

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Nov 18, 2024

A framework for quantitative modeling and analysis of highly (re)configurable systems

ter Beek, Maurice H. ; Legay, Axel; Lluch Lafuente, Alberto; Vandin, Andrea

Published in:
I E E E Transactions on Software Engineering

Link to article, DOI:
10.1109/TSE.2018.2853726

Publication date:
2020

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
ter Beek, M. H., Legay, A., Lluch Lafuente, A., & Vandin, A. (2020). A framework for quantitative modeling and
analysis of highly (re)configurable systems. I E E E Transactions on Software Engineering, 46(3), 321 - 345.
https://doi.org/10.1109/TSE.2018.2853726

https://doi.org/10.1109/TSE.2018.2853726
https://orbit.dtu.dk/en/publications/2d637490-4f09-4125-ba32-7d476215d1bc
https://doi.org/10.1109/TSE.2018.2853726

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

A framework for quantitative modeling and
analysis of highly (re)configurable systems

Maurice H. ter Beek, Axel Legay, Alberto Lluch Lafuente and Andrea Vandin

Abstract—This paper presents our approach to the quantitative modeling and analysis of highly (re)configurable systems, such as
software product lines. Different combinations of the optional features of such a system give rise to combinatorially many individual
system variants. We use a formal modeling language that allows us to model systems with probabilistic behavior, possibly subject to
quantitative feature constraints, and able to dynamically install, remove or replace features. More precisely, our models are defined in
the probabilistic feature-oriented language QFLAN, a rich domain specific language (DSL) for systems with variability defined in terms
of features. QFLAN specifications are automatically encoded in terms of a process algebra whose operational behavior interacts with a
store of constraints, and hence allows to separate system configuration from system behavior. The resulting probabilistic configurations
and behavior converge seamlessly in a semantics based on discrete-time Markov chains, thus enabling quantitative analysis. Our
analysis is based on statistical model checking techniques, which allow us to scale to larger models with respect to precise probabilistic
analysis techniques. The analyses we can conduct range from the likelihood of specific behavior to the expected average cost, in terms
of feature attributes, of specific system variants. Our approach is supported by a novel Eclipse-based tool which includes
state-of-the-art DSL utilities for QFLAN based on the Xtext framework as well as analysis plug-ins to seamlessly run statistical model
checking analyses. We provide a number of case studies that have driven and validated the development of our framework.

Index Terms—Software product lines, probabilistic modeling, quantitative constraints, statistical model checking, formal methods

F

1 INTRODUCTION

SOFTWARE Product Line Engineering (SPLE) is a soft-
ware engineering methodology aimed at developing,

in a cost-effective and time-efficient manner, a family of
software-intensive highly configurable systems by system-
atic reuse [1], [2], [3]. Individual products (or variants) share
an overall reference variability model of the family, but
they differ with respect to specific features, which are (user-
visible) increments in functionality. The explicit introduction
and management of feature-based variability in the software
development cycle causes complexity in the modeling and
analysis of software product lines (SPLs). There is a lot of re-
cent research on lifting successful high-level algebraic mod-
eling languages and formal verification techniques known
from single (software) system engineering, such as process
calculi and model checking, to SPLE (cf., e.g., [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13]). The challenge is to handle the
variability inherent to SPLs, and to highly configurable sys-
tems in general, by which the number of possible variants
may be exponential in the number of features. This paper
presents our approach to this challenge.

Modeling with the FLAN family

We have developed a modeling approach based on a fam-
ily of process-algebraic specification languages (FLAN [14],

• M.H. ter Beek is with Istituto di Scienza e Tecnologie dell’Informazione,
Consiglio Nazionale delle Ricerche, Pisa, Italy. E-mail: terbeek@isti.cnr.it

• A. Legay is with Inria Rennes, France. E-mail: axel.legay@inria.fr
• A. Lluch Lafuente is with the Department of Applied Mathematics and

Computer Science, Technical University of Denmark. E-mail: albl@dtu.dk
• A. Vandin is with the Department of Applied Mathematics and Computer

Science, Technical University of Denmark. E-mail: anvan@dtu.dk

Manuscript received . . . ; revised

PFLAN [15] and QFLAN [16], surveyed in the invited con-
tribution [17]). This family is inspired by the concurrent
constraint programming paradigm of [18], its adoption in
process calculi [19], and its stochastic extension [20].

In [14], we introduced the feature-oriented language
FLAN. In FLAN, a rich set of process-algebraic operators
allows one to specify both the configuration (in terms of
features) and the behavior (in terms of actions) of products,
while a constraint store allows one to specify all common
constraints on features known from variability models such
as feature models, as well as additional feature-based con-
straints on actions. The execution of a process is constrained
by the store (e.g. to avoid introducing inconsistencies), but a
process can also query the store (e.g. to resolve configuration
options) or update the store (e.g. to add new features, even
at runtime). The main distinguishing modeling feature of
FLAN is a clean separation between the configuration and
runtime aspects of an SPL.

In [15], we subsequently equipped FLAN with the means
to specify probabilistic models of SPLs, resulting in PFLAN.
PFLAN adds to FLAN the possibility to equip each action
(including those that install an additional feature, possibly
at runtime) with a rate, which can represent notions like
uncertainty, failure rates, randomisation or preferences. This
allows one to model and analyze the likelihood of installing
features, the probabilistic behavior of users of products of
the SPL and the expected average cost of products, next
to probabilistic quantifications of ordinary temporal logic
properties.

A fact that emerged during our experimentation with
PFLAN was the need to consider a number of further as-
pects in the specification and analysis of behavioral models
of SPLs, such as the staged configurations known from

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

dynamic SPLs [21], [22] (e.g. adding and removing features
as well as activating and deactivating features) and rich
quantitative constraints (e.g. pricing constraints) over fea-
ture attributes reminiscent of [23].

For this purpose, we proposed the feature-oriented
language QFLAN [16] as an evolution of probabilistic
PFLAN [15]. QFLAN enriches PFLAN with the possibility
to not only install but also uninstall and replace features
at runtime as well as with advanced quantitative constraint
modeling options regarding the ‘cost’ of features, i.e. feature
attributes related to non-functional aspects such as price,
weight, reliability, etc. In particular, the novel modeling op-
tions we introduced were (i) quantitative constraints in the
form of arithmetic relations among feature attributes (e.g.
the total cost of a set of features must be less than a certain
threshold); (ii) propositions relating the absence or presence
of a feature to such a quantitative constraint (e.g. if a certain
feature is present, then the total cost of a set of features
must be less than a certain threshold); and (iii) rich action
constraints involving such quantitative constraints (e.g. a
certain action can be performed only if the total cost of the
set of features constituting the product is less than a certain
threshold). The uninstallation and replacement of features
can be the result of malfunctioning or of the need to install a
better version of the feature (e.g. a software update). We will
illustrate this in our case studies, as well as the use of each
of the above type of quantitative constraints over feature
attributes, by providing concrete examples. It is important
to note that the above type of quantitative constraints are
significantly more complex than the ones that are commonly
associated to attributed feature models [23], [24], [25], [26].
We are not aware of any other approach dealing with all of
the above aspects in one unifying framework.

Analysis tools for the FLAN family

Our first tool support for the FLAN family was a proto-
typical implementation of an interpreter in MAUDE [27],
which allowed us to conduct analyses on FLAN models,
ranging from consistency checking (by means of SAT solv-
ing) to model checking. The introduction of PFLAN to
model probabilistic aspects led us to develop corresponding
tool support. We combined our MAUDE interpreter with
the distributed statistical model checker MULTIVESTA [28],
which allowed us to estimate the likelihood of specific
system configurations and behavior, and thus to measure
non-functional aspects such as quality of service, reliability
or performance.

When QFLAN was eventually introduced, it became
evident that, as feature attributes were typically not
Boolean [23], the problem of deciding whether or not a
product satisfies an attributed feature model with quan-
titative constraints, required more general satisfiability-
checking techniques than SAT solving. This naturally led
us to the use of Satisfiability Modulo Theory (SMT) solvers
like Microsoft’s Z3 [29], which allowed us to deal with
richer notions of constraints like arithmetic ones. In fact, an
important contribution of [16] was the integration of SMT
solving into our approach, by means of a combination of
our MAUDE QFLAN interpreter and Z3. In this paper, we
present a complete re-engineering of the tool, in which we

reimplemented from scratch our QFLAN simulator using
Java. First, since we shifted the focus to quantitative analysis
of fully configured (but variable) single products we did not
need the full power of constraint solving anymore but just
the simple constraint checking. We could hence replace the
costly interaction with Z3 with an ad-hoc constraint evalu-
ator for QFLAN using Java. Moreover, since the language
was stable, we replaced the (slower) Maude executable
semantics by an ad-hoc (faster) Java one. This re-engineering
resulted in a mature tool with a modern integrated devel-
opment environment for QFLAN.

Formally, our statistical model checking approach con-
sists of performing a sufficient (and minimal) number of
probabilistic simulations of a system model to obtain sta-
tistical evidence (with a predefined level of statistical con-
fidence) of the quantitative properties being verified. Such
properties are formulated in MULTIVESTA’s property speci-
fication language MultiQuaTEx [28]. Statistical model check-
ing offers unique advantages over exhaustive (probabilis-
tic) model checking. First, statistical model checking does
not need to generate entire state spaces and hence scales
better without suffering from the combinatorial state-space
explosion problem typical of model checking. In particular
in the context of highly configurable systems, given their
possibly combinatorially many variants, this outweighs the
main disadvantage of having to give up on obtaining exact
results (100% confidence) with exact analysis techniques
like (probabilistic) model checking. Second, statistical model
checking scales better with hardware resources, since the
set of simulations to be carried out can be trivially paral-
lelized and distributed. MULTIVESTA, indeed, can be run
on multi-core machines, clusters or distributed computers
with almost linear speedup. A further unique advantage of
MULTIVESTA is that it can use the same set of simulations
for checking several properties at the same time, thus offer-
ing even further reductions of computing time.

To the best of our knowledge, we were the first to apply
statistical model checking in SPLE in [15]. There are other
approaches to probabilistic model checking of SPLs [30],
[31], [32], [33], [34], of which the latter comes closest to
ours. In [34], the PROFEAT tool is presented. It provides
a guarded-command language for modeling families of
probabilistic systems and an automatic translation of such
SPL models to the (featureless) input language of the proba-
bilistic model checker PRISM [35]. It caters for the activation
and deactivation of features at runtime and quantitative
constraints over feature attributes. It is important to un-
derline that PROFEAT performs numerical computations to
yield exact results, whereas QFLAN performs probabilistic
simulations to yield statistical approximations, thus trading
100% precision for scalability. We will come back to this and
other related work in Section 8.

Contribution
This paper provides a comprehensive presentation of our
approach to the quantitative modeling and analysis of dy-
namic SPLs and other highly (re)configurable systems. With
respect to our previous work on the FLAN family of mod-
eling languages and its tool support, QFLAN has been ex-
tended and it is presented as a DSL with advanced Eclipse-
based tool support. New higher-level languages have been

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

incorporated to describe system behavior and property
specifications. In particular, the designer can now decide
to use either the process-algebraic language introduced in
previous papers or a declarative rule-based language in the
style of guarded command languages. This new process
specification language in itself does not increase the expres-
sive power of QFLAN, but it eases modeling as it is more
amenable for visual representations as state machines. In
addition, the language has been extended with variables
that can be queried and updated at runtime. Variables
increase the expressive power of QFLAN and simplify the
modeling of state-based information.

The novel tool support eases the modeling and analysis
task by providing an Eclipse editor for QFLAN specifi-
cations with integrated plug-ins for the analysis. The ed-
itor’s features include auto-completion, error and syntax
highlighting, as well as checks on the consistency of the
specification and the initial models. In particular, the syntax
guides the construction of consistent feature diagrams, and
checks are done on initial models before starting their anal-
ysis. As mentioned before, several modules of our tool have
been re-implemented. In particular, we have replaced two
external back-end modules (the Z3 solver and the Maude
interpreter) by internal modules. This provides savings by
avoiding unnecessary data conversions. More significantly,
our ad-hoc Java-based interpreter is faster since Maude does
not have efficient libraries for certain data structures, and
our constraint evaluator solves a more specific problem
(constraint checking) than what we were exploiting from
Z3 (constraint solving).

Last but not least, we validate our approach using sev-
eral case studies. One of them was used in previous work
and contributed to shape our approach, while two others
show the scalability and versatility of our approach.

Structure of the paper

The paper outline is as follows. Section 2 presents a running
example from [16] that we use throughout the paper to
illustrate the main concepts of our approach. Section 3
introduces the high-level DSL we developed for QFLAN,
followed by a presentation of the dynamics of the case
study in Section 4. QFLAN’s Eclipse-based tool support is
presented in Section 5. Statistical analysis of QFLAN models
with MULTIVESTA is introduced in Section 6, applied to
the running example, followed by experimental quantitative
analyses of two further case studies in Section 7. Section 8
discusses related work. Section 9 summarizes our contribu-
tions and lists possible future work.

2 RUNNING EXAMPLE: BIKES PRODUCT LINE

We introduce here a case study from [16] that we use as
a running example to illustrate the main concepts of our
approach and to provide intuitive cases of its possibilities
and limitations. The case study stems from a collaboration
with Bicincittà S.r.l. (www.bicincitta.com) and PisaMo S.p.A.
(www.pisamo.it) in the context of the European project
QUANTICOL (www.quanticol.eu). PisaMo is an in-house
public mobility company of the Municipality of Pisa respon-
sible for the introduction of the public bike-sharing system

CicloPi in the city of Pisa two years ago. This bike-sharing
system is supplied and monitored by Bicincittà.

To create an attributed feature model of a product line
of bikes, we performed requirements elicitation on a set of
documents generously shared with us by Bicincittà. This al-
lowed us to extract the main features of the bikes they sell as
part of the bike-sharing system, including indicative prices,
and to identify their commonalities and variabilities. We
then added some features that we found by reading through
a number of documents on the technical characteristics and
prices of bikes and their components as currently being sold
by major bike vendors. The resulting model, which will be
presented in the next section, thus has more variability than
typical in bike-sharing systems. Indeed, vendors of such
systems traditionally allow little variation to their customers
(e.g. most vendors only sell bikes with a so-called step-thru
frame, a.k.a. open frame or low-step frame, typical of utility
bikes instead of considering other kinds of frames as we do),
in part due to the difficulties of analyzing systems with high
variability to provide guarantees on the deployed products
and services. We believe that the progress of SPL analysis
techniques (including the contribution of this paper) will
help the adoption and hence the provision of richer (bike-
sharing) systems with more variability. This is confirmed
by the feedback we received during recent meetings with
representatives of Bicincittà and PisaMo.

3 MODELING WITH QFLAN

The feature-oriented language QFLAN is the most recent
member of the FLAN family (FLAN [14], PFLAN [15],
QFLAN [16]) of process algebras inspired by the concurrent
constraint programming paradigm of [18], its adoption in
process calculi [19], and its stochastic extension [20]. QFLAN
separates declarative (pre-)configuration aspects from pro-
cedural runtime aspects. It does so by using constraint
stores, which allow the modeler to specify all common
constraints from feature models (and more) in a declarative
manner, while a rich set of process-algebraic operators al-
lows the modeler to specify the configuration and behavior
of product lines in a procedural manner. The semantics uni-
fies static (pre-configuration) and dynamic (runtime) feature
selection/installation.

In order to make our framework accessible by practi-
tioners, we present QFLAN as a high-level DSL for which
we offer a modern Eclipse-based integrated development
environment. Moreover, we provide a detailed and rigorous
presentation of the syntax and semantics of QFLAN to help
practitioners univocally understand the intended semantics
of specifications. In the rest of the paper, we freely use
QFLAN to refer to both the presented DSL and the formal
language. We first describe QFLAN specifications and their
components (Sections 3.1–3.7) and then QFLAN initial mod-
els and their operational semantics (Section 3.8).

3.1 QFLAN specifications
Formally, a QFLAN specification is defined as follows.
Definition 1 (QFLan specification). A QFLAN specification
S is a tuple 〈F ,P,V,A, C,B〉 where:

• F is a finite set of features;
• P is a finite set of predicates;

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

Fig. 1. Attributed feature model of bikes product line

• V is a finite set of variables;
• A is a finite set of actions;
• C is a finite set of constraints;
• B is a finite set of behavior.

For the rest of the paper, we fix a specification S as a
tuple 〈F ,P,V,A, C,B〉 for the sake of readability.

Each component of a QFLAN specification is specified in
the DSL in one or several definition blocks as summarized in
Table 1, which also contains a reference to the section where
the components are described.

TABLE 1
QFLAN specification components

Component Block Section

Features abstract features Section 3.2
concrete features

Predicates feature predicates Section 3.3

Variables variables Section 3.4

Actions actions Section 3.5

Constraints

feature diagram

Section 3.6cross-tree constraints
quantitative constraints
action constraints

Behavior processes diagram Section 3.7
process

3.2 Features

Features in F represent user-visible properties or capabili-
ties of products, over which a product line is defined. As
in object-oriented programming, it is sometimes convenient
to organize features and relate them to each other, possibly
in hierarchies, resulting in so-called feature diagrams. For the
bike product line of our running example, features such as
the engine, the basket, the light, etc., are organized in the
feature diagram depicted in Fig. 1.

More details on feature diagrams, including their con-
tribution to the set C of constraints of a QFLAN specifica-
tion, will be presented in the next section. For now, it is
sufficient to know that they allow us to distinguish between
two disjoint sets: abstract features FA and concrete features
FC . For instance, in our running example the wheel will
be considered as an abstract feature, with different kinds
of wheels (summer, winter, etc.) as concrete features. The
complete set of all features of our running example is
specified in QFLAN as shown in Listing 1. The declaration
of abstract and concrete features is done in separate blocks
abstract features and concrete features, respectively,
and consists of a simple enumeration of the features. The
set F of all features in a QFLAN specification is the union
of such abstract and concrete features, i.e. F = FA ∪ FC .

1begin a b s t r a c t f e a t u r e s
2Bike Wheels Energy CompUnit Frame Tablet
3end a b s t r a c t f e a t u r e s
4
5begin concrete f e a t u r e s
6AllYear Summer Winter Light Dynamo Battery Engine
7MapsApp NaviApp GuideApp Music GPS Basket Diamond
8StepThru Trashed
9end concrete f e a t u r e s

Listing 1. Features of the running example

A product is uniquely characterized by a non-empty
subset of F , its installed features, while a product family is
characterized by a set of subsets of F (i.e. a set of products).
It is worth noticing the product explosion typical of SPLs.
For instance, in our running example the 21 features yield
1,314 different products. Products are subject to constraints
such that not all feature combinations yield valid products.
Indeed, constraints can partially reduce the number of prod-
ucts (e.g. some bikes may be too expensive, or too heavy,
etc.) but not necessarily so much as to mitigate the inherent
exponential explosion.

3.3 Feature predicates
QFLAN allows the modeler to consider static attributed
features.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

A QFLAN specification includes a finite set P of feature
predicates, which are mappings F → R from F into real
numbers (implemented as floats in the DSL). Only the
mapping of concrete values in FC can be explicitly specified
in the DSL. Attribute values of abstract features in FA
cannot explicitly be specified and are instead automatically
calculated as the sum of the predicates of their descendant
concrete features which are currently installed. This will
become more clear in the presentation of feature diagrams
in Section 3.6.

Each concrete feature can indeed be equipped with a
set of non-functional attributes. In our running example,
for instance, we consider the attributes price, weight and
load, which respectively represent the specific feature’s
price in euros, weight in kilos, and computational load in
percentage (of system utilization). The complete specifica-
tion of attributes can be found in Listing 2. The name of the
declaration block is feature predicates and it includes,
for every attribute, the list of concrete features that have
the attribute, together with the value of the attribute (if
unspecified, by default concrete features have value zero
for that predicate).

1 begin feature predica tes
2 price = { AllYear = 100 , Summer = 70 , Winter = 80 ,
3 Light = 15 , Dynamo = 40 , Battery = 150 ,
4 Engine = 300 , MapsApp = 10 , NaviApp = 20 ,
5 GuideApp = 10 , Music = 10 , GPS = 20 ,
6 Basket = 8 , Diamond = 100 , StepThru = 90 }
7 weight = { AllYear = 0.3 , Summer = 0.2 , Winter = 0.4 ,
8 Light = 0.1 , Dynamo = 0.1 , Battery = 3 ,
9 Engine = 10 , Basket = 0.5 , Diamond = 5 ,

10 StepThru = 3.5 }
11 load = { MapsApp = 25 , NaviApp = 55 , GuideApp = 30 ,
12 Music = 5 , GPS = 10 }
13 end feature predica tes

Listing 2. Attributes of the running example

3.4 Variables

QFLAN specifications include a set of real-valued variables
V , whose values can change during execution of a model.
This is a novelty with respect to previous versions of the
language, introduced to simplify modeling. Variables allow
encoding state or context information (e.g. to model context-
aware SPLs [25], [26]).

In our running example, variables are used in the anal-
ysis phase (e.g. to study properties of bikes at first deploy),
or in constraints (not shown in our running example, but,
e.g., used in the model in Section 7.4).

As shown in Listing 3, variables are specified in the
variables block. The block also specifies the initial values
of the variables, which contribute to defining the initial
model.

1 begin var iables
2 deploys = 0
3 trashed = 0
4 end var iables

Listing 3. Variables of the running example

3.5 Actions

As discussed, QFLAN specifications consist of a declarative
part, and of a procedural (or behavioral) part. A key aspect

of behavior are actions, which represent atomic runtime
operations of a product.

We distinguish between feature actions, user-defined actions
and store actions.

Definition 2 (actions). The set of actions A of a QFLAN
specification S is the union of:

• the set of features F , i.e. each installed feature can be
used as an action;

• a finite set of user-defined actions Au;
• the set As of store actions composed by install(f),

uninstall(f), replace(f, g), and ask(C), where
f, g ∈ F are features and C is a constraint.

For each feature f , an action f is implicitly included in
the specification as a feature action, which represents the
activation of the feature’s main functionality (e.g., execution
of Music models the fact that the biker turned on the music).

The set A of user-defined actions is specified in a block
action. In our running example this is shown in Listing 4,
which contains for instance the actions sell and dump
modelling, respectively, the selling and dumping of a bike.

1begin ac t ions
2sell dump maintain book stop break start assistance
3deploy
4end act ions

Listing 4. Additional actions of the running example

Store actions instead consist of: install(f) (dynamic in-
stallation of a feature f), uninstall(f) (dynamic uninstal-
lation of a feature f), replace(f, g) (dynamic replacement
of feature f by g) and ask(C) (to query the store for the
validity of constraint C).

3.6 Constraints

The declarative part of QFLAN is represented by a store
of constraints C, which impose relations and conditions on
features, attributes and behavior. In particular, the QFLAN
tool allows the modeler to specify the following classes
of, conceptually different, constraints: hierarchical constraints
CH , cross-tree constraints CT , quantitative constraints CQ, and
action constraints CA. Our DSL provides convenient syntactic
constructs to specify each of these classes of constraints in
dedicated blocks with ad-hoc concrete syntax.

In our formal models, we represent all constraints uni-
formly in a constraint store C, which extends the speci-
fication constraints C with additional information. In our
formal notation, the union of two constraint stores C1, C2 is
denoted by C1 ⊕ C2. In particular, C = CH ⊕ CT ⊕ CQ ⊕ CA.
For the formal semantics and its implementation in the tool,
one key important aspect is that constraints come equipped
with a notion of consistency and a notion of entailment.
consistent(C) amounts to logical satisfiability of all con-
straints constituting C, i.e. all constraints in C are com-
patible with each other. Entailment of constraint C ′ in C,
denoted by C ` C ′, amounts to logical entailment, i.e. C ′

can be derived from C. Actually, the tool uses a simplified
version of those problems. This is further formalized and
explained at the end of the section and in Section 5.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

Hierarchical constraints
The standard approach to express feature constraints in
the SPL community is by means of a variability model
which structures the features in the aforementioned feature
diagrams, possibly enriched with cross-tree constraints and
attributes. Such diagrams provide a convenient visual nota-
tion for specifying valid feature combinations. As discussed,
the variability model of our bikes example is given in Fig. 1.

In QFLAN such a variability model is specified by
providing the feature diagram and its additional cross-
tree constraints in separate blocks. For example, the tree-
like structure of our running example can be found in
Listing 5. The feature diagram block has an enumeration
of hierarchical relations of the form f ⊗ F] F ′ where
F ⊆ F is a set of mandatory features, F ′ ⊆ F is a set of
optional features, and ⊗ ∈ {->,-OR->,-XOR->} is a father-
child relation. In particular, f is the father feature node in
the tree and features in F] F ′ are the direct descendant
child feature nodes. Features appearing as leaves must be
concrete features, while features corresponding to internal
nodes must be abstract features.

1 begin feature diagram
2 Bike -> { Wheels , ?Light , ?Energy , ?Engine ,
3 ?CompUnit , ?Basket , Frame }
4 Wheels -XOR-> { AllYear , Summer , Winter }
5 Energy -OR-> { Dynamo , Battery }
6 CompUnit -> { ?Tablet , ?GPS }
7 Frame -XOR-> { Diamond , StepThru }
8 Tablet -> { ?MapsApp , ?NaviApp , ?GuideApp , ?Music }
9 end feature diagram

Listing 5. Hierarchical constraints of the running example

The set of hierarchical constraints CH is the composition
of the constraints obtained from each father-child relation h,
i.e. if we call H the set of all such relations, then CH =⊕

h∈H JhK, where JhK formalizes the semantics of h as a
logical constraint on features.
Definition 3 (semantics hierarchical relations). Let F be a

set of mandatory features and let F ′ be a set of optional
features. The constraints of a hierarchical relation are
defined by:

Jf->F] F ′K ≡
∧
g∈F has(g)

Jf-OR->F ′K ≡ has(f)→
∨
g∈F ′ has(g)

Jf-XOR->F ′K ≡ has(f)→
∨
g∈F ′ has(g),

where has(f) is a predicate denoting the presence of f
and Y stands for the exclusive or logical operation.

The three kinds of relations ⊗ correspond to the three
kinds of edges appearing in Fig. 1. The and relation ->,
used, e.g., to relate Bike with Wheels–Frame, enforces that
all descendant features must be present in any product. This
constraint can be relaxed by prefixing descendant features
with ? (denoted with a circle in Fig. 1, as is common in
feature diagrams), to indicate that the specific feature is
optional, meaning that it may be present in a product. De-
scendent features not prefixed by ? are said to be mandatory
(black dots). Hence, the relation from Bike to Wheels–Frame
imposes any bike to have Wheels and Frame, while the
presence of Light, Energy, Engine, CompUnit and Basket
is optional. The or relation -OR->, used, e.g., to relate
Energy with Dynamo and Battery, enforces that at least one
descendant feature must be present in any product. The xor

relation -XOR->, used, e.g., to relate Wheels with AllYear,
Summer and Winter, enforces that precisely one descendant
feature must be present in any product. All this, as well as
other well-formedness conditions, is automatically checked
by our tool to ease the task of the modeler.

We remark that the ? prefix can be used only for ->
relations, since all child features of -OR-> and -XOR->
relations are by definition optional. Indeed, this is exactly as
in FeatureIDE [36], [37], one of the most widely used tools
for the modeling and analysis of classical feature models
(i.e. devoid of numeric attributes and the likes). Moreover,
all descendants of optional features must either be reached
via -OR-> or -XOR-> relations, or be marked as optional.
Note that this excludes the existence of a mandatory child
feature of an optional feature. This is an implementation
choice in our DSL, namely we consider the fact that a feature
is mandatory to be a global declaration: mandatory features
are by definition present in all configurations. This is a
difference with FeatureIDE, where the fact that a feature
is mandatory only models the dependency to its parent (i.e.
even if a feature is marked as mandatory, it may be omitted
in a configuration if the parent feature is omitted as well).

Also, we assume that only concrete features can be
explicitly installed, while abstract features are implicitly in-
stalled as soon as one of its descendant features is installed.
This is formalized by assuming that any set of constraints C
is implicitly closed under the following axiom:

C ⊇ has(g) (f ⊗ (g ∪ F)) ∈ H

C ⊇ has(g)⊕ has(f)

The QFLAN interpreter automatically applies such closure.
We are now in a position to explain how predicates are

evaluated for abstract features: they are computed as the
sum of the predicate value of the installed concrete features
which descend from the abstract feature. In particular, given
a set of constraints C, the set of father-child relations H , a
predicate p ∈ P , and an abstract feature f ∈ FH the value
of p(f) is recursively defined by:

p(f) =
∑

(f⊗F)∈H, g∈F,C`has(g)

p(g)

This is very useful, as we can for instance easily refer to
the price of an entire bike with price(Bike), or to the
computational load of a tablet with load(Tablet).

Cross-tree constraints

Features can also be related with cross-tree constraints of the
form ‘f requires g ’ and ‘f excludes g ’. The set of cross-
tree constraints CT is the composition of the constraints
obtained from each cross-tree constraint t, i.e. if we call T
the set of all such relations, then CT =

⊕
t∈T JtK, where

JtK formalizes the semantics of t as a logical constraint on
features.

Definition 4 (semantics cross-tree constraints). Let f and
g be features. The semantics of f requires g and
f excludes g is defined as follows:

Jf requires gK ≡ has(f)→ has(g)
Jf excludes gK ≡ has(f)→ ¬ has(g)

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

The cross-tree constraints of our running example
can be found in Listing 6, enumerated under the block
cross-tree constraints. It contains two common cross-
tree relations. The relation of the form f requires g indi-
cates that whenever feature f (a node in the tree) is installed
in a product, then also feature (node) g must be installed,
whereas f excludes g indicates that features f and g cannot
both be present in the same product.

1 begin cross - t r e e c o n s t r a i n t s
2 Light requires Energy
3 Engine requires Battery
4 CompUnit requires Battery
5 NaviApp requires MapsApp
6 GPS excludes Diamond
7 end cross - t r e e c o n s t r a i n t s

Listing 6. Cross-tree constraints of the running example

Quantitative constraints
QFLAN also allows to specify quantitative constraints based
on arithmetic relations among feature attributes. Formally,
quantitative constraints in CQ are Boolean formulas whose
atomic propositions are numerical relations (<, ≤, = and
so on) between arithmetic expressions of real values, real-
valued feature predicates (attributes), and variables. For our
running example, we consider the following constraints:

(C1) a bike may cost at most 600 euros;
(C2) a bike may weigh up to 15 kilograms;
(C3) a bike’s computational load may not exceed 100%.

Constraints (C1)–(C3) are part of the constraint store of
our QFLAN model of the bikes product line. As such,
they prohibit the execution of any action (e.g. the runtime
(un)installation or replacement of features) that would vio-
late these constraints since its execution would result in an
inconsistent constraint store. The semantics of QFLAN (see
Section 3.8) ensures that all executions will end up with a
consistent configuration if the process (the procedural part,
defined below) begins with a consistent constraint store.

Quantitative constraints must be enumerated under the
quantitative constraints block. The full specification
of the quantitative constraints of our running example is
depicted in Listing 7.

1 begin q u a n t i t a t i v e c o n s t r a i n t s
2 { price(Bike) < 600 }
3 { weight(Bike) < 15 }
4 { load(Bike) < 100 }
5 end q u a n t i t a t i v e c o n s t r a i n t s

Listing 7. Quantitative constraints of the running example

Action constraints
QFLAN admits a class of action constraints, reminiscent of
featured transition systems (FTS) [6].

Each action a can have associated a constraint do(a) →
p, where p is a Boolean formula whose basic predicates are
the same as for quantitative constraints and, in addition,
predicates of the form has(f). In our DSL, the default action
constraint for each feature f is do(f)→ has(f) and it need
not be specified. It ensures that in order to use a feature, it
must first be installed.

Action constraints act as a kind of guards to either permit
or forbid the execution of actions. In our running example,

action constraints are used to forbid selling bikes that cost
less than 250 euros (C4) and to forbid dumping bikes that
cost more than 400 euros (C5). These constraints can be
found in Listing 8, showing that action constraints must be
enumerated under the action constraints block.

We recall that in an FTS, transitions are labeled with
actions and with Boolean constraints that work similarly as
action constraints, i.e. as guards that impose conditions on
the executability of the specific transition. However, action
constraints of QFLAN apply to all transitions with the same
action whereas a condition in FTS applies to one instance
of an action (i.e. a transition). Grouping the common ex-
ecutability conditions of one action in a dedicated block
instead of scattered all over the behavioral specification
provides more compact and declarative specifications that
are easier to read and to maintain. Specific conditions of the
executability of an action can still be specified via queries,
as we shall see.

1begin act ion c o n s t r a i n t s
2do(sell) -> { price(Bike) > 250 }
3do(dump) -> { price(Bike) < 400 }
4end act ion c o n s t r a i n t s

Listing 8. Action constraints of the running example

Constraint semantics

We are now ready to formally define constraint consistency
and constraint entailment, which are crucial in the semantics
of QFLAN models.

A constraint system is defined by a set of constraint vari-
ables χ = {ϑ1, . . . , ϑn}, their domains ∆ = {∆1, . . . ,∆n}
and a set of constraints c1(~ϑ1) ⊕ · · · ⊕ cm(~ϑm), where each
constraint ci imposes a restriction on the values of the
variables in the vector of variables ~ϑi. Thus, a constraint
ci(ϑi1 . . . ϑik) can just be seen as a subset of ∆i1 ×· · ·×∆ik ,
i.e. those combinations of values for the variables that the
constraint admits.

In QFLAN, the set of constraint variables χ is the union
of the feature propositions has(f) for all features f ∈ F , the
value of feature predicates p(f) for all predicates p ∈ P and
all features f ∈ F , and all user variables in V . The domains
of such variables are the Booleans (for feature propositions)
and the real numbers (for the rest). The constraints ci are
the ones specified in C plus the actual values of variables
and feature propositions. All in all, they essentially specify
which combinations of features, feature attributes and vari-
able values are admitted. In the rest of the section, we fix a
constraint system defined by χ, ∆ and C.

The typical problems for a constraint system are: (i) con-
straint solving, i.e. finding an assignment θ : χ → ∆ with
θ(ϑi) ∈ ∆i such that each constraint cj(~ϑj) is satisfied
(denoted by θ |= cj(~ϑj) here); (ii) consistency checking, i.e.
merely determining if such an assignment exists; (iii) con-
straint checking or constraint evaluation, i.e. checking the
consistency of a given assignment θ; and (iv) constraint
entailment, i.e. checking if a constraint system admits more
assignments than another.

Our approach focuses on consistency checking, con-
straint checking and constraint entailment. Formally, con-
sistency checking is defined as follows.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Definition 5 (consistency). Let C = c1(~ϑ1) ⊕ · · · ⊕ cm(~ϑn)
be a constraint store. We say that C is consistent, written
consistent(C), iff there is a substitution θ : χ → ∆ such
that ∧

i=1...n

θ |= ci(~ϑi) ≡ true

Checking a constraint C for a given assignment consists
of checking if θ |= c(~ϑ) holds for all constraints c(~ϑ) ∈ C.
This can be done by simply applying the assignment as
a substitution on all constraints, thus obtaining a set of
Boolean propositions, and evaluating the conjunction of
such propositions. We denote by θ(C) the obtained Boolean
proposition.

As an example, consider the set of constraint variables
consisting of a proposition has(f) for each feature f in the
set {Bike, Wheels, AllYear, Summer, Winter}, and consider
the constraint store Cw that would be obtained from the
wheel-related feature constraints of our running example,
i.e.

(has(Bike) ∧ has(Wheels))⊕ (has(Wheels)→
has(AllYear) ∨ has(Summer) ∨ has(Winter))

The consistency of Cw can be witnessed by the following
assignment θw of the has(f) propositions into truth values:

θw = { has(f) 7→ true |
f ∈ {Bike, Wheels, AllYear, Summer, Winter} }

Indeed, it is easy to see that such an assignment satisfies all
constraints in Cw.

On the other hand, constraint entailment is formally
defined as follows.

Definition 6 (entailment). Let C = c1(~ϑ1) ⊕ · · · ⊕ cn(~ϑn)

and C ′ = c′1(~ϑ′1)⊕· · ·⊕ c′m(~ϑ′n) be two constraint stores.
We say that C entails C ′, written C ` C ′, iff for all
substitutions θ:∧

i=1...n

θ |= ci(~ϑi)→
∧

j=1...m

θ |= c′j(
~ϑ′j)

For instance, if we consider the above example with
the set of constraints Cw, we can easily see that Cw `
has(Bike) and Cw ` has(Wheel) since substitutions that
satisfy Cw necessarily map has(Bike) and has(Wheels)
to true . Instead, Cw ` has(f) does not hold for f ∈
{AllYear, Summer, Winter}. For example, the substitution
θw from above satisfies Cw, but it does not satisfy
has(Summer).

As the above example hints, constraints can be used to
encode variable assignments. For instance, assignments for
all variables in χ can be encoded with the set of constraints
C ≡ ϑ0 = v0 ⊕ · · · ⊕ ϑn = vn. When this is the case, we
denote such assignment by θC . So when a set of constraints
C contains an assignment θC for all variables in C , the
consistency of C can be computed by evaluating θC(C),
and, if C is consistent, checking entailment C ` C ′ for
some other constraint C ′ can be reduced to evaluating
θC(C) ∧ θC(C ′).

3.7 Behavior
The procedural part of QFLAN is provided by specifying
a set of processes. QFLAN offers two ways of specify-
ing processes: (i) a process-algebraic specification language
based on the original versions of the QFLAN family, and
(ii) a state-machine specification language, inspired by the
diagrammatic process descriptions used in this paper. As
we shall see, the second process description language can
be seen as syntactic sugar. It provides a higher-level specifi-
cation language more amenable for visual representations.

Process-algebraic specifications
The behavior B in a QFLAN specification can be provided
in a processes block as a set of process definitions process
X=P , whereX is a process name and P is a process expres-
sion. Process expressions are formally defined as follows.
Definition 7 (valid process expressions). Let S be a QFLAN

specification and let X be a set of process names. The set
of B-valid process expressions is defined by the following
grammar:

P,Q ::= nil (empty process)
| (a, r, u).X (action and invocation)
| (a, r, u).P (action and continuation)
| P +Q (choice)
| P ‖ Q (parallel composition)

where X ∈ X , a ∈ A, r is a float-valued rate, and u is a
set of memory updates of the form x = e, where x ∈ V
is a variable and e is a float expression (over variables in
V).

Basic processes can consist of the empty process nil, or
a single (rated) action with a memory update u followed by
the invocation of a process named X or a process P .

Action rates are static and allow the modeler to specify
probabilistic aspects of product behavior (e.g. the behavior
of the user of a product, failure rates of the components of
a product or the likelihood of installing a certain feature at
a specific moment). A memory update allows the modeller
to specify changes on the value of variables. Processes can
be combined by non-deterministic choice or in parallel.
Prefixing of process invocation is imposed to avoid infinite
branching.

State-machine specifications
The behavior B in a QFLAN specification can also be
specified with processes diagram blocks, each of which
describes a state machine (like the one in Fig. 3) whose basic
operation is that of executing actions that may change the
state of the machine and the values of variables. Process
diagram definitions are of the form begin process X D
end process, where X is a process name and D is its
diagram definition.
Definition 8 (process diagram definition). Let S be a QFLAN

specification. A process diagram definition D in B is
defined by a pair 〈S, T 〉 where

• S is a finite set of user-defined states;
• T is a finite set of transitions 〈s, (a, r, u), s′〉, where

s ∈ S is the source state, s′ ∈ S is the target state,
a ∈ A is an action, r is a float-valued rate, and u is a
set of variable updates.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

(ACT)
executable(C, a) consistent(u(update(C, a)))

〈C . (a, r, u).P 〉 r−−→ 〈u(update(C, a)) . P 〉

(OR)
〈C . P 〉 r−−→ 〈C ′ . P ′〉

〈C . P +Q〉 r−−→ 〈C ′ . P ′〉
(PAR)

〈C . P 〉 r−−→ 〈C ′ . P ′〉
〈C . P ‖ Q〉 r−−→ 〈C ′ . P ′ ‖ Q〉

executable(C, a) =

false if C = C′ ⊕ (do(a)→ C′′) and C′ 6` C′′

false if a = install(f) and has(f) ∈ C
false if a = uninstall(f) and ¬ has(f) ∈ C
false if a = replace(f, g) and (¬ has(f) ∈ C or has(g) ∈ C)
false if a = ask(C′) and C 6` C′

true otherwise

update(C, a) =

(C \ ¬has(f))⊕ has(f) if a = install(f)
(C \ has(f))⊕ ¬has(f) if a = uninstall(f)
(C \ (has(f)⊕ ¬has(g)))⊕ ¬has(f)⊕ has(g) if a = replace(f, g)
C otherwise

Fig. 2. Operational semantics

From state-machines to processes
State-machine specifications can be seen as syntactic sugar
for processes. Indeed, every state-machine specification can
be translated to a process-algebraic specification. The fol-
lowing definition formalizes the translation.
Definition 9 (process of a state-machine). Let D = 〈S, T 〉 be

a process diagram definition. The process-algebraic spec-
ification for D is defined as the set of process definitions
{Xs = PS | s ∈ S} where

Ps =
∑

〈s,(a,r,u),s′〉∈T

(a, r, u).Xs′

In words, every state s is translated into a process Xs

defined as a non-deterministic choice (
∑

) among all pos-
sible outgoing transitions from s. A choice corresponding
to a transition to a target state s′ has process X ′s as a
continuation.

3.8 Operational semantics
The semantics of a specification formalizes how a model
behaves and changes over time. The semantics of QFLAN
is defined over models, which are tuples 〈C . P 〉 made
of a constraint store C and a process P . While we could
thus consider the general case for C which would possibly
define a partially defined product (i.e. a family of products)
with some variables and attributes being unspecified, the
statistical simulator works for completely defined single
products only. For this reason, we restrict here to fully
specified models where each constraint store C uniquely
determines an assignment to all of its constraint variables.
Definition 10 (model). Let S be a QFLAN specification. A

model of S is a tuple 〈C . P 〉 where:

• C is a consistent constraint store composed of:

1) C, i.e. all constraints of the specification are
part of the store;

2) For all f ∈ F , either has(f) or ¬has(f), i.e.
the constraint store C univocally defines a
single product;

3) For all predicates p ∈ P and all features f ∈
F , the set of constraints p(f) = v, where v is
determined as explained in Section 3.3;

4) For all variables v ∈ V , a constraint x = v for
some v ∈ R.

• P is a B-valid process expression.

Let M denote the set of all models for a specification
S . The initial model is the model 〈C . P 〉 such that the
initial product defined by C and the process P are defined
in the init block of the specification, and the values of vari-
ables specified in C are taken from the specification of the
variables block. The fact that the constraint store C univo-
cally defines a single product (cf. Definition 10(2)) implies
that in the presence of a cross-tree constraint f requires g,
whenever both features are present in a product (configu-
ration), then it must always be the case that feature g was
installed first.

In our running example, we assume that bikes are
pre-configured, containing precisely one of the alterna-
tive subfeatures from each of the mandatory features
Wheels and Frame. For example, an initial product from
the bikes product line could consist of the feature set
{Bike, Wheels, Frame, AllYear, Diamond}.

Transition system semantics

The operational semantics of models is formalized in terms
of the state transition relation →⊆ NM×R+×M defined in
Fig. 2. Note that we use multisets of transitions to deal
with the possibility of multiple instances of a transition.
Technically, such a reduction relation is defined in structural
operational semantics, i.e. by induction on the structure
of models, up to process invocation and to associativity,
commutativity and identity of choice and parallel composi-
tion, formalized by the structural congruence ≡⊆ M×M
defined by

P + (Q+R) ≡ (P +Q) +R P +Q ≡ Q+ P
P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R P ‖ Q ≡ Q ‖ P

P + ∅ ≡ P P ‖ ∅ ≡ P
P ≡ P [Q/X] if X = Q ∈ B

As usual, the transition rules in Fig. 2 are expressed as a
set of premises (above the line) and a conclusion (below
the line). The transition relation implicitly defines a labeled
transition system (LTS) 〈M,→〉, whose states are models

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

MOVING

light, music
��

stop

��

break

++pre-conf
// FACTORY

install, replace

�� sell // DEPOSIT

(un)install, replace

��
deploy

,,
PARKED

maintain
ll

book
33

BROKEN

assistance

OO

dump
// TRASH

HALTED

light, music, apps

CC
park

kk start

UU

break

33

Fig. 3. Sketch of bike-sharing behavior

and whose transitions are labeled with rates. Given a state
s ∈M, we denote the total outgoing rate from s as:

out(s) =
∑

(s,r,s′)∈→

r

The rule ACT allows a process to execute an action if:

• the executability constraints for a in C allow so
(formalized by executable(C, a)); and

• if the resulting constraint store after its modification
u(update(C, a)) by the action a and the update u is
consistent.

Action constraints can impose executability conditions on
all actions. A typical action constraint is do(a) → has(f),
i.e. action a is subject to the presence of feature f . The
installation, removal and replacement of features have addi-
tional constraints. An action ask(C ′) works as in concurrent
constraint programming [18], i.e. it has an additional exe-
cutability constraint (the entailment of C ′) that may block
the action.

Note that all actions may have a set of updates u
of variables. The effect of applying such an effect on C
(denoted u(C)) is the expected one, i.e. an update x = e
evaluates e in θC and replaces x = v by x = θC(e) in
C. In addition, the store actions install(f), uninstall(f)
and replace(f, g) update the constraint store as defined in
Fig. 2, i.e. by adding, removing or replacing features.

Rules OR and PAR are standard, formalizing non-deter-
ministic choice and interleaving parallel composition, re-
spectively. Note that non-determinism introduced by choice
and parallel composition is probabilistically resolved in the
probabilistic semantics.

We note three ways to include a feature f in a product
configuration. First, an explicit, declarative way is to include
the proposition has(f) in the initial store; this is the way
to include core features (i.e. globally mandatory features).
Second, an implicit, declarative way given by the closure
mechanism defined in Section 3.6. Third, a procedural way is
to dynamically install f at runtime, possibly by replacement.

Soundness, completeness and consistency
As we have mentioned above, the transition system se-
mantics of QFLAN is not tailored to the entire universe of
QFLAN configurations 〈C . P 〉, but only to those config-
urations that correspond to a model according to Defini-
tion 10. In words, we rule out inconsistent under-specified
configurations and focus on single, well-defined products
(which can however be reconfigured through install,
uninstall, and replace actions).

The transition system semantics is sound with respect to
the property of being a model. Soundness is preserved by
definition of the semantics. Indeed, it can easily be proved
by induction that if 〈C . P 〉 is a model and the semantics
allows us to derive 〈C.P 〉 r−−→ 〈C ′.P ′〉, then it is guaranteed
that 〈C ′ . P ′〉 is also a model. To see this, observe that
one of the premises of rule ACT requires indeed that the
resulting constraint store is consistent. Rules OR and PAR
just propagate the effect of one of the sub-processes; a simple
inductive argument can be used to deal with them.

Regarding completeness, it is of course not the case that
any model can be reached from any other model, but it is
still the case that for any model 〈C . P 〉 we can build a
QFLAN specification that has 〈C . P 〉 as initial model. The
basic idea would be to exploit the properties of C described
in Definition 10 to specify the initial configuration.

DTMC semantics

We recall the definition of a discrete-time Markov chain
(DTMC).

Definition 11 (DTMC). A DTMC is a tuple 〈Γ,Π〉 where:

• Γ is a set of states;
• Π : Γ→ [0, 1] is a probability transition function, i.e.

such that for all s ∈ Γ,
∑
s′∈Γ Π(s, s′) = 1.

It is straightforward to obtain a discrete-time Markov
chain (DTMC) from an LTS as above by normalising the
rates into [0..1] such that in each state, the sum of the rates
of its outgoing transitions equals one.

Formally, this is defined as follows

Definition 12 (DTMC of rate-based LTS). Let T = 〈M,→〉
be a rate-labeled transition system. The DTMC of T is
〈M,Π〉 where, for each pair of states s, s′ ∈ M, the
probability transition function Π is defined by

Π(s, s′) =

∑

(s,r,s′)∈→ r

out(s) if out(s) > 0

1 if out(s) = 0 and s = s′

0 otherwise

In the resulting DTMC, the rates of the transition system
are normalized into probabilities: the probability that the
transition is taken from its source state. States without
outgoing transitions are enriched with self-loops with rate
equal to 1.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

4 RUNNING EXAMPLE REVISITED: DYNAMICS

We now illustrate the presentation of the process specifica-
tion with our running example. The behavior associated to
our bikes product line is based on a bike-sharing scenario
that we abstracted from the bike-sharing system CicloPi
(cf. Section 2) with some additional behavior concerning
not yet realized features, such as the use of electric bikes
and the possible runtime installation of apps. These are
features that have been envisioned for 4th generation bike-
sharing systems [38], [39], some of which (e.g. Tablet, Engine
and Battery) have become reality in the recently deployed
Bycyklen bike-sharing system in Copenhagen.

The dynamics of our running example is given in terms
of one process only, sketched in Fig. 3. For simplicity, the
action rates are not depicted in Fig. 3, but they can be
found in Listing 9 which provides the entire specification
of the process. In FACTORY (e.g. of Bicincittà), features may
be installed or replaced (e.g. different wheels or a different
frame). At a certain point, the configured bike may be sold
(as part of a bike-sharing system), but only if it costs at
least 250 euro (to satisfy constraint (C4) on action sell), after
which it arrives in the DEPOSIT (e.g. of PisaMo). It may then
be ready to be deployed as part of the bike-sharing system
run from this deposit, or it may first need to be further
fine-tuned by (un)installing or replacing factory-installed
features. Once it is deployed, it results PARKED in one of the
docking stations of the bike-sharing system (e.g. CicloPi).

A user may book a PARKED bike, resulting in a MOVING
bike. While biking, a user may decide to listen to music or
switch on the light, in case the corresponding features have
been installed. If a user wants to consult one of the apps (a
map, a navigator or a guide), then (s)he first needs to stop
biking, resulting in a HALTED bike, from where (s)he may
consult an app, before eventually start to bike again or park
the bike in a docking station. Unfortunately, the bike may
also break, resulting in a BROKEN bike. Hence, assistance
from the bike-sharing system exploiter arrives. If the bike
can be fixed, it is brought to the DEPOSIT. If the damage is
too severe, and the bike has a price of at most 400 euros
(to satisfy constraint (C5) on action dump), then we dump
the bike in the TRASH. At regular intervals, assistance from
the bike-sharing system exploiter takes a PARKED bike to the
DEPOSIT for maintenance.

As said before, the detailed process specification of the
case study can be found in Listing 9. Note the tight corre-
spondence between Listing 9 and its graphical representa-
tion in Fig. 3. In particular, it contains one state per node in
Fig. 3, and a set of transitions per edge in Fig. 3. When the
system is in state factory we face a choice, weighted by the
rates, among three main activities:

(1) Sell the bike and send it to the deposit (with rate 8).
This action can only be executed if (C4) is respected;

(2) Install optional features and iterate on factory. The
installations are performed only if the constraints are
not violated;

(3) Replace pre-installed child features of the mandatory
(abstract) features Wheels or Frame. Again, respect-
ing the constraints.

Note that in (2) we assume that Music is the feature installed
with higher probability, followed by MapsApp, Dynamo and

Light.
1begin processes diagram
2begin process bikesProcess
3s t a t e s = factory , deposit , parked , moving ,
4halted , broken , trash
5t r a n s i t i o n s =
6// Sell bike from factory
7factory -(sell , 8)-> deposit ,
8// Install optional features of bike in factory
9factory -(i n s t a l l(GPS) , 6)-> factory ,
10factory -(i n s t a l l(MapsApp) , 10)-> factory ,
11factory -(i n s t a l l(NaviApp) , 6)-> factory ,
12factory -(i n s t a l l(GuideApp) , 3)-> factory ,
13factory -(i n s t a l l(Music) , 20)-> factory ,
14factory -(i n s t a l l(Engine) , 4)-> factory ,
15factory -(i n s t a l l(Battery) , 4)-> factory ,
16factory -(i n s t a l l(Dynamo) , 10)-> factory ,
17factory -(i n s t a l l(Light) , 10)-> factory ,
18factory -(i n s t a l l(Basket) , 8)-> factory ,
19// Replace child features of mandatory features of
20// bike in factory
21factory -(replace(AllYear , Summer) , 5)-> factory ,
22factory -(replace(AllYear , Winter) , 5)-> factory ,
23factory -(replace(Summer , AllYear) , 10)-> factory ,
24factory -(replace(Summer , Winter) , 5)-> factory ,
25factory -(replace(Winter , Summer) , 5)-> factory ,
26factory -(replace(Winter , AllYear) , 10)-> factory ,
27factory -(replace(Diamond , StepThru) , 3)-> factory ,
28factory -(replace(StepThru , Diamond) , 3)-> factory ,
29// Deploy bike from deposit
30deposit -(deploy , 10 , { deploys = (deploys + 1) })->

parked ,
31// Install optional features of bike in deposit
32deposit -(i n s t a l l(GPS) , 6)-> deposit ,
33deposit -(i n s t a l l(MapsApp) , 10)-> deposit ,
34deposit -(i n s t a l l(NaviApp) , 6)-> deposit ,
35deposit -(i n s t a l l(GuideApp) , 3)-> deposit ,
36deposit -(i n s t a l l(Music) , 20)-> deposit ,
37deposit -(i n s t a l l(Engine) , 4)-> deposit ,
38deposit -(i n s t a l l(Battery) , 4)-> deposit ,
39deposit -(i n s t a l l(Dynamo) , 10)-> deposit ,
40deposit -(i n s t a l l(Light) , 10)-> deposit ,
41deposit -(i n s t a l l(Basket) , 8)-> deposit ,
42// Uninstall optional features of bike in deposit
43deposit -(u n i n s t a l l(GPS) , 6)-> deposit ,
44deposit -(u n i n s t a l l(MapsApp) , 10)-> deposit ,
45deposit -(u n i n s t a l l(NaviApp) , 6)-> deposit ,
46deposit -(u n i n s t a l l(GuideApp) , 3)-> deposit ,
47deposit -(u n i n s t a l l(Music) , 20)-> deposit ,
48deposit -(u n i n s t a l l(Engine) , 1)-> deposit ,
49deposit -(u n i n s t a l l(Battery) , 2)-> deposit ,
50deposit -(u n i n s t a l l(Dynamo) , 3)-> deposit ,
51deposit -(u n i n s t a l l(Light) , 10)-> deposit ,
52deposit -(u n i n s t a l l(Basket) , 8)-> deposit ,
53// Replace child features of mandatory features
54// (Frame cannot be changed)
55deposit -(replace(AllYear , Summer) , 5)-> deposit ,
56deposit -(replace(AllYear , Winter) , 5)-> deposit ,
57deposit -(replace(Summer , AllYear) , 10)-> deposit ,
58deposit -(replace(Summer , Winter) , 5)-> deposit ,
59deposit -(replace(Winter , Summer) , 5)-> deposit ,
60deposit -(replace(Winter , AllYear) , 10)-> deposit ,
61// Replace Battery with Dynamo, if battery is not used
62deposit -(replace(Battery , Dynamo) , 1)-> deposit ,
63// Behavior of deployed bike
64parked -(book , 10)-> moving ,
65parked -(maintain , 1)-> deposit ,
66moving -(stop , 5)-> halted ,
67moving -(break , 1)-> broken ,
68moving -(Music , 20)-> moving ,
69moving -(Light , 20)-> moving ,
70halted -(start , 5)-> moving ,
71halted -(park , 1)-> parked ,
72halted -(break , 1)-> broken ,
73halted -(Music , 20)-> halted ,
74halted -(GPS , 10)-> halted ,
75halted -(GuideApp , 10)-> halted ,
76halted -(MapsApp , 10)-> halted ,
77halted -(NaviApp , 10)-> halted ,
78halted -(Light , 10)-> halted ,
79broken -(assistance , 10)-> deposit ,
80broken -(dump , 1 , { trashed = 1 })-> trash
81end process
82end processes diagram

Listing 9. The process defining the dynamics of the running example

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

Note that the semantics of QFLAN forbids the re-
installation of installed features (i.e. a product is a set of fea-
tures, and not a multiset). In (3), we favor the replacement
of Winter or Summer wheels by AllYear ones. A frame may
be changed as well, but with lower probability.

State deposit is similar to factory. Clearly, deposit
differs by the possibility to perform an action deploy
leading to process parked. In addition, deposit may also
uninstall features, so as to allow for customization. Optional
features can be installed and uninstalled with the same
rate by deposit, except for Engine, Battery and Dynamo,
which are uninstalled with a lower rate to penalize their
occurrence. This modeling choice is justified by the fact that
it is reasonable to assume that uninstalling such features
may cost more than installing them. In addition, we assume
that the frame identifies the bike that was sold, and thus
it cannot be modified in deposit. The final action that
deposit can perform is an interesting one: feature Battery
can be replaced with the much cheaper Dynamo. According
to the semantics of QFLAN, this action is performed only if
no subfeatures of CompUnit or of the Engine are currently
installed (cf. Fig. 1). This is useful to reduce costs and
weight, in case some previously installed feature requiring
the battery has by now been uninstalled.

The remaining states parked, moving, halted, broken
and trash are rather simple and are faithful to their infor-
mal description above. It is worth to discuss the transitions
in Line 30 and Line 80 of Listing 9. In both cases, the
transition also updates a variable, deploys and trashed,
respectively, used to record the number of times that the
bike has been deployed or if it is trashed.

Note that factory is a pure (pre-)configuration state,
while deposit is not. In fact, parked bikes can be brought
back into the deposit, and thus features can be (un)installed
or replaced at runtime. This is an example of a staged
configuration process, in which some optional features are
bound at runtime rather than at (pre-)configuration time.

The initial system configuration is specified in the init
block. This is provided in Listing 10 for our running exam-
ple, showing that the initially installed features are Diamond
and AllYear, while the dynamics are given by the process
bikesProcess (starting in state factory, the first state
defined in the corresponding process block in Lines 3–
4 of Listing 9). In case the dynamics of the model under
analysis are given in terms of more than one process, this
can be specified in initialProcesses of the init block by
listing all required processes (separated by the character |).
The state of each process will be maintained, and one
transition among all those outgoing from all such states will
be probabilistically chosen at each step.

1 begin i n i t
2 installedFeatures = { Diamond , AllYear }
3 initialProcesses = bikesProcess
4 end i n i t

Listing 10. Initial system configuration of the running example

In particular, the modeller is required to start from an
initial configuration that satisfies all constraints. This is
enforced by an automatic static analysis offered by our tool
framework that checks for the validity of all constraints in
the initial configuration, and lists those which failed.

Mul$QuaTEx	
Editor	 Views	

Built-in	
Constraint	
Solver	

Probabilis$c	
Simulator	

SMC	
Mul$VeStA	

QFLan	
Editor	

Fig. 4. The architecture of the QFLAN tool

The full QFLAN specification of the case study can be
found at http://github.com/qflanTeam/QFLan/wiki

5 THE QFLAN TOOL

This section presents the QFLAN tool, a multi-platform
application based on Eclipse which enables the modeling
and analysis of QFLAN specifications. The tool is avail-
able together with installation and usage instructions at
http://github.com/qflanTeam/QFLan/wiki.

Figure 4 depicts the architecture of the QFLAN tool
framework. It is organized in the GUI layer, devoted to
modeling aspects, and the core layer, offering support for
the analysis of QFLAN specifications.

The components of the GUI layer are shown in Fig. 5.
The most notable one is a text editor with editing sup-
port typical of modern integrated development environ-
ments (auto-completion, syntax and error highlighting, etc.)
developed within the XTEXT framework (top-middle of
Fig. 5). The XTEXT grammar of QFLAN and the rest of the
source code are available at http://github.com/qflanTeam/
QFLan/wiki. For instance, the editor is able to promptly
highlight incorrect feature diagrams (e.g. including features
with more than one parent or abstract features without
descendants) or incorrect feature predicates (e.g. multiple
values assigned to one feature). The editor also offers sup-
port for the MultiQuaTEx query language, used to analyse
QFLAN specifications (cf. Section 6). In addition, the GUI
layer offers a number of views, including: a console view to
display diagnostic information (bottom of Fig. 5); a project
explorer to handle different QFLAN specifications (left of
Fig. 5); and a plot view to display analysis results (top-right
of Fig. 5).

The main component of the core layer is the proba-
bilistic simulator of QFLAN models. Intuitively, we obtain
probabilistic simulations of a QFLAN model by executing it
step-by-step starting from the initial configuration specified
by the modeler. At each iteration we compute the set of
admissible transitions, and select one of them according to
the probability distribution resulting from normalizing the
rates of the generated transitions. In particular, checking
if an action is admissible amounts to checking whether it
violates any constraint.

The simulator implements a number of optimizations in
order to improve performance by reusing computations per-
formed in previous steps whenever possible. For example,

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

Fig. 5. A screenshot of the QFLAN tool

we re-check the admissibility of an action only if the con-
straint store has been modified in a way that could affect its
admissibility. Contrary to previous prototypes, our new tool
does not use the SMT solver Z3. The main reason is that the
analyses we consider requires us to work with fully speci-
fied models, i.e. models 〈C .P 〉 such that the assignment θC
is well defined. This is because the observations on a model
must be deterministic. Hence, as explained in Section 3.6,
the constraint problems that the QFLAN interpreter needs
to solve can be reduced to a constraint checking problem,
i.e. to the evaluation of Boolean propositions.

6 STATISTICAL ANALYSIS OF QFLAN MODELS

In order to perform automated quantitative analysis of
QFLAN specifications, we integrated the distributed statis-
tical model checker MULTIVESTA [28] within the QFLAN
tool framework.

6.1 MultiVeStA
MULTIVESTA can easily be integrated with any formal-
ism that allows probabilistic simulations and it has al-
ready been used to analyze a wide variety of systems,
including contract-oriented middlewares [40], opportunis-
tic network protocols [41], online planning [42], crowd-
steering [43], public transportation systems [44], [45], vol-
unteer clouds [46] and swarm robotics [47].

Within the QFLAN tool, MULTIVESTA can be used to
obtain statistical estimations of quantitative properties of

QFLAN specifications. MULTIVESTA provides such estima-
tions by means of distributed analysis techniques known
from statistical model checking (SMC) [48], [49].

Classical SMC allows one to perform analyses like “is
the probability that a property holds greater than a given
threshold?” or “what is the probability that a property is
satisfied?”. In addition, MULTIVESTA also allows one to es-
timate the expected values of properties that can take on any
value from R, like “what is the average cost/weight/load
of products configured according to an SPL specification?”.
Estimations are computed as the mean of n samples ob-
tained from n independent simulations, with n large enough
(but minimal) to grant that the size of the (1 − α) × 100%
confidence interval (CI) is bounded by δ. In other words, if
MULTIVESTA estimates the value of a property as x ∈ R,
then with probability (1 − α) its actual expected value
belongs to the interval [x−δ/2, x+δ/2]. A CI is thus specified
in terms of two parameters: α and δ.

6.2 Property specification

MULTIVESTA allows to estimate properties like the average
of real-valued observations on the model behavior. As de-
picted in Fig. 4, the QFLAN tool offers an editor for property
specifications. The novel property specification language
provides a high-level abstraction of MULTIQUATEX [28]. As
done in [16], the analysis capabilities of our framework are
exemplified using three families of properties of interest to
our case study:

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

(P1) Average price, weight and load of a bike when it is
deployed for the first time, or as time progresses;

(P2) For each of the 15 concrete features that appear as
leaves in the feature model of Fig. 1, the probability
to have it installed when a bike is deployed for the
first time, or as time progresses;

(P3) The probability for a bike to be dumped.

When analyzed at the first deployment of a bike, P1 and
P2 are useful for studying a sort of initial scenario, in order
to estimate the required initial investments and infrastruc-
tures. For instance, bikes with a high price and a high
load (i.e. with a high technological footprint) or equipped
with a battery might require docking stations with specific
characteristics, or they might have to be collected for the
night to be stored safely. Instead, analyzing P1 and P2 as
time progresses provides an indication of how those values
evolve, e.g. to estimate the average value in euros of a
deployed bike and the monetary consequences of its loss.

From a more general perspective, properties like P2 and
P3 measure how often (on average) a feature is actually
installed in a product from a product line or how often
(on average) a bike is dumped in the trash. The outcome
of the former provides important information for those
responsible for the production or programming of a specific
feature or system module.

Specification of P1 and P2 at first deployment

Listing 11 depicts the code snippet to be specified within
the QFLAN tool in order to evaluate P1 and P2 at a bike’s
first deployment. These are examples of state properties to
be evaluated in a given state of each performed simulation,
i.e. the first state met that satisfies the condition specified
by the keyword when, shown in Line 2. As discussed in
Section 4, deploys is a variable that is increased when the
bike is deployed from the deposit to a parking lot. The when
clause can be given as a Boolean expression involving the
presence/absence of a given feature, and (in)equations on
the value of a predicate or of a variable (e.g. deploys > 0
in Line 2). Property P1 is specified in Lines 3–4, where we
specify that we want to study the average price, weight
and load of bikes. In addition, in Line 4, we also query
the expected number of simulation steps to perform the
first deployment. In square brackets we specify the δ to be
used for these properties. Instead, Lines 5–7 correspond to
P2. In fact, by providing the name of a feature we query the
QFLAN tool to study the probability of having it installed in
the state of interest. In particular, a state property can be any
arithmetic expression involving step, a feature, a variable
or a predicate.

1 begin analysis
2 query = eval when { deploys > 0 } :
3 { price(Bike)[del ta = 20] , weight(Bike)[del ta = 1] ,
4 load(Bike)[del ta = 5] , steps[del ta = 1] ,
5 AllYear , Summer , Winter , GPS , MapsApp ,
6 NaviApp , GuideApp , Music , Diamond , StepThru ,
7 Battery , Dynamo , Engine , Basket , Light }
8 default del ta = 0.1
9 alpha = 0.1

10 paral le l ism = 4
11 end analysis

Listing 11. P1 and P2 at first deployment

For the state observations of Lines 5–7, the default value
of δ provided in Line 8 is used, while all properties share
the same alpha specified in Line 9. Finally, the keyword
parallelism in Line 10 locally distributes the simulations
across four distinct Java processes (which will be allocated
on different cores, if possible, by the JVM). If not specified,
all experiments described in this paper use value 4 for
the parameter parallelism. By design choice, viz. to
have a stand-alone easy-to-use application, we do not use
the ability of MULTIVESTA to distribute simulations across
different machines. However, no technical reason prevents
us from extending our tool in this way in the future.

Notably, Listing 11 shows how QFLan allows one to
express more properties at once (in this case 19) which are
estimated by MULTIVESTA reusing the same simulations.
Furthermore, more queries can be expressed, each with
its when clause, and list of state observations, again all
evaluated reusing the same simulations. We remark that
a procedure taking into account that each property might
require a different number of simulations is adopted to
satisfy the given confidence interval CI.

In Section 7.1 we will see a variant of properties as in
Listing 11 with the keyword when replaced with until.
Intuitively, until checks that a Boolean property holds in
all simulation states met until a given condition holds.

Encoding of P1–P3 as time progresses

We now discuss how to express variants of P1 and P2 as
well as P3 measured as time progresses, demonstrating how
to analyze properties upon the variation of a parameter,
in this case the number of performed simulation steps.
Listing 12 shows the code snippet necessary to analyze such
properties. Essentially, the only required change (cf. Line 2
of Listing 11 and Line 2 of Listing 12) is to substitute the
keyword when with: (i) the parameter of interest, specified
by the keyword for, followed by a variable, a predicate or
a feature (in this case the variable step); and (ii) the values
of interest for the parameter (starting from an initial value,
up to a final value, by a given increment). This is shown in
Line 2 of Listing 12, specifying the following 100 values: 1, 6,
11, . . . , 496. As we will see, this interval is reasonable, since
all studied properties tend to stabilize within this interval.
As for Listing 11, Lines 3–5 correspond to properties P1

and P2, like before. However, we removed step from the
properties to be studied, because step is in this case a
parameter. Instead, Line 6, corresponding to P3, concerns
the probability to dump the bike. In fact, as discussed in
Section 4, trashed is a variable set to 1 when the bike is
dumped. To sum up, Listing 12 describes 19× 100 different
properties of interest to be studied by MULTIVESTA.

1begin analysis
2query = eval for step from 1 to 500 by 5 :
3{ price(Bike)[del ta = 20] , weight(Bike)[del ta = 1] ,
4load(Bike)[del ta = 5] ,
5AllYear , Summer , Winter , . . . , Basket , Light ,
6trashed }
7default del ta = 0.1
8alpha = 0.1
9paral le l ism = 4
10end analysis

Listing 12. P1–P3 for varying simulation steps

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

TABLE 2
Property P1 evaluated at a Bike’s first deployment, and average

number of steps required for deployment

Constraints Steps to
.deploy

Feature attributes (P1)

C1 C2 Price Weight Load
600 15 17.27 367.32 7.68 30.65
800 20 17.22 488.90 11.76 29.90

6.3 Statistical analysis of our bikes case study
We now report on the evaluation of the discussed properties.
All experiments were performed on a laptop equipped with
a 2.4 GHz Intel Core i5 processor and 4 GB of RAM.

Evaluation of P1 and P2 at first deployment
The analysis of Listing 11 required 1,200 simulations, per-
formed in about 8 seconds. In particular, steps is the
property that required more simulations, viz. 1,200, while
price required only 240 simulations. The results are shown
in the first row of Tables 2 and 3. Notably, the probability of
installing an engine is very low, estimated at 0. Note that,
given that the specified confidence interval is α = 0.1 and
δ = 0.1, the estimated value 0 needs to be interpreted as
being in the interval [0, 0.05] with probability 0.9. We guess
In fact, the estimated average price and weight of bikes at
first deployment is 367.32 euros and 7.68 kilos, respectively,
while an engine costs 300 euros and weighs 10 kilos. To
confirm this hypothesis, we analyzed the same property in
a new model in which (C1) and (C2) allow bikes to cost
at most 800 euros and weigh at most 20 kilos. The results,
shown in the second row of Tables 2 and 3, confirm our
hypothesis. This analysis thus revealed that the constraints
were in disagreement with the quantitative attributes of
the features. The latter analysis required 1,280 simulations,
performed in about 8 seconds. In this case the estimation of
the average price required 1,280 simulations rather than 240
as in the first case. This is because the looser constraints of
the latter analysis induce a higher variability of bike prices.
In fact, the installation of an engine, the most expensive
among the considered features, results in a steep increase
of bike prices.

Evaluation of P1–P3 as time progresses
We evaluated the property of Listing 12 for our case study.
We report the results obtained for the model in which (C1)
and (C2) bound the price and weight of a bike to 800 and 20,
respectively. All such analyses (19 × 100 different proper-
ties) were evaluated using the same simulations. Overall,
1,280 simulations were needed, performed in about 60 sec-
onds. The results are presented in four plots in Fig. 6: one
for the average price (a), one for the average weights and
loads (b), one for the probabilities of installing features (c)
and one for the probability of dumping the bike (d).

Figure 6a shows that the average price (on the y-axis)
of the intermediate bikes generated from the product line
at step 1 is 214, hence higher than the 200 euros of the
initial configuration (with AllYear and Diamond installed).
In particular, it is possible to see an initial fast growth of
the price until reaching an average price of about 480 euros,
after which the growth slows down, reaching about 560 eu-
ros at step 101 and 588 at step 496. This is consistent with

our QFLAN specification, which has a pre-configuration
phase (FACTORY) during which a number of features can
be installed, followed by a customization phase (DEPOSIT),
where features can be (un)installed and replaced. We recall
that FACTORY does not perform any uninstalling, while
we note that the uninstalling actions of DEPOSIT do not
introduce decrements of the price, on average. A manual
inspection of the data revealed that the phase of fast growth
slows down between the observed steps 16 and 21. This
is consistent with the analysis described in the second row
of Table 2, where the average number of steps to complete
the first DEPOSIT phase is estimated as being close to 17.
In addition, the average price reported in Table 2 at first
deploy is coherent with the prices observed at steps 16
and 21. Note, finally, that the probability of a bike to return
to the DEPOSIT after its first deployment is quite low. In
fact, as specified in Listing 9, PARKED has a transition with
rate 10 towards MOVING and one with rate 1 towards
DEPOSIT. Thus, on average, the price of bikes is only slightly
affected by (un)installations and replacements performed by
successive DEPOSIT phases.

Next to the low probability of actually uninstalling fea-
tures, there are three more reasons for which uninstalling
actions of DEPOSIT do not introduce decrements of the price,
on average. First, the features Engine and Battery, which
are by far the most expensive ones, are uninstalled with
the two lowest rates (1 and 2, respectively). This is because
DEPOSIT is about customizations and it is thus unlikely that
an engine is uninstalled in the DEPOSIT phase after it has
been installed in the FACTORY phase. Second, the features
Engine and Battery are involved in two requires cross-tree
constraints, which limits the possibility to actually uninstall
them (e.g. if CompUnit is installed, then Battery cannot be
uninstalled). Third, the features Wheels and Frame, which
after Engine and Battery are the most expensive ones, can
never be uninstalled but only replaced, since any bike must
have wheels and a frame.

Figure 6b shows that weight and load evolve similarly
to price: a first phase of fast growth is followed by a slower
growth.

As confirmed by Fig. 6c, the probabilities (on the y-axis)
for each of the features to be installed evolve similarly to
the average price and weight of the generated products,
although, clearly, with different scales. It is interesting to
note that the pre-installed features AllYear and Diamond
have high probability of being installed at step 1, after
which the probability decreases during the first 21 steps.
The dashed lines refer to all concrete features descending
from CompUnit, which are the only ones with non-zero
computational load. The first phase of fast growth of load
shown in Fig. 6b is due to the similar initial phase of the
probabilities of having installed MapsApp, GuideApp, and
Music.

Figure 6d shows that bikes are dumped with low proba-
bility. The reason is twofold. First, the transition from BRO-
KEN to TRASH has a lower rate than the one to DEPOSIT, and
similarly for those from MOVING and HALTED to BROKEN
(cf. Listing 9). Second, the average price of bikes quickly
rises above 400 euros (Fig. 6a) and constraint (C5) prohibits
dumping bikes costing more than 400 euros.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

TABLE 3
Property P2 evaluated at a Bike’s first deployment

Constraints Concrete features (P2)

C1 C2 AllYear Summer Winter Light Dynamo Battery Engine MapsApp NaviApp GuideApp Music GPS Basket Diamond StepThru
600 15 0.49 0.24 0.26 0.54 0.85 0.82 0.00 0.47 0.18 0.21 0.44 0.09 0.61 0.61 0.40
800 20 0.57 0.20 0.23 0.58 0.84 0.81 0.40 0.44 0.12 0.21 0.43 0.16 0.59 0.62 0.38

0 50 100 150 200 250 300 350 400 450 500

Steps

200

250

300

350

400

450

500

550

600

Price

(a) P1 and P2 (price)

0 50 100 150 200 250 300 350 400 450 500

Steps

0

5

10

15

20

25

30

35

40

45

Weight

Load

(b) P1 and P2 (weight and load)

0 50 100 150 200 250 300 350 400 450 500

Steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AllYear

Summer

Winter

GPS

MapsApp

NaviApp

GuideApp

Music

Diamond

StepThru

Battery

Dynamo

Engine

Basket

Light

(c) P1 and P2 (installation likelihood)

0 50 100 150 200 250 300 350 400 450 500

Steps

0

0.05

0.1

0.15

0.2

0.25

trashed

(d) P3 (dumping a bike)

Fig. 6. Results of measuring P1–P3 for the model with constraints C1 = 800 (price) and C2 = 20 (weight)

7 EVALUATION

We have used our tool-supported methodology to model
and analyze a number of small case studies in our current
and previous work, including classical ones from the SPLE
literature such as the coffee vending machine [10], [50], [51],
[52], [53], [54], [55] as well as novel ones such as the running
example of bikes used here. We report in this section on
two additional case studies that witness two particular
features of our approach, namely scalability of the analysis
and flexibility of the modelling language and its analysis
support. Scalability is addressed in Sections 7.1–7.3. First, in
Section 7.1 we use the classical example of a product line of
elevators to evaluate the scalability of our tool support with
respect to existing approaches. This case study has been
shown to be very demanding in terms of scalability when
large sizes of elevator systems are considered (cf., e.g. [34],
[56]) and we will demonstrate that we can handle signifi-

cantly larger instances with respect to existing approaches.
Then, in Sections 7.2 and 7.3, respectively, we evaluate the
impact on the analysis effort of two key characteristics
of QFLAN models, namely dynamicity of reconfigurable
models in terms of how many features can be added and
removed at runtime, and product variability as imposed by
feature constraints. To show flexibility, we model and ana-
lyze in Section 7.4 a novel case study that extends a classical
example of risk analysis of a safe lock system, thus illus-
trating the applicability of our approach also in a non-SPL
setting. All the case studies used in this section as well as our
bikes running example are available at http://github.com/
qflanTeam/QFLan/wiki/Models-from-TSE-submission.

7.1 Elevator
The case study we consider here is adapted from the var-
ious incarnations of the Elevator product line, originally

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

introduced in [57], which has become a benchmark for SPL
analysis (cf., e.g., [12], [23], [34], [56], [58], [59], [60], [61],
[62]). This case study is particularly challenging, not so
much due to the number of independent, unconstrained
features (9, yielding 512 products) but rather due to the need
to consider instances with a large number of floors.

The Elevator SPL consists of a number of platform and
cabin buttons, one for each platform, which call the elevator.
A button that is pressed (chosen non-deterministically)
remains pressed until the elevator has served the floor
and opened its doors. Serving a floor means opening and
closing its doors. We consider the nine features introduced
in [56], [57] that can modify the elevator’s behavior:

Anti-prank Normally, a button will remain pushed until the
corresponding floor is served. With this feature,
a button has to be held pushed by a person.

Empty If the lift is empty, then all requests made in the
cabin will be cancelled.

Executive floor One floor has priority over others and is served
first, both for cabin and for platform requests.

Open when idle When idle, the lift opens its doors.
Overload The lift will not close its doors when overloaded.
Park When idle, the lift returns to the first floor.
Quick close The doors cannot be kept open by holding the

platform button pushed.
Shuttle The lift will only change its direction at the first

and the last floor.
Two-thirds full Whenever the lift is two-thirds full, it will serve

cabin calls before platform calls.

The core logic of the controller is obviously subject to many
constraints (e.g. the doors cannot be open while the elevator
is moving) and the activated features add even more
constraints (e.g. the Overload feature should impede to
close the doors if the cabin is overloaded). Specifying
all such constraints in an operational description is
rather challenging and results in very sophisticated and
cumbersome control flow statements (cf., e.g., [56]).

To show the effectiveness of QFLAN, we analyze a classi-
cal property of the Elevator SPL from [57] against variations
obtained by increasing the number of floors from 5 to 40,
while fixing the capacity of the elevator to 8 persons and
the maximum allowed load to 4 persons (enforced only
if the feature Overload is installed). Instead, the classical
approaches mentioned above all restrict to models with less
than 10 floors and fewer persons.

In particular, we analyze the property in Listing 13,
which establishes that if the number of people in the el-
evator (the load variable) is beyond the capacity of the
elevator (the capacity variable), then the elevator does
not move (direction == 0.0). We check this property
for all the states met in the first maxStep steps, i.e. until
the condition steps < maxStep holds. In all cases, we
obtained a probability equal to 1, because, by construction,
the elevator does not move when the current load is higher
than the capacity. Hence, all simulations performed in these
analyses consisted of exactly maxStep steps.

1 begin analysis
2 query = eval u n t i l { steps < maxStep } :
3 { load >= capacity implies direction == 0.0 }
4 default del ta = 0.1
5 alpha = 0.1
6 paral le l ism = 4
7 end analysis

Listing 13. Query to establish a safety property of the elevator

5 10 15 20 25 30 35 40

Floors in the model

0

5

10

15

20

25

30

35

40

A
n

a
ly

si
s

ru
n

tim
e

 (
s)

Until 50000 steps

Until 40000 steps

Until 30000 steps

Until 20000 steps

Until 10000 steps

Fig. 7. Runtime in seconds for the analysis of Listing 13; each trace
refers to variants of the property for maxStep in {10, 20, 30, 40, 50}×103

Figure 7 provides the runtimes (in seconds) of analyz-
ing variants of the safety property for different values of
maxStep, one per trace. In order to reduce stochastic noise,
we provide runtimes averaged over 10 independent anal-
yses. The figure provides two kinds of scalability analysis:
(1) by focusing on a single trace we can fix the number of
performed simulation steps, and vary the size of the system
(the floors); (2) by considering one point of the x-axis (the
floors), we can fix the model under analysis, and vary the
number of performed simulation steps. In both cases, we
note a linear increase in the obtained runtime.

All experiments were performed on a static pre-defined
configuration consisting of all features except Park.

7.2 Elevator: Impact of reconfigurations

We present here an evaluation of the impact on analysis
effort of one key characteristic of QFLAN models, namely
dynamicity of models in terms of the size of the space of
configurations obtained by adding and removing features at
runtime. Our initial hypothesis was that, the more dynam-
icity a model has (i.e. the more possible configurations can
be obtained at runtime due to reconfigurations), the more
challenging the analysis would be since there may be more
work for the interpreter (i.e. more actions and constraint
checks to compute) and for the statistical analyzer (more
variability should in principle require more simulations to
achieve the same statistical confidence).

To validate our hypothesis, we have performed several
times the same analysis on a set of variants of the Elevator
SPL. In particular, we have enriched the model with a
reconfigurator process which dynamically reconfigures the
elevator controller by adding or removing features while the
elevator is in operation. That is, the reconfigurator is a pro-
cess that runs in parallel with the rest of the processes (i.e.
the controller, the lift, etc.). Moreover, we have parametrized
such reconfigurator with the number of features that can be
reconfigured, from 0 (none) to 9 (all).

The features to be reconfigured are fixed once and for all
before the system starts, and all experiments use the same
choice of features. In particular, the experiments we show
here are based on an arbitrary order of the nine features but
experiments with other orders yielded similar results. We

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

TABLE 4
Analysis effort in the Elevator with Configurator with varying number of reconfigurable features

Reconfigurable features 0 1 2 3 4 5 6 7 8 9

Analysis runtime (s) 52.25 39.46 54.26 60.99 37.05 51.81 110.25 118.91 305.48 219.37
Simulations 3,711 3,478 3,445 4,098 3,950 3,900 3,760 3,908 3,863 4,073
Time per simulation (s) 0.014 0.011 0.016 0.015 0.009 0.013 0.029 0.030 0.079 0.064

TABLE 5
Analysis effort in the Elevator with Configurator with varying number of features constrained by requires constraints

requires constraints 0 1 2 3 4 5 6 7 8

Analysis runtime (s) 219.37 160.61 105.67 73.86 65.38 53.13 66.39 52.85 47.96
Simulations 4,073 4,136 3,686 3,639 3,718 3,707 3,650 3,654 3,671
Time per simulation (s) 0.064 0.039 0.029 0.020 0.018 0.014 0.018 0.014 0.013

have chosen a variant of the elevator with 4 floors, as this
is already challenging for existing tools. For the analysis we
have chosen a very demanding property, namely the floor
where the elevator can be expected to be found on average,
with a confidence interval of α = 0.1 and δ = 0.1 as in the
previous section. Listing 14 shows the code snippet neces-
sary to analyze such property in QFLAN, where floor is a
variable that stores the floor where the elevator currently is.
The query is very similar to the one in Listing 12 and hence
we do not further comment on it.

1 begin analysis
2 query = eval from 1 to 1000 by 1 : { floor }
3 default del ta = 0.1
4 alpha = 0.1
5 paral le l ism = 4
6 end analysis

Listing 14. Query to estimate average floor for varying simulation steps

The results of the experiments are depicted in Table 4. We
have measured the runtime (in seconds) and the number of
simulations required. The table also includes the average
runtime per simulation. The results in the table are the
average of at least 10 different runs of the analyzer. This is
necessary since simulations rely on random generators that
are initialized with different seeds for every run so that the
same analysis may actually produce different simulations
and hence different runtime and simulations required.

The table shows that, indeed, the runtime tends to grow
as the variability increases. The extreme case is a difference
in runtime of about 7–8 times. Surprisingly, however, this is
not always true. We have tried other variations of the model
(e.g. changing the order of features) and of the analysis
parameters (e.g. statistical confidence) and the obtained
results are similar.

The variations in time do not seem to be directly related
to the number of simulations needed. Indeed the number
of simulations is quite stable and does not seem to be
particularly influenced by the amount of features being
reconfigured. Actually, the difference between the model
that requires most simulations and the one that requires
least simulations is around 10% only. We have further
investigated this and we have discovered that some of the
features, like Parking and in particular Executive, work
as stabilizers of the system, as they attract the elevator to a
particular floor.

In fact, the time needed per simulation witnesses that the
variations in runtime are not mainly due to the number of

simulations needed, but rather to the runtime effort needed
to perform each single simulation. Indeed some simulations
run about 8 times slower than others. We think that this
is mainly due to the fact that the more features can be
reconfigured the more transitions are potentially present for
every state. The interpreter has hence more computations
to do to actually compute those transitions and check their
executability conditions (including consistency of the result-
ing state). However, this is not always the case, since some
features disable actions rather than enabling them, which
could explain why some models with more reconfigurable
features take less time.

7.3 Elevator: Impact of feature constraints
This section presents an experimental evaluation similar to
the one of Section 7.2. In particular, we evaluate the impact
on analysis effort of another key characteristic of QFLAN
models, namely product variability as imposed by feature
constraints.

Our initial hypothesis was to observe a similar behavior
as in the experiments of Section 7.2, i.e. that, up to some
exceptions, less constrained models have more variability
and require hence a greater analysis effort.

To validate our hypothesis, we have proceeded as in
Section 7.2, i.e. we have performed several times the analysis
from Listing 14 on a set of variants of the Elevator SPL
with 4 floors. This time, we started with the model with
the reconfigurator process described in Section 7.2, which
dynamically reconfigures the elevator controller by adding
or removing all nine features, and we have experimented by
adding (more and more) requires constraints. We consider
feature models whose only feature constraints are requires
constraints. In particular, we consider that all nine inde-
pendent, unconstrained features from the original model
are constrained by a chain of eight requires constraints, in
which case there is just one possible product containing
all features, and we have considered variations where such
constraints are relaxed, up to the trivial case in which there
is no more requires constraint among the features at all.

The order of the features has been chosen arbitrarily, but
other orders provided similar results. For the analysis we
have chosen the same property and analysis parameters as
in Section 7.2.

The results of the experiments are depicted in Table 5,
using the same format as that of Table 4, i.e. we present

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

runtime (in seconds), number of simulations and average
runtime per simulation. The first column with results (i.e.
“0”) regards the model variant without requires constraints,
which corresponds to the one considered in the last column
(i.e. “9”) of Table 4. Again, the results of the presented
experiments show that there is an impact of the number
of constrained features on analysis effort. In particular, the
results show again that the main impact is not on the
number of simulations but rather on the time needed to
compute each simulation. Indeed, the simulations of the
extreme case where all nine features are constrained by a
chain of eight requires constraints run 5 times faster than
those of the unconstrained model.

7.4 Safe lock
To illustrate the flexibility of our approach to model case
studies from different application domains, we show in this
section how QFLan can be used to perform risk assessment
in security scenarios with high variability. In particular, we
focus on the use of attack trees and the seminal example
from that area, namely the Safe Lock [63].

Figure 8(a) presents the original attack tree from [63]. It
provides a specification of a risk assessment for a safe lock
system. An attack tree is essentially an and/or tree, where
nodes represent goals, and sub-trees represent sub-goals. In
this case, the root node represents the main threat being
analyzed, namely the lock being opened by an attacker. Each
of its four children are possible ways of enacting such a
threat. The sub-goal Eavesdrop has two sub-goals that need
to be accomplished (thus their combination as and-children).
Nodes are decorated with an estimation of the cost that
the attacker would have to pay to succeed in enacting the
corresponding action. The classical analysis of such trees is
to compute the minimal cost for an attacker to succeed.

Attack trees can easily be modelled as feature diagrams,
with the following rationale: a node, which in an attack
tree represents a goal, can be modeled as a feature of the
system, that the attacker tries to activate. The sub-goal
relation is modeled by the feature hierarchy. In particular,
the attack tree of our case study can be modeled as in
Fig. 8(b). We introduce a slight variation to overcome a
well-known limitation of the original attack trees, namely
the inability to encode the ordering of events. Indeed,
Listen to Conversation should occur before Get Target to
State Combo, which we can model with a requires cross-tree
constraint. A feature model defines which configurations
are valid, but not how (i.e. in which order) to configure
them. QFLAN does model (re)configuration: features can
be dynamically installed, removed or replaced as long as
at any point in time all constraints are satisfied, including
those imposed by the feature model. As noted in Section 3.8,
the requires cross-tree constraint from Get Target to State
Combo to Listen to Conversation implies an order: whenever
QFLAN tries to install (i.e. the attacker tries to activate)
Get Target to State Combo, it fails to do so unless Listen
to Conversation was installed (i.e. activated) before.

Hence, the flexibility of the way feature models are spec-
ified in QFLAN allows us to specify richer relations among
sub-goals. For instance, we can specify that Eavesdrop is
only successful if the attacker first listens to a conversation
and then gets the target to state the combo, thus refining the

original and-relation among such sub-goals. This is similar
in spirit to the extension of attack trees with sequential con-
junction from [64], which imposes orders on the execution
of actions in the tree. Further constraints can be imposed
on execution, in line with those discussed for the other
examples.

A noteworthy advantage of modeling such scenarios
with QFLAN is that we can model the behavior of several
classes of attackers and study their performance, and thus
the robustness of the system against them. To exemplify this,
we have considered two attackers, sketched in Fig. 9. Their
full process specifications can be found in Listing 15.

1begin processes diagram
2begin process powerfulAttacker
3s t a t e s = idle
4t r a n s i t i o n s =
5idle -(i n s t a l l(PickLock) , 1)-> idle ,
6idle -(i n s t a l l(CutOpenSafe) , 1)-> idle ,
7idle -(i n s t a l l(InstallImproperly) , 1)-> idle ,
8idle -(i n s t a l l(FindWrittenCombo) , 1)-> idle ,
9idle -(i n s t a l l(Threaten) , 1)-> idle ,
10idle -(i n s t a l l(Blackmail) , 1)-> idle ,
11idle -(i n s t a l l(ListenToConversation) , 1)-> idle ,
12idle -(i n s t a l l(GetTargetToStateCombo) , 1)-> idle ,
13idle -(i n s t a l l(Bribe) , 1)-> idle
14end process
15
16begin process failingAttacker
17s t a t e s = idle , tryPickLock , tryCutOpenSafe ,
18tryInstallImproperly , tryFindWrittenCombo ,
19tryThreaten , tryBlackmail ,
20tryListenToConversation ,
21tryGetTargetToStateCombo , tryBribe
22t r a n s i t i o n s =
23// Try an attack
24idle -(try , 1 , { cumul_cost = cumul_cost + 1 })->

tryPickLock ,
25idle -(try , 1 , { cumul_cost = cumul_cost + 1 })->

tryCutOpenSafe ,
26idle -(try , 1 , { cumul_cost = cumul_cost + 1 })->

tryInstallImproperly ,
27idle -(try , 1 , { cumul_cost = cumul_cost + 1 })->

tryFindWrittenCombo ,
28idle -(try , 1 , { cumul_cost = cumul_cost + 1 })->

tryThreaten ,
29idle -(try , 1 , { cumul_cost = cumul_cost + 1 })->

tryBlackmail ,
30idle -(try , 1 , { cumul_cost = cumul_cost + 1 })->

tryListenToConversation ,
31idle -(try , 1 , { cumul_cost = cumul_cost + 1 })->

tryGetTargetToStateCombo ,
32idle -(try , 1 , { cumul_cost = cumul_cost + 1 })->

tryBribe ,
33// Successful attack
34tryPickLock -(i n s t a l l(PickLock) , 1)-> idle ,
35tryCutOpenSafe -(i n s t a l l(CutOpenSafe) , 1)-> idle ,
36tryInstallImproperly -(i n s t a l l(InstallImproperly) , 1)

-> idle ,
37tryFindWrittenCombo -(i n s t a l l(FindWrittenCombo) , 1)->

idle ,
38tryThreaten -(i n s t a l l(Threaten) , 1)-> idle ,
39tryBlackmail -(i n s t a l l(Blackmail) , 1)-> idle ,
40tryListenToConversation -(i n s t a l l(Listen-

ToConversation) , 1)-> idle ,
41tryGetTargetToStateCombo -(i n s t a l l(GetTarget-

ToStateCombo) , 1)-> idle ,
42tryBribe -(i n s t a l l(Bribe) , 1)-> idle ,
43// Failed attack
44tryPickLock -(fail , 10)-> idle ,
45tryCutOpenSafe -(fail , 10)-> idle ,
46tryInstallImproperly -(fail , 10)-> idle ,
47tryFindWrittenCombo -(fail , 10)-> idle ,
48tryThreaten -(fail , 10)-> idle ,
49tryBlackmail -(fail , 10)-> idle ,
50tryListenToConversation -(fail , 10)-> idle ,
51tryGetTargetToStateCombo -(fail , 10)-> idle ,
52tryBribe -(fail , 10)-> idle
53end process
54end processes diagram

Listing 15. Two kind of attackers for the safe lock scenario

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

(a) Schneier’s simple attack tree against a physical safe (b) An attributed feature model representing the attack tree

Fig. 8. Attack tree: (a) redrawn from [63]; (b) feature model representation of it

TRYPICKLOCK

failoo

install(PickLock)

IDLE

install(PickLock) ··· install(Bribe)

��
IDLE

try

11

try
..

...

TRYBRIBE

oo

install(Bribe)

QQ

Fig. 9. Behavior of PowerfulAttacker (left) and FailingAttacker (right)

The Powerful attacker always succeeds when trying to
achieve a goal and has unlimited resources. Instead, the
Failing attacker can fail to successfully achieve a goal and
may need several attempts to achieve them. This is modeled
using rates. In addition, (s)he has limited resources.

Clearly, any reasonable attacker should stop attacking
once an attack has been successful. This can be naturally ex-
pressed in QFLAN using the action constraints in Listing 16,
which block the attacker after an attack succeeded.

1 begin act ion c o n s t r a i n t s
2 do(tryAction) -> !has(OpenSafe)
3 do(i n s t a l l(...)) -> !has(OpenSafe)
4 end act ion c o n s t r a i n t s

Listing 16. Constraints to stop attacks after success

QFLAN’s rich specification language allows to express,
e.g., further constraints on the accepted classes of attacks.
Consider for instance the two constraints in Listing 17.

1 begin q u a n t i t a t i v e c o n s t r a i n t s
2 // Restrict to attacks that cost less than 100:
3 { cost(Root) <= 100 }
4 // Attacks can fail and attack attempts have a cost;
5 // restrict to attackers that have a maximum budget:
6 { cumul_cost <= 20 }
7 end q u a n t i t a t i v e c o n s t r a i n t s

Listing 17. Further constraints to specify the class of accepted attacks

In the first one, we restrict to (successful) attacks that cost
less than $100K (i.e. that install features with less than that
price, cf. the attributed feature model in Fig. 8(b)). Instead,
the second constraint restricts to attacks (independently of
their success) that cumulated less than 20 attempts. Note-
worthy, using the first constraint we restrict the family of
admissible products, while the latter constraint regards only
the behavioral part of the model. In fact, cumul_cost is not
an attribute but a variable, which can be changed through a
memory update in the behavior (cf. Section 3.7). We use it
as a counter to record the number of times that an attack is
tried.

For both attackers, it is interesting to know what is the
probability that an attack succeeds in a given amount of
time, as well as the average cost of attacks. Such analyses
can be performed in QFLAN, as shown in Listing 18. There
we query the probability of installing the feature OpenSafe,
the cost of the corresponding product and the attempts
cumulated by the failing attacker while trying to install the
features corresponding to the sub-goals. We consider three
configurations: (a) a powerful attacker with constraints as
specified above; (b) an attacker that might fail with the
same constraints; and (c) an attacker that might fail with
less resources, obtained by changing the constraint on the
cumul_cost in Listing 17 to { cumul_cost <= 10 }.
This is obtained by running once the analysis on each model
variant, each requiring about 12 seconds.

1begin analysis
2query = eval from 0 to 40 by 1 :
3{ OpenSafe[del ta = 0.05] , cost(Root) , cumul_cost }
4default del ta = 1
5alpha = 0.05
6end analysis

Listing 18. Analysis of the safe lock model

Figure 10 plots the probabilities of successful attacks. We
note that the powerful attacker succeeds with probability
almost 1 after one step, whereas for the other attacker

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

0 10 20 30 40

Steps

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f
su

cc
e

ss

Powerful attacker
Failing attacker 20
Failing attacker 10

Fig. 10. Probabilities of successful attacks

0 5 10 15 20 25 30 35 40

Steps

0

10

20

30

40

50

60

A
ve

ra
g
e
 c

o
st

s

Cost powerful attacker
Cost failing attacker 20
Cost failing attacker 10

Cumul_cost failing attacker 20
Cumul_cost failing attacker 10

Fig. 11. Costs of successful attacks

the probability of success increases slowly. We also note
that in case of constraint { cumul_cost <= 10 }, the
probability of success stabilizes at about 0.6 after 20 steps.
Indeed, according to Listing 15, cumul_cost increases by 1
every two steps. Instead, in case { cumul_cost <= 20 },
the probability reaches value 0.8 after 40 steps. However,
this is not due to the mentioned constraint. In fact, Fig. 11
plots the costs and the cumulative attempts computed for
the three model variants. We see that the average cu-
mulative attempts (not shown for the powerful attacker,
because it is always 0) reaches the threshold 10 after
20 steps (in case { cumul_cost <= 10 }), while it is
much lower than 20 in the other case. Hence, the constraint
{ cumul_cost <= 20 } has less impact on the dynamics.
As a last remark, we note that costs evolve similarly to
probabilities, even though with different scales.

8 RELATED WORK

We concentrate on related approaches that focus on the
application of automated verification techniques, and in par-
ticular (probabilistic) model checking, in the specific context
of behavioral models of (dynamic) SPLs. We give a brief
overview of models for specifying SPL behavior, followed
by their associated verification techniques and tools.

8.1 Models

Most better known SPL behavioral modeling languages are
based on superimposing multiple LTSs representing vari-
ants (products) in a single, enriched LTS (family) model.
None of these languages allow the specification of prob-
abilistic SPL models; the few languages that do will be
discussed in Section 8.2 when we discuss probabilistic SPL
model-checking approaches.

Featured Transition Systems (FTSs) were introduced
in [53] and further elaborated in [59], [65]. An FTS models
a family of LTSs (one per product) that can be obtained
by projecting on the feature expressions (Boolean formulae
defined over the set of features) decorating the transitions:
all transitions whose feature expression is not satisfied by
the specific product’s set of features are removed, as well as
all states and transitions that have become unreachable. Fea-
ture expressions are similar to action constraints in QFLAN
but apply to transitions (i.e. instances of actions) rather than
actions (i.e. classes of transitions). Feature expressions are
more fine-grained, but action constraints provide a more
compact and declarative specification. Adaptive FTSs, intro-
duced in [65], allow the set of active features to vary dynam-
ically, i.e. features can also be deactivated. QFLAN allows
more general constraints than FTS’ feature expressions (cf.
Section 3.6) and adaptive or dynamic SPLs can be modeled
as well; its action constraints are similar to the adaptation
mechanisms of context-oriented programming as discussed
and compared in [66].

Modal Transition Systems (MTSs) [67] were introduced
to model successive refinements (implementations) of par-
tial specifications. An MTS is an LTS distinguishing ad-
missible (may) from necessary (must) transitions. In [68],
MTSs were recognized as a suitable behavioral model for
describing SPLs capable of checking the conformance of the
behavior of a product against that of its product family. In
a series of papers culminating in [10], MTSs were equipped
with variability constraints which can express any Boolean
function over the action labels, thus including all constraints
that are typically defined by a variability model (but now
expressed in terms of actions). Like FTSs, they model a
family of LTSs (one per product) which can be obtained by
turning each admissible but not necessary transition into
a necessary transition or by removing it. Comparisons of
FTSs and MTSs have appeared in the literature [52], [69].
Further MTS variants are variable I/O automata [70] and
modal I/O automata [71]. QFLAN allows feature attributes
and richer (quantitative) constraints (cf. Section 3.6) than
any of these MTS models does, none of which moreover
allows to model dynamic SPLs; the feature set is statically
determined upfront.

Several process-algebraic theories for the modeling and
analysis of SPLs have also been developed. In a series of
papers, summarized in [72], Product Line CCS (PL-CCS)
was defined as an extension of CCS by a variant operator
allowing the user to model alternative behavior in the
form of alternative processes, intending only one of them
to exist at runtime. The choice calculus was introduced
in [5] with the specific aim of providing a fundamental
model for software variation, akin to the lambda calculus
for programming languages. Another extension of CCS,

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

DeltaCCS [11], was inspired by the well-known delta-
modeling approach of automated product derivation for
SPLs based on deltas that specify changes to be applied
incrementally to a core product (cf. e.g. [73]). This modu-
lar approach differs from PL-CCS and the choice calculus,
where choices are applied at well-defined variation points.
Model-checking algorithms were implemented in MAUDE
for SPLs specified in DeltaCCS against modal µ-calculus
formulas. In [9], a so-called Variant Process Algebra (VPA)
is defined to formally reason on SPLs. Like [68], it focuses
on behavioral (bi)simulation relations instead of verifica-
tion through model checking. Our process-algebraic FLAN
family distinguishes itself from all these approaches by the
explicit modeling it offers for a rich set of constraints that
may concern quantitative aspects of feature attributes. While
PL-CCS and DeltaCCS allow some minimal restructuring
functionality, none of these process-algebraic approaches
can model dynamic SPLs.

Other known formalisms, quite different from QFLAN,
that were equipped with variability notions concern Petri
nets [55], [74], Event-B [75], Finite State Machines [76] and
UML Activity Diagrams [77], [78]. In the latter, performance
properties are captured by annotations (such as the duration
to execute an activity of an activity node) and interpreted
as CTMCs. Combined with the above mentioned delta-
modeling approach, these constitute the first attempts to
efficient performance modeling of SPLs.

8.2 Model checking

We now describe a number of SPL model-checking tools
that have been introduced for the above modeling lan-
guages, followed by an overview of probabilistic SPL
model-checking approaches. We are not aware of any other
work than ours on statistical model checking for SPLs.

We only discuss approaches that, like ours, analyze
behavioral models. There are also numerous SPL analysis
approaches that operate directly on the source code, often
obtained by adapting existing tools for software model
checking to deal with variability. Examples include an adap-
tation of PROMOVER [79] with variability annotations [80]
for Java and the SPLVERIFIER [81] tool chain built on
JAVA PATHFINDER [82] for Java and CPACHECKER [83] for
C code. SPLVERIFIER uses standard off-the-shelf model-
checking techniques to verify the absence of feature interac-
tions by an approach called feature-aware verification. For
further details and for other model-checking approaches
in SPLE than the ones described next, we refer to the
survey [8] which covers not only SPL model checking, but
also type checking, static analysis and theorem proving and
which distinguishes product-based, family-based and feature-
based analyses.

The analyses performed in this paper fall in the category
of product-based analyses, according to which properties
are verified on individually generated products (or at most a
subset). Family-based analyses, on the contrary, concern the
verification of properties on an entire product line, using
variability knowledge about valid feature configurations
to deduce results for individual products. Feature-based
analyses, finally, concern the analysis of (domain artifacts
implementing certain) features in isolation, which is not rel-

evant to our approach given that features are only implicitly
present as actions in QFLAN models.

With respect to typical product-based model checking,
the statistical model-checking capabilities of QFLAN offer
a couple of advantages. First, the set of simulations to
be performed can be trivially parallelized and distributed
over multiple cores, clusters or distributed computers with
almost linear speedup. Second, the same set of simulations
can be used to check several properties at the same time,
thus requiring reduced computing time.

We first discuss several dedicated SPL model checkers.
The tool suite PROVELINES [84] supports discrete as well

as real-time models, various types of computations, and
advanced feature notions. All tool variants share the same
common input language fPromela, which is an extension
of the Promela input language of the well-known SPIN
model checker (http://spinroot.com/). It includes the SPL
model checker SNIP [85] for the verification of fLTL (feature
LTL) properties over FTSs. A prototypical extension of the
NuSMV model checker [86] uses a fully symbolic algorithm
for the verification of fCTL (feature CTL) properties over
FTSs specified in fSMV, which is a feature-oriented exten-
sion of the input language of (NU)SMV that was indepen-
dently developed in the context of research on the renown
problem of feature interaction [57]. In [23], SMT solving
is implemented on top of SNIP (with Z3), i.e. behavioral
models written in fPromela (with an FTS semantics) with
additional arithmetic constraints. Admittedly, the resulting
tool SNIP-Z3 does not scale well with the model size.

VMC (http://fmt.isti.cnr.it/vmc/) [87] is a tool for
modeling and analyzing the behavior of SPLs modeled as
MTSs with variability constraints [10]. Properties must be
expressed in v-ACTL [88], a variability-aware action- and
state-based branching-time temporal logic derived from the
family of logics based on ACTL, the action-based version of
CTL.

Next we discuss two off-the-shelf model checkers that
were made amenable to SPL model checking, followed by a
third one that offers probabilistic SPL model checking.

In [7], [89], a feature-oriented modular verification ap-
proach was developed, using an interpretation of FTSs in the
MCRL2 formal specification language and toolset [90], [91].
MCRL2’s parametrized data language allows one to handle
feature attributes and quantitative constraints, like QFLAN.
In order to perform family-based SPL model checking, a
feature-oriented variant of the modal µ-calculus, with an
FTS semantics, was introduced in [92] by incorporating fea-
ture expressions into the modal operators, thus generalizing
the work on the feature-oriented variants fLTL and fCTL.
In [13], it was shown how to exploit this logic for family-
based model checking with MCRL2 as-is by encoding it
back into the logic of MCRL2.

In [93], [94], it was shown how to use SPIN for family-
based model checking of LTL formulas against FTSs by
means of an additional automatic variability-specific ab-
straction refinement method based on the discovery of
spurious counterexamples obtained during model checking.

PROFEAT, a software tool built on top of PRISM for
the analysis of feature-aware probabilistic models is pre-
sented in [34]. It provides a guarded-command language
for modeling families of probabilistic systems as well as

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 23

an automatic translation of family models to the input
language of PRISM (i.e. featureless models). It can deal with
probabilistic DSPLs by offering dynamic feature switching
(i.e. activation and deactivation of features at runtime) and
with feature attributes. The tool is evaluated through a
number of case studies, including (probabilistic) versions
of the Elevator benchmark SPL (cf. Section 7.1). Due to the
nature of the analysis, i.e. statistical vs. precise probabilistic
analysis, we were able to handle significantly larger variants
of the Elevator SPL, viz. up to 40 floors rather than 4, at the
cost of sacrificing 100% precision.

We close this section with a few pointers to probabilistic
model checking of SPLs.

In [30], a Maple-based implementation is applied to a
small running example (the usual coffee machine), while
an empirical evaluation is limited to randomly generated
behavioral models.

In [31], Discrete time Markov chain families (DTMCFs)
are introduced as a model to specify the probabilistic be-
havior of an SPL. Moreover, a probabilistic model checking
algorithm to verify Probablistic CTL (PCTL) formulas is
defined. A tool is said to be forthcoming.

In [33], Featured DTMCs (FDTMCs) are introduced to
model the probability of a transition being executed in a
product. Verification of dependability (i.e. the probability to
reach a success state) is formulated in PCTL. Furthermore,
three family-based model-checking techniques are defined
to verify stochastic SPLs modeled as FDTMCs derived from
sequence diagrams.

In [32], Markov Decision Processes (MDPs) are used to
model dynamic SPLs (in particular allowing the activation
and deactivation of features at runtime), i.e. LTSs whose
transitions have guards that formalize feature-dependent
behavior annotated with probabilities and costs to model
stochastic phenomena and resource constraints.

9 CONCLUSIONS AND FUTURE WORK

We have presented QFLAN, a quantitative modeling and
verification environment for highly (re)configurable sys-
tems, such as dynamic SPLs, including Eclipse-based tool
support. QFLAN offers a high-level DSL in which to specify
system configurations and their probabilistic behavior as
well as advanced statistical analyses of properties expressed
in MultiQuaTEx. The QFLAN tool’s GUI offers designers
editing support typical of modern integrated development
environments (such as auto-completion, syntax and error
highlighting, etc.) for writing QFLAN specifications as well
as MultiQuaTEx expressions.

We have shown a novel application of our approach to
risk analysis of a safe lock system from the security domain
as well as to classical examples of analysing the configura-
tion and behavior of highly (re)configurable systems from
the SPLE literature. Arguably the most important anomaly
of feature models is the void feature model anomaly [24],
i.e. when the root feature of the feature model cannot be
selected thus forbidding the existence of any possible config-
uration. It is worth mentioning that QFLAN can actually be
used to analyze the probability of this anomaly to occur, by
verifying the probability of installing the root feature. The
case studies have shown an analysis speedup for QFLAN,

with respect to our earlier prototypical implementation, of
more than three orders of magnitude.

We see a number of possible research directions for
future work. First, we could provide additional QFLAN
semantics for specific applications. For instance, a stochastic
QFLAN semantics based on continuous time Markov chains
to enable the analysis of time-related properties, an alterna-
tive QFLAN semantics based on FTSs to enable the use of
the PROVELINES tool suite [84] or considering the general
case of partially defined models.

Concerning the tool support, we could automatize its
distributed analysis features (cf. Section 6), develop ad-hoc
tool variants for attack trees (cf. Section 7.4), and improve
interoperability with other tools, for instance for importing
feature models designed with FeatureIDE [36], [37].

Finally, we could study the automatic synthesis of con-
straints starting from higher-level representations, possibly
obtained by integrating our approach with the strategies
synthesizer Uppaal Stratego [95].

ACKNOWLEDGMENTS

Research supported by EU project QUANTICOL, 600708.
We thank Bicincittà and M. Bertini from PisaMo for the bike-
sharing case study. We also thank the reviewers for their
careful reading and their many insightful comments and
suggestions, which helped us to improve the presentation.

REFERENCES

[1] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[2] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles, and Techniques. Springer, 2005.

[3] S. Apel, D. S. Batory, C. Kästner, and G. Saake, Feature-Oriented
Software Product Lines: Concepts and Implementation. Springer, 2013.

[4] A. Gruler, M. Leucker, and K. D. Scheidemann, “Modeling and
Model Checking Software Product Lines,” in Proceedings of the 10th
International Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS’08), ser. LNCS, G. Barthe and F. S.
de Boer, Eds., vol. 5051. Springer, 2008, pp. 113–131.

[5] M. Erwig and E. Walkingshaw, “The Choice Calculus: A Represen-
tation for Software Variation,” ACM Trans. Softw. Eng. Methodol.,
vol. 21, no. 1, 2011.

[6] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay,
and J.-F. Raskin, “Featured Transition Systems: Foundations for
Verifying Variability-Intensive Systems and Their Application to
LTL Model Checking,” IEEE Trans. Softw. Eng., vol. 39, no. 8, pp.
1069–1089, 2013.

[7] M. H. ter Beek and E. P. de Vink, “Using mCRL2 for the Analysis
of Software Product Lines,” in Proceedings of the 2nd FME Workshop
on Formal Methods in Software Engineering (FormaliSE@ICSE’14),
S. Gnesi and N. Plat, Eds. ACM, 2014, pp. 31–37.

[8] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A Clas-
sification and Survey of Analysis Strategies for Software Product
Lines,” ACM Comput. Surv., vol. 47, no. 1, 2014.

[9] M. Tribastone, “Behavioral Relations in a Process Algebra for
Variants,” in Proceedings of the 18th International Software Product
Line Conference (SPLC’14), S. Gnesi, A. Fantechi, P. Heymans,
J. Rubin, and K. Czarnecki, Eds. ACM, 2014, pp. 82–91.

[10] M. H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti, “Modelling
and analysing variability in product families: Model checking
of modal transition systems with variability constraints,” J. Log.
Algebr. Meth. Program., vol. 85, no. 2, pp. 287–315, 2016.

[11] M. Lochau, S. Mennicke, H. Baller, and L. Ribbeck, “Incremental
model checking of delta-oriented software product lines,” J. Log.
Algebr. Meth. Program., vol. 85, no. 1, pp. 245–267, 2016.

[12] A. S. Dimovski, A. S. Al-Sibahi, C. Brabrand, and A. Wąsowski,
“Efficient family-based model checking via variability abstrac-
tions,” Int. J. Softw. Tools Technol. Transf., pp. 1–19, 2016.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 24

[13] M. H. ter Beek, E. P. de Vink, and T. A. C. Willemse, “Family-Based
Model Checking with mCRL2,” in Proceedings of the 20th Interna-
tional Conference on Fundamental Approaches to Software Engineering
(FASE’17), ser. LNCS, M. Huisman and J. Rubin, Eds., vol. 10202.
Springer, 2017, pp. 387–405.

[14] M. H. ter Beek, A. Lluch Lafuente, and M. Petrocchi, “Combining
Declarative and Procedural Views in the Specification and Anal-
ysis of Product Families,” in Proceedings of the 17th International
Software Product Line Conference (SPLC’13), vol. 2. ACM, 2013, pp.
10–17.

[15] M. H. ter Beek, A. Legay, A. Lluch Lafuente, and A. Vandin,
“Quantitative Analysis of Probabilistic Models of Software Prod-
uct Lines with Statistical Model Checking,” in Proceedings of the 6th
International Workshop on Formal Methods and Analysis for Software
Product Line Engineering (FMSPLE’15), ser. EPTCS, J. M. Atlee and
S. Gnesi, Eds., vol. 182, 2015, pp. 56–70.

[16] ——, “Statistical analysis of probabilistic models of software
product lines with quantitative constraints,” in Proceedings of the
19th International Software Product Line Conference (SPLC’15), D. C.
Schmidt, Ed. ACM, 2015, pp. 11–15.

[17] ——, “Statistical Model Checking for Product Lines,” in Proceed-
ings of the 7th International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation: Foundational Techniques
(ISoLA’16), ser. LNCS, T. Margaria and B. Steffen, Eds., vol. 9952.
Springer, 2016, pp. 114–133.

[18] V. Saraswat and M. Rinard, “Concurrent Constraint Program-
ming,” in Conference Record of the 17th Annual ACM Symposium
on Principles of Programming Languages (POPL’90), F. E. Allen, Ed.
ACM, 1990, pp. 232–245.

[19] M. G. Buscemi and U. Montanari, “CC-Pi: A Constraint-Based
Language for Specifying Service Level Agreements,” in Proceedings
of the 16th European Symposium on Programming (ESOP’07), ser.
LNCS, R. De Nicola, Ed., vol. 4421. Springer, 2007, pp. 18–32.

[20] L. Bortolussi, “Stochastic Concurrent Constraint Programming,”
ENTCS, vol. 164, pp. 65–80, 2006.

[21] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Staged Configura-
tion Using Feature Models,” in Proceedings of the 3rd International
Software Product Lines Conference (SPLC’04), ser. LNCS, R. L. Nord,
Ed., vol. 3154. Springer, 2004, pp. 266–283.

[22] J. Bürdek, S. Lity, M. Lochau, M. Berens, U. Goltz, and A. Schürr,
“Staged Configuration of Dynamic Software Product Lines with
Complex Binding Time Constraints,” in Proceedings of the 8th
International Workshop on Variability Modelling of Software-intensive
Systems (VaMoS’14), P. Collet, A. Wąsowski, and T. Weyer, Eds.
ACM, 2014.

[23] M. Cordy, P.-Y. Schobbens, P. Heymans, and A. Legay, “Beyond
Boolean Product-Line Model Checking: Dealing with Feature At-
tributes and Multi-features,” in Proceedings of the 35th International
Conference on Software Engineering (ICSE’13). IEEE, 2013, pp. 472–
481.

[24] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated Analysis
of Feature Models 20 Years Later: a Literature Review,” Inf. Syst.,
vol. 35, no. 6, 2010.

[25] J. Mauro, M. Nieke, C. Seidl, and I. C. Yu, “Context Aware Re-
configuration in Software Product Lines,” in Proceedings of the 10th
International Workshop on Variability Modelling of Software-intensive
Systems (VaMoS’16), I. Schaefer, V. Alves, and E. S. de Almeida,
Eds. ACM, 2016, pp. 41–48.

[26] M. Nieke, G. Engel, and C. Seidl, “DarwinSPL: An Integrated
Tool Suite for Modeling Evolving Context-aware Software Product
Lines,” in Proceedings of the 11th International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS’17), M. H. ter Beek,
N. Siegmund, and I. Schaefer, Eds. ACM, 2017, pp. 92–99.

[27] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer,
and C. Talcott, Eds., All About Maude — A High-Performance Logical
Framework: How to Specify, Program and Verify Systems in Rewriting
Logic, ser. LNCS, vol. 4350. Springer, 2007.

[28] S. Sebastio and A. Vandin, “MultiVeStA: Statistical Model Check-
ing for Discrete Event Simulators,” in ValueTools, A. Horvath,
P. Buchholz, V. Cortellessa, L. Muscariello, and M. S. Squillante,
Eds. ACM, 2013, pp. 310–315.

[29] L. M. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,”
in Proceedings of the 14th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’08), ser.
LNCS, C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963. Springer,
2008, pp. 337–340.

[30] C. Ghezzi and A. Molzam Sharifloo, “Model-based verification of
quantitative non-functional properties for software product lines,”
Inform. Softw. Technol., vol. 55, no. 3, pp. 508–524, 2013.

[31] M. Varshosaz and R. Khosravi, “Discrete Time Markov Chain Fam-
ilies: Modeling and Verification of Probabilistic Software Product
Lines,” in Proceedings of the 17th International Software Product Line
Conference (SPLC’13), vol. 2. ACM, 2013, pp. 34–41.

[32] C. Dubslaff, C. Baier, and S. Klüppelholz, “Probabilistic Model
Checking for Feature-Oriented Systems,” in Transactions on Aspect-
Oriented Software Development XII, ser. LNCS, S. Chiba, E. Tanter,
E. Ernst, and R. Hirschfeld, Eds., vol. 8989. Springer, 2015, pp.
180–220.

[33] G. N. Rodrigues, V. Alves, V. Nunes, A. Lanna, M. Cordy, P.-
Y. Schobbens, A. Molzam Sharifloo, and A. Legay, “Modeling
and Verification for Probabilistic Properties in Software Product
Lines,” in Proceedings of the 16th International Symposium on High-
Assurance Systems Engineering (HASE’15). IEEE, 2015, pp. 173–180.

[34] P. Chrszon, C. Dubslaff, S. Klüppelholz, and C. Baier, “ProFeat:
feature-oriented engineering for family-based probabilistic model
checking,” Form. Asp. Comp., vol. 30, no. 1, pp. 45–75, 2018.

[35] M. Z. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Ver-
ification of Probabilistic Real-Time Systems,” in CAV, ser. LNCS,
G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011,
pp. 585–591.

[36] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Le-
ich, “FeatureIDE: An extensible framework for feature-oriented
software development,” Sci. Comput. Program., vol. 79, pp. 70–85,
2014.

[37] J. Meinicke, T. Thüm, R. Schröter, F. Benduhn, T. Leich, and
G. Saake, Mastering Software Variability with FeatureIDE. Springer,
2017.

[38] P. DeMaio, “Bike-sharing: History, Impacts, Models of Provision,
and Future,” Journal of Public Transportation, vol. 12, no. 4, pp. 41–
56, 2009.

[39] P. Midgley, “Bicycle-Sharing Schemes: Enhancing Sustainable Mo-
bility in Urban Areas,” Background Paper CSD19/2011/BP8,
Commission on Sustainable Development, United Nations De-
partment of Economic and Social Affairs, May 2011.

[40] M. Bartoletti, T. Cimoli, M. Murgia, A. S. Podda, and L. Pompianu,
“A Contract-Oriented Middleware,” in Proceedings of the 12th
International Conference on Formal Aspects of Component Software
(FACS’15, ser. LNCS, C. Braga and P. C. Ölveczky, Eds., vol. 9539.
Springer, 2015.

[41] S. Arora, A. Rathor, and M. V. P. Rao, “Statistical Model Checking
of Opportunistic Network Protocols,” in Proceedings of the Asian
Internet Engineering Conference (AINTEC’15). ACM, 2015, pp. 62–
68.

[42] L. Belzner, R. Hennicker, and M. Wirsing, “OnPlan: A Framework
for Simulation-Based Online Planning,” in Proceedings of the 12th
International Conference on Formal Aspects of Component Software
(FACS’15, ser. LNCS, C. Braga and P. C. Ölveczky, Eds., vol. 9539.
Springer, 2015, pp. 1–30.

[43] D. Pianini, S. Sebastio, and A. Vandin, “Distributed Statistical
Analysis of Complex Systems Modeled Through a Chemical
Metaphor,” in Proceedings of the International Conference on High
Performance Computing & Simulation (HPCS’14). IEEE, 2014, pp.
416–423.

[44] S. Gilmore, M. Tribastone, and A. Vandin, “An Analysis Pathway
for the Quantitative Evaluation of Public Transport Systems,” in
Proceedings of the 11th International Conference on Integrated Formal
Methods (IFM’14), ser. LNCS, E. Albert and E. Sekerinski, Eds., vol.
8739. Springer, 2014, pp. 71–86.

[45] V. Ciancia, D. Latella, M. Massink, R. Paškauskas, and A. Vandin,
“A Tool-Chain for Statistical Spatio-Temporal Model Checking
of Bike Sharing Systems,” in Proceedings of the 7th International
Symposium on Leveraging Applications of Formal Methods, Verifica-
tion and Validation: Foundational Techniques (ISoLA’16), ser. LNCS,
T. Margaria and B. Steffen, Eds., vol. 9952. Springer, 2016, pp.
657–673.

[46] S. Sebastio, M. Amoretti, and A. Lluch Lafuente, “A Compu-
tational Field Framework for Collaborative Task Execution in
Volunteer Clouds,” in Proceedings of the 9th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS’14), G. Engels and N. Bencomo, Eds. ACM, 2014, pp.
105–114.

[47] L. Belzner, R. De Nicola, A. Vandin, and M. Wirsing, “Reasoning
(on) Service Component Ensembles in Re- writing Logic,” in

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 25

Specification, Algebra, and Software, ser. LNCS, S. Iida, J. Meseguer,
and K. Ogata, Eds., vol. 8373. Springer, 2014, pp. 188–211.

[48] A. Legay, B. Delahaye, and S. Bensalem, “Statistical Model Check-
ing: An Overview,” in Proceedings of the 1st International Conference
on Runtime Verification (RV’10), ser. LNCS, H. Barringer, Y. Falcone,
B. Finkbeiner, K. Havelund, I. Lee, G. J. Pace, G. Rosu, O. Sokolsky,
and N. Tillmann, Eds., vol. 6418. Springer, 2010, pp. 122–135.

[49] K. G. Larsen and A. Legay, “Statistical model checking: Past,
present, and future,” in Proceedings of the 6th International Sym-
posium on Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA’14), ser. LNCS, T. Margaria and B. Steffen, Eds.,
vol. 8802. Springer, 2014, pp. 135–142.

[50] P. Asirelli, M. H. ter Beek, A. Fantechi, and S. Gnesi, “Formal
Description of Variability in Product Families,” in Proceedings of the
15th International Software Product Lines Conference (SPLC’11), E. S.
de Almeida, T. Kishi, C. Schwanninger, I. John, and K. Schmid,
Eds. IEEE, 2011, pp. 130–139.

[51] M. H. ter Beek and E. P. de Vink, “Software Product Line Analysis
with mCRL2,” in Proceedings of the 18th International Software
Product Line Conference (SPLC’14), vol. 2. ACM, 2014, pp. 78–85.

[52] H. Beohar, M. Varshosaz, and M. R. Mousavi, “Basic behavioral
models for software product lines: Expressiveness and testing pre-
orders,” Sci. Comput. Program., vol. 123, pp. 42–60, 2016.

[53] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F.
Raskin, “Model Checking Lots of Systems: Efficient Verification of
Temporal Properties in Software Product Lines,” in Proceedings of
the 32nd International Conference on Software Engineering (ICSE’10).
ACM, 2010, pp. 335–344.

[54] A. Fantechi and S. Gnesi, “Formal modeling for product families
engineering,” in Proceedings of the 12th International Conference on
Software Product Line Engineering (SPLC’08). IEEE, 2008, pp. 193–
202.

[55] R. Muschevici, J. Proença, and D. Clarke, “Feature Nets: be-
havioural modelling of software product lines,” Softw. Sys. Model.,
vol. 15, no. 4, pp. 1181–1206, 2016.

[56] A. Classen, M. Cordy, P. Heymans, A. Legay, and P.-Y. Schobbens,
“Formal semantics, modular specification, and symbolic verifi-
cation of product-line behaviour,” Sci. Comput. Program., vol. 80,
no. B, pp. 416–439, 2014.

[57] M. Plath and M. Ryan, “Feature integration using a feature con-
struct,” Sci. Comput. Program., vol. 41, no. 1, pp. 53–84, 2001.

[58] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, and D. Beyer,
“Strategies for Product-line Verification: Case Studies and Experi-
ments,” in Proceedings of the 35th International Conference on Software
Engineering (ICSE’13). IEEE, 2013, pp. 482–491.

[59] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay, “Sym-
bolic model checking of software product lines,” in Proceedings of
the 33rd International Conference on Software Engineering (ICSE’11).
ACM, 2011, pp. 321–330.

[60] N. Macedo, J. Brunel, D. Chemouil, A. Cunha, and D. Kuperberg,
“Lightweight Specification and Analysis of Dynamic Systems with
Rich Configurations,” in Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(FSE’16). ACM, 2016, pp. 373–383.

[61] J. Meinicke, C. Wong, C. Kästner, T. Thüm, and G. Saake,
“On essential configuration complexity: measuring interactions in
highly-configurable systems,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE’16),
D. Lo, S. Apel, and S. Khurshid, Eds. ACM, 2016, pp. 483–494.

[62] H. Sabouri, M. M. Jaghoori, F. S. de Boer, and R. Khosravi,
“Scheduling and Analysis of Real-Time Software Families,” in Pro-
ceedings of the 36th Annual IEEE Computer Software and Applications
Conference (COMPSAC’12), X. Bai, F. Belli, E. Bertino, C. K. Chang,
A. Elçi, C. C. Seceleanu, H. Xie, and M. Zulkernine, Eds. IEEE,
2012, pp. 680–689.

[63] B. Schneier, 1999. [Online]. Available: https://www.schneier.
com/academic/archives/1999/12/attack_trees.html

[64] W. Lv and W. Li, “Space Based Information System Security Risk
Evaluation Based on Improved Attack Trees,” in Proceedings of the
3rd International Conference on Multimedia Information Networking
and Security (MINES’11). IEEE, 2011, pp. 480–483.

[65] M. Cordy, A. Classen, P. Heymans, A. Legay, and P.-Y. Schobbens,
“Model checking adaptive software with featured transition sys-
tems,” in Assurances for Self-Adaptive Systems: Principles, Models,
and Techniques, ser. LNCS, J. Cámara, R. de Lemos, C. Ghezzi, and
A. Lopes, Eds. Springer, 2013, vol. 7740, pp. 1–29.

[66] R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, and
A. Vandin, “A Conceptual Framework for Adaptation,” in Proceed-
ings of the 15th International Conference on Fundamental Approaches
to Software Engineering (FASE’12), ser. LNCS, J. de Lara and A. Zis-
man, Eds., vol. 7212. Springer, 2012, pp. 240–254.

[67] K. G. Larsen and B. Thomsen, “A Modal Process Logic,” in Pro-
ceedings of the 3rd Symposium on Logic in Computer Science (LICS’88).
IEEE, 1988, pp. 203–210.

[68] D. Fischbein, S. Uchitel, and V. A. Braberman, “A foundation for
behavioural conformance in software product line architectures,”
in Proceedings of the ISSTA Workshop on Role of Software Architecture
for Testing and Analysis (ROSATEA’06), R. M. Hierons and H. Muc-
cini, Eds. ACM, 2006, pp. 39–48.

[69] M. H. ter Beek, F. Damiani, S. Gnesi, F. Mazzanti, and L. Paolini,
“From Featured Transition Systems to Modal Transition Systems
with Variability Constraints,” in Proceedings of the 13th International
Conference on Software Engineering and Formal Methods (SEFM’15),
ser. LNCS, R. Calinescu and B. Rumpe, Eds., vol. 9276. Springer,
2015, pp. 344–359.

[70] K. Lauenroth, K. Pohl, and S. Töhning, “Model Checking of
Domain Artifacts in Product Line Engineering,” in Proceedings of
the 24th International Conference on Automated Software Engineering
(ASE’09). IEEE, 2009, pp. 269–280.

[71] K. G. Larsen, U. Nyman, and A. Wąsowski, “Modal I/O Automata
for Interface and Product Line Theories,” in Proceedings of the 16th
European Symposium on Programming (ESOP’07), ser. LNCS, R. De
Nicola, Ed., vol. 4421. Springer, 2007, pp. 64–79.

[72] M. Leucker and D. Thoma, “A Formal Approach to Software Prod-
uct Families,” in Proceedings of the 5th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA’12), Part I, ser. LNCS, T. Margaria and B. Steffen, Eds., vol.
7609. Springer, 2012, pp. 131–145.

[73] D. Clarke, M. Helvensteijn, and I. Schaefer, “Abstract Delta Mod-
eling,” ACM SIGPLAN Not., vol. 46, no. 2, pp. 13–22, Oct 2010.

[74] H. Zhang, H. Zou, F. Yang, and R. Lin, “Modeling and Analysis of
Behavioral Variability in Product Lines,” J. Inf. Comput. Sci, vol. 9,
no. 12, pp. 3589–3600, 2012.

[75] A. Gondal, M. Poppleton, and M. Butler, “Composing Event-B
Specifications - Case-Study Experience,” in Proceedings of the 10th
International Conference on Software Composition (SC’11), ser. LNCS,
S. Apel and E. K. Jackson, Eds., vol. 6708. Springer, 2011, pp.
100–115.

[76] J.-V. Millo, S. Ramesh, S. N. Krishna, and G. K. Narwane, “Com-
positional Verification of Software Product Lines,” in Proceedings
of the 10th International Conference on Integrated Formal Methods
(IFM’13), ser. LNCS, E. B. Johnsen and L. Petre, Eds., vol. 7940.
Springer, 2013, pp. 109–123.

[77] M. Kowal, I. Schaefer, and M. Tribastone, “Family-based perfor-
mance analysis of variant-rich software systems,” in Proceedings
of the 17th International Conference on Fundamental Approaches to
Software Engineering (FASE’14), ser. LNCS, S. Gnesi and A. Rensink,
Eds., vol. 8411. Springer, 2014, pp. 94–108.

[78] M. Kowal, M. Tschaikowski, M. Tribastone, and I. Schaefer, “Scal-
ing Size and Parameter Spaces in Variability-aware Software Per-
formance Models,” in Proceedings of the 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE’15), ser.
LNI, M. B. Cohen, L. Grunske, and M. Whalen, Eds., vol. 252.
IEEE, 2015, pp. 407–417.

[79] S. Soleimanifard, D. Gurov, and M. Huisman, “ProMoVer: Mod-
ular Verification of Temporal Safety Properties,” in Proceedings of
the 9th International Conference on Software Engineering and Formal
Methods (SEFM’11, ser. LNCS, G. Barthe, A. Pardo, and G. Schnei-
der, Eds., vol. 7041. Springer, 2011, pp. 366–381.

[80] I. Schaefer, D. Gurov, and S. Soleimanifard, “Compositional Algo-
rithmic Verification of Software Product Lines,” in Revised Papers
of the 9th International Symposium on Formal Methods for Components
and Objects (FMCO’10), ser. LNCS, B. K. Aichernig, F. S. de Boer,
and M. M. Bonsangue, Eds., vol. 6957. Springer, 2012, pp. 184–
203.

[81] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer, “De-
tection of feature interactions using feature-aware verification,”
in Proceedings of the 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE’11). IEEE, 2011, pp. 372–375.

[82] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda, “Model
Checking Programs,” Autom. Softw. Eng., vol. 10, no. 2, pp. 203–
232, 2003.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2853726, IEEE
Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 26

[83] D. Beyer and M. E. Keremoglu, “CPAchecker: A Tool for Config-
urable Software Verification,” in Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV’11), ser. LNCS,
G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011,
pp. 184–190.

[84] M. Cordy, A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay,
“ProVeLines: a product line of verifiers for software product
lines,” in Proceedings of the 17th International Software Product Line
Conference (SPLC’13), vol. 2. ACM, 2013, pp. 141–146.

[85] A. Classen, M. Cordy, P. Heymans, A. Legay, and P.-Y. Schobbens,
“Model checking software product lines with SNIP,” Int. J. Softw.
Tools Technol. Transf., vol. 14, no. 5, pp. 589–612, 2012.

[86] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV:
A New Symbolic Model Verifier,” in Proceedings of the 11th Interna-
tional Conference on Computer Aided Verification (CAV’99), ser. LNCS,
N. Halbwachs and D. A. Peled, Eds., vol. 1633. Springer, 1999,
pp. 495–499.

[87] M. H. ter Beek, F. Mazzanti, and A. Sulova, “VMC: A Tool for
Product Variability Analysis,” in Proceedings of the 18th Interna-
tional Symposium on Formal Methods (FM’12), ser. LNCS, D. Gian-
nakopoulou and D. Méry, Eds., vol. 7436. Springer, 2012, pp.
450–454.

[88] M. H. ter Beek and F. Mazzanti, “VMC: Recent Advances and
Challenges Ahead,” in Proceedings of the 18th International Software
Product Line Conference (SPLC’14), vol. 2. ACM, 2014, pp. 70–77.

[89] M. H. ter Beek and E. P. de Vink, “Towards Modular Verification
of Software Product Lines with mCRL2,” in Proceedings of the 6th
International Symposium on Leveraging Applications of Formal Meth-
ods, Verification and Validation (ISoLA’14), ser. LNCS, T. Margaria
and B. Steffen, Eds., vol. 8802. Springer, 2014, pp. 368–385.

[90] S. Cranen, J. F. Groote, J. J. A. Keiren, F. P. M. Stappers, E. P. de
Vink, W. Wesselink, and T. A. C. Willemse, “An Overview of the
mCRL2 Toolset and Its Recent Advances,” in Proceedings of the 19th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’13), ser. LNCS, N. Piterman and
S. A. Smolka, Eds., vol. 7795. Springer, 2013, pp. 199–213.

[91] J. F. Groote and M. R. Mousavi, Modeling and Analysis of Communi-
cating Systems. The MIT Press, 2014.

[92] M. H. ter Beek, E. P. de Vink, and T. A. C. Willemse, “Towards
a Feature mu-Calculus Targeting SPL Verification,” in Proceedings
of the 7th International Workshop on Formal Methods and Analysis
for Software Product Line Engineering (FMSPLE’16), ser. EPTCS,
J. Rubin and T. Thüm, Eds., vol. 206, 2016, pp. 61–75.

[93] A. S. Dimovski, A. S. Al-Sibahi, C. Brabrand, and A. Wąsowski,
“Family-Based Model Checking Without a Family-Based Model
Checker,” in Proceedings of the 22nd International SPIN Symposium
on Model Checking of Software (SPIN’15), ser. LNCS, B. Fischer and
J. Geldenhuys, Eds., vol. 9232. Springer, 2015, pp. 282–299.

[94] A. S. Dimovski and A. Wąsowski, “Variability-Specific Abstraction
Refinement for Family-Based Model Checking,” in Proceedings of
the 20th International Conference on Fundamental Approaches to Soft-
ware Engineering (FASE’17), ser. LNCS, M. Huisman and J. Rubin,
Eds., vol. 10202. Springer, 2017, pp. 406–423.

[95] A. David, P. G. Jensen, K. G. Larsen, M. Mikucionis, and J. H.
Taankvist, “Uppaal Stratego,” in Proceedings of the 21st International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’15), ser. LNCS, C. Baier and C. Tinelli, Eds., vol.
9035. Springer, 2015, pp. 206–211.

Maurice ter Beek Maurice is a researcher in the
Istituto di Scienza e Tecnologie dell’Informazione
(ISTI) of the Consiglio Nazionale delle Ricerche
(CNR) in Pisa, Italy. He obtained his Ph.D. in
Computer Science from the University of Leiden,
The Netherlands, with a thesis introducing Team
Automata. His broad research interests are in
formal methods and model-checking tools, ap-
plied in particular to service-oriented computing
and software product line engineering.

Axel Legay Axel is a researcher at the Institut
national de recherche en informatique et en au-
tomatique (INRIA Rennes, France). He received
his Ph.D. in Computer Science from the Univer-
sity of Liège, Belgium. His main research inter-
ests are in formal verification. He is a founder
and major contributor of statistical model check-
ing (a statistical variant of model checking effec-
tively used in industry). He is a referee for top
journals and conferences in formal verification.

Alberto Lluch Lafuente Alberto is an associate
professor at the Department of Applied Mathe-
matics and Computer Science of the Technical
University of Denmark. He received his Ph.D.
in Computer Science from the Albert Ludwigs
University of Freiburg im Breisgau, Germany. His
research interests are in formal methods for safe
and secure distributed systems, languages and
models for concurrency and coordination, soft-
ware engineering and artificial intelligence.

Andrea Vandin Andrea is Assistant Professor at
the Technical University of Denmark. Before that
he was an Assistant Professor at IMT School
for Advanced Studies Lucca, Italy until 2017,
and Senior Research Assistant at University of
Southampton, UK, until 2015. His main research
interests are in the development of scalable
techniques for the formal quantitative system
analysis. He is interested in applying his re-
search in practice, thus he provided tool support
for most of his contributions.

