof of Theorerhl2

It can be seen froni(20) that the p.d.f. of Dirichlet disttibn satisfies

N
I'(0) 1
f(s)=—=————-|1s/ >0, Vsedom f. (43)
JJRERNCT U
Moreover, by the facts oAe; = a; and

dom f={seRY, | 13s =1} =int conv{ey,...,en},

whereint U denotes the interior of a séf, the linear mapping (i.ex = As) of the abundance domain

dom f full fills the interior of the true endmembers’ simpleanv{ai,...,ay}, namely
{x =As | s €dom f} =int conv{ay,...,an}. (44)
Then, from [48){{(4K) an@A4), it can be inferred that
Pr{conv{x[1],...,x[L]}|1—»o = int conv{ay,...,an}} =1,

which, together with the fact that the affine mapping (€l.) (Rjeserves the geometric structure of

{x[1],...,x[L]} [38] (note thatCTC = I _,), further implies
Pr{ convX =int conv{a,...,an} } =1, (45)

where X = {x[1],...,X[L]}|r—- throughout the ensuing proof. It can be inferred frdml] (45tth
there is always a pixek[n] € X that can be arbitrarily close to the extreme paint of the simplex

conv{ay,...,an}, i.e., for alli € Zy,
Pr{ B(a;,e)yNX #0 } =1, for anye > 0. (46)

Let MVES(U/) denote the set of all minimum-volume enclosing simplexe& df.e., Craig’s simplex

containing the sett/). Then, one can infer from the convexity of a simplex that [28, Equation (32)])
MVES(X) = MVES(conv.X). 47)

Moreover, by the fact that any simpleék must also be a closed set and the fact that the closure of
int(conv{a,...,ayn}) is exactlyconv{a;,...,ay}, it can be seen thabnv{a,...,ay} C T if and

only if int(conv{ay,...,ayx}) C T [58], and hence
MVES(conv{a,...,ay}) = MVES(int conv{a,...,an}). (48)
Thus, it can be inferred froni_(#5), (47) arid{48) that
Pr{ MVES(X) = MVES(conv{a1,...,an}) } = 1. (49)
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As conv{ai,...,ay} itself is a simplex, MVES(conv{a,...,an}) = {conv{ay,...,axn}}, which
together with [(4B) yields

Pr{ MVES(X) = {conv{ay,...,an}} } = 1. (50)

In other words, we have proved that the Craig’s minimum-r@wsimplex is always the true endmembers’
simplex conv{a;,...,ay}. To complete the proof of Theorel 2, it suffices to show that ttue
endmembers’ simplex is always identical to the simplex fified by the HyperCSl algorithm, i.e., for
all i € Iy,

Pr{ &; € B(ay,¢€) } =1, for anye > 0, (51)

whereay, ..., ay are the estimated DR endmembers using HyperCSI algorithm.

To this end, let us first show that, for allkc Z,
Pr{ &; € B(ay,¢) } =1, foranye > 0, (52)

where{ay,...,ay} are the purest pixels identified by SPA (cf. Step 2 in TableHwever, directly
proving [52) is difficult due to the post-processing invalvia SPA (cf. Algorithm 4 in [[43]). In view
of this, letx[¢1],...,%[¢y] be those pixels identified by SPBeforepost-processing. Because the post-
processing is nothing but to obtain the purest pigelby iteratively pushing eack[¢;] away from the

hyperplaneaff{x[¢;] | j # 1} [43], we have the following simplex volume inequalities
V[a],....x[v]) < V(e,...,an) < V(o,...,ay), (53)

where the last inequality is due @; € X C conv{a;,...,ay}. Hence, by [(53), to provd (52), it

suffices to show that, for afl € Zy,
Pr{ x[4;] € B(a,€) } =1, for anye > 0. (54)

However, the SPA before post-processing (cf. Algorithm 4J48]) is exactly the same as the TRIP

algorithm (cf. Algorithm 2 in[[51]), and it has been proven[dl, Lemma 3] that[(46) straightforwardly

yields [54) fore = 0; note that the condition [[(46) with = 0” is equivalent to the pure-pixel assumption

required in [51, Lemma 3]. One can also show thafl (46) yielf®) for anye > 0, and the proof

basically follows the same induction procedure as in thefod [51, Lemma 3] and is omitted here for

conciseness. Then, recalling thatl(54) is a sufficient aardior (52) to hold, we have proveh (52).
By the fact thatv; is a continuous function (cf((14)) and Hy {16) abd](18), we #®t

~ lim ) bz = vi(al,...,aN) = bi,
a;,—a, Vi

, : (55)
lim Rfj) = R,(j)(al,...,aN).
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Moreover, we have from(43)[(b2)_(55) and — oo that the pixelp,(f) identified by [I¥) can be
arbitrarily close to#;. Furthermore, by Theorein 1, we have that the vect{qr%),...,p%)_l} are
not only arbitrarily close to#;, but also affinely independent w.p.1, which together witlg@sition
implies that the estimateB, (cf. (I9)) is arbitrarily close to the tru®; w.p.1, provided that the
outward-pointing normal vectors; and b; have the same norm without loss of generality. Then, from
(43), (22), and the premises @ — oo andc = 1, it can be inferred that the estimated hyperplane
H; = H;(bi, hi/c) = Hi(by, hy) is arbitrarily close to the trué{; = H,(b;, h;) (cf. @)); precisely, we
have

Pr{ [bl, k)T € B(bY,h;]",€e) } =1, for anye > 0. (56)

Consequently, by comparing the formulasf (cf. (I3)) and&; (cf. (23)), we have, fromt = 1 and
(59), thata; is always arbitrarily close tav;, i.e., [51) is true for alli € Zy, and hence the proof of

Theorenl 2 is completed. [
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