
ar
X

iv
:2

20
3.

14
16

7v
1 

 [
ee

ss
.S

P]
  2

6 
M

ar
 2

02
2

1

Distributed Detection Fusion in Clustered Sensor

Networks over Multiple Access Fading Channels
Sami A. Aldalahmeh, Senior Member, IEEE and Domenico Ciuonzo, Senior Member, IEEE

Abstract—In this paper, we tackle decision fusion for dis-
tributed detection in a randomly-deployed clustered Wireless
Sensor Networks (WSNs) operating over a non-ideal multiple
access channels (MACs), i.e. considering Rayleigh fading, path
loss and additive noise. To mitigate fading, we propose the dis-
tributed equal gain transmit combining (dEGTC) and distributed
maximum ratio transit combining (dMRTC). The first and
second order statistics of the received signals were analytically
computed via stochastic geometry tools. Then the distribution
of the received signal over the MAC are approximated by
Gaussian and log-normal distributions via moment matching.
This enabled the derivation of moment matching optimal fu-
sion rules (MOR) for both distributions. Moreover, suboptimal
simpler fusion rules were also proposed, in which all the CHs
data are equally weighed, which is termed moment matching
equal gain fusion rule (MER). It is shown by simulations that
increasing the number of clusters improve the performance.
Moreover, MOR-Gaussian based algorithms are better under
free-space propagation whereas their lognormal counterparts
are more suited in the ground-reflection case. Also, the latter
algorithms show better results in low SNR and SN numbers
conditions. We have proved that the received power at the CH in
MAC is proportional O

(

λ
2
R

2
)

and to O
(

λ
2
ln

2
R
)

in the free-
space propagation and the ground-reflection cases respectively,
where λ is SN deployment intensity and R is the cluster radius.
This implies that having more clusters decreases the required
transmission power for a given SNR at the receiver.

Index Terms—Distributed detection, decision fusion, stochastic
geometry, multiple access channels, fading, path-loss, wireless
sensor networks.

I. INTRODUCTION

W IRELESS SENSOR NETWORKS (WSNs) are becom-

ing a mainstream technology constituting the backbone

of several emerging technologies, such as the Internet of

Things (IoT) [1] and smart cities [2] (see references therein).

Indeed, the flexible nature of WSNs [3] enables them to

pervade such a wide spectrum of applications. However, sev-

eral methodological aspects of WSNs remain fertile research

grounds, especially those concerning distributed detection

(DD) [4]. In such a scenario, battery-powered sensor nodes

(SNs) may be geographically distributed in a vast region of

interest (ROI) to monitor it and detect the unexpected presence

of an intruder (or the occurrence of an anomalous phenomenon

of interest, such as an oil leak or a forest fire [5]). Our work

thus focuses on surveillance/anomaly detection applications

where the simultaneous presence of multiple intruders (viz.

anomalous phenomenons of interest) is a somewhat rarer

scenario.

The locations of the SNs are best modeled as a random

point process [6], since they might be out of communication

range, out of power, or/and be randomly deployed (e.g. might

be even dropped from an airplane to form a network [7]). Due

to constrained power and bandwidth, the collected data is often

compressed into a single bit decision. Moreover, the limited

SNs communication range renders providing ubiquitous cover-

age in large WSNs a challenging task. Accordingly, the WSN

is usually divided into geographical clusters [8] and organized

hierarchically into three tiers; (i) SNs, (ii) cluster heads (CHs)

and (iii) the fusion center (FC). The SNs in each cluster send

their data to the CH, which usually has access to larger power

resources and is able to provide a larger communication range.

The CHs in turn report the collected data to the FC, thus

acting as moderate-power relays. Such data is often relayed

over imperfect communication channels in either an amplify-

and-forward (AF) or decode-and-forward (DF) fashion [9].

In this paper, we investigate the decision fusion for dis-

tributed detection in a randomly deployed clustered-WSN

operating over nonideal multiple access channels (MACs). We

build on the framework proposed for detection in clustered

WSN [10] and generalize it by considering Rayleigh fading,

path loss, and additive noise presence in the channels between

SNs and CHs (termed SN-CH). Also, the channels between

CHs and the FC (termed CH-FC) are assumed to suffer addi-

tive noise, since the CH is assumed to have more capabilities.

To the best of the authors’ knowledge, this is the first work

that studies fusion rules in the above problem setting.

In the light of the previous framework, the main contribu-

tions of this paper are:

1) We propose two distributed transmit combining

schemes; distributed equal gain transmit combining

(dEGTC) and distributed maximum ratio transit combin-

ing (dMRTC), in order to mitigate fading. Interestingly,

it is shown that the dEGTC performs better than the

dMRTC.

2) The statistics of the received signals at the CHs are

computed via stochastic-geometry tools. Consequently,

Gaussian and lognormal distributions are used to ap-

proximate the received signal distribution using moment

matching.

3) We derive the optimal fusion rule in the Neyman-

Pearson sense for both the Gaussian and lognormal

cases. Also, we propose a simpler suboptimal fusion

rule, which ultimately performs as good as the optimal

one when the number of SNs increases.

4) We prove that in the MAC network case, the received

power at the CH increases as the networks expands.

In fact, the received power increases proportionally to

O
(
λ2R2

)
and O

(
λ2 ln2 R

)
in the free-space propaga-

tion and the ground-reflection cases respectively, where

λ is SN deployment intensity and R is the cluster radius.

This starkly contrasts the parallel access channel (PAC)
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case, where the received power at the CH decreases as

the the SN-CH distance increases.

We highlight the present study extends previous conference

work in [11], and includes both optimal and suboptimal fusion

rules design in addition to addressing the transmission power

issue in the WSN.

The rest of the paper is organized as follows. In Sec. II

related work is reviewed. The system model is presented in

Sec. III. The distributed transmit combining techniques and

the CHs’ received signal statistics are discussed in Sec. IV,

whereas corresponding fusion rules for the multiple cluster

case are investigated in Sec. V. Section VI provides an

insight into the detection performance and received power

analysis for the previous fusion rules. Section VII presents

the simulation results and their discussions. Conclusions are

drawn in Sec. VIII, in addition to a brief discussion of future

research direction.

II. RELATED WORK

DD has been extensively investigated for various sensor net-

work forms, such as parallel, tandem and tree structures [12]–

[15], and even decentralized architectures [16]. DD over

multiple access channel was also investigated in [17]–[19]

from the information theoretic and rule design [20] aspects,

respectively. Whereas type-based DD in MAC context was

considered in [21] and [22]. The Rao test and its generalized

version were investigated in [23]–[26] where a trade-off be-

tween complexity and performance has been shown.

However, the previous detectors generally suffered from

spurious detection problem 1. This problem might be handled

via scan statistics-based detection [28] and local vote decision

fusion rule (LVDF) [29] but at the expense of a significant

communication and delay.

Clustering [30] in sensor networks provides an efficient

solution to spurious detection and an improved means to par-

simonious estimation [31]. Hard decision for clustered WSN

over multiple-hop binary symmetric channel was investigated

in [32], where an optimal fusion rules were derived, however

requiring the knowledge of the decision error probability

in each sensor in addition to the and bit error probability

in each channel. In [33] majority-like fusion (MLF) rules

were implemented in both the CH and FC levels, where

surprisingly it was shown that clustering decreases the de-

tection performance. Detection performance was investigated

in [34] for intermittent communication between the sensor

clusters and the FC residing in the clouds. The optimal-cluster-

based fusion rule (OCR) for clustered sensor networks was

presented in [35], where the communication channels were

ideal. This scenario was extended to noisy channels in our

previous work [10]. Optimal fusion rules were proposed in

addition to an optimal power allocation strategy for the CHs

transmission. Fading channels effect on DD in clustered WSN

was investigated in [36], where channel side information (CSI)

was instrumented to derive the optimal detector.

1In which SNs far from the target falsely detect it, due to the sensing signal
attenuation, and hence causes performance degradation [27]

In the context of the previous literature, this paper, as stated

earlier, considers optimal and suboptimal fusion rules for DD

in the case of clustered WSNs suffering from channel noise,

path-loss and fading.

III. SYSTEM MODEL

The considered WSN architecture is functionally divided

into three tiers, as shown in Fig. 1, where: tier 1 contains

the FC; tier 2 contains the CHs (which are connected to

the FC via dedicated channels); tier 3 contains the SNs in

the clusters. Note that the SNs in each cluster communicate

with the corresponding CH over a shared channel. In this

section, we present: (a) the stochastic geometry model for the

SNs deployment (similar to [6], [37]) and the corresponding

sensing model; (b) the communication model between the

three tiers. In this work the SNs are assumed to be restricted

Tier 3 λ1 λ2

λ3 λ4

SN

Tier 2

CH CH

CH

Ym =
√
PtxȲm +Wm

CH

Tier 1

FC
Zm =

√
PmYm + Vm

Fig. 1: The WSN topology, in which the star is the target, gray-

shaded nodes are the detecting SNs and white-shaded nodes

are the non-detecting SNs.

in both power and bandwidth. On the other hand, the CHs are

assumed to have access to higher power and larger bandwidth.

Hereinafter we generally refer to deterministic values by

lowercase symbols, bold symbols refer to vector values,

whereas random values are referred to by uppercase symbols.

For example, Ym and Zm are RVs whereas ym and zm are

their corresponding realizations. Table I collects the notation

and most common used variables throughout the paper.

A. SNs Deployment and Sensing Models

Consider a WSN randomly-deployed over a region, A ⊂
R

2 where A is assumed to be significantly large. The

WSN is modeled by a Poisson point process (PPP) Φ =
{X1,X2, · · · ,XN} in A [38], where Xi ∈ Φ is the coordinate

of the ith SN. PPPs have been successfully employed to

accurately model WSN random deployments in DD tasks [6],

[28], [39]. This implies that the Xi’s are random variables
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Symbol Meaning

‖ · ‖ Euclidean distance
| · | Modulus
(·)∗ Conjugate
P(A) Probability of event A

E[·],EX [·] Expectation and expectation w.r.t X
varX(·) Variance w.r.t X

N (µ, σ2) Normal pdf with mean µ and variance σ2

Q(·) Q-function
Pois(ρ) Poisson pdf with mean ρ

Φ Overall Poisson point process PPP
λ Intensity of Φ

Φm PPP in the mth cluster
λm Intensity of Φm

M Number of clusters
A Sensing field
Cm mth cluster zone
xi ith SN Cartesian location
Pfa Local SN false alarm probability

Pd(xi) Local SN detection probability at location xi

PFA Global probability of false alarm
PD Global probability of detection
Pt Target’s signal power
Ptx SN Tx power
Pm mth CH Tx power

P̃m mth channel aggregate Tx power
α Comm. channel path-loss exponent

Hm,i Complex channel gain of the ith SN in the mth cluster

σ2
s Sensing noise variance

σ2
c,m mth SN-CH channel noise variance

σ2

f,m
mth CH-FC channel noise variance

SNRch
m SNR of the mth SN-CH channel

SNRfc
m SNR of the mth CH-FC channel

Ȳm mth CH noiseless received signal
Ym mth CH received signal
Zm FC received signal from the mth CH

µ̄m,j , σ̄
2

m,j Mean and variance of Ȳm under Hj

µm,j , σ
2

m,j Mean and variance of Zm under Hj

TABLE I: Notation and most commonly used symbols.

(RVs) and their number N = |Φ| is a Poisson RV having

the distribution N ∼ Pois(E [N ]) where E [N ] is the average

number of SNs. In general, the PPP intensity (the average

number of SNs in a unit area) might be non-homogeneous,

i.e., the intensity λ(x) is location dependent. This case might

arise due to environmental or application specific constraints.

The WSN is tasked with the detection of any intruder (viz.

target) entering the ROI. A target at location xt ∈ A,xt /∈
Φ leaves a signature signal sensed by the SNs, which might

be thermal, magnetic, electrical, seismic or electromagnetic

signal [40]. We adopt the sensing model in [41], in which

the signature power in the far-field is assumed to follow the

inverse-square law.2 The target’s parameters are given in the

vector θ = [Pt,xt]
T , where Pt is the target’s signal power.

The noise-free signal received at the ith SN located at a given

xi has the following amplitude:

a(xi, θ) =
√
Pt / max (d0, di) (1)

where d0 is the reference distance to the node’s sensor and

di = ‖xt − xi‖ is the distance between the target and the ith
SN. Note that the measured signal is saturated if the distance to

the target is smaller than d0. The above model can adequately

describe acoustic or electromagnetic signals.

2We highlight that our study virtually applies to any general sensing model.

For a given realization of Φ, each SN samples the environ-

ment to decide whether an intruder is present or not. Hence,

the collected data S(·) at the ith SN under the null (H0) and

alternative (H1) hypotheses takes the following form:
{
H0 : S(xi) = Qi

H1 : S(xi) = a(xi, θ) +Qi

(2)

where Qi ∼ N (0, σ2
s). The noise is assumed to be inde-

pendently and identically distributed over all SNs (i.e. not

dependent on xi). If this is not the case (viz. spatially-

correlated noise) the ideas provided in [42] could be leveraged

for removing such constraint. The sensing SNR is defined as

SNRs
, Pt/σ

2
s . Each SN computes its binary local decision,

I(xi) ∈ {0, 1}, by comparing the collected data with a local

decision threshold τ , i.e.,

I(xi) =

{
1, g (S(xi)) ≥ τ

0, g (S(xi)) < τ
(3)

where g(·) is the local detection function, e.g., matched filter

or energy detector. Here, τ is assumed to be the same for all

SNs for simplicity. Therefore, the local probabilities of false

alarm and detection are given respectively by

Pfa(xi) = Pfa = f0 (τ ;σs) (4)

Pd(xi) = f1 (τ ; a(xi, θ), σs) (5)

where f0 (· ;σs) and f1 (· ; a(xi, θ), σs) are the complemen-

tary cumulative density functions of g (S(xi)) under H0 and

H1, respectively. Both these functions depend on the type

of local detector used (matched filter, energy detector, etc.)

and the noise level σs (as well as the selected threshold

τ ). Additionally, the probability of detection in Eq. (5) also

depends on the target parameters, θ, through Eq. (1).

Due to the large area of the ROI, the WSN is geographically

divided into M disjoint cluster zones: C1, C2, · · · , CM , where

Cm ⊂ A for m = 1, · · · ,M . As a result, each zone Cm
contains a daughter PPP, Φm, such that Φ =

⋃M
m=1

Φm.

For simplicity3, we approximate the non-homogeneous PPP by

choosing the mth cluster adequately small so that the intensity

within Cm is approximately constant, namely λ(x) ≈ λm

for x ∈ Cm, where λm is the (homogeneous) mth cluster

SN intensity. The aforementioned sensing process implies

a thinning operation for each Φm, leading to the (thinned)

intensity measure λmPfa(x) (resp. λmPd (x)) under H0 (resp.

under H1). Fig. 1 shows a homogeneous random network

deployment (i.e. λm = λ for m = 1, . . . ,M ).

B. SN-CH and CH-FC Communication Models

Each zone is managed by a CH (whose position xm does

not necessarily fall within Φm). The number of clusters is

fixed and their locations are also fixed and known to the

WSN. Accordingly, CH selection is assumed to be prelimi-

nary performed based on standard techniques, such as higher

computational power/residual energy, minimum distance or

combinations of them [43]. Still, we remark that the following

3We remark that the following results, with some minor modifications,
apply even when this simplifying assumption does not hold.
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analysis applies independently on the specific CH selection

scheme. SNs located at xi ∈ Φm send their decisions to the

mth CH, over a shared channel (due to bandwidth constraints).

The CHs in turn report the collected decisions back over dedi-

cated channels to the FC, forming the three-tier network shown

in Fig. 1. It is assumed that there is an initialization stage in the

WSN where synchronization and channel estimation is carried

out on the FC and the CHs levels. Details about both SN-CH

and CH-FC links are given in what follows.

SN-CH communication: SNs in the mth cluster report to

the CH over a (shared) MAC suffering from path-loss with

exponent α and a communication reference distance of r0,

after which the inverse-power law is valid. Depending on the

specific value of α, we analyze two setups in what follows:

(i) the free-space propagation model (corresponding to α = 2)

and (ii) the ground-reflection model (corresponding to α = 4).

The channel’s flat fading gain between the ith SN and the

mth CH is Hm,i = |Hm,i|ejϕm,i where |Hm,i|’s are assumed

to be i.i.d. Rayleigh random variables (RVs) with parameter

σ2

H,m and ϕm,i’s are i.i.d. uniform RVs in the interval [0, 2π].
The channels also suffer from AWGN with variance σ2

c,m.

The SNs estimate the channels with the aid of a (broadcast)

pilot signal sent by the CH in the network initialization stage.

Note, however, that the channels are known to the SNs but

not to the CH. This is due to the random number of SNs that

makes it difficult to keep track of all the channel gains.

The SNs use on-off-keying (OOK) to send their decisions

to the CH over the shared MAC. These SNs transmit with

the same power Ptx within the cluster and are assumed to be

synchronized to the same time slot. The communication SNR

at mth CH is defined as SNRch

m , Ptx/σ
2
c,m.

CH-FC communication: The communication between the

CHs and the FC takes place over dedicated channels (see

Fig. 1), as it is reasonably assumed that CHs have access

to larger bandwidth (than SNs). Additionally, the fading and

path-loss in the CH-FC channels are assumed to be handled

(estimated and compensated) in the initialization stage of the

network, due to higher available transmit power (denoted with

Pm). Hence, it is assumed that the mth CH-FC channel only

suffers from AWGN with variance σ2

f,m. The communication

SNR between mth CH and the FC is then SNRfc

m , Pm/σ2

f,m.

IV. DISTRIBUTED TRANSMIT COMBINING FOR MULTIPLE

ACCESS CLUSTERED DISTRIBUTED DETECTION

In this section, first the distributed transmit combining tech-

niques employed in this work are discussed (Sec. IV-A). Then,

the associated statistics of the received signal are obtained

(Sec. IV-B). The latter result paves the way to the formulation

of the fusion rules in the next section.

A. Distributed Transmit Combining

Although adopting MACs at the cluster level significantly

reduces bandwidth requirements, the received signals at the

CHs do not benefit from the beamforming-like feature of

the MAC due to fading [22]. Clearly, conventional receive

combining techniques cannot be implemented in the MAC

case. However, transmit combining schemes can be used. In

fact, such schemes can be realized in a distributed manner by

virtue of the shared MAC, since all the transmitted signals are

combined at each CH.

Accordingly, in this work we consider two distributed

transmit combining methods: (i) the distributed maximum

ratio transmit combining (dMRTC) and (ii) the distributed

equal gain transmit combining (dEGTC). The dMRTC is

implemented if the SNs pre-multiply their transmitted signals

by the complex channel gain i.e., Gm,i = H∗
m,i, where the

channel gain and phase are estimated in the initialization stage.

Whereas the dEGTC is implemented if the SNs adjust the

transmitted signal phase, i.e., Gm,i = e−jϕm,i , where only

the channel phase is estimated. Clearly, the dMRTC imple-

mentation requires both channel gain and phase estimation

leading to more complexity in the system when compared to

the dEGTC, which requires only the phase estimation. In order

to represent both cases in a compact fashion, we define the

following generic mapping:

f(Hm,i) = Hm,iGm,i =

{
|Hm,i|2, dMRTC

|Hm,i|, dEGTC
. (6)

As a result, the received signal at the mth CH is

Ym =
√
Ptx

∑

Xi∈Φm

f(Hm,i)

‖Xi − xm‖α
2

I (Xi)

︸ ︷︷ ︸
,Ȳm

+ Wm (7)

for m = 1, · · · ,M , Wm is the AWGN at that CH with

distribution of N
(
0, σ2

c,m

)
and Ȳm denotes the power-scaled

noise-free contribution, defined to simplify the analysis later

on.

The received signals at the FC from all the M CHs are

Zm =
√
Pm Ym + Vm, m = 1, · · · ,M (8)

where Pm is the transmission power used by the mth CH and

Vm ∼ N
(
0, σ2

f,m

)
is the AWGN associated to the channel

between the mth CH and the FC. In order to develop the

optimal fusion rule in clustered WSNs with noisy channels,

we investigate the received signals at the FC. By combining

Eqs. (7) and (8), the received signal from mth CH can be

rewritten in the more convenient form as

Zm =

√
P̃mȲm + Ṽm ,m = 1, · · · ,M (9)

where P̃m , Ptx Pm, and Ṽm ,
√
PmWm + Vm denotes

the aggregate transmission power and noise at the mth CH-

FC channel respectively, with distribution N
(
0, σ̃2

m

)
where

σ̃2
m , (Pm σ2

c,m + σ2

f,m).

B. Received (Noise-free) Signals Statistics

The noiseless received signal Ȳm in Eq. (7) is actually

a random sum over the point process of detecting SNs.

Unfortunately, its distribution does not have a closed-form.

Nonetheless, the mean and variance of Ȳm can be found via

stochastic-geometry tools. Firstly, the mean is given below as
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µ̄m,j = E
[
Ȳm|Hj

]
= E

[
∑

Xi∈Φm

f (Hm,i)

‖Xi − xm‖
α
2

I (Xi)

∣∣∣∣Hj

]

= E [f (H)]EΦm

[
∑

Xi∈Φm

I (Xi)

‖Xi − xm‖α
2

∣∣∣∣Hj

]
(10)

where EΦm
[·] is the expectation with respect to PPP Φm and

j = 0 (resp. j = 1) denotes the H0 (resp. H1) hypothesis.

The conditional mean µ̄m,j can be further simplified as

demonstrated by the following proposition.

Proposition 1. The conditional mean of Ȳm defined in Eq. (7)

is given by

µ̄m,j = E
[
Ȳm|Hj

]
=

{
λm E [f (H)] Iµ̄m,0

, j = 0

λm E [f (H)] Iµ̄m,1
, j = 1

(11)

where

Iµ̄m,0
,

∫

Cm

‖x− xm‖−α
2 Pfa dx (12)

Iµ̄m,1
,

∫

Cm

‖x− xm‖−α
2 Pd (x,xt) dx. (13)

Proof: Recalling that the local detection is actually a

thinning of the PPP, then Campbell’s theorem [38] can be

applied to find the average of the expectation in Eq. (10)

yielding the result in Eq. (11).

The computation of the conditional variance, on the other

hand, is not as straightforward. The following proposition

provides its explicit value.

Proposition 2. The conditional variance of Ȳm defined in Eq.

(7) is given by

σ̄2

m,j = var
(
Ȳm|Hj

)
=

{
λm E

[
f2(H)

]
Iσ̄2

m,0
, j = 0

λm E
[
f2(H)

]
Iσ̄2

m,1
, j = 1

(14)

where

Iσ̄2

m,0
,

∫

Cm

‖x− xm‖−α Pfa dx (15)

Iσ̄2

m,1
,

∫

Cm

‖x− xm‖−α Pd (x,xt) dx (16)

and E
[
f2(H)

]
denotes the second (non-central) moment of

f(H).

Proof: See Appendix A.

V. FUSION RULES FOR DISTRIBUTED DETECTION IN

MULTIPLE CLUSTERS

In this section we derive four fusion rules for distributed

detection in multiple clusters based on approximating the

received signal distribution by Gaussian and lognormal dis-

tributions. Note however, that both fusion rules can be used

with either transmit combining techniques described in Eq. (6).

A. Optimal Fusion Rule (LLR)

The Neyman-Pearson detector [44], which is based on the

likelihood-ratio-test (LR) statistic, for the model in Eq. (9) is

ΛLR =

M∏

m=1

p (zm|H1)

p (zm|H0)
=

M∏

m=1

EȲm|H1

[
p
(
zm|Ȳm

)]

EȲm|H0

[
p
(
zm|Ȳm

)]

=
M∏

m=1

EȲm|H1

[
exp

(
− 1

2σ̃2
m

(zm −
√
P̃mȲm)2

)]

EȲm|H0

[
exp

(
− 1

2σ̃2
m

(zm −
√
P̃mȲm)2

)] . (17)

Note that the expectations in the numerator and denominator

are w.r.t. the distributions p(ȳm|Hj), resulting from PPP

thinning and nonlinear mapping. Indeed, p (zm|Hj) is actually

the convolution of the distribution of

√
P̃m · Ȳm|Hj and

the Gaussian distribution of the noise Ṽm. Unfortunately, the

corresponding log-likelihood ratio (LLR) ΛLLR , ln (ΛLR) is

not simpler:

ΛLLR =

M∑

m=1

ln
(
EȲm|H1

[
exp

(
−sm

2

(
z̃m − Ȳm

)2)])

− ln
(
EȲm|H0

[
exp

(
−sm

2

(
z̃m − Ȳm

)2)])
(18)

where z̃m = zm/

√
P̃m and sm = P̃m/σ̃2

m is the mth CH-FC

equivalent channel SNR.

B. Moment Matching based Fusion Rules

Although the fusion rule in Eq. (18) is optimal, unfortu-

nately it is impractical and does not lend itself to analysis.

Accordingly, to come up with the design of practical fusion

rules, we provide a second-order characterization of the re-

ceived signals Zm|Hj , m = 1, . . . ,M .

Based on the results provided in Props. 1 and 2, it is not

difficult to show that the mean
(
µm,j , E [Zm|Hj ]

)
can be

obtained (by linearity) as

µm,j , E [Zm|Hj ] =

√
P̃m E

[
Ȳm | Hj

]
+ E

[
Ṽm

]

=

√
P̃m µ̄m,j. (19)

Conversely, the variance evaluation follows as

σ2

m,j , var (Zm | Hj) = P̃m var
[
Ȳm | Hj

]
+ var

[
Ṽm

]

= P̃m σ̄2

m,j + Pmσ2

c,m + σ2

f,m (20)

which is the aggregate variance of the CHs’ received signals,

the SN-CH links and the CH-FC links as well. Having found

the mean and variance of Zm|Hj , it is possible to approximate

its (conditional) distribution, for any m = 1, . . . ,M , via the

moment matching method.

The lognormal distribution was adopted in [11] for fitting

due to having two defining parameters and hence it can fit the

Ym’s distribution, which is suitable for high SNR cases since

the lognormal distribution is defined on a positive support. In

this work we relax this condition on the SNR and choose the

Gaussian distribution for moment matching. We will derive
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the the moment matching fusion rule for the Gaussian case in

Theorem 1 and then for the lognormal in Theorem 2.

Firstly, using the approximated distributions (Gaussian or

lognormal) the LLR can be expressed without the expectations

in Eq. (18). Accordingly, the following theorem provides the

moment matching optimal fusion rule (MOR) when adopting

the Gaussian distribution fitting,

Theorem 1. The MOR detector, in the Neyman-Pearson sense,

using the Gaussian distribution fitting is given by

ΛN
MOR =

M∑

m=1

am (zm + dm)
2

(21)

where

am ,
1

2σ2
m,0

− 1

2σ2
m,1

(22)

dm ,
σ2
m,0µm,1 − σ2

m,1µm,j

σ2
m,j − σ2

m,j

(23)

for j = 0, 1.

Proof: See Appendix B.

The optimal detector given above can be regarded as the

Euclidean distance between the received CHs data, Zm’s, and

the points dm’s, which is weighted by am’s.

If the communication SNR is suitably high, we conjecture

that the lognormal distribution might be adequate for develop-

ing a fusion rule. This is presented in the following theorem.

Theorem 2. The MOR detector using the lognormal distribu-

tion fitting is given by

ΛL
MOR =

M∑

m=1

âm

(
ln |zm|+ d̂m

)2
(24)

where

âm ,
1

2σ̂m,0

− 1

2σ̂m,1

(25)

d̂m ,
σ̂m,1µ̂m,0 − σ̂m,0µ̂m,1

σ̂m,1 − σ̂m,0

(26)

for j = 0, 1.

Proof: See Appendix C.

Note that the structure of the fusion rule in Eq. (24) is

similar to that derived in (28). This is due to the fundamental

similarity between the Gaussian and lognormal distributions.

C. Moment Matching Equal Gain Fusion Rule

Clearly, the optimal fusion rules above require knowledge of

the CH’s received signal statistics to compute the parameters

am and dm, which in turn require the knowledge of the target’s

parameters, a case that is not always available in practice.

Consequently, we propose using the same moment matching-

based statistics but with equally weighing all the clusters data,

termed moment matching equal gain fusion rule (MER) as

ΛL
MER =

M∑

m=1

ln2 |zm|. (27)

The MER simply takes the logarithm of each CH transmit-

ted signal and sums them together. Similarly, the MER for the

Gaussian fitting case is given as

ΛN
MER =

M∑

m=1

z2m (28)

which is the sum of the squares of the received signals from

the CHs.

VI. PERFORMANCE AND POWER ANALYSIS

Analyzing the performance of the multiple clusters fusion

rule is not straightforward, so we defer this work to future

works due to space constraints. However, we consider the

effect of the distributed combining techniques on the the

detection performance of the single cluster case and conjecture

that the same applies to the multiple clusters case. Fortunately,

this conjecture is validate by the simulation results in Sec.VII.

In contrast, the effect of clustering on the transmitted and

received power is analyzed.

A. Single Cluster Distributed Detection

In the single cluster case, the system is modeled by Eq. (7).

For the sake of consistency, let us denote the single cluster

case with the zero cluster index, i.e., m = 0. The received

signal now is Y0. The latter FC reaches its global decision on

the target’s presence by comparing the received signal with a

global detection threshold, Γ. For the general case when the

received signal is approximated by a Gaussian distribution.

The global detection performance can be readily found. The

global probability of false alarm is

PFA = P (Y > Γ;H0) = Q
(
Γ− µ0,0

σ0,0

)
(29)

where Q(·) is the error Q-function, µ0,0 and σ0,0 are the mean

and standard deviation of Y0 under H0 as defined in Eq. (11).

Note that the single cluster encompasses the ROI, i.e., C0 = A.

Consequently, given PFA the global detection threshold can

be found as Γ = σ0,0Q−1 (PFA) + µ0,0.

On the other hand, the global probability of detection is

PD = P (Z > Γ;H1) = Q
(
Γ− µ0,1

σ0,1

)

= Q
(
µ0,0 − µ0,1 + σ0,0Q−1 (PFA)

σ0,1

)
(30)

where µ0,1 is the mean of Y0 under H1. Unfortunately, Eq.

(30) does not provide an insight into the performance of the

detector due to the complications in Eqs. (59) and (60) w.r.t.

λ and Ptx. Therefore, we choose to investigate the deflection

coefficient [44] in terms of the means and variances given by

Props. 1 and 2, which is

d2 =
(µ0,1 − µ0,0)

2

σ2
0,1

. (31)

Substituting Eqs. (11) and (14) in Eq. (31) yields

d2 = λgtc

(
Iµ̄0,1

− Iµ̄0,0

)2

Iσ̄2

0,1

(32)
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where

gtc =
E
2 [f(H)]

E [f2(H)]
. (33)

Note that the deflection coefficient above depends on net-

work deployment through λ and the local detector through

Iµ̄0,0
, Iµ̄0,1

and Iσ̄2

0,1
. Also, the effect of the transmit com-

bining scheme appears in gtc, which we term as the transmit

combining gain. For the dMRTC case, the gain is

gtc =
4σ4

H

4σ4

H + 4σ4

H

=
1

2
(34)

where the second moment in the denominator is given by the

identity E[X2] = σ2

X +E
2[X ] and the mean and variance are

that of the exponential distribution. In a similar manner, the

gain under the dEGTC case is

gtc =
0.5πσ2

H

(2 − 0.5π)σ2

H + 0.5πσ2

H

= π/4 (35)

where the distribution at hand is Rayleigh. Thus

gtc =

{
1/2, dMRTC

π/4, dEGTC
(36)

implying that the dEGTC has a better gain when compared to

dMRTC, which is contrary to the well-known case of receiver

combining in wireless communication, since the deflection co-

efficient in the dEGTC is larger. This result can be explained in

the context of distributed detection as having better separation

between the received signal distributions under H0 and H1 in

the dEGTC case compared to the dMRTC as predicted by the

deflection coefficient and the gain defined in Eq. (36).

B. Received Power Analysis

In PAC WSNs, in which every SN has a dedicated channel,

it is known that the SN transmission power must be increased

when the cluster size is large in order to keep the SNR at

the CH constant. However, this is not case in multiple access

channels. In fact it is the exact opposite, as we shall show

now. To this end, we consider the received power under H0,

since the detection event is rare. The average received power

then is given by the following proposition.

Proposition 3. The average received power at the mth CH

under H0 is

P̄rx,m = λPtx

(
E
[
f2(H)

]
I2σ̄2

m,0
+ λE2 [f(H)] Iµ̄m,0

)
.

(37)

Proof. Recall that the received power at the mth CH is PtxȲ
2
m,

which is a RV due to fading and random SNs deployment. The

average value is

P̄rx,m = Ptx E
[
Ȳ 2

m|H0

]
= Ptx µ̄

2

m,0 + Ptx σ̄
2

m,0. (38)

The proof is concluded when the Eqs. (11) and (14) are

substituted in Eq. (38).

In order to gain insight into the received CH power, ana-

lytical forms of µ̄m,0 and σ̄2
m,0 are required, which involves

the solution of the integrals in Eqs. (12), (13), (15) and (16).

Unfortunately, this might not be straightforward provided the

square cluster shape. Hence, we find the above integrals for

circular clusters that encompasses the actual cluster, where the

radius equals the distance from the CH to the square cluster

corner. The following corollary provides an approximate close-

form power expression.

Corollary 1. The average received power for a disk-shaped

cluster with outer radius of R and inner radius of r0 (the

communication reference distance) is given by

P̄ c
rx ≈






Ptx

(
λK1 lnR+ λ2K2R

2
)
, α = 2

Ptx

(
3λK1

r2
0

+ λ2K2 ln
2 R

)
, α = 4

(39)

where the constants are

K1 = 2πPfaE
[
f2(H)

]
(40)

K2 = 4π2P 2

faE
2 [f(H)] . (41)

Furthermore, the received power scales as

P̄ c
rx ∼

{
O
(
λ2R2

)
, α = 2

O
(
λ2 ln2 R

)
, α = 4

. (42)

Proof. We first note that under H0 we have µ̄m,0’s are equal

for all m and so are σ̄2
m,0’s, hence any cluster will suffice

in solving the integrals in Eq. (37). Given circular clusters,

employing polar coordinates yields

P̄ c
rx =





λPtx

(
K1 ln

(
R

r0

)
+ λK2 (R− r0)

2

)
, α = 2

λPtx

(
3K1

(
R2 − r20
R2r2

0

)
+ λK2 ln

2

(
R

r0

))
, α = 4

(43)

where K1 and K2 are defined in Eqs. (40) and (41). If R ≫ r0
then Eq. (39) follows directly from Eq. (43).

It is evident from the corollary that the received power

increases when the cluster size increases, which is the opposite

to the PAC case in both free-space path-loss and ground-

reflection cases. This is explained firstly by having more

transmitting SNs in the CH as it expands. Secondly, the use

of distributed transmit combining techniques (dEGTRC and

dMRTC). Finally, the aggregation of the received signals at

the CHs due to the MAC nature. Those factors overcome the

negative effects of path-loss and fading in the channel.

Another direct result from Eq. (42) is that the received

power is inversely proportional to the number of clusters. This

follows when having uniform clustering with M clusters in a

square ROI with side length of A, then the circular cluster

radius is R = A/M and consequently the received power

reduces as M increases.

From the system design point of view, it is desirable to have

a specific SNR at the CH receiver. Thus, the transmission

power should be increased when having more clusters. The

CH’s received SNR can be approximated as SNRch
, P̄ c

rx/σ
2
c ,
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Algorithm

Acronym
Fusion rule

Distributed

Combining
Distribution

MOR-dMR-L Optimal dMRTC Lognormal

MOR-dMR-N Optimal dMRTC Gaussian

MOR-dEG-L Optimal dEGTC Lognormal

MOR-dEG-N Optimal dEGTC Gaussian

MER-dMR-L Equal gain dMRTC Lognormal

MER-dMR-N Equal gain dMRTC Gaussian

MER-dEG-L Equal gain dEGTC Lognormal

MER-dEG-N Equal gain dEGTC Gaussian

TABLE II: Distributed detection algorithms.

where σ2
m,c = σ2

c ∀m under H0. As a result, the SN transmis-

sion power can be approximated as

Ptx ≈






σ2
cSNRch

λK1 lnR + λ2K2R2
, α = 2

σ2
cSNRch

3λK1

r2
0

+ λ2K2 ln
2 R

, α = 4
(44)

where it is clear now that for a given fixed SNR at the CH,

the transmission power is inversely proportional to distance

to the CH. Interestingly however, the power is also inversely

proportional to the deployment density. So a higher density

leads to lower SN transmission power for a fixed SNR.

VII. SIMULATION RESULTS AND DISCUSSION

We simulate a clustered WSN deployed in a 100 × 100
unit2 ROI for 5× 104 Monte Carlo runs. The WSN is divided

into geographical clusters each having a rectangular shape, in

which the CH is located at their centers. The FC is located at

the center of the ROI. The target’s signal power Pt = 10 units.

This signal has a path-loss exponent of η = 2 after a reference

distance of d0 = 1 units. The sensing SNR is SNRs = 12dB.

The SNs local detector, g (S(xi)), is chosen to be the matched

filter with a local probability of false alarm Pfa = 0.01. On

the communication side, the communication reference distance

r0 = 1 unit as well. Whereas the channel gains are distributed

as iid Rayleigh RV with parameter of σ2

G = 1/
√
2. The SNR

at the CH is SNRch
m = 20 dB∀m and so is the SNR at the FC

SNRfc

m = 20 dB∀m. The distributed detection algorithms used

in the simulations are explained in Tab. II. Moreover, dMRTC

and dEGTRC are used in a single cluster setting for the sake

of comparison.

Fig. 2 demonstrates the empirical and theoretical mean

and variance of the received signal employing dMRTC and

dEGTRC under H0 and H1 for communication path-loss

exponent α ∈ {2, 4}. In this setting, the WSN is divided into

M = 4 clusters and the target is located at xt = (20, 20),
which is in the southeast cluster. Note however, that under H0

all clusters’ received signal means and variances are equivalent

since there is no target present. It is clear that an almost

perfect match between the simulated and theoretical mean

and variance µ̄m,j and σ̄2
m,j for both dMRTC and dEGTC

under H0 and H1 for different values of λ and for both path-

loss exponent conditions. However, under α = 4 the mean

and variance are considerably lower than the α = 2 case.

This verifies the analytic expressions for mean and variance

provided by Props. 1 and 2.

Fig. 3 shows the ROC for the different fusion rules for the

same condition parameters as before but with different M , λ
and SNRch

m for both path-loss exponent cases, i.e. α ∈ {2, 4}. It

can be noticed that under certain conditions some algorithms

perform better whereas the same algorithms perform worse

than others if the conditions are changed. In some instances,

the cluster-based algorithms perform worse that the dMRTC

and dEGTC rules, which operates in a single cluster. For

example, in Fig. 3a, using a single cluster with dEGTC is better

than using four clusters using MOR-dEG-L or MOR-dMR-L,

while Fig. 3d shows the converse. Hence, we investigate each

parameter individually.

Fig. 4 shows the detection performance versus varying num-

ber of clusters (M ) when the target is randomly located in the

ROI under the above simulation parameters for both α = 2, 4.

The target is randomly located in 85× 85 unit2 area to elimi-

nate the edge effect. In the free-space case, it is clear that the

optimal MOR-dEG-N shows superior detection performance,

which improves as M increases. The MOR-dMR-N algorithm

also improves with M , however not as fast as the previous rule.

The MER-based algorithms do not improve significantly as M
increases. This is due to not needing any information about the

target, so increasing the cluster number does not affect to the

performance. In contrast to the MOR algorithms, where having

more clusters implies better weighing of the clusters’ data and

hence better performance. Analogously, the lognormal-derived

algorithms follow similar trends but with lower performance.

The gap between the normal and lognormal derived algorithms

can be explained by the compression effect of the logarithm

function in the latter algorithms, which compresses large

received signal values at CH in comparison with the Gaussian-

derived counterparts leading to a smaller separation between

the distributions under H0 and H1 and hence worse detection

probability. Whereas the dEGTC-dMTRC gap was predicted

in Eq. (36). As for the α = 4 case however, the large

attenuation reduces the received signals at the CHs forcing the

Gaussian-derived algorithms’ performance close to or below

the lognormal counterparts.

Fig. 5 also shows an improving detection as λ increases for

both path-loss exponent values (viz. scenarios). This improve-

ment is more pronounced for α = 2 compared to the α = 4
case, due to the least attenuation experienced in the former

scenario. However, MOF-dEG-L and MOR-dMR-L algorithms

show significant degradation in their performance, which it is

more severe in the α = 2 case. The compression effect is more

pronounced here. In particular, when λ increases the CH’s

received signal does too, but the overall test statistics ΛL
MOR

is much lower than the ΛN
MOR. Moreover, the presence of âm

reduced the test statistics values compared to the MER-based

algorithms, which explains the difference in performance.

The SN-CH channel quality effect on detection performance

is demonstrated in Fig. 6. It is noticed that the MOR-dEG-

L and MOR-dMR-L algorithms show superior performance

at relatively low SNRs and then degrades at higher SNRs

in the α = 2 scenario. This is due, again, to the logarithm

compression effect, since the CH’s received signal have low

values and increases when the SNR does. In the α = 4
scenario however, the effect of the SNR is nearly neutralized
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Fig. 2: The mean (µ̄m,j) and variance (σ̄2
m,j) of the received signal Ym at the cluster containing the target, under the two

hypotheses Hj for j = 0, 1.

and the MOR-based algorithms show a modest improvement,

while the MER counterparts show no such behaviour in

general.

In order to show the behaviour of the received power

at the CH under H0, we simulate the WSN. Fig. 7 shows

the averaged received power P̄rx (where the cluster index

m was dropped) at the an arbitrary CH. The results show

a close match between the simulated power and the exact

theoretical value received power for the circular cluster given

by Eq. (37) in Prop. 3. More importantly, it is shown that

the received power at the CH decreases as the transmission

distance increases when number cluster is increased. Another

note here is that the received power in the α = 4 is less than

the α = 2 by an order of magnitude approximately. Moreover,

the power over-estimator proposed in Eq. (39) provides a very

good estimation for the free-space path-loss case, whereas it

provides a reasonable upper bound for ground-reflection case,

at least when employing the dEGTC.

VIII. CONCLUSIONS

We investigated distributed detection in clustered WSNs

over a shared MAC suffering from Rayleigh fading and

additive noise. To mitigate the effect of the fading channel,

two distributed transmit combining methods were proposed,

dMRTC and dEGTC. The statistics of the received signals at

the CHs were found via stochastic geometry tools. The latter

result was, in turn, used to fit the distribution with log-normal

and Gaussian and distributions. This enabled deriving a mo-

ment matching based optimal fusion rule (MOR) and a simpler

moment matching equal gain fusion rule (MER). Interestingly,

it has been shown that the dEGTC is better than the dMRTC

in terms of the detector’s performance. It has been shown

that increasing the number of clusters generally improves the

detection performance when knowledge of the target is avail-

able. While the MOR-Gaussian based algorithms are better

under free-space path-loss with large clusters number, their

lognormal counterparts excel in the ground-reflection case.

Although increasing the SNs deployment density improves the

detection performance in general, the MOR lognormal-derived

algorithms are better suited for low SNs density and low-SNR

WSN scenario, in particular for the free-space propagation.

The received power at the CHs were derived theoretically

and closed-form over-estimator were provided for both prop-

agation cases. An interesting, counter intuitive, result that has

been the proved is that the received power at the CH is

proportional to O
(
λ2R2

)
for the free-space path loss and to

O
(
λ2 ln2 R

)
for the ground reflection case. This shows that

the received power scales with increasing cluster size, hence

performance improvements can be achieved when the cluster

size is increased. From a different point of view, for a given

ROI increasing the number of clusters leads to transmission

power savings but with the some loss of detection performance

(more evident under the ground-reflection scenario). So, the

number of clusters can be used to trade-off detection perfor-

mance for power saving.

As a future extension to this work, more realistic SN-CH

channel models could be considered, e.g. including large-scale

fading (shadowing) effect and fast fading due to potential

mobility of SNs [45]. Furthermore, future work might ac-

count for heterogeneous SNs and their effect on distributed

detection fusion rules. Finally, the challenging generalization

of the present study to enumerating multiple intruders (e.g. via

model-order selection techniques) is also seen as an interesting

venue for related applications such as collaborative spectrum

sensing [46].
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m = 25 dB at M = 16, λ = 1 and α = 4.

Fig. 3: ROC for various clustered-WSN conditions.

APPENDIX A

PROOF OF PROPOSITION 2

Using the total variance identity, the conditional variance of

Ȳm can be written as

σ2

m,j = varΦm

(
EH

[
∑

Xi∈Φm

√
Ptxf(Hm.i)I (Xi)

‖Xi − xm‖
α
2

∣∣∣∣∣Φm;Hj

])

+EΦm

[
varH

(
∑

Xi∈Φm

√
Ptxf(Hm.i)I (Xi)

‖Xi − xm‖α
2

)∣∣∣∣∣Φm;Hj

]
.

(45)

Next, due to the i.i.d property4 of the f(Hi)’s the variance

simplifies as

σ2

m,j = Ptx E
2

H [f(H)] varΦm

(
∑

Xi∈Φm

I (Xi)

‖Xi − xm‖α
2

;Hj

)

+Ptx varH (f(H))EΦm

[
∑

Xi∈Φm

I (Xi)

‖Xi − xm‖α ;Hj

]
. (46)

4In particular, it holds var
(∑N

i=1
aiSi

)
=

∑N
i=1

a2i var(Si).

We use Campbell’s theorem on the first term above

as follows. For a given g(x) ≥ 0, we can write

var
(∑

Xi∈Φ
g(x)

)
= λ

∫
g2(x)dx = E

[∑
Xi∈Φ

g2(x)
]
. Set-

ting g(·) = I(·) / ‖(·)− xm‖α
2 , the first term in Eq. Eq. (46)

becomes

Ptx E
2

H [f(H)] varΦm

(
∑

Xi∈Φm

I (Xi)

‖Xi − xm‖α
2

;Hj

)

= Ptx E
2

H [f(H)] EΦm

[
∑

Xi∈Φm

I (Xi)

‖Xi − xm‖α ;Hj

]
. (47)

Then using the variance identity(
E[S2] = var(S) + E2[S]

)
, Eq. (46) further reduces to

σ2

m,j = E
[
f2(H)

]
PtxEΦm

[
∑

Xi∈Φm

I (Xi)

‖Xi − xm‖α ;Hj

]
.

(48)

Finally, applying Campbell’s theorem yields Eq. (14).

APPENDIX B

PROOF OF THEOREM 1

We assume that the distribution of Zm|Hj is Gaussian with

mean µm,j and variance σ2
m,j for j = 0, 1. The Neyman-
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Fig. 4: Probability of detection PD versus the number of clusters (M) at PFA = 0.05, SNRch
m = 20 dB and λ = 1.
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Fig. 5: Probability of detection PD versus λ at PFA = 0.05 with SNRch
m = 20 dB and M = 16 clusters.
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Fig. 6: Probability of detection PD versus SNRch
m at PFA = 0.05 with λ = 1 and M = 16 clusters.

Pearson likelihood ratio then is

Λ1 =

M∏

m=1

(
σm,0

σm,1

) exp
(
− 1

2σ2

m,1

(zm − µj,1)
2
)

exp
(
− 1

2σ2

m,0

(zm − µj,0)
2
) . (49)

The corresponding log-likelihood ratio Λ2 = logΛ1 is

Λ2 =

M∑

m=1

ln
p (zm| H1)

p (zm| H0)
=

M∑

m=1

ln

(
σ̂m,0

σ̂m,1

)

− 1

2σ2
m,1

(zm − µj,1)
2
+

1

2σ2
m,0

(zm − µj,0)
2

(50)

.

Neglecting the terms independent of zm and expanding and

arranging the terms in a quadratic form w.r.t. zm we get

Λ3 =

M∑

m=1

amz2m + bmzm + cm (51)

where

am =
1

2σ2
m,0

− 1

2σ2
m,1

, (52)

bm =
µm,1

σ2
m,1

− µm,0

σ2
m,0

, (53)

cm =
µ2
m,0

2σ2
m,0

− µ2
m,1

2σ2
m,1

. (54)

Looking at Eq. (51), we recognize a quadratic expression in

zm, hence completing the square we can write

Λ3 =
M∑

m=1

am

(
zm +

bm
2am

)2

+ cm − b2m
4a2m

(55)

Λ4 =
M∑

m=1

am

(
zm +

bm
2am

)2

(56)
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Fig. 7: The average received power plotted P̄rx against the number of clusters M at λ = 1 under H0.

where the constant term was ignored in Λ4 and

dm ,
bm
2am

=
σ2
m,1µm,0 − σ2

m,0µm,1

σ2
m,1 − σ2

m,0

(57)

giving the fusion rule in Eq. (21).

APPENDIX C

PROOF OF THEOREM 2

First, we note that the (fitted) distribution of Zm|Hj is

p(zm|Hj) =
1√

2πzmσ̂m,j

exp

(
− (ln |zm| − µ̂m,j)

2

2σ̂2
m,j

)
(58)

where the | · | is used to avoid singularities, the mean (µ̂m,j)

and variance (σ̂2
m,j) of the RV’s natural logarithm are direct-

lyrelated to the mean (µm,j) and the variance (σ2
m,j) as:

µ̂m,j = ln


 µ2

m,j√
σ2
m,j + µ2

m,j


 , (59)

σ̂m,j = ln

(
1 +

σ2
m,j

µ2
m,j

)
. (60)

The log-likelihood ratio is then

Λ5 =

M∑

m=1

ln
p (zm| H1)

p (zm| H0)
=

M∑

m=1

ln

(
σ̂m,0

σ̂m,1

)

+

M∑

m=1

{
(ln |zm| − µ̂m,0)

2

2σ̂2
m,0

− (ln |zm| − µ̂m,1)
2

2σ̂2
m,1

}
. (61)

Neglecting terms independent of zm, expanding and re-

arranging the terms in (61), yields

Λ6 =
M∑

m=1

âm ln2 |zm|+ b̂m ln |zm|+ ĉm (62)

where we have exploited the following auxiliary definitions

âm , (2σ̂2
m,0)

−1 − (2σ̂2
m,1)

−1, b̂m , µ̂m,1(σ̂
2
m,0)

−1 −
µ̂m,0(σ̂

2
m,1)

−1 and ĉm , µ̂2
m,1(2σ̂

2
m,0)

−1 − µ̂2
m,0(2σ̂

2
m,1)

−1.

Following the same proof method adopted in Appendix B

leads to the fusion rule in Eq. (24).

REFERENCES

[1] N. Khalil, M. Abid, D. Benhaddou, and M. Gerndt, “Wireless sensors
networks for Internet of Things,” in IEEE 9th International Conference

on Intelligent Sensors, Sensor Networks and Information Processing

(ISSNIP), April 2014, pp. 1–6.
[2] B. Rashid and M. H. Rehmani, “Applications of wireless sensor networks

for urban areas: A survey,” Elsevier Journal of Network and Computer

Applications, vol. 60, pp. 192–219, 2016.
[3] C. Y. Chong and S. P. Kumar, “Sensor networks: evolution, opportu-

nities, and challenges,” Proceedings of the IEEE, vol. 91, no. 8, pp.
1247–1256, 2003.

[4] J. Chamberland and V. V. Veeravalli, “Wireless sensors in distributed
detection applications,” IEEE Signal Processing Magazine, vol. 24,
no. 3, pp. 16–25, May 2007.

[5] A. A. Alkhatib, M. Alia, and A. Hnaif, “Smart system for forest
fire using sensor network,” International Journal of Security and Its
Applications, vol. 11, no. 7, pp. 1–16, 2017.

[6] P. Zhang, I. Nevat, G. W. Peters, G. Xiao, and H. Tan, “Event detection in
wireless sensor networks in random spatial sensors deployments,” IEEE
Transactions on Signal Processing, vol. 63, no. 22, pp. 6122–6135, Nov.
2015.

[7] W.-Z. Song, R. Huang, M. Xu, A. Ma, B. Shirazi, R.-Z. S. LaHusen,
R. Huang, M. Xu, A. Ma, B. Shirazi, and R. LaHusen, “Air-dropped
sensor network for real-time high-fidelity volcano monitoring,” in 7th

International Conference on Mobile Systems, Applications, and Services

(MobiSys), 2009, pp. 305–318.
[8] S. Bandyopadhyay and E. J. Coyle, “An energy efficient hierarchical

clustering algorithm for wireless sensor networks,” in 22nd Annual Joint

Conference of the IEEE Computer and Communications (INFOCOM),
vol. 3, 2003, pp. 1713–1723.

[9] Y. Hong, W. Huang, F. Chiu, and C. J. Kuo, “Cooperative com-
munications in resource-constrained wireless networks,” IEEE Signal

Processing Magazine, vol. 24, no. 3, pp. 47–57, 2007.
[10] S. Aldalahmeh, S. O. Al-Jazzar, D. C. McLernon, S. A. R. Zaidi, and

M. Ghogho, “Fusion rules for distributed detection in clustered wireless
sensor networks with imperfect channels,” IEEE Transactions on Signal

and Information Processing over Networks, pp. 1–1, 2019.



13

[11] S. Aldalahmeh, S. O. Al-Jazzar, D. McLernon, S. A. Raza Zaidi,
and M. Cárdenas, “Distributed combining techniques for distributed
detection in fading wireless sensor networks,” in IEEE 2nd Middle East

and North Africa Communications Conference (MENACOMM), 2019,
pp. 1–6, (best paper award).

[12] R. Viswanathan and P. K. Varshney, “Distributed detection with multiple
sensors - Part I: fundamentals,” Proceedings of the IEEE, vol. 85, no. 1,
pp. 54 –63, Jan. 1997.

[13] R. Blum, S. Kassam, and H. Poor, “Distributed detection with multiple
sensors - Part II: advanced topics,” Proceedings of the IEEE, vol. 85,
no. 1, pp. 64 –79, Jan. 1997.

[14] W. P. Tay, J. N. Tsitsiklis, and M. Z. Win, “Data fusion trees for
detection: Does architecture matter?” IEEE Transactions on Information
Theory, vol. 54, no. 9, pp. 4155–4168, Sep. 2008.

[15] ——, “Bayesian detection in bounded height tree networks,” IEEE

Transactions on Signal Processing, vol. 57, no. 10, pp. 4042–4051, Oct.
2009.

[16] J. A. Maya and L. R. Vega, “On Fully-Distributed Composite Tests
With General Parametric Data Distributions in Sensor Networks,” IEEE

Transactions on Signal and Information Processing over Networks, vol.
7, pp. 509–521, 2021.

[17] J.-F. Chamberland and V. Veeravalli, “Decentralized detection in sensor
networks,” IEEE Transactions on Signal Processing, vol. 51, no. 2, pp.
407 – 416, Feb. 2003.

[18] W. L. W. Li and H. D. H. Dai, “Distributed detection in wireless sensor
networks using a multiple access channel,” IEEE Transactions on Signal

Processing, vol. 55, no. 3, pp. 822–833, 2007.
[19] K. Liu, H. E. Gamal, and A. M. Sayeed, “Decentralized inference over

multiple-access channels.” IEEE Transactions on Signal Processing,
vol. 55, no. 7-1, pp. 3445–3455, 2007.

[20] A. Jamoos and R. Abuawwad, “Distributed M-ary hypothesis testing
for decision fusion in multiple-input multiple-output wireless sensor
networks,” IET Communications, vol. 14, no. 18, pp. 3256–3260, 2020.

[21] A. Anandkumar and L. Tong, “Type-based random access for distributed
detection over multiaccess fading channels,” IEEE Transactions on

Signal Processing, vol. 55, no. 10, pp. 5032 –5043, oct. 2007.
[22] K. Liu and A. Sayeed, “Type-based decentralized detection in wireless

sensor networks,” IEEE Transactions on Signal Processing, vol. 55,
no. 5, pp. 1899 –1910, may 2007.

[23] D. Ciuonzo, G. Papa, G. Romano, P. Salvo Rossi, and P. Willett, “One-
bit decentralized detection with a Rao test for multisensor fusion,” IEEE
Signal Processing Letters, vol. 20, no. 9, pp. 861–864, Sep. 2013.

[24] D. Ciuonzo, S. H. Javadi, A. Mohammadi, and P. Salvo Rossi,
“Bandwidth-constrained decentralized detection of an unknown vector
signal via multisensor fusion,” IEEE Transactions on Signal and Infor-
mation Processing Over Networks, vol. 6, pp. 744–758, 2020.

[25] D. Ciuonzo, P. Salvo Rossi, and P. Willett, “Generalized Rao test
for decentralized detection of an uncooperative target,” IEEE Signal

Processing Letters, vol. 24, no. 5, pp. 678–682, May 2017.
[26] D. Ciuonzo and P. Salvo Rossi, “Distributed detection of a non-

cooperative target via generalized locally-optimum approaches,” Elsevier

Information Fusion, vol. 36, pp. 261–274, 2017.
[27] M. Guerriero, P. Willett, and J. Glaz, “Distributed target detection

in sensor networks using scan statistics,” Signal Processing, IEEE

Transactions on, vol. 57, no. 7, pp. 2629 –2639, july 2009.
[28] M. Guerriero, L. Svensson, and P. Willett, “Bayesian data fusion for

distributed target detection in sensor networks,” IEEE Transactions on

Signal Processing, vol. 58, no. 6, pp. 3417 –3421, June 2010.
[29] N. Katenka, E. Levina, and G. Michailidis, “Local vote decision fusion

for target detection in wireless sensor networks,” IEEE Transactions on

Signal Processing, vol. 56, no. 1, pp. 329–338, Jan 2008.
[30] A. A. Abbasi and M. Younis, “A survey on clustering algorithms for

wireless sensor networks,” Elsevier Computer communications, vol. 30,
no. 14, pp. 2826–2841, 2007.

[31] M. Shirazi and A. Vosoughi, “On distributed estimation in hierarchical
power constrained wireless sensor networks,” IEEE Transactions on
Signal and Information Processing over Networks, vol. 6, pp. 442–459,
2020.

[32] Q. Tian and E. J. Coyle, “Optimal distributed detection in clustered
wireless sensor networks,” IEEE Transactions on Signal Processing,
vol. 55, no. 7, pp. 3892–3904, 2007.

[33] G. Ferrari, M. Martalo, and R. Pagliari, “Decentralized detection in clus-
tered sensor networks,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 47, no. 2, pp. 959–973, 2011.
[34] M. Yemini, S. Gil, and A. Goldsmith, “Exploiting local and cloud sensor

fusion in intermittently connected sensor networks,” in IEEE Global

Communications Conference (GLOBECOM), 2020, pp. 1–7.

[35] S. A. Aldalahmeh, M. Ghogho, D. McLernon, and E. Nurellari, “Op-
timal fusion rule for distributed detection in clustered wireless sensor
networks,” EURASIP Journal on Advances in Signal Processing, vol.
2016, no. 1, p. 5, Jan 2016.

[36] K. Eritmen and M. Keskinoz, “Distributed decision fusion over fading
channels in hierarchical wireless sensor networks,” Springer Wireless
networks, vol. 20, no. 5, pp. 987–1002, 2014.

[37] R. Niu and P. K. Varshney, “Distributed detection and fusion in a large
wireless sensor network of random size,” EURASIP Journal on Wireless
Communincation and Networking, vol. 2005, no. 4, pp. 462–472, 2005.

[38] R. Streit, Poisson point processes imaging, tracking, and sensing. New
York: Springer, 2010.

[39] S. A. Aldalahmeh and M. Ghogho, “Hard decision fusion in censored
wireless sensor networks over rayleigh fading multiple access channel,”
Signal Processing, IEEE Transactions on, submitted.

[40] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik,
V. Mittal, H. Cao, M. Demirbas, M. Gouda et al., “A line in the sand: a
wireless sensor network for target detection, classification, and tracking,”
Elsevier Computer Networks, vol. 46, no. 5, pp. 605–634, 2004.

[41] R. Niu and P. K. Varshney, “Performance analysis of distributed detec-
tion in a random sensor field,” IEEE Transactions on Signal Processing,
vol. 56, no. 1, pp. 339 –349, Jan. 2008.

[42] H. R. Ahmadi, N. Maleki, and A. Vosoughi, “On power allocation for
distributed detection with correlated observations and linear fusion,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 9, pp. 8396–
8410, 2018.

[43] A. A. Olawole and F. Takawira, and O. O. Oyerinde, “Fusion rule and
cluster head selection scheme in cooperative spectrum sensing,” IET

Communications, vol. 13, no. 6, pp. 758–765, 2019.
[44] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume 2:

Detection Theory. Prentice Hall, 1998.
[45] E. Nurellari, D. B. Licea, M. Ghogho, and M. E. Rivero-Angeles, “On

Trajectory Design for Intruder Detection in Wireless Mobile Sensor
Networks,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 7, pp. 236–248, 2021.

[46] Z. Quan, S. Cui, H. V. Poor, and A. H. Sayed, “Collaborative wideband
sensing for cognitive radios,” IEEE Signal Processing Magazine, vol.
25, no. 6, pp. 60–73, 2008.


	I Introduction
	II Related Work
	III System Model
	III-A SNs Deployment and Sensing Models
	III-B SN-CH and CH-FC Communication Models

	IV Distributed Transmit Combining for Multiple Access Clustered Distributed Detection
	IV-A Distributed Transmit Combining
	IV-B Received (Noise-free) Signals Statistics

	V Fusion Rules for Distributed Detection in Multiple Clusters
	V-A Optimal Fusion Rule (LLR)
	V-B Moment Matching based Fusion Rules
	V-C Moment Matching Equal Gain Fusion Rule

	VI Performance and Power Analysis
	VI-A Single Cluster Distributed Detection
	VI-B Received Power Analysis

	VII Simulation Results and Discussion
	VIII Conclusions
	Appendix A: Proof of Proposition 2
	Appendix B: Proof of Theorem 1
	Appendix C: Proof of Theorem 2
	References

