
HAL Id: hal-01326878
https://inria.hal.science/hal-01326878v1

Submitted on 6 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Chemistry-Inspired Workflow Management System
for Decentralizing Workflow Execution

Héctor Fernandez, Cédric Tedeschi, Thierry Priol

To cite this version:
Héctor Fernandez, Cédric Tedeschi, Thierry Priol. A Chemistry-Inspired Workflow Management Sys-
tem for Decentralizing Workflow Execution. IEEE Transactions on Services Computing, 2016, 9 (2),
�10.1109/TSC.2013.27�. �hal-01326878�

https://inria.hal.science/hal-01326878v1
https://hal.archives-ouvertes.fr

TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YYYY 1

A Chemistry-Inspired Workflow Management
System for Decentralizing Workflow Execution

Héctor Fernandez, Cédric Tedeschi, Thierry Priol

Abstract—With the recent widespread adoption of service-oriented architecture, the dynamic composition of services is now a crucial
issue in the area of distributed computing. The coordination and execution of composite Web services are today typically conducted
by heavyweight centralized workflow engines, leading to an increasing probability of processing and communication bottlenecks and
failures. In addition, centralization induces higher deployment costs, such as the computing infrastructure to support the workflow
engine, which is not affordable for a large number of small businesses and end-users.
In a world where platforms are more and more dynamic and elastic as promised by cloud computing, decentralized and dynamic
interaction schemes are required. Addressing the characteristics of such platforms, nature-inspired analogies recently regained
attention to provide autonomous service coordination on top of dynamic large scale platforms.
In this paper, we propose an approach for the decentralized execution of composite Web services based on an unconventional
programming paradigm that relies on the chemical metaphor. It provides a high-level execution model that allows executing composite
services in a decentralized manner. Composed of services communicating through a persistent shared space containing control and
data flows between services, our architecture allows to distribute the composition coordination among nodes. A proof of concept is
given, through the deployment of a software prototype implementing these concepts, showing the viability of an autonomic vision of
service composition.

Index Terms—Service coordination, Workflow execution, Nature-inspired computing, Rule-based programming, Decentralization

F

1 INTRODUCTION

Loose coupling and dynamic composition are building block
requirements of service oriented architectures (SOA) [1], and
also two of the keys to their success. Building on these
concepts, the Internet of services is now a global computing
platform gathering myriads of autonomous services offering
different features such as storage space, computing power, or
more often software components offered to the users through
the web.

SOA is now a multipurpose paradigm, facilitating busi-
ness processes as well as helping scientific investigations
based on compute-intensive applications. In both fields, the
combinations of services allow to build more complex ap-
plications known as composite web services which are a
temporal composition of services usually represented by a
workflow, describing data and control dependencies between
services. Recently, and in spite of the decentralized nature
of the Internet, service infrastructures have built upon highly
centralized architectures. Data centers and Cloud platforms
act today as servers centralizing the storage and processing
required for the coordination of services and, more gener-
ally, of clients (users or businesses) of the Internet. As an
example, on April 2011, Amazon Elastic Compute Cloud

• H. Fernández is with the Vrije University Amsterdam, The Netherland.
E-mail: hector.fernandez@vu.nl

• C. Tedeschi is with the IRISA, University of Rennes 1, France.
E-mail: cedric.tedeschi@inria.fr

• T. Priol is with INRIA, France. E-mail: thierry.priol@inria.fr

(EC2) users experienced during 3 days an unavailability in
their websites due to network problems in one of the EC2
centers, causing important losses [2]. Beyond the fact that this
event showed the weaknesses of the backup services deployed
by Amazon, more generally, it highlights the weaknesses of
centralized architectures. Also, it forces clients to rethink their
cloud strategies by relying on more decentralized solutions.
Therefore, regarding the service management infrastructures,
the centralized architectures lead to various weaknesses. First,
they generally suffer from poor scalability and low reliability,
servers being potential processing and communication bottle-
necks as well as single points of failure [3]. Also, they raise
privacy issues, all data and control passing through central
servers and repositories.

It becomes crucial to promote a decentralized vision of
service infrastructures, as for instance suggested in [4]. The
benefits of a decentralized approach are manifold. First, as
the processing and data are distributed among a set of nodes,
there is no single point of failure. No central server acts
as a potential bottleneck, network traffic is reduced, and the
approach is globally more scalable. Second, the direct and
asynchronous fashion of communications (without the need
for central coordination) brings better throughput and graceful
degradation [5]. Finally, no server takes control over data and
work, each node integrating a local workflow engine (referred
to as local-engine in the following), and having only a partial
view of the composition.

More specifically, the execution of a composite Web service
relies on an engine responsible for coordinating data and
control flows between involved services. For the sake of
illustration, let us consider a simple workflow W consisting

TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YYYY 2

of an activity A performed at node a followed by activity
B performed at node b. In a centralized vision, during the
actual execution of W , the engine first invokes A by sending
a message to node a, then waits for the result of A (sent by a),
and finally invokes B. With a decentralized workflow engine,
nodes a and b may communicate directly (rather than through
a central coordinator node) to transfer data and control when
necessary (e.g., after A finishes).

Over the last few years, nature-inspired metaphors have
been shown to be of high interest for service coordination [6].
The chemical programming paradigm is a high-level execution
model. Within such a model, a computation is seen as a set of
reactions consuming some molecules floating and interacting
freely within a chemical solution (close to the biological notion
of membrane) and producing new ones. Reactions take place in
an implicitly parallel, autonomous, and decentralized manner.
This particular model has been shown to naturally express
distributed coordination [7]. The Higher-Order Chemical Lan-
guage (HOCL) [8] is a language based on these concepts and
providing the higher-order: every entity in the system is seen
as molecules; rules can apply to other reaction rules, opening
doors to self-adaptation, the program being able to modify
itself at run time. It has been shown that such a paradigm is
well-suited to express service orchestration [7], and describe
the enactment of workflows [9]. The proper investigation of
this paper is to show that the chemical model is well-featured
for underlying a decentralized execution of composite Web
services and give a proof of such a concept. More precisely,
the architecture proposed is decentralized in the sense that it
allows each service to take part in the coordination needed to
ensure the satisfaction of the (data and control) dependencies
expressed in the workflow. Note that this distribution builds on
top of a logically shared space. This shared space acts only as
a repository with Read/Write primitives. The decentralization
of this shared space is not directly tackled in this paper.

This article builds upon a previous one published in the
proceedings of the ICWS conference [10]. The work presented
in [10] is only conceptual and does not include any software
development or experimental validation. The added value of
the current article comes from the discussion of a proof of
concepts and its actual deployment on top of a real platform,
allowing its experimental validation. It is worth noting that the
current article sums up the work conducted on the topic and
thus represents a self-contained report on the subject.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the chemical programming paradigm in more
details. Section 3 details our decentralized coordination model
and language. Section 4 illustrates the work by an example of
coordination of a more complex workflow. Section 5 focuses
on the prototype software of the decentralized workflow engine
thus designed. Section 6 details the experimental campaign and
its results. Section 7 discusses similar works. Section 8 draws
some conclusions.

2 THE CHEMICAL PARADIGM

The chemical paradigm is a programming style based on
the chemical metaphor. Molecules (data) are floating in a

chemical solution, and react according to reaction rules (pro-
gram) to produce new molecules (resulting data). Reactions
are conditional, and take place between some molecules
satisfying a reaction condition. This process continues until
no more reactions can be performed: the solution is said to
be inert. Reactions take place in an implicitly parallel and
autonomous way (independently from each other), and in a
non-deterministic order.

Formally, the solution is represented by a multiset contain-
ing molecules, and rewriting/transformation rules specify the
reactions between molecules. The Gamma model (General
Abstract Model for Multiset Manipulation) [11] has been a
pioneer work realizing the chemical paradigm. The multiset,
which is the formal representation of the chemical solution, is
the unique data structure in Gamma. The multiset works sim-
ilarly to a shared address space on which multiple processors
can operate independently, applying the rules concurrently.

In this paper, we use a chemical language enhanced with
higher order, called HOCL (Higher Order Chemical Lan-
guage) [8]. In HOCL, every entity is a molecule, including
reaction rules. A program is a solution of molecules, that is to
say, a multiset of atoms (A1, . . . , An) which can be constants
(integers, booleans, etc.), sub-solutions (denoted 〈Mi〉), or
reaction rules.

Following the chemical paradigm, the execution of an
HOCL program consists in applying reactions until the so-
lution becomes inert. A reaction involves a reaction rule one
P by M if V and a molecule N that satisfies the pattern P
and the reaction condition V . The reaction consumes the rule
and the molecule N, and produces M. The basic one P by M
C reaction rule is one-shot: it disappears when it reacts. Its
variant replace P by M C is n-shot: it is not consumed when
it reacts. In the following, we use a more advanced syntax to
declare and name molecules: let x = M1 in M2 is equivalent
to M2 where all occurrences of x are replaced by M1. For
instance, consider the following solution MaxNumbers which
calculates the maximum value of a given set of numbers.
The below example illustrates the expressiveness and higher
order of HOCL, where reactions consume and/or produce other
reaction rules.

let max = replace x, y by x if x ≥ y in 〈2, 3, 5, 8, 9,max〉

The rule max reacts with two integers x and y such that x ≥
y and replaces them by x (keep the integer with highest value).
Initially, several reactions are possible: max can react with any
couples of integers satisfying the condition: 2 and 3, 2 and 5,
8 and 9, etc. In order for the final solution to contain only the
result, we introduce a higher-order rule responsible to delete
the max rule once the solution only contain the highest integer
value. This introduces the need for the sequentiality of events:
we need to wait that all possible reactions between max and
couples of integers took place before deleting the rule. Within
the chemical model, the sequentiality is achieved through sub-
solutions: to access a sub-solution, a rule has to wait for its
inertia. In our example, this leads to the encapsulation of the
solution:

TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YYYY 3

〈〈2, 3, 5, 8, 9,max〉, one 〈max = m,ω〉 by ω〉

The m variable matches a rule named max, and ω matches
all the remaining elements. One possible execution scenario
within the sub-solution is the following (2 and 8, as well as 3
and 5, react first, producing the intermediate state):

〈2, 3, 5, 8, 9,max〉 →∗ 〈3, 5, 9,max〉 →∗ 〈9,max〉

Once the inertia is reached within the sub-solution, the one-
shot rule can be triggered, extracting the result:

〈〈9,max〉, one 〈max = m,ω〉 by ω〉 → 〈9〉

As we illustrated with a fine-grain example, HOCL provides
the ability to express autonomic coordination of rules (without
the need for any centralized control). The current state of a
computation is represented by the solution, that constitutes an
information system by itself. In other words, the multiset is a
shared space providing the information required for dynamic
coordination, such as a decentralized workflow execution.

3 CHEMICAL DECENTRALIZED WORKFLOW
EXECUTION

In this section, we describe our decentralized architecture
for workflow coordination based on a higher-order chemical
framework, illustrating the adequacy of the chemical paradigm
to execute composite Web services.

3.1 Architecture

As illustrated by Figure 1, the proposed architecture is com-
posed by two core elements, namely the Chemical Web
Service (ChWS) and the multiset. A ChWS is a chemical
encapsulation of a Web service. It is co-responsible with other
ChWSes of the coordination of the execution of workflows.
Physically, ChWSes are hosted by some nodes and logically
identified by symbolic names into the multiset. Each ChWS
is basically equipped with three elements, namely:

1) The service caller represents the encapsulation of a
Web service invocation. The invocation, to an effec-
tive possibly distant Web service, is encapsulated in a
chemical expression readable by a chemical interpreter.
The implementation of the Web service itself is not
encapsulated, as shown in Figure 1.

2) A local storage space containing part of the multiset,
i.e., molecules and reaction rules constituting the data
and control dependencies related to the coordination of
the workflow execution.

3) An HOCL interpreter, working as the chemical local-
engine executing the reactions according to molecules
and reaction rules stored in the multiset, responsible for
applying the defined workflow patterns and transferring
data and control information to other ChWSes involved
in a workflow.

The multiset acts as a space shared by all ChWSes involved
in the workflow. It contains the workflow definition and all
information needed by ChWSes for a decentralized execution
of a workflow, and in which each ChWS can operate inde-
pendently. This information combines molecules representing
data and ChWSes, rules representing control dependencies of
the workflow, and rules for the coordination of its execution,
as illustrated by Figure 2. Data and control dependencies of
the workflow are defined beforehand using some workflow
executable languages, like the well-known BPEL [12], an
XML-based workflow language for Web services, or any
other workflow language. For instance, a BPEL specification
could be translated into a chemical program, as detailed in
Section 3.2. Even though HOCL is used to describe and
execute workflow specifications, our purpose is to show its
potential as an executable workflow language, as detailed
in [13]. To coordinate the execution of the workflow, we also
need some additional chemical rules, which are generic, i.e.,
independent of a specific workflow. Section 3.3 focuses on
these generic rules.

Fig. 1. The proposed architecture.

The multiset shares some conceptual similarities with the
Distributed Shared Memory (DSM) paradigm [14], developed
in the area of distributed operating systems. DSM maps a
globally unique logical memory address to a local physical
memory slot, thus emulating a shared global space on top of
a distributed memory platform. By analogy, multiset mirrors
DSM’s behavior by exposing molecules and reactions rules
physically scattered across a set of ChWSes in a single shared
space.

Fig. 2. Chemical workflow.

TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YYYY 4

In other words, from a conceptual point of view (illustrated
by Figure 1), ChWSes communicate through a unique global
multiset containing all information needed by ChWSes to
execute their part of a workflow. ChWSes exchange data
and control dependencies through this multiset. In a classical
centralized workflow architecture, the services themselves
do not know these dependencies, as an engine manages all
information and coordinates the whole execution.

Fig. 3. Points of view of the architecture.

From an implementation point of view, the multiset is
physically distributed. While apparently, each ChWS only
interacts with the multiset, physically, data and control in-
formation (molecules and reaction rules of the multiset) are
effectively transferred between local storages of ChWSes. Put
together, the molecules stored by ChWS form the multiset.
Figure 3 summarizes these two points of view: the upper
side shows the conceptual point of view where all ChWSes
are connected through one multiset; the lower part shows
the implementation point of view where all ChWSes are
directly interconnected through the multiset, the reactions
and molecules being directly transferred from one ChWS to
another one using a distributed multiset. In this paper, we
will assume that distributing the shared space is possible and
will focus on decentralizing the coordination processing itself.
Please refer to [15] for more information on how to distribute
the shared space. Figure 3 provides a simple example where all
ChWS are connected through a sequential workflow (modeled
by arrows), but any workflow pattern could be modeled, as we
detailed in our previous work [16].

3.2 Chemical Workflow Representation
In order to express all data and control dependencies of a
workflow definition according to the chemical paradigm and
to distribute the information among ChWSes, we use a series
of chemical abstractions inspired by the work in [9]. These
abstractions allow representing a workflow definition with the
HOCL language. Such a representation is given in Figure 6.

As a chemical expression, the whole solution represents the
multiset containing all information. The solution itself is com-
posed of as many sub-solutions as ChWSes. Each sub-solution

represents a ChWS with its data and control dependencies with
other ChWSes within the workflow definition. More formally,
a ChWS is one molecule of the form ChWSi : 〈. . . 〉 where
ChWSi refers to the symbolic name given to the service whose
connection details and physical position are hidden, as shown
in Figure 6.

1.01 〈 // Multiset (Solution)

1.02 ChWSi:〈. . . 〉 // ChWS (Sub-solution)

1.03 ChWSi+1:〈. . . 〉

1.04 . . .
1.05 ChWSn:〈 . . . 〉

1.06 〉

Fig. 4. Chemical workflow representation

Let us consider a simple workflow expressed using BPMN
(Business Process Modeling Notation) [17], and composed of
the four services S1, S2, S3 and S4, as illustrated in Figure 5.
In this example, after S1 completes, S2 and S3 can be invoked
in parallel. Once S2 and S3 have both completed, S4 can be
invoked.

Fig. 5. Simple workflow example.

The corresponding chemical representation for this work-
flow is presented in Figure 6. As we already mentioned,
the solution contains as many sub-solutions as Web services.
ChWS1 : 〈. . . 〉 to ChWS4 : 〈. . . 〉 represent ChWSes in the
solution. The relations between ChWSes are expressed through
molecules of the form DEST:ChWSi with ChWSi being
the destination ChWS where some information needs to be
transferred. For instance, we can see in ChWS1 sub-solution
that ChWS1 will transfer some information (the outcome of
ChWS1) to ChWS2 and ChWS3 (Line 2.02).

Let us focus on the details of these dependencies.
ChWS2 has a data dependency: it requires a molecule RE-
SULT:ChWS1:value1 containing the result of S1 to be invoked
(second part of Line 2.04). The two molecules produced by
the reaction represent the call to S2 and their input parameters.
They are expressed using a molecule of the form CALL:Si, and
a molecule PARAM:〈in1,...,inn〉, where in1, ..., inn represent
the input parameters to call the service Si. In Figure 6, this
input parameter corresponds to the result of some previous
service Sj . ChWS3 works similarly.

Occasionally, on a particular service, data and control
dependencies may differ. Consider ChWS4. As specified by
Figure 6, ChWS4 needs to wait until ChWS2 and ChWS3 have
been completed. This constitutes a control dependency known
as synchronization. However, as we can see in line 2.08, the

TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YYYY 5

2.01 〈

2.02 ChWS1:〈DEST:ChWS2, DEST:ChWS3〉,

2.03 ChWS2:〈DEST:ChWS4, replace RESULT:ChWS1:value1

2.04 by CALL:S2, PARAM:〈(value1)〉 〉,

2.05 ChWS3:〈DEST:ChWS4, replace RESULT:ChWS1:value1

2.06 by CALL:S3, PARAM:〈(value1)〉 〉,

2.07 ChWS4:〈replace RESULT:ChWS2:value2, RESULT:ChWS3:value3

2.08 by CALL:S4, PARAM:〈(value2)〉

2.09 〉

Fig. 6. Chemical representation for the workflow of Fig-
ure 5

service S4 is invoked only on value2 which is the result of S2.
This constitutes a data dependency. The ChWS4 sub-solution
contains one reaction rule translating those dependencies in
chemical language (see line 2.08): the presence of molecules
RESULT:ChWS2:value2 and RESULT:ChWS3:value3 inside
the ChWS4 sub-solution expresses the fulfillment of the
control dependencies, to start its own execution. In addition,
a data dependency is also expressed in ChWS4: the result of
S2 is required to call S4. During the execution, as soon as
RESULT:ChWS2:value2 and RESULT:ChWS3:value3 appear
in the ChWS4 sub-solution, the local engine of ChWS4 will
be able to perform the reaction that will produce two new
molecules of the form CALL:S4 and PARAM:〈 (value2) 〉 to
call the effective service S4 on the input value2.

To sum up, one reaction rule can express both control
and data dependencies. In contrast with the previous synchro-
nization pattern, the simple data dependencies are enough to
express the parallel split pattern of S1 with S2 and S3. Thanks
to the implicit parallelism of the chemical execution model, the
reaction rules inside ChWS2 and ChWS3 can be executed
in parallel. Therefore, ChWS2 and ChWS3 will receive the
result of S1 from ChWS1 and the invocation of S2 and S3

will take place in parallel.
This fragment of HOCL code is the chemical representation

of a workflow, that will be interpreted by chemical local en-
gines, performing the decentralized execution of this workflow
thanks to a set of generic rules we introduce in the next
sections.

3.3 Generic Rules for Invocation and Transfer
As previously mentioned, to ensure the execution of a chem-
ical workflow, additional chemical generic rules (i.e., inde-
pendent of any workflow) must be defined. These rules are
included in the chemical local engines and are responsible for
the efficient execution of the workflow. We now review three
of these generic rules, illustrated in Algorithm 1, responsible
for these tasks, and that will be commonly encountered in
the compositions presented later. The invokeServ rule encap-
sulates the actual invocation of services. When reacting, it
invokes the Web Service Si, by consuming the tuples CALL:Si
representing the invocation itself, and PARAM:〈in1,...,inn〉
representing its input parameters, and generates the molecules

containing the results of the invocation in the ChWSi sub-
solution. The molecule FLAG INVOKE is a flag whose pres-
ence in the solution indicates that the invocation can take
place. The preparePass rule is used for preparing the mes-
sages to transfer the results to their destination services,
that will later trigger the execution of the passInfo rule.
Thus, the preparePass rule captures one molecule of the
form ChWSi:〈RESULT:ChWSi:〈value〉, DEST:ChWSj, ω 〉.
RESULT:ChWSi:〈value〉 is the result of Si, while DEST:ChWSj
comes from the chemical specification of the workflow such
as the one presented in Figure 6.

Algorithm 1 Basic generic rules.

3.01 let invokeServ = replace ChWSi:〈CALL:Si, PARAM:〈in1, . . . , inn〉,

3.02 FLAG INVOKE, ω 〉,

3.03 by ChWSi:〈RESULT:ChWSi:〈value〉, ω 〉

3.04 let preparePass = replace ChWSi:〈RESULT:ChWSi:〈value〉, DEST:ChWSj, ω〉

3.05 by ChWSi:〈PASS:ChWSj:〈COMPLETED:ChWSi:〈value〉 〉, ω〉

3.06 let passInfo = replace ChWSi:〈PASS:ChWSj:〈 ω1 〉, ω2 〉, ChWSj:〈 ω3 〉

3.07 by ChWSi:〈 ω2 〉, ChWSj:〈 ω1, ω3 〉

Rule passInfo transfers molecules of information between
ChWSes. This rule reacts with a molecule ChWSi:〈PASS:d:〈ω1

〉〉 that indicates that some molecules (here denoted ω1) from
ChWSi needs to be transferred to d. These molecules, once
inside the sub-solution of d will trigger the next step of the
execution. Therefore, the molecule ω1 will be transferred from
sub-solution ChWSi to sub-solution ChWSj, when reacting
with passInfo rule.

Thanks to these reaction rules, the execution of a chem-
ical workflow is decentralized since each ChWS is able to
execute rules using its embedded HOCL interpreter, each
ChWS achieving the coordination related to the service it
encapsulates. However, they can not, by themselves, solve
how to distribute the workflow patterns responsibilities among
participants1. Accordingly, we defined a set of generic rules
for solving complex workflow pattern, as detailed in our
work [13]. We do not include them here, as the chemical
definition of complex workflow structures is not our main
concern in this paper.

4 EXECUTION EXAMPLE

To better understand how the coordination between chemical
engines works, we here present the execution of the workflow
example illustrated in Figure 6, for which we focus on
each step of the coordination logic. These steps are listed
in Figures 7 (steps 1-3), 8 (steps 4-7) and 9 (steps 8-10).
Recall that, thanks to the higher-order property, reaction rules
react themselves with other molecules. As we have discussed
already, the example is composed by four ChWSes applying
parallel split and synchronization patterns. The execution is
as follows: After ChWS1 completes, it forwards the result to
ChWS2 and ChWS3 in parallel. Once ChWS2 and ChWS3 have
completed, ChWS4 can start. Consider that each chemical local

1. Each ChWS is seen as a participant in a workflow definition.

TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YYYY 6

engine is responsible for the reactions taking place within its
sub-solution in the multiset, thus respecting at runtime the
decentralization designed. Indeed, for the sake of clarity, we
only mention the molecules that take part in the logic of the
coordination.

The first step (Lines 4.02-4.05) corresponds to the initial
state of the multiset, illustrated in Figure 7. Initially, the
only possible reaction is inside ChWS1, the invokeServ rule
is triggered by the HOCL interpreter of ChWS1, producing
the outcome molecule RESULT:ChWS1:〈val〉. This molecule
represents the result of the invocation of S1. Then, the pre-
parePass rule consumes the molecules DEST:destination and
RESULT:ChWS1:〈val〉, preparing the parallel split. Therefore,
it produces two new molecules for the distribution of this
result to ChWS2 and ChWS3 (Line 4.20). Finally, still through
ChWS1, passInfo triggers it by transferring in parallel the
outcome of ChWS1.

Once the information is received by ChWS2 and ChWS3,
the reactions (Lines 5.04 and 5.06) are triggered, in parallel,
producing the needed molecules to invoke S2 and S3. Thus,
molecules of the form CALL:Si and PARAM:(val) contained
into ChWS2 and ChWS3 respectively, launch the invokeServ
rule (Lines 5.03-5.05) that generates the result of S2 and S3.
Similarly to ChWS1, the molecules RESULT:ChWS2:〈val2〉
and RESULT:ChWS3:〈val3〉 react with the preparePass rule.
Finally, in ChWS2 and ChWS3, the passInfo rule propa-
gates the molecule PASS:ChWS4:〈 information 〉 to ChWS4
(Lines 5.23-5.24).

The execution ends with steps in Figure 9, processed by
ChWS4’s local engine. Once the information from ChWS2 and
ChWS3 is received by ChWS4, the reaction rule (Line 6.06) can
react with results molecules to produce two new molecules for
invoking service S4 (Line 6.12). Finally, invokeServ rule will
take place producing the final result RESULT:ChWS4:〈val4〉.

With this example, we have shown that local engines within
ChWSes are co-responsible for applying workflow patterns,
invoking services, and propagating the information to other
ChWSes. The coordination is achieved as reactions become
possible, in an asynchronous and decentralized manner.

5 SOFTWARE PROTOTYPE

To put in practice and validate the concepts presented, we have
developed an architectural framework and two software proto-
types exhibiting different processing and communication tech-
niques. Firstly, we developed a decentralized, shared space-
based architecture inspired by that presented in Section 3.
This architecture is composed of a set of chemical engines
collaborating through a multiset acting as a shared space.
Service interactions are loosely coupled, a property inherited
by the adoption of the tuplespace model. The computation is
decentralized (even if the multiset remains a centralized.) Sec-
ondly, and for the sake of comparison and discussion, we also
developed a centralized architecture, which is composed of
a unique chemical engine playing the same role as traditional
workflow engines. Both prototypes are written in Java and built
atop an HOCL interpreter based on on-the-fly compilation of
HOCL specifications [18]. The table below summarizes them:

4.01 〈

4.02 ChWS1:〈DEST:ChWS2,DEST:ChWS3, invokeServ, preparePass, passInfo,

CALL:S1, PARAM:in1〉,

4.03 ChWS2:〈DEST:ChWS4, invokeServ, preparePass, passInfo,

replace COMPLETED:ChWS1:〈val〉 by CALL:S2, PARAM:(val)〉,

4.04 ChWS3:〈DEST:ChWS4, invokeServ, preparePass, passInfo,

replace COMPLETED:ChWS1:〈val〉 by CALL:S3 PARAM:(val)〉,

4.05 ChWS4:〈invokeServ,

replace COMPLETED:ChWS2:〈val2〉, COMPLETED:ChWS3:〈val3〉

by CALL:S4, PARAM:(val2)〉

4.06 〉

↓

4.07 〈

4.08 ChWS1:〈DEST:ChWS2,DEST:ChWS3, preparePass, passInfo, invokeServ,

CALL:S1, PARAM:in1 〉,

4.09 ChWS2:〈DEST:ChWS4, invokeServ, preparePass, passInfo,

replace COMPLETED:ChWS1:〈val〉 by CALL:S2, PARAM:(val)〉,

4.10 ChWS3:〈DEST:ChWS4, invokeServ, preparePass, passInfo,

replace COMPLETED:ChWS1:〈val〉 by CALL:S3 PARAM:(val)〉,

4.11 ChWS4:〈invokeServ,

replace COMPLETED:ChWS2:〈val2〉, COMPLETED:ChWS3:〈val3〉

by CALL:S4, PARAM:(val2)〉

4.12 〉

↓

4.13 〈

4.14 ChWS1:〈DEST:ChWS2,DEST:ChWS3, preparePass, passInfo,

RESULT:ChWS1:〈val〉〉,

4.15 ChWS2:〈DEST:ChWS4, invokeServ, preparePass, passInfo,

replace COMPLETED:ChWS1:〈val〉 by CALL:S2, PARAM:(val)〉,

4.16 ChWS3:〈DEST:ChWS4, invokeServ, preparePass, passInfo,

replace COMPLETED:ChWS1:〈val〉 by CALL:S3 PARAM:(val)〉,

4.17 ChWS4:〈invokeServ,

replace COMPLETED:ChWS2:〈val2〉, COMPLETED:ChWS3:〈val3〉

by CALL:S4, PARAM:(val2)〉

4.18 〉

↓

4.19 〈

4.20 ChWS1:〈passInfo, PASS:ChWS2:〈COMPLETED:ChWS1:〈val〉 〉,

RESULT:ChWS1:〈val〉, PASS:ChWS3:〈COMPLETED:ChWS1:〈val〉 〉 〉,

4.21 ChWS2:〈DEST:ChWS4, invokeServ, preparePass, passInfo,

replace COMPLETED:ChWS1:〈val〉 by CALL:S2, PARAM:(val)〉,

4.22 ChWS3:〈DEST:ChWS4, invokeServ, preparePass, passInfo,

replace COMPLETED:ChWS1:〈val〉 by CALL:S3 PARAM:(val)〉,

4.23 ChWS4:〈invokeServ,

replace COMPLETED:ChWS2:〈val2〉, COMPLETED:ChWS3:〈val3〉

by CALL:S4, PARAM:(val2)〉

4.24 〉

Fig. 7. Workflow execution, steps 1-3.

TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YYYY 7

5.01 〈

5.02 ChWS1:〈RESULT:ChWS1:〈val〉 〉,

5.03 ChWS2:〈DEST:ChWS4, invokeServ, preparePass, passInfo,

COMPLETED:ChWS1:〈val〉,

5.04 replace COMPLETED:ChWS1:〈val〉 by CALL:S2, PARAM:(val)〉,

5.05 ChWS3:〈DEST:ChWS4, invokeServ, preparePass, passInfo,

COMPLETED:ChWS1:〈val〉,

5.06 replace COMPLETED:ChWS1:〈val〉 by CALL:S3, PARAM:(val)〉,

5.07 ChWS4:〈invokeServ,

replace COMPLETED:ChWS2:〈val2〉, COMPLETED:ChWS3:〈val3〉

by CALL:S4, PARAM:(val2)〉

5.08 〉

↓

5.09 〈

5.10 ChWS1:〈RESULT:ChWS1:〈val〉 〉,

5.11 ChWS2:〈DEST:ChWS4, invokeServ, preparePass, passInfo,

CALL:S2, PARAM:(val)〉,

5.12 ChWS3:〈DEST:ChWS4, invokeServ, preparePass, passInfo,

CALL:S3, PARAM:(val)〉,

5.13 ChWS4:〈invokeServ,

replace COMPLETED:ChWS2:〈val2〉, COMPLETED:ChWS3:〈val3〉

by CALL:S4, PARAM:(val2)〉

5.14 〉

↓

5.15 〈

5.16 ChWS1:〈RESULT:ChWS1:〈val〉 〉,

5.17 ChWS2:〈DEST:ChWS4, RESULT:ChWS2:〈val2〉, preparePass, passInfo〉,

5.18 ChWS3:〈DEST:ChWS4, RESULT:ChWS3:〈val3〉, preparePass, passInfo〉,

5.19 ChWS4:〈invokeServ,

replace COMPLETED:ChWS2:〈val2〉, COMPLETED:ChWS3:〈val3〉

by CALL:S4, PARAM:(val2)〉

5.20 〉

↓

5.21 〈

5.22 ChWS1:〈RESULT:ChWS1:〈val〉 〉,

5.23 ChWS2:〈PASS:ChWS4:〈COMPLETED:ChWS2:〈val2〉 〉, passInfo,

RESULT:ChWS2:〈val2〉 〉,

5.24 ChWS3:〈PASS:ChWS4:〈COMPLETED:ChWS3:〈val3〉 〉, passInfo,

RESULT:ChWS3:〈val3〉 〉,

5.25 ChWS4:〈invokeServ,

replace COMPLETED:ChWS2:〈val2〉, COMPLETED:ChWS3:〈val3〉

by CALL:S4, PARAM:(val2)〉

5.26 〉

Fig. 8. Workflow execution, steps 4-7.

6.01 〈

6.02 ChWS1:〈RESULT:ChWS1:〈val〉 〉,

6.03 ChWS2:〈RESULT:ChWS2:〈val2〉 〉,

6.04 ChWS3:〈RESULT:ChWS3:〈val3〉 〉,

6.05 ChWS4:〈invokeServ,COMPLETED:ChWS2:〈val2〉,COMPLETED:ChWS3:〈val3〉,

6.06 replace COMPLETED:ChWS2:〈val2〉, COMPLETED:ChWS3:〈val3〉

by CALL:S4, PARAM:(val2)〉

6.07 〉

↓

6.08 〈

6.09 ChWS1:〈RESULT:ChWS1:〈val〉 〉,

6.10 ChWS2:〈RESULT:ChWS2:〈val2〉 〉,

6.11 ChWS3:〈RESULT:ChWS3:〈val3〉 〉,

6.12 ChWS4:〈invokeServ, CALL:S4, PARAM:(val2)〉

6.13 〉

↓

6.14 〈

6.15 ChWS1:〈RESULT:ChWS1:〈val〉 〉,

6.16 ChWS2:〈RESULT:ChWS2:〈val2〉 〉,

6.17 ChWS3:〈RESULT:ChWS3:〈val3〉 〉,

6.18 ChWS4:〈RESULT:ChWS4:〈val4〉 〉

6.19 〉

Fig. 9. Workflow execution, steps 8-10.

Centralized Arch. Decentralized Arch.
Execution Centralized Decentralized
Multiset Centralized Centralized
Communication Loosely coupled Loosely coupled

5.1 Centralized version

Following the examples of most of workflow management
systems, the coordination can be managed by single node,
referred to as the chemical workflow service, as illustrated by
Figure 10.

As mentioned in Section 3, the workflow definition is
executed as a chemical program by the chemical workflow ser-
vice. The low layer of the architecture is an HOCL interpreter.
Given a workflow specification as input (an HOCL program),
it executes the workflow coordination by reading and writing
the multiset initially fed with the workflow definition. The
interface between the chemical engine and the distant services
themselves is realized through the service caller. The service
caller relies on the DAIOS framework [19], which provides an
abstraction layer allowing the dynamic connection to different
flavors of services (SOAP or RESTFul), abstracting the target
service’s internals. DAIOS was specially extended with a
module which automatically generates dynamic bindings, as
well as input and output messages required between the
chemical engine and a Web service.

TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YYYY 8

Fig. 10. Centralized architecture.

5.2 Decentralized version

This framework is similar to the previous architecture, however
the functionality of the multiset represents the main difference
with the centralized version, as illustrated by Figure 11. The
multiset is initially fed with the HOCL specification of the
workflow. The multiset acts as a shared space playing the role
of a communication medium and a storage system, while each
ChWS involved will take its part in the coordination process.
As such, the coordination workload 2 is now distributed among
the ChWSes participating in the workflow.

As we detailed in Section 3.2, the workflow definition
is comprised of one sub-solution per WS involved; the in-
formation in one sub-solution can only be accessed by the
ChWS owner of/represented by that sub-solution. On each
ChWS, a local storage space acts as a temporary container
for the sub-solution to be processed by the local HOCL
interpreter. The interface between a ChWS and a concrete
WS is still realized through the service caller based on the
DAIOS framework. ChWSes communicate with the multiset
through the Java Message Service (JMS) publisher/subscriber
modules. The multiset is encapsulated into a JMS server to
allow concurrent reading and writing operations by ChWSes.
Periodically, and independently from each other, ChWSes
read their sub-solution from the multiset. The sub-solution
obtained is then locally processed by the ChWS’s local HOCL
interpreter and then pushed back to the multiset for update.

2. The coordination workload includes all the workflow operations related
with the processing of workflow structures.

Fig. 11. Decentralized architecture.

This architecture follows a loosely coupled interaction
model, as ChWSes only keep a reference to the shared space,
instead of having a reference to each ChWS with which they
interact.

5.2.1 Communications
As mentioned above, communication mechanisms are im-
plemented with JMS. JMS modules are included into the
ChWSes, and the multiset is a JMS server.

The publish/subscribe messaging model is used by the
ChWSes and the multiset whereby message producers called
publishers pushing each message to each interested party
called subscribers. Initially, the Multiset PUBlisher pushes the
content of each WSi solution to each ChWSes LIStener. On
the ChWS’s side, the ChWS LIStener receives the content of
the ChWSi solution which will be copied into its local multi-
set. Once the HOCL interpreter is done with its execution, the
ChWS PUBlisher pushes the content of its sub-solution into
the Multiset LIStener.

Recall that the decentralized architecture is distributed, a
JMS server into the multiset is needed to coordinate all these
messages. Concretely, we use ActiveMQ (version 5.4.1) an
implementation of the JMS 1.1 specification, which can be
embedded in a Java application server. This ActiveMQ server
allows to register and save all the message exchanges between
subscribers and publishers. The exchanged messages are stored
in the server, allowing them to be used in the future if a
problem arises during the transaction.

6 EXPERIMENTAL RESULTS
Our objective is here to better capture the behavior of a
decentralized chemistry-based workflow system. To achieve
it, we processed workflows with different characteristics using
our centralized and decentralized prototypes. These character-
istics are the number of tasks involved, the amount of data
exchanged and the complexity of the coordination required 3.

3. Informally, we consider as a complex workflow, a workflow having many
patterns to be applied and a high rate of data exchange. Workflows are more
precisely described in the following.

TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YYYY 9

Fig. 12. 30-task graph.

Experiments were conducted over the nation-wide Grid’5000
platform [20]. More specifically, these experiments were con-
ducted on the parapide, paramount and paradent clusters,
located in Rennes. The parapide cluster is composed of nodes
equipped with two quad-core Intel Xeon X5570, 24 GB of
RAM; the paramount cluster provides nodes with two quad-
core Intel Xeon L5148 LV processors, 30 GB of RAM, and the
paradent cluster is equipped with two quad-core Intel Xeon
L5420 processors. All three clusters are furnished with 40GB
InfiniBand Ethernet cards.

6.1 Workflows Considered
Three workflows containing 30, 60 and 100 tasks were de-
signed inspired by the graph of the Montage workflow [21], a
classic astronomical image mosaic workflow processing large
images of the sky. Montage combines sequential and parallel
flows, making it relevant for such experiments. Our variants of
the Montage workflow are illustrated in Figure 12, Figure 13
and Figure 14, and are respectively referred to as Workflow30t,
that comprises 30 tasks over 10 levels (the level of a task is
defined as the length of the path leading to it from the source
task),Workflow60t, that comprises 60 tasks dispatched over 13
levels, and Workflow100t made of 100 tasks of 19 levels. Our
campaign has the following considerations:

1) Each task calls an actual web service.
2) Tasks at the same level have the same computational

cost.
3) The results of these experiments are averaged over 10

runs.
4) Each task is run by one distinct machine on the

Grid’5000 platform.
Three different web services were built, needing different

amounts of data exchanges, for one call to this service, namely
28 bytes for serviceA, 583 bytes for serviceB, and 3063 bytes
for serviceC. The definitions used for each workflow are
available online4.

4. https://www.irisa.fr/myriads/members/hfernand/hocl/workflowsJournal

Fig. 13. 60-task graph.

Fig. 14. 100-task graph.

6.2 Managing Large Workflows

In this experiment, we utilized our centralized and decentral-
ized prototypes to process the Worflow30t, Workflow60t and
Workflow100t. To create a more heterogeneous scenario, we
also decided to repeat these workflows using the serviceA,
serviceB and serviceC.

When looking at the results shown on Figures 15, 16, and
17, we can draw several conclusions. Firstly, the size of each
of these workflows affects its execution time. The Workflow30t
presents lower execution times than the Workflow60t, and
Workflow100t, independently of the workflow management
systems utilized. Secondly, the difference of performance
between the centralized and decentralized engines is very
low when serviceA is used. Then, when shifting to services
with a higher amount of data exchanged, the performance
of the centralized approach drops significantly. Finally, when
using the decentralized workflow system, the Workflow60t
and Workflow100t presents an important improvement in the
performance.

In contrast, our centralized workflow system shows a sub-

TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YYYY 10

Fig. 15. Execution times for the 30-task graph.

Fig. 16. Execution times for the 60-task graph.

stantial increase of the execution time caused by the two
aforementioned factors: the number of tasks to be coordinated,
and the type of service. This suggests that the efficiency
of an engine is affected by the amount of data exchanged
among services participating in a workflow. Obviously, a
central engine is in charge of the management of all data
exchanged between services, increasing the processing time
of a workflow.

Fig. 17. Execution times for the 100-task graph.

6.2.1 Coordination Workload

We now focus on the results of each workflow using the
centralized engine in Figure 18. Here, we extracted from the
total execution time, the cost in time of the coordination
activities (denoted by Coordination), and the execution time
required by the web services to return the results of their
invocations (denoted by Service invocation). Informally, we
consider as coordination activities, all the operations managing
the data exchanged among tasks and applying the different
workflow patterns. Consequently, the coordination time will
increase depending on the number and complexity of patterns
to be applied and the rate of data exchanged.

As observed in Figure 18, the processing time spent in
coordination activities represents the majority of the total
execution time in all the workflows. This phenomenon shows
the importance of the engines to efficiently handle workflows
with a substantial coordination workload. As an example,
the centralized engine seems saturated when processing the
coordination activities of the Workflow100t using the serviceC.
Furthermore, this graph also shows similar execution times
regarding the service invocation in each workflow (indepen-
dently of the type of service), so that these times can be
omitted in the following, as they mostly remain constant
for both prototypes. Therefore, we focus on the coordination
time employed for each prototype to process the different
workflows, as it allows us to identify the benefits behind the
decentralized workflow execution.

Fig. 18. Centralized execution: ratio between coordina-
tion and invocation.

The coordination times employed by both centralized and
decentralized workflow systems are now shown in Fig-
ures 19, 20 and 21. It shows a reduction in the coordination
times spent by the decentralized system in comparison to
the centralized one. This improvement in the performance
is achieved due to the coordination workload is distributed
among the different engines, reducing the final execution time.
In contrast to that of a centralized workflow engine, the coordi-
nation workload is managed by a single node, thus explaining
the increment in the coordination time experienced for the
workflows with the serviceB and serviceC. As we mentioned
before, the benefits behind the decentralized workflow execu-
tion can be observed when processing the Workflow60t and

TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YYYY 11

Workflow100t using the serviceB and serviceC, respectively.
However, the use of the serviceA in the workflows do not
offer any gain due to its simplicity, the reduced computational
load of this workflow provokes that the coordination time is
higher than or equal to that of the centralized engine, due to
the communications (network latency).

Fig. 19. Coordination workloads for the 30-task graph.

Fig. 20. Coordination workloads for the 60-task graph.

Fig. 21. Coordination workloads for the 100-task graph.

6.3 Exchanging Data

For the second experiment, we have dealt with different
amounts of data exchange using the decentralized prototype.
We processed six workflows based on the Workflow30t graph,
whose tasks are bounded to the same web service. For each
workflow, we measured the performance using a set of web
services exchanging different amounts of data for their execu-
tion. This set of services is composed by the three previously-
mentioned services and by three others. Thus, experiments
were conducted with services exchanging respectively 28, 583,
3053, 5053, 9773, and 15000 bytes of data. The performance
obtained accordingly is illustrated in Figure 22.

 0

 500

 1000

 1500

 2000

 2500

 0 2000 4000 6000 8000 10000 12000 14000 16000

Tim
e

(s
)

Da ta exc hanged (bytes)

Experienc e
x * x * 0.00001

Fig. 22. Performance results, data exchanged.

As we can see in Figure 22, the increase in data exchange
among tasks provokes an increase of the execution time,
and suggests a clear quadratic behavior of the completion
time when the size of the information exchanged increases.
Nevertheless, no bottlenecks have been experienced, even if
it may appear with higher data rate. The degradation occurs
because the information exchanged is considered itself as
a molecule in our chemical model, to be transferred and
processed in the multiset. Note that, the number of messages
exchanged was not measured in the experiments. However, it
can be easily deduced by the number of tasks of a workflow
(106 messages for the Workflow30t). Besides, the number of
messages exchanged is the same for both centralized and
decentralized systems.

6.4 Discussion

This series of experiments, by offering a proof of concept of
the model, while showing its viability in actual deployments,
highlights the benefits of a decentralized (chemistry-based)
workflow system. Our decentralized workflow engine pro-
cesses large workflows with a reduced coordination overhead
in comparison with a centralized engine. Using the decen-
tralized engine, the coordination is executed locally on each
ChWS, instead of being managed by a single node. Further-
more, as shown in our previous work [13], our decentralized
engine is also competitive when running real scientific appli-
cations in comparison with most common and used workflow
management systems, as well as against other decentralized
workflow approaches.

TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YYYY 12

However, there are two limitations that come up when using
our decentralized workflow system: i) the network latency
causes performance degradations, which are emphasized when
processing workflows having a reduced computational load
such as the Workflow30t; ii) the multiset could constitute a
bottleneck. It remains a centralized space shared by every
ChWSes leading to potential scalability issues. Following
this idea, our approach may experience some performance
bottleneck when the rate of data exchange among services
becomes very high. The decentralization of the multiset itself
was recently addressed through the formulation of solutions
based on peer-to-peer protocols, able to distribute and retrieve
objects (here, molecules) at large-scale [15]. One of the
next steps of this work is to build our current decentralized
prototype on top of such approaches to remove the bottleneck
problem, and proposes a fully decentralized workflow engine.

Recall, beyond performance or optimization considerations,
that the chemical models provide all the needed abstractions
to naturally express both data-driven and complex control-
driven execution, including particular features like cancella-
tion. Please refer to [22] for more details. We consider the
chemical abstraction as participating in the long term objective
of improving the workflow execution models on emerging
platform, like clouds, where the elasticity brings new modeling
challenges.

7 RELATED WORKS

There is a vast literature related to the distributed execution
of workflows. We observed two methods of distributed coor-
dination approach. In the first one, nodes interact directly. In
the second one, they use a shared space for coordination.

Earlier works proposed decentralized architectures where
nodes achieve the coordination of a workflow through the ex-
change of messages [23], [24]. Some works, such as [25], [26],
[27], shown the increasing interest in this type of coordination
mechanism. In [25], the authors introduce service invocation
triggers, a lightweight infrastructure that routes messages
directly from a producing service to a consuming one, where
each service invocation trigger corresponds to the invocation
of a service. In [26], an engine is proposed based on a peer-to-
peer application architecture wherein nodes (similar to local
engines) are distributed across multiple computer systems, but
appear to the users as a single entity. These nodes collaborate,
in order to execute a composite Web service with every node
executing a part of it. Lately, a continuation-passing style,
where information on the remainder of the execution is carried
in messages, has been proposed [27]. Nodes interpret such
messages and thus conduct the execution of services without
consulting a centralized engine. However, this coordination
mechanism implies a tight coupling of services in terms
of spatial and temporal composition. Nodes need to know
explicitly which other nodes they will potentially interact with,
and when, to be active at the same time. Likewise, a distributed
workflow system based on mobile libraries playing the role of
engines was presented in [28]. The authors, however, do not
give much details about the coordination itself, and where the
data and control dependencies are located.

Our works deal with the information exchange among
ChWSes by writing and reading the multiset. Then, the com-
munication can be completely asynchronous since the multiset
guarantees the persistence of data and control dependencies.
This makes our approach more relevant in a loosely-coupled
services environment, and able to deal with dynamic changes
in the workflow (as the workflow itself can be rewritten in the
multiset).

Another series of works rely on a shared space to exchange
information between nodes of a decentralized architecture,
more specifically called a tuplespace [29], [30], [31], [32]. Its
origin can be found in the coordination data-driven languages
such as Linda [33], as a parallel programming extension
for programming languages for the purpose of separating
coordination logic from program logic. Linda builds upon the
notion of a tuplespace, which is a piece of memory shared by
all interacting parties. Using a tuplespace for coordination,
the execution of a part of a workflow within each node
is triggered when tuples, matching the templates registered
by the respective nodes, are present in the tuplespace. In
the same vein, works such as [34], propose a distributed
architecture based on Linda where distributed tuplespaces store
data and programs as tuples, allowing mobile computations by
transferring programs from one tuple to another. However, the
chemical paradigm allows an increased abstraction level while
providing support for dynamics.

Based on this coordination method, works such as [29], [30]
and [31] replace a centralized BPEL engine by a set of dis-
tributed, loosely coupled, cooperating nodes. In [29] and [30],
the authors present a coordination mechanism where the data
is managed using a tuplespace and the control is driven
by asynchronous messages exchanged between nodes. This
message exchange pattern for the control is derived from a
Petri net expression of the workflow. However, while in these
works, the tuplespace is only used to store data information,
our coordination mechanism stores both control and data
information in the multiset, which is made possible by the
use of the chemical execution model for the coordination of
all data and control dependencies.

As a continuation of [30], [32] designed and implemented
a tuplespace-based process execution middleware that trans-
forms a workflow definition into a set of activities. Using
this system, control and data dependencies are now stored
in the tuplespace. Activities are distributed by passing to-
kens in the Petri net that formalize of the tuplespace-based
interactions. The most significant difference with the present
work, however, is the general goal. The authors focused on
the process definition and the viability of its prototype, while
its experimental validation remains a wide open issue, in
particular related to scalability. Also, they do not discuss the
advantages and disadvantages of decentralization in workflow
processing. Similarly, based on the theoretical underpinnings
and core of the engine presented in [32], the work in [31]
uses a shared tuplespace working as a communication infras-
tructure, allowing to exchange control and data dependencies
among processes and make the different nodes interact. The
authors transform a centralized BPEL definition into a set
of coordinated processes using again the tuplespace as a

TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YYYY 13

communication medium. However, the use of BPEL as the
coordination language hinders from expressing dynamic and
self-adaptive behaviors.

As a more general comment, to our knowledge, these
works do not provide any experimental validation of running
workflows on distributed infrastructures.

8 CONCLUSION

Most of today’s approaches to the coordination of composite
Web services are based on highly centralized architectures.
Such systems present several drawbacks, mainly dealing with
scalability, fault-tolerance, and privacy. In order to tackle
these issues, it becomes today crucial to propose decentral-
ized coordination mechanisms. However, current proposals for
decentralized workflow coordination require tight coupling of
services, and use workflow description languages that do not
provide concepts for distributed workflow execution. In this
paper, we have proposed a high-level coordination mechanism
allowing a distributed execution of composite Web services,
based on the chemical metaphor. Our chemical programming
paradigm expresses parallelism and autonomic behaviors nat-
urally using a higher-order chemical language. We have intro-
duced the notion of chemical Web service, which encapsulates
a Web service. Through a shared multiset containing the
information on both data and control dependencies needed
for coordination, chemical Web services are co-responsible
for carrying out the execution of a workflow in the composite
services in which they appear. Spatial and temporal composi-
tion of services is achieved dynamically through this shared
multiset. Their coordination is decentralized and distributed
among individual Web service’s chemical engine executing a
part of the workflow. Through the deployment of a software
prototype following these concepts, and its experimental vali-
dation over an actual platform, we have been able to provide
a proof of concept while showing its viability and identifying
its performance limitations for its future improvement.

REFERENCES

[1] M. Rosen, B. Lublinsky, K. T. Smith, and M. J. Balcer, Applied SOA:
Service-Oriented Architecture and Design Strategies. Wiley, Jun. 2008.

[2] “Amazon’s outage in third day: debate over cloud computing’s future be-
gins.” [Online]. Available: http://venturebeat.com/2011/04/23/amazons-
outage-in-third-day-debate-over-cloud-computings-future-begins/

[3] G. Alonso, D. Agrawal, A. E. Abbadi, and C. Mohan,
“Functionality and limitations of current workflow management
systems,” submitted to IEEE Expert, 1997. [Online]. Available:
http://www.almaden.ibm.com/cs/exotica/wfmsys.pdf

[4] Y. Yang, “An architecture and the related mechanisms for web-based
global cooperative teamwork support,” Int. Journal of Computing and
Informatics, vol. 24, 2000.

[5] G. Chafle, S. Chandra, V. Mann, and M. G. Nanda, “Decentralized
orchestration of composite web services,” In Proceedings of the 13th
International World Wide Web Conference, (WWW2004), pp. 134–143,
2004.

[6] M. Viroli and F. Zambonelli, “A biochemical approach to adaptive
service ecosystems,” Information Sciences, pp. 1–17, 2009.

[7] J.-P. Banâtre, T. Priol, and Y. Radenac, “Chemical Programming of
Future Service-oriented Architectures,” Journal of Software, vol. 4, no. 7,
pp. 738–746, 2009.

[8] J. Banâtre, P. Fradet, and Y. Radenac, “Generalised multisets for
chemical programming,” Mathematical Structures in Computer Science,
vol. 16, no. 4, pp. 557–580, 2006.

[9] Z. Németh, C. Pérez, and T. Priol, “Distributed workflow coordination:
molecules and reactions,” in 20th International Parallel and Distributed
Processing Symposium (IPDPS), 2006.

[10] H. Fernandez, T. Priol, and C. Tedeschi, “Decentralized approach for
execution of composite web services using the chemical paradigm,” in
IEEE International Conference on Web Services (ICWS), 2010, pp. 139–
146.

[11] J.-P. Banâtre and D. L. Métayer, “The gamma model and its discipline
of programming,” Sci. Comput. Program., vol. 15, no. 1, pp. 55–77,
1990.

[12] “Web services business process execution language, (WS-BPEL), Ver-
sion 2.0,” OASIS Standard, 2007.

[13] H. Fernandez, “Flexible Coordination based on the Chemical Metaphor
for Service Infrastructures,” THESE, Université Rennes 1, Jun. 2012.
[Online]. Available: http://tel.archives-ouvertes.fr/tel-00717057

[14] J. Protić, M. Tomasević, and V. Milutinović, Distributed shared memory.
John Wiley and Sons, 1998.

[15] M. Obrovac and C. Tedeschi, “Deployment and evaluation of a de-
centralised runtime for concurrent rule-based programming models,” in
(ICDCN), 2013, pp. 408–422.

[16] H. Fernandez, C. Tedeschi, and T. Priol, “Decentralized workflow
coordination through molecular composition,” in ICSOC Workshops,
2011, pp. 22–32.

[17] J. Recker, “BPMN modeling – who, where, how and why,” BP-Trends,
vol. 5, no. 5, pp. 1–8, 2008.

[18] Y. Radenac, “Programmation “chimique” d’ordre supérieur,” Thèse de
doctorat, Université de Rennes 1, 2007.

[19] P. Leitner, F. Rosenberg, and S. Dustdar, “Daios: Efficient dynamic web
service invocation,” IEEE Internet Computing, vol. 13, no. 3, pp. 72–80,
2009.

[20] R. Bolze, F. Cappello, E. Caron, M. J. Daydé, F. Desprez, E. Jeannot,
Y. Jégou, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst,
P. Primet, B. Quétier, O. Richard, E.-G. Talbi, and I. Touche, “Grid’5000:
A large scale and highly reconfigurable experimental grid testbed,”
IJHPCA, vol. 20, no. 4, pp. 481–494, 2006.

[21] G. Berriman, E. Deelman, J. Good, J. Jacob, D. Katz, C. Kesselman,
A. Laity, T. Prince, G. Singh, and M. hu Su, “Montage: A grid enabled
engine for delivering custom science-grade mosaics on demand,” In
Proceedings of SPIE Conference 5487: Astronomical Telescopes, 2004.

[22] H. Fernández, C. Tedeschi, and T. Priol, “Self-coordination of Workflow
Execution Through Molecular Composition,” INRIA, Research
Report RR-7610, 05 2011. [Online]. Available: http://hal.inria.fr/inria-
00590357/PDF/RR-7610.pdf

[23] J. Yan, Y. Yang, and G. Raikundalia, “Enacting business processes
in a decentralised environment with p2p-based workflow support,” in
Advances in Web-Age Information Management, 2003, pp. 290–297.

[24] M. G. Nanda, S. Chandra, and V. Sarkar, “Decentralizing execution of
composite web services,” in Proc. of the 19th Conf. on object-oriented
programming, systems, languages, and applications. ACM, 2004, pp.
170–187.

[25] W. Binder, I. Constantinescu, and B. Faltings, “Decentralized orchestra-
tion of compositeweb services,” in Proc. of the IEEE Int. Conference
on Web Services. IEEE Computer Society, 2006, pp. 869–876.

[26] R. A. Micillo, S. Venticinque, N. Mazzocca, and R. Aversa, “An agent-
based approach for distributed execution of composite web services,”
in IEEE International Workshops on Enabling Technologies. Los
Alamitos, CA, USA: IEEE Computer Society, 2008, pp. 18–23.

[27] W. Yu, “Consistent and decentralized orchestration of BPEL processes,”
in Proceedings of the 2009 ACM symposium on Applied Computing.
Honolulu, Hawaii: ACM, 2009, pp. 1583–1584.

[28] P. Downes, O. Curran, J. Cunniffe, and A. Shearer, “Distributed radio-
therapy simulation with the webcom workflow system,” Int. Journal of
High Performance Computing Applications, vol. 24, p. 213–227, 2010.

[29] P. A. Buhler and J. M. Vidal, “Enacting BPEL4WS specified workflows
with multiagent systems,” In Proceedings of the Workshop on Web
Services and Agent-Based Engineering, 2004.

[30] D. Martin, D. Wutke, and F. Leymann, “A novel approach to decentral-
ized workflow enactment,” in IEEE International Enterprise Distributed
Object Computing Conference. Los Alamitos, CA, USA: IEEE
Computer Society, 2008, pp. 127–136.

[31] M. Sonntag, K. Gorlach, D. Karastoyanova, F. Leymann, and M. Reiter,
“Process space-based scientific workflow enactment,” Int. Journal of
Business Process Integration and Mmgt, vol. 5, pp. 32 – 44, 2010.

[32] D. Martin, “A tuplespace based execution model for decentralized
workflow enactment : applied for BPEL,” Ph.D. dissertation, University
of Stuttgart , Germany, Sep. 2010.

TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YYYY 14

[33] D. Gelernter and N. Carriero, “Coordination languages and their signif-
icance,” Commun. ACM, vol. 35, no. 2, pp. 96–107, 1992.

[34] R. D. Nicola, G. Ferrari, and R. Pugliese, “KLAIM: a kernel language
for agents interaction and mobility,” IEEE Transactions On Software
Engineering, vol. 24, 1997.

Hector Fernandez Hector Fernandez is a Re-
searcher Scientist member of the ConPaaS
team at Vrije University of Amsterdam. Dr. Fer-
nandez received his PhD in Computer Science
from University of Rennes 1 in 2012 in the area
of service-oriented computing. During his PhD,
his research interests included service composi-
tion and service coordination in distributed sys-
tems, and in particular workflow management
systems. Nowadays, he continues research on
service infrastructures by designing an auto-

scaling system for an open-source cloud platform called ConPaaS.

Cédric Tedeschi Cédric Tedeschi is an Assis-
tant Professor at the University of Rennes 1 and
holds a position at the IRISA laboratory. He is a
member of the Myriads project hosted by INRIA.
He received a PhD in Computer Science from
the Ecole normale supérieure de Lyon in 2008.
His current research interests include coordi-
nation in distributed systems and programming
models for service infrastructures.

Thierry Priol Thierry Priol is a research direc-
tor at Inria. He joined Inria in 1989. He was
Director of the ACI GRID of the Ministry of
Research and the Scientific Coordinator of the
CoreGRID network of excellence funded by the
European Commission. From 1999 to 2009, he
was a project-team leader at the Inria Rennes
Bretagne Atlantique centre. He has conducted
his research in the field of parallel computing,
image synthesis algorithm parallelisation, and
programming tools based on the concept of

shared virtual memory. He has also worked on the programming of
computing grids, proposing extensions to software component models
for code coupling applications.

