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Estimating Time-Evolving Partial Coherence
Between Signals via Multivariate Locally

Stationary Wavelet Processes
Timothy Park, Idris A. Eckley, and Hernando C. Ombao

Abstract—We consider the problem of estimating time-localized
cross-dependence in a collection of nonstationary signals. To this
end, we develop the multivariate locally stationary wavelet frame-
work, which provides a time-scale decomposition of the signals
and, thus, naturally captures the time-evolving scale-specific cross-
dependence between components of the signals. Under the pro-
posed model, we rigorously define and estimate two forms of cross-
dependence measures: wavelet coherence and wavelet partial co-
herence. These dependence measures differ in a subtle but impor-
tantway. The former is a broadmeasure of dependence, whichmay
include indirect associations, i.e., dependence between a pair of sig-
nals that is driven by another signal. Conversely, wavelet partial
coherence measures direct linear association between a pair of sig-
nals, i.e., it removes the linear effect of other observed signals. Our
time-scale wavelet partial coherence estimation scheme thus pro-
vides a mechanism for identifying hidden dynamic relationships
within a network of nonstationary signals, as we demonstrate on
electroencephalograms recorded in a visual–motor experiment.

Index Terms—Coherence, local stationarity, multivariate sig-
nals, partial coherence, wavelets.

I. INTRODUCTION

H ISTORICALLY much of the literature on non-stationary
signals is focused on the univariate setting. For reviews

of this area see [1]–[6] and references therein. However with ad-
vanced data collection devices such as those used in the medical
and mobile sectors, there is a need for rigorous approaches to as-
sess and confirm time-localized direct vs. indirect dependence
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Fig. 1. Plot of a 4-channel EEG.

(or lack thereof) between signals. It is often difficult to infer dy-
namic cross-dependence between components of multivariate
signals such as the multi-channel EEG collected during a vi-
sual-motor task (see Fig. 1) which we will revisit later. We con-
sider precisely this challenge, developing a novel approach for
characterizing and estimating cross-dependence between non-
stationary signals having dynamic and complex cross-depen-
dence structures. In doing so, we highlight two specific forms
of dependence which can be estimated between pairs of signals
within a multivariate collection. The simplest form is that of
the (time-dependent) coherence between two signals. This de-
scribes the linear relationship between two signals — more pre-
cisely it is a time-evolving squared cross-correlation between
filtered signals, [7]. However, in so doing we may also include
indirect associations driven by another observed signal in the
collection. The alternative is partial coherence. This provides
a measure of the direct linear relationship between two signals
over time, thus removing the (linear) effects of other observed
signals. The difference between direct vs indirect associations is
illustrated in Fig. 2. This measure has broad potential scientific
impact, for example the neuroscience and genomic communi-
ties are keenly interested in such associations.
1) Previous Work: In recent years, several papers have

appeared trying to address the non-stationary modelling chal-
lenge associated with such large and complex signals. In [8],
Dahlhaus presents a Fourier based model for multivariate lo-
cally stationary signals with time-varying spectral structure. A
similar approachwas also developed by [9]. Under the Dahlhaus
framework, Ombao and Van Bellegem [7] demonstrate that the
time-varying coherence is equivalent to the modulus-squared
cross-correlation between filtered segmented signals. Segment
sizes are obtained data-adaptively by iteratively increasing seg-
ment lengths as long as the stationarity assumption within each
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Fig. 2. Indirect vs. Direct Associations Between Signals. Left: and are
indirectly linked through . Right: and are directly linked. Coherence be-
tween and is non-zero for both networks. Partial coherence is non-zero for
the network on the right (with direct link) but zero for the left network because
the link between and is indirect.

segment is not violated. Such a data-adaptive windowing ap-
proach, however, is computationally demanding. An alternative
Fourier based approach to model multivariate non-stationary
series is the smooth localized complex exponential (SLEX)
model of Ombao et al. [10]. Here the best representation of
the signal is selected from the SLEX library using a com-
plexity-penalized Kullback-Leibler criterion. Although capable
of handling massive signals, the SLEX method is restricted
to choosing representations obtained from temporally-dyadic
segmentation. Moreover we note that both [7] and [10] only
develop methods for the estimation of coherence which, as
we shall show later, can mask understanding of the direct
relationships between pairs of signal components.
Cohen and Walden [11] overcome the limitations of dyadic

temporal splits within SLEX by using a wavelet basis to adapt
to nonstationarity in the spectra of each channel for the case
of jointly stationary processes. The assumption of jointly
stationary processes is not present in [12] and [13] who both
use wavelet based models to quantify non-stationary linear
dependence between components of a bivariate non-stationary
signals. More recently, within the more restricted context of
changepoint detection of piecewise stationary signals, [14] has
extended the approach of [13] to a -variate setting. However
none of these contributions directly address the issues that
are germane to truly multivariate non-stationary signals (with
three or more components). Specifically, as [15] identified in
the stationary context, one major practical issue is to identify
whether the (time-dependent) connection or cross-dependence
between two channels is either (a.) direct or (b.) indirect (i.e.,
driven by another channel or common set of channels). It is this
challenge which lies at the heart of this article.
2) Our Work: The modelling framework which we propose

in this paper is an alternative formulation of the model form
proposed by [13]. The model proposed by [13] decomposes
the spectral and cross-spectral structure into two different
components: the within-channel structure being encapsulated
within the transfer functions whilst the cross-channel structure
is contained within the process innovations. Instead we propose
a more parsimonious form, whereby both spectral components
are described within a matrix of transfer functions. Specifically,
to extract cross-dependence structures, we introduce the mul-
tivariate locally stationary wavelet framework (MvLSW)—
which is a stochastic representation that is ideally suited for

non-stationary signals. This framework permits the direct
estimation of both the coherence and partial coherence in a
computationally efficient manner. In addition the framework
also permits direct simulation of processes with a specific
time-scale partial coherence form, including processes with
abrupt changes in partial coherence. This direct simulation is
necessary to perform resampling-based inference.
The format of the rest of the paper is as follows. Our main

contributions are developed in Sections II and III. Specifically,
in Section II-A we develop the multivariate locally stationary
wavelet framework for modelling multivariate signals. We
then introduce the local wavelet spectral matrix as a repre-
sentation of the properties of the signals in Section II-B. In
Section II-C we use the MvLSW model to develop our two
key cross-dependence quantities: wavelet coherence and partial
coherence. Section III gives detail of the estimator for the local
wavelet spectral matrix as well as establishing its asymptotic
properties. Finally Section IV provides an example of how our
approach can be used to identify direct time-dependent relation-
ships between components of a signal which we demonstrate on
multi-channel electroencephalograms (EEGs) recorded during
a visual-motor experiment, as well as on simulated data.

II. LOCALLY STATIONARY WAVELET PROCESSES

This section describes the multivariate LSW (MvLSW) mod-
elling framework, together with various time-scale measures
which we introduce to describe the spectral and cross-spec-
tral behavior of such non-stationary signals. For completeness
we start by briefly reminding the reader of key aspects associ-
ated with univariate LSW theory as introduced by [16], their
building blocks (discrete wavelets) and the associated evolu-
tionary wavelet spectrum (EWS).
The key building blocks in constructing LSW processes,

discrete wavelets, are founded on and , the usual
low and high-pass quadrature mirror filters associated with
the construction of Daubechies' compactly supported con-
tinuous-time wavelets. The associated discrete wavelets,

are vectors of length
for scales which can be calculated using the fol-
lowing:
and .
Here is the usual Kronecker-delta function, and

where is the number of
non-zero elements within the filter . The discrete wavelets
form the corner-stone of the (univariate) LSW time series
model. Specifically, assume that for some .
Then the LSW process, , is defined to be a sequence of
(doubly-indexed) stochastic processes having the following
representation in the mean-square sense:

(1)

As described in [16], the representation consists of the discrete
wavelets; , a smoothly varying transfer function
and , a collection of zero-mean, unit-variance uncorre-
lated random variables. A number of smoothness assumptions
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are also required on the to ensure that the transfer func-
tion can be estimated (see [16] for details).
The transfer function, , provides a measure of the

time-varying contribution to the variance at a particular scale, .
Consequently, to describe the power contained at a given scale
and location, [16] introduce the evolutionary wavelet spectrum
(EWS), , for . This can be estimated
using the wavelet periodogram for a one-dimensional non-sta-
tionary signal, see [16] for details.

A. The Multivariate LSW Model

We now introduce our multivariate generalization of the LSW
framework. In what follows we will refer to each (univariate)
component signal as a channel. Our main goal is to develop
a framework for modeling multivariate non-stationary signals
under which we rigorously define the time-varying second order
properties, and in particular the locally stationary cross-depen-
dence between the different channels. In our framework we
allow individual channels to experience their own uniquely lo-
calized non-stationary behavior. More importantly we explicitly
describe the potentially locally stationary correlation between
channels. Under our model this correlation will be broken down
into contributions from different scales. This is known as the
coherence structure. It is important to be able to represent this
structure adequately as it will reveal how the channels relate to
each other and how this can change over time.
We start by considering a -dimensional vector,

, each element of which is an individual
channel of the signal. To represent this signal under a multi-
variate model we replace the transfer function, , from
the (univariate) LSW model with a matrix of functions,

, known as the transfer function matrix. The inno-
vations, , are also replaced by a set of random vectors,

. The definition of the multivariate
LSW model is then given as follows.
Definition 1: The P-variate locally stationary wavelet process

, , is represented by,

(2)

where is a set of discrete non-decimated wavelets;
is the transfer function matrix, which is defined to

have a lower-triangular form. We assume that each element of
the transfer function matrix is a Lipschitz continuous function
with Lipschitz constants satisfying ;

are uncorrelated random vectors with mean vector and
variance-covariance matrix equal to the identity matrix.
We will henceforth drop the explicit dependence of the process
on , although naturally it will still be assumed.
Remark: The distributional property of the random elements

in Definition 1 means that the elements have the following
covariance property: . In

other words the are random orthonormal increment
sequences, which are themselves uncorrelated. Dependence
between channels is encapsulated only in the transfer function
matrix which also controls the contribution to the variance

made by each channel at a particular time within each scale.
This differs from the approach in [13] where the dependence
structure is encapsulated within the innovations .
Remark: The primary difference between our approach and

that of [13], or indeed the more recent contribution of [14], is
that in our framework we encapsulate the spectral structure (in-
cluding cross-channel dependence) entirely within the transfer
function matrix. This is in contrast to the Sanderson et al. [13]
framework, where the spectral structure is encapsulated both
within (i) the transfer functions (spectrum) and (ii) process in-
novations (cross-channel dependence). As such our framework
permits one to estimate the partial coherence in a straightfor-
ward manner, since this structure is entirely embedded within
the transfer functionmatrix. Computationally there are also ben-
efits to this particular formulation: for example, this approach
can be implemented via matrix operations, whilst in the formu-
lation of [14] one would conduct the estimation scheme on each
channel individually. More importantly, perhaps, it is possible
to simulate multivariate time series with a given partial coher-
ence form directly within this framework. The ability to perform
such simulations means that resampling based inference can be
performed in this setting.
Many different forms of transfer function matrix could be

chosen, however for ease of interpretation we choose for it
to have a lower triangular form. The lower triangular form of

makes it very easy to generalize to multiple dimensions.
It is also easy to see how linear dependencies between the
channels are produced. If the off diagonal terms are non-zero
then there will be (time-varying) dependence between the
series, however if is diagonal then the channels will be
uncorrelated with each other. Here, we do not estimate
but estimate the spectral quantities which we discuss in the next
subsection. Moreover the lower triangular form can represent a
general spectral structure even if the channel order is permuted.
This is explained further in Proposition 3.

B. Local Wavelet Spectral and Covariance Matrices of
Non-Stationary Signals

We next introduce the local wavelet spectral matrix which
describes the time-scale decomposition of power in our multi-
variate time series. Recall that in the univariate LSW context the
concept of an evolutionary wavelet spectrum describes a time-
scale decomposition of power. Since we are dealing with mul-
tivariate signals, and have replaced the transfer function with
a transfer function matrix, we will introduce its multivariate
analog — the local wavelet spectral matrix.
Definition 2: Let be a MvLSW signal with associated

time-dependent transfer function matrix . Then the local
wavelet spectral (LWS) matrix at scale and rescaled time is
defined to be,

(3)

where denotes the transpose of .
Remark: The LWS matrix provides a measure of the local

contribution to both the variance of the channels and cross-co-
variance between channels made at a particular time, , and
scale, . By the construction of Definition 2 it is clear that for
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any given transfer function matrix the LWSmatrix is symmetric
and positive semi-definite for every fixed time-scale combina-
tion. The diagonal elements of the LWSmatrix are the spectra of
the individual channels of the signals and are denoted .
The off diagonal terms, , describe the cross-spectra be-
tween the series. It is also natural to consider whether a connec-
tion can be established between the LWS matrix and the local
auto and cross-covariance. We start to explore this connection
in the following definition. However prior to doing so we in-
troduce the discrete autocorrelation wavelet, , which is
defined by for and (see
[17] for further details).
Definition 3: Let denote the local autocovariance

of channel at lag and be the local cross-covari-
ance between channels and . We can define these functions
in terms of the elements of the LWS matrix and the discrete au-
tocorrelation wavelets, as follows:

(4)

The following proposition establishes that, up to choice of
wavelet, the LWS matrix is unique for a specified MvLSW
model form.
Proposition 1: Given the corresponding MvLSW process,

the LWS matrix is uniquely defined.
Proof: See Appendix.

We also consider if under this definition the local auto- and
cross-covariance functions exactly represent the covariance be-
tween elements of the signals.
Proposition 2: Let denote the local cross covari-

ance stated in Definition 3. Then, asymptotically, this function
can also be represented, approximately, in terms of the covari-
ance between elements of the signal because

Proof: See Appendix.
Remark: Given the lower triangular form of the transfer func-

tion matrix, , it is natural to ask if the representation is re-
liant on a certain ordering of the channels of . It is possible to
show that under any permutation of this ordering will have
a MvLSW representation and the spectral properties will be un-
changed.
Proposition 3: Let be a MvLSW process with LWS ma-

trix, . Also let be a permutation of such that
for some permutation matrix . Then the LWSmatrix of

, has the form .
Proof: See Appendix.

C. Coherence and Partial Coherence Within the MvLSW
Setting

We now introduce a measure of cross-dependence between
different channels at a particular scale. We can quantify this de-
pendence by defining the wavelet coherence between channels.

For our multivariate series we will define the coherence in terms
of the wavelet coherence matrix.
Definition 4: For scale, , rescaled time point, , the

wavelet coherence matrix, is defined as,

(5)

Here is the LWS matrix defined previously. We also
define to be a diagonal matrix whose elements are

.
The element of the wavelet coherencematrix, ,

is the coherence between channels and of the series. This
individual element can also be expressed as,

(6)

Remark: Given this expression it is clear that the coherence
between channels will take a value between and 1 at any
given point in time. A value close to indicates a strong pos-
itive/negative linear dependence between channels at that time
and scale. A value close to 0 shows that there is little or no linear
dependence between channels. Setting in (6) demon-
strates that the diagonal elements of are equal to 1. In
Fourier analysis a quantity with these properties would gener-
ally be referred to as coherency however we will follow the ter-
minology of [13] and refer to it as coherence.
When analyzing the coherence structure of a multivariate

signal it may, superficially, appear that two channels are linked
as there is significant coherence between them. However, it
may, in fact, be the case that there is not a direct link between
them but they are both linked via a third series (see Fig. 2). To
this end we conclude our modelling framework by introducing
the wavelet partial coherence. This provides a measure of the
coherence between two channels after removing the effects
of all other channels. Partial coherence can also be defined in
matrix form using the LWS matrix. The definition of wavelet
partial coherence below is analogous to the Fourier domain
definition developed in [18].
Definition 5: We define the matrix

and to be a diagonal matrix with entries given by
. Then the wavelet partial coherence matrix at

scale, , and rescaled time, , is defined to be

(7)

The off diagonal terms of this matrix are the partial coherences
between channels. That is the coherence between the channels
after the linear effects of all other channels have been removed.

III. ESTIMATION OF THE MVLSW SPECTRAL
DEPENDENCE QUANTITIES

In this section we turn our attention to estimating the spectral
quantities of a MvLSW signal. Specifically we first consider the
estimation of the LWS matrix before turning to the estimation
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of the wavelet coherence and partial coherence which were in-
troduced in Section II.
First, we define the empirical wavelet coefficient vector,

whose elements are the empirical
wavelet coefficients for each signal channel

(8)

We use the empirical wavelet coefficient vector to produce the
raw wavelet periodogram matrix, :

(9)

Moreover, we denote to be the -th entry of the pe-
riodogram matrix where . The raw wavelet
periodogram matrix is the starting point for estimating the LWS
matrix. In order to achieve a final estimator with the correct
properties we explore the asymptotic properties of the raw peri-
odogram matrix as an estimator for this quantity. In particular,
given the results in the one-dimensional setting ([16]), it is nat-
ural to enquire whether the raw wavelet periodogram is biased.
Proposition 4: Let be aMvLSW signal with underlying

LWS matrix, , and empirical wavelet coefficients, .
Then, asymptotically,

where for is the
inner product matrix of discrete autocorrelation wavelets (see
[16] or [17] for further details).

Proof: See Appendix.
As in the univariate setting, the above result establishes

that the raw wavelet periodogram matrix is both asymptoti-
cally biased and inconsistent. The bias has a particular form
consisting of entries in the inner product matrix . In [19],
the inner product matrix is established to be invertible for
all Daubechies' compactly supported wavelets. Consequently,
the bias of the raw wavelet periodogram matrix estimator in
Proposition 4 can be corrected. However, this would still be
an inconsistent estimator. Thus, our proposal is to first apply
a smoother on the raw wavelet periodogram matrix and then
correct the bias. In particular, we use a rectangular kernel
smoother with window of length to produce the
smoothed estimator,

(10)

With such an estimator we establish the following result.

Proposition 5: Assume that .
Then, asymptotically,

Proof: See Appendix.
Remark: In the limit, as .

Here, one observes the usual bias-variance trade-off: increasing
reduces the variance but also increases the bias. More-

over, with the additional condition that , then
. Thus, one can correct the

bias of the smoothed periodogram using the inverse of the
inner product matrix . The final smoothed bias-corrected
estimator of the LWS matrix is then given by

(11)

We will use the quantity to estimate the wavelet coher-
ence and partial coherence. Denote the -th entry of to
be and let be a diagonal matrix whose elements

are . Then, we define the estimator of the wavelet
coherence matrix to be,

(12)

The -th element of is the estimated time-varying
wavelet coherence between channels and at level . Next,
define and let be a diagonal matrix
whose elements are . Then, the estimator of the
wavelet partial coherence matrix is defined to be,

(13)
Thus, the -th element of is the estimated wavelet par-
tial coherence between channels and . Note that the linear
dependence of channels and on all the other channels are
removed in the calculation of wavelet partial coherence. Finally
we note that using Slutsky's theorem [20] it follows immedi-
ately that and are asymptotically unbiased and consis-
tent estimators of the true wavelet coherence matrix and wavelet
partial coherence matrix, respectively.

IV. APPLICATIONS OF THE MULTIVARIATE LSW MODEL

To illustrate our proposed multivariate locally stationary
wavelet process (MvLSW) we now consider two exam-
ples. Section IV-A considers a simulated example whilst
Section IV-B presents an analysis of multivariate EEG data
recorded during a visual-motor experiment.

A. Simulated Example
We simulate signals using a tri-variate model of the following

form, , where ,
and . Here

varies across time so that the cross-correlation structure changes
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Fig. 3. Coherence at level : truth (solid) and mean estimate of the coher-
ence obtained from 100 simulations using MvLSW (dotted); SLEX (dotted and
dashed) and OVB (dotted).

from one time region to another. The channels of the series
will therefore have a time-varying coherence structure which is
known and constant over frequency. The structure is such that
there is a peak in the spectral power at frequency which
corresponds to the mid point of wavelet level . We simu-
lated 100 tri-variate signals from this model. Using the method
proposed in Section III we estimate the coherence and partial
coherence matrices for each simulated signal. In the results re-
ported the Haar wavelet was used in the analysis, although in
other simulations we observed that the choice of wavelet made
little practical difference for this example. For comparison we
also calculate the coherence using both the SLEX method and
the method of Ombao and Van Bellegem (OVB) in [7]. For di-
rect comparisons, we have calculated these coherence values for
the band of frequencies corresponding to wavelet level .
Fig. 3 shows the results of the coherence estimation. In par-

ticular we note that of the three estimation methods, the pro-
posedMvLSW coherence estimation scheme produces the most
faithful overall estimate. Most notably OVB fails to suitably
capture the abrupt change in coherence which occurs within this
simulated example. SLEX performs slightly better than OVB in
terms of capturing the abrupt changes however it fails to con-
sistently match the peaks and troughs of the coherence. The ex-
ception to this is the coherence between channels 1 and 2, where
the spectral structure is constant. Here SLEX and OVB have
both performed better then our MvLSW method. This is unsur-
prising given that for this pair the coherence is stationary. This
is because OVB can adaptively choose the size of the window
so that it matches any changes, if present, on the true spectral
quantity. Similarly, the SLEX method chooses the best basis for
representing signals and thus can adaptively select the stationary
basis if the signal is indeed stationary. The results of partial
coherence estimation using the proposed method are shown in
Fig. 4. We draw particular attention to how the wavelet partial

Fig. 4. Partial coherence at level . Solid lines represent true values,
dashed lines represent the mean of 100 simulations and the dotted lines denote
approximate 95% point-wise confidence intervals.

coherence estimator is able to capture quite subtle time-local-
ized changes in partial coherence. Comparison of this approach
with SLEX and OVB equivalents for partial coherence is left
as an avenue for future research, once such methods have been
developed in the literature.

B. EEG Data

Our real data example is a multi-channel electroencephalo-
gram (EEG) recorded from an experiment in which participants
are instructed to move a hand held joystick to either the left
or right. A 64-channel EEG was recorded at a sampling rate
of 512 Hertz and then bandpass filtered at (0.02, 100) Hertz.
Each recording epoch was 1000 milliseconds; the instruction
(left vs right) was given at time ; and the subject re-
sponded with a wrist movement between 350 and 450 milli-
seconds. Here, we selected data for one participant and used
4 channels on the right hemisphere namely FC4 (right fronto-
central), FC6 (also right parietal-fronto-central), P4 (right pari-
etal), C4 (right central). This collection is a subset of the chan-
nels in [21] believed to be engaged in visuo-motor tasks. The
positions of these channels are shown in Fig. 5. Here, we present
an analysis of the wavelet spectral quantities computed for level

, which is contained within the con-
ventional beta band. To study the dynamics within each brain
region, we estimated the time-varying and level dependent LWS
by kernel smoothing the wavelet auto- and cross-periodograms
using a smoothing span that was objectively selected by gen-
eralized cross-validated gamma deviance criterion developed
in [22]. The Daubechies extremal-phase wavelet with 10 van-
ishing moments was used as the analyzing wavelet. We found
that by using a smoother wavelet we were able to better cap-
ture the dynamics of the coherence and partial coherence of this
recording.
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Fig. 5. Placement of EEG channels included in analysis.

We investigated the dynamics of cross-dependence within
the brain network by estimating the wavelet coherence and
wavelet partial coherence. The point estimates of the wavelet
coherence and partial coherence were computed using the
quantities in the estimated LWS matrix. The approximate 95%
pointwise confidence intervals for coherence and partial co-
herence were obtained by bootstrap resampling the stochastic
component of the MvLSW model. Such an approach was used
in [23] for inference on the evolutionary SLEX spectrum.
Empirical distributions of the Fisher-z transformed wavelet
coherence and partial coherence values were constructed based
on bootstrap replicates. Typically one might use
such replicates. Following ideas from Fourier coherence, see
for example [7], the wavelet coherence and partial coherence
estimates were Fisher-z transformed in order to stabilize the
variance of the estimator. The scale-shift specific variance of
the empirical distribution of the Fisher-z transformed values
were extracted and then utilized to compute the approximate
95% pointwise confidence intervals. For ease of interpretation
these confidence intervals were then back-transformed to the
scale .
The plots displaying confidence bands on the wavelet co-

herence (see Fig. 6(a)) suggest that, for the most part, brain
activity captured by the P4 channel exhibited no linear de-
pendence with brain activity at the central channels namely
C4, FC6 and C4. In contrast, there appears to be a common
temporal trend in coherence among the central channels. Early
in the signals (immediately following visual instruction) there
does not seem to be statistically significant connections. How-
ever, at about 400 milliseconds (approximately the time the
subject responds to the cue by moving), these central channels
become strongly coherent with each other at the beta frequency
band. It is interesting to see these brain dynamics during hand
movement.
The natural follow-up question is whether or not the links

between the central channels established by the coherence
plots are direct or indirect (i.e., due to a connection0 with
some common channel). We addressed this question by using

Fig. 6. (a) Coherence plot and (b) Partial Coherence plot at level . Solid
lines represent the estimated values and dashed the approximate 95% point-wise
confidence intervals.

the wavelet partial coherence within the framework of our
proposed MvLSW model. In Fig. 6(b), note that brain activity
at FC4 was not directly linked to brain activity at the C4
channel but the link between FC4 and was FC6 was statistically
significant beginning at around milliseconds. More-
over, we observe that there was a statistically significant direct
link between FC4 and FC6—suggesting that the connection
between FC4 and C4 observed in the coherence plot was not
direct but was in fact related to their common link with the FC6
channel.
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The results produced by the proposed MvLSW model are
similar to the results from a Fourier-based approach in [24].
More importantly, we demonstrate that our proposed model and
cross-dependence measure are able to identify an interesting
result on the small network of central channels that suggest a
direct link between activity at the FC6 channel and each of
the FC4 and C4 channels during a visual-motor activity. This
finding certainly requires further scientific experiments espe-
cially in how these direct connections might be crucial to pre-
serving motor function as well as recovering lost motor function
following a major traumatic brain injury. Of course, this anal-
ysis is done only on one subject and one will have to develop
a more complex model that would take into account brain re-
sponse variation across many subjects. Nevertheless, the anal-
ysis has demonstrated the potential utility and broad impact of
the MvLSW model.

V. CONCLUDING REMARKS

In conclusion, we developed a rigorous, wavelet-based mod-
eling framework which can capture the evolutionary scale-de-
pendent cross-dependence between components of multivariate
signals. An associated estimation theory was also established,
demonstrating the uniqueness and asymptotic consistency of
our spectral estimators. The particular construction which we
proposed also permits the identification of time-scale localized
coherence and partial coherence. The proposed wavelet partial
coherence measure, in particular, can prove useful when con-
sidering the linear dependence between a pair of channels as it
enables us to decouple the linear effects of other components of
the multivariate signal.

APPENDIX

Proof of Proposition 1:
Suppose, by way of contradiction, that there exist two repre-

sentations for the same process, and . At each
time point, , there exists and such that,

(14)

Let be a matrix representing the element-wise difference
between the two representations, From (14) it is clear that,

(15)

To establish the uniqueness of the MvLWS representation we
must show that (15) implies that, , .
Using arguments similar to those set out by [16] we use Par-
seval's relation and the definition of the inner product matrix to
obtain, , where

and , with ,

and From (15) we
can say that for a general element:

Hence it is easily shown that,

(16)

Since we have already made the assumption that,
, we infer that is continuous in
, because every is and

. Hence (16) implies that, . The re-
mainder of the proof then follows similarly to the proof of The-
orem 1 in [16].

Proof of Proposition 2:
Recall the definition of the wavelet representation of a mul-

tivariate series in (2).

Recalling the definition of the LWS matrix we can say that,
. We also make the

substitution to obtain,

Analogous to the approach considered by [16] in the univariate
setting, using the assumed Lipschitz continuous property of

and therefore we can consider the differ-
ence between this covariance and the function ,

Proof of Proposition 3:
To establish this result we firstly demonstrate that

is positive definite. Since is positive definite, by
Choleski, there exists a lower triangular matrix so that
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. Hence
. Hence is positive definite.

Second, since is positive definite, there exists a lower tri-
angular matrix such that . Thus

admits a MvLSW representation with transfer function
.

Proof of Proposition 4:

Expectation: Recall that and
. Hence

(17)

Substituting into (17) we obtain,

Since , is Lipschitz continuous with fi-
nite Lipschitz constant , for some fixed ,

. It therefore
follows that

(18)

Recalling the definition of the autocorrelation wavelets we find
that,

Variance: To establish the variance of the raw peri-
odogram, we begin by considering

.

Using a result due to [25] the above expression can be re-written
as the sum of three different elements

where, for example,

Since this simplifies to:

Similarly for we find that and

. Hence,

From [16] it is known that , and hence
. Hence it

is easily verified that,

Proof of Proposition 5:
Recall that the form of the smoothed periodogram is,

.
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Expectation:

Where is the size of the smoothing window. Using the
expected value of the periodogram previously calculated this
becomes,

Due to the Lipschitz continuity assumed for the spectral com-
ponents it follows that:

As , but , the smoothed raw wavelet
periodogram (auto and cross) is asymptotically biased in the
usual way. As such it can be corrected by use of the inverse
inner product matrix, to achieve an asymptotically unbi-
ased estimate.
Variance: We begin by considering: .

by substituting . Using arguments similar to those
employed in the proof of the Expectation, it follows that:

Using Isserlis' Theorem [25], it can be shown that

where . Note that this is a form
of inner product matrix but with a given lag, . Examining the
term,

Similarly it can be shown that the second term is also equal to
hence,

(19)

Thus, the smoothed wavelet auto and cross periodogram is
asympotically mean-squared consistent as , ,

.
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