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A Genetic Algorithm for the Design of a Fuzzy
Controller for Active Queue Management

Giuseppe Di Fatta, Member, IEEE, Frank Hoffmann, Member, IEEE, Giuseppe Lo Re, Member, IEEE, and
Alfonso Urso, Member, IEEE

Abstract—Active queue management (AQM) policies are those
policies of router queue management that allow for the detection
of network congestion, the notification of such occurrences to the
hosts on the network borders, and the adoption of a suitable control
policy. This paper proposes the adoption of a fuzzy proportional
integral (FPI) controller as an active queue manager for Internet
routers. The analytical design of the proposed FPI controller is
carried out in analogy with a proportional integral (PI) controller,
which recently has been proposed for AQM. A genetic algorithm is
proposed for tuning of the FPI controller parameters with respect
to optimal disturbance rejection. In the paper the FPI controller
design metodology is described and the results of the comparison
with random early detection (RED), tail drop, and PI controller
are presented.

Index Terms—Active queue management, fuzzy controllers, ge-
netic algorithms, network congestion, PI controllers.

I. INTRODUCTION

I N RECENT years, the unpredictable growth of the Internet
has increasingly pointed out the congestion problem. The

network congestion phenomenon is induced when the amount of
data injected in the network is larger than the amount of the data
which is delivered to destinations. The approach which repre-
sents the beginning of network congestion control is a so called
end-to-end approach. In this approach responsive data sources
reduce their transmission rate when they infer congestion oc-
currences from packet losses. This is, for instance, the approach
adopted by the transmission control protocol (TCP). The effec-
tiveness of a control system where sources are responsible for
congestion control is based essentially on the assumption that
most of the applications running through the network obey the
control laws. End-to-end peers detect congestion level by infer-
ring it from packet losses. A packet loss could mean that one of
the intermediate routers does not have enough buffer space to
store the packet before its transmission on the appropriate link
toward the destination.

The simplest and currently most deployed policy adopted
by routers to manage their queues, is a first-come-first–serve
strategy, which is implemented by means of a first-in-first-out
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queue management. This policy, known as tail drop, has two
main disadvantages [1]. It allows routers to keep full queues for
long periods as it generates congestion notifications only when
the queue is already full. As a consequence, packets may suffer
high delays when they meet long queues. Moreover, sources
may experience multiple losses in packet bursts which arrive at
full queues. The second drawback of the tail drop policy is that
few connections may monopolize the queue space and prevent
other connections to get a share of the link bandwidth. Such a
look-out phenomenon is mainly due to a global synchronization
of flows. While the look-out phenomenon may be solved by
simple policies such as “random drop on full” and “drop front
on full,” more complex and proactive queue management
strategies are required to solve the high delay problem due
to full queues. To this aim, the adoption of an active queue
management (AQM) strategy has been proposed [1]. In AQM
congestion notifications are generated by dropping (or marking)
incoming packets before router queues become full. In recent
years, several different approaches have produced different
AQM policies [2]–[5].

AQM policies, when properly used, provide better network
utilization and lower end-to-end delays than tail drop. Never-
theless, many AQM policies may induce network instability if
not properly configured. The tuning of their parameters may re-
sult extremely difficult and in some situations it is achievable
only by means of heuristic methods or simulations.

However, most of the AQM policies are unable to maintain
their performances in a wide range of operational conditions
(e.g., number of connections, link capacity, propagation delay)
[6].

In order to avoid such problems and provide better adaptation
under different network conditions, nonlinear and adaptive
AQM controllers have been proposed [7]–[9]. Among these,
a congestion control algorithm based upon a fuzzy logic
controller can be adopted [10] and [11]. The design of a fuzzy
logic controller is not straightforward, because of the heuristic
involved in control rules and membership functions. Currently
there are no automatic methods for the design of the fuzzy
knowledge base nor for the tuning of the fuzzy controller’s
parameters. Therefore, the designers have to devise a fuzzy
knowledge base using heuristic methods and experience. Ac-
cordingly, the parameters of a fuzzy control system are usually
tuned by means of a trial and error method. An alternative pro-
cedure to set the parameters of a fuzzy logic controller is based
on evolutionary algorithms. Evolutionary algorithms provide
a universal optimization technique that imitates processes of
genetic adaptation that occur in natural evolution [12] and [13].

1094-6977/03$17.00 © 2003 IEEE
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Unlike mathematically more rigorous optimization methods,
they require, other than the objective itself, no particular
knowledge about the problem structure, such as gradient infor-
mation. This property makes them applicable to optimization
tasks, in which the optimization function is evaluated through
experiments or simulations rather than computed directly in
closed form. Evolutionary algorithms develop a population of
genetically encoded competing candidate solutions [12] and
[13]. The next generation evolves from the current population
by means of selection, recombination and mutation. The inter-
play of exploiting solutions that demonstrated superior fitness
via selection and exploring the search space by recombination
and mutation of known solutions constitutes the fundamental
theme in evolutionary optimization. The different approaches,
genetic algorithms (GA), evolution strategies (ES), evolu-
tionary programming (EP), and genetic programming (GP), are
distinguished by the genetic structures that undergo adaptation
and the genetic operators by which they generate new variants.

In this paper, the adoption of a fuzzy proportional integral
(FPI) controller is proposed for AQM. The FPI parameters are
tuned by a genetic algorithm (GA). Several simulations are car-
ried out to demonstrate the effectiveness of the proposed design
methodology for AQM policies.

The remainder of the paper is structured as follows. Section II
reviews the background on the AQM policies proposed in the lit-
erature. Section III describes in more details the PI regulator for
AQM and the design of the FPI controller. Section IV deals with
the optimal tuning of the FPI parameters by means of a genetic
algorithm. In Section V the sets of experiments carried out are
presented and the results discussed. Finally, the last section is
devoted to the conclusions.

II. A CTIVE QUEUE MANAGEMENT

End-to-end congestion control [14] requires that flows reduce
their transmission rate when they receive congestion notifica-
tions. TCP flows employ the additive increase multiplicative de-
crease (AIMD) algorithm to adjust the congestion window size
and to determine a fair transmission rate. In the additive increase
operation, a flow gradually and linearly increases its transmis-
sion rate to probe the status of the network. AIMD leads to high
utilization of network resources and usually dominates the ag-
gregate traffic dynamics. The relationship between throughput
and congestion status (loss probability) for a single TCP flow
has been widely studied (e.g., [15]). It has been shown that the
throughput is inversely proportional to the round trip time and
to the square root of the packet loss probability. Unresponsive
flows which do not react to congestion indications, make any
congestion control mechanism ineffective. Unfortunately, cur-
rently there is no solution for those aggressive flows. Although
they represent a minority of only 10–20% of Internet traffic
and no overall change in the TCP/UDP traffic ratio has been
measured [16], unresponsive flows may soon become an im-
portant issue to be faced in order to guarantee the stability of
the Internet.

The traditional technique to manage router queue lengths is
to drop incoming packets when the queue is full (tail drop). This
policy is very simple to be configured; the maximum queue size

is often set to the delay-bandwidth product. Although tail drop is
widely adopted in the Internet, it presents important drawbacks,
such as long delays experienced by packets and the lock-out
phenomena [1]. To eliminate the tail drop disadvantages and to
anticipate the source answers to incipient congestion situations,
AQM policies [1] have been proposed. AQM uses the principle
of the feedback of congestion to end hosts by the mechanism
of dropping/marking packets at router queues. The end hosts
then react to the dropping/marking of packets by reducing their
trasmission rate. Consequently, the queue length in routers is re-
duced and the end-to-end delay experencied by packets is also
reduced. Moreover, this mechanism ensures a more efficient use
of the network resources by reducing the loss of packets occur-
ring when queues overflow. The first proposed AQM policy was
random early detection (RED) [2]. RED adopts the preemptive
dropping, or marking, of packets when the average queue length
ranges between a minimum and a maximum threshold. More
precisely, the probability of packet dropping/marking increases
linearly between the minimum and maximum thresholds, and
equals zero for average queue lengths below the minimum. All
packets are dropped if the average queue length increases above
the maximum threshold.

In the last several years, objections have been raised against
RED [17]–[19], among which the difficulty of properly set-
ting its parameters according to network conditions, and the de-
pendence of the queue length in steady state from the number
of flows. Namely, a growth in the number of flows increases
the average queue length, and, when it exceeds the maximum
threshold, all packets are dropped. However, it is not possible to
increase too much the maximum threshold, because this would
mean higher queueing delays. On the other hand, if the max-
imum threshold is set to a low value, severe buffer oscillations
would occur. Many variants of RED have been proposed to re-
solve these problems [20]–[23].

Furthermore, different approaches than RED have been re-
cently proposed; among these random exponentially marking
(REM) [4], adaptive virtual queue (AVQ) [5], sliding mode vari-
able structure control [9], and proportional integral (PI) con-
troller [3]. All these AQM techniques get over the heuristic ap-
proach of RED and its variants, and they are based on a control
theoretic approach. REM is the result of a linear modeling of the
problem and of its resolution in its dual form. Differently from
RED, REM distinguishes between the congestion measure of
each router and the dropping probability. In REM the authors
introduce a measure called price which eliminates the depen-
dence of the dropping probability from the current value of the
queue size. Their algorithm uses the current queue size and its
difference from a desired value to calculate the dropping prob-
ability accordingly to an exponential law. Such a feature owns
the additivity property, so thus a source can calculate the price
of a whole path from the total number of the dropped packets
along the path itself.

The adaptive virtual queue proposes a methodology for
finding the fastest rate at which the marking probability
adaptation can take place, given certain system parameters like
the maximum delay and the number of sessions, so that the
system remains stable. The sliding mode variable structure
control is a policy based on the advanced theory of robust
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control; it is designed with the aim to obtain a controller which
is robust against disturbances and variance of parameters. Fi-
nally, proportional integral (PI) controller and REM, although
obtained independently, and following full different theoretical
approaches, represent, accordingly to their authors, the same
solution [3]. In Section III, a review of PI controller for AQM
is presented and a methodology to design a fuzzy proportional
integral (FPI) controller for the management of router queues
is developed.

III. PI AND FPI CONTROLLERS

The PI controller proposed in [3], is based on the observa-
tion that an AQM algorithm controls network congestion by
randomly dropping or marking packets at the router queue with
probability depending on the queue error defined by:

(1)

where is the reference queue size and is the current queue
size. When TCP sources detect congestion by packet losses, they
reduce their transmission rates and the queue size of the router
decreases. This process constitutes a closed loop feedback con-
trol system where the controlled variable is the queue size and
the control variable is the dropping/marking probability. In gen-
eral, a PI controller consists of a proportional and an integral
term as follows:

(2)

where and are, respectively, the proportional gain and
the integral gain [24]. The PI properly regulates the queue size
when it operates around the reference queue size. The goal is to
minimize disturbances in queue size caused by variations of in-
coming flows. In order to design the the PI AQM controllers, a
nonlinear dynamic model for TCP/AQM has been developed in
[25]. Once the model is linearized around an operating point, a
stable PI linear controller is designed in order to satisfy the spec-
ifications. The authors in [3] show that in the PI controller the
proportional part is equivalent to RED when the input low-pass
filter is removed. The usage of a proportional controller leads
to a lower time of response but also to lower stability margins;
moreover, the proportional controller has a steady state regula-
tion error, where such an error is defined as the difference be-
tween the steady state output queue and the reference value. In
order to overcome the above disadvantages, the integral term
is added which has the characteristic to give steady state error
equal to zero and to give higher stability margins.

Nevertheless, the PI AQM policy suffers the disadvantage
that it is unable to maintain good dynamic performances as the
number of TCP flows increases. This disadvantage is essen-
tially due to the fact that the controller design is carried out
considering a particular operating point, i.e., particular values
of number of TCP flows , round trip time RTT and link
capacity . When these values vary, for example the number
of TCP flows increases, the high frequency gain of the open loop
transfer function decreases and the system bandwidth becomes
lower, which implies a slower system in terms of rise and set-
tling time.

Fig. 1. Structure of the FPI controller.

The proposed fuzzy logic controller is aimed to overcome
this disadvantage. In recent years, fuzzy logic controllers, espe-
cially FPI controllers, have been widely used for process control
owing to their heuristic nature associated with simplicity and
effectiveness for both linear and nonlinear systems [26]–[28].
In fact, for single-input single-output systems, fuzzy logic con-
trollers can be essentially seen as PI type associated with non-
linear gain. In most situations, FPI controllers can achieve better
system performances than the conventional PI controllers, be-
cause of their nonlinear properties.

However, a method which allows to obtain the parameters
of the fuzzy controllers is needed. Systematic methods for the
design of the FPI scaling factors have been developed in [14],
[29]–[31], which take advantage from the analogy between FPI
and conventional PI controllers. More precisely, a set of rela-
tions between the scaling factors and the gains of PI controller
are obtained from such an analogy. Then, the gains of PI con-
troller are determined so as to satisfy, for instance, requirements
on bandwidth of the control loop. Finally, scaling factors are
computed from the gains of PI controller.

The fuzzy controller proposed in this paper is a PI-type
fuzzy controller, as depicted in Fig. 1, where all quantities
are considered at the generic discrete instant and where

is the sampling period;
is the error on the controlled variable (queue size);

is the variation of the
error; is the increment of the control variable
(probability of packet marking/dropping); , , and
are the scaling factors.

The sampling period is set to 6.25 ms, which is by far
large enough to complete a fuzzy inference cycle, and small
enough to respond to fluctuations of incoming flows. In [32],
the authors report on a programmable analogue fuzzy controller
implemented in CMOS technology, capable of performing 5.26
million fuzzy inferences p/s. Therefore, the queue sampling pe-
riod could be reduced to s for high-volume routers on
the Internet backbone.

It should be noticed that these fuzzy controllers have an in-
trinsic PI action. As a consequence, the steady state behavior at
the operating point is identical for both controllers.

The relations between the parameters of the fuzzy controller
and those of the standard PI one have to be determined, and
a method of synthesis of the standard PI controller has to be
chosen.

We adopt the dynamic model of TCP behavior using
fluid-flow and stochastic differential equation analysis devel-
oped by Hollotet al. [25] in order to synthesize the standard
PI controller. Furthermore, the synthesis of the PI controller is
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(a) (b)

Fig. 2. Membership functions of (a) input and (b) output variables.

carried out following the guidelines to design stable controllers
given in [3].

Finally, we derive the relations between the gains of the PI
controller and the scaling factors of the FPI one. Let us assume
that a set of rules and membership functions on normalized uni-
verses of discourse has been assigned. The fuzzy controller gen-
erates a nonlinear map of the form

(3)

and the relation is that of a discretized integrator of gain
. The corresponding standard PI regulator can be seen as a

linear map between, and defined by

(4)

assuming trapezoidal integration. The constantsand de-
termine the gains of the PI regulator.

Moreover, it is possible to approximate the map (3) with the
plane

(5)

where and are obtained by minimizing the functional

(6)

and where the parameterdefines a well suited (small) interval
around the operating point. A least square solution for the mini-
mization of the above index it is possible by the discretization of
the integral in (6). Finally, the output of the PI controller (4)
is made equal to the output of linear approximation (5) scaled
by . Therefore, the final relationship between the fuzzy gains

, , , and the standard PI gains , is given by

(7)

The two equations in (7) only constrain two of the three fuzzy
scaling factors. The extra degree of freedom is used to determine
the parameter , so that the control variable remains within
its limits.

The fuzzy knowledge base is composed of five triangular
membership functions for the input fuzzy variables and seven
membership functions for the output fuzzy variable. All vari-
ables are defined in a normalized universe of discourse
as depicted in Fig. 2. The specific control behavior is mainly
determined by the fuzzy membership functions, scaling factors
and fuzzy rules. A fuzzy rule associates the output specified in
the rule conclusion with an input region defined by the rule an-
tecedent. The fuzzy inference scheme smoothly interpolates the
output among those rules whose antecedent matches the current
input. The resulting fuzzy map is mainly determined by the lo-
cations of the input and output membership functions and the
rules that associate them. The locations of input membership
functions, defined by their center points (peak values), deter-
mine the locations of interpolation points. The center points of
output membership functions determine the height of the con-
trol map at these interpolation points. Tuning the membership
function center points is a mean of locally shaping the control
surface. Changing the scaling factors, globally effects the con-
trol surface, as it modifies the gain across the entire input space.
In [33], the authors argue that genetic tuning of fuzzy controllers
follows a coarse to fine order. Adaptation of scaling factors is
most significant as it globally influences the control surface,
tuning of membership functions operates at a medium scale and
adjusting the output of individual fuzzy rules is considered as
fine tuning. We, therefore, do not consider other types of mem-
bership functions, as scaling factors and center points already
largely determine the control behavior.

For complex control problems the definition of the rules re-
quires the knowledge or experience of experts. For a propor-
tional integral fuzzy controller, with error and error rate as in-
puts, the design of the rule matrix is straightforward. The control
output compensates the observed error, in a way that the change
in dropping rate increases with increasing error and error rate.

In previous works on fuzzy controller for AQM [10] and [11]
the choice of fuzzy rules and the parameters tuning process
starts from considerations on the specific AQM problem and is
progressively optimized in a trial and error method.

Here, a standard set of rules is chosen (cf. Table I) and the op-
timal tuning of the FPI controller parameters by means of a GA
is carried out. In this context, (7) are used to define the scaling
factors range of variation during the evolutionary optimization.
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Section IV discusses the optimal tuning of the FPI controller
parameters by means of a GA.

IV. EVOLUTIONARY OPTIMIZATION

A. Genetic Algorithms

A GA operates on a population of competing candidate so-
lutions. The genome, often represented as a binary string, en-
codes a set of parameters mapped into a potential solution to
the optimization problem. A scalar fitness function evaluates
the quality of a solution with respect to the optimization task
at hand. According to Darwin’s principle, individuals superior
to their competitors are more likely to promote their genes to
the next generation. Recombination and mutation are applied
to the parent genomes in order to generate new variants. The
current population is replaced by the newly generated group of
offsprings, which forms the next generation. The genetic algo-
rithm terminates after a previously defined maximum number
of generations elapsed. The best individual that emerged over
the entire span of generations is retained as the final solution. A
GA requires the following major components in order to solve
a particular optimization problem:

1) genetic representation of candidate solutions;
2) scalar fitness function which describes the quality of each

individual;
3) genetic operators that generate new variants during repro-

duction;
4) GA parameter settings, such as, population size, number

of generations, and probabilities of applying genetic
operators.

In our application, the genome encodes parameters of the
fuzzy knowledge base, such as scaling factors and peak values
of membership functions. These controllers for AQM are eval-
uated in a simulation of the network traffic on a single bottle-
neck topology. The fitness function tries to minimize the mean
square error between the desired and actual queue length at the
outgoing queue of the bottleneck link.

B. Genetic Optimization of the FPI Controller

The objective of a genetic fuzzy system [34] and [35] is to au-
tomate the knowledge acquisition step in fuzzy system design, a
task that is usually accomplished by interviewing or observing
of a human expert controlling the system. The design of a fuzzy
rule based system is equivalent to find the optimal configuration
of fuzzy sets and/or rules, and in that sense can be regarded as an
optimization problem. The optimization criterion is the problem
to be solved at hand and the search space is the set of parameters
that code the membership functions, scaling factors and fuzzy
rules. An evolutionary algorithm adapts either part or all of the
components of the fuzzy knowledge base.

Genetic tuning processes are based on the assumption that the
rule base has been already designed, either by a human expert
or by a prior learning process. The controller is based on the
standard rule matrix shown in Table I. Tests on specifically de-
signed rule matrixes did not show significant performance im-
provements compared to the standard rule matrix.

The tuning process optimizes the performance of a fuzzy con-
troller with predefined rule base. The objective is to identify FPI

TABLE I
FUZZY RULES

controller parameters that best achieve the desired control be-
havior. The tuning process involves the adaptation of the fuzzy
database, namely center points of membership functions and
scaling factors for input and output variables.

A population of competing chromosomes that encode the
tuning parameters evolves by means of selection, recombination
and mutation. The fitness of a fuzzy controller parameterized
by membership functions and scaling factors is determined
according to its observed performance in regulating the router
queue. The fitness function rewards controllers that minimize
the mean square error (MSE) under different traffic loads.

Over the course of evolution the algorithm identifies those set
of parameters, for which the fuzzy controller performs optimally
with respect to the given performance index.

We define an overall performance index of the system
which depends on the FPI controller parameters as follows:

(8)

where are peak values (center points) of the triangular
membership functions and are the scaling factors of the
FPI controller. Usually the performance index depends on the
design parameters of the FPI in a nonlinear fashion and standard
optimization algorithms, such as gradient-descent optimization,
may become trapped in local minima. The choice of a genetic
algorithm for the optimal tuning of the FPI controller parame-
ters has been made in order to avoid this drawback. By mim-
icking principles of the natural evolution, GA are able to find
feasible solutions to real-world optimization problems. GAs are
not considered as mathematically rigorous optimization algo-
rithms, as they do not require the computation of derivatives
of the optimization function. Instead GAs are based on a dis-
crete, stochastic, process of exploration and exploitation. The
obtained solution emerges from the condensation of partially
adapted individuals in previous generations, of which the favor-
able attributes are carried forward into the following generation.
The main advantage of the GA is its capability of achieving
global optimization solution even for nonlinear, high-dimen-
sional, multimodal, and discontinuous problems [13].

Our optimization procedure is based on the ”simple” GA
developed in [36]. The ten real-valued parameters subject to
optimization are encoded by a binary chromosome of length
10 . The optimization process is driven by the
maximization of the fitness function , defined as the inverse
of the mean square error between the current value of the queue
length and the desired reference queue length

(9)
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where is the total number of the queue values sampled at dis-
crete time intervals.

The primary goal of the controller design is to reject dis-
turbances in the queue caused by overloading the capacity of
the node. The disturbances emerge from fluctuations in the rate
at which packages arrive at the node, and typically appear on
different magnitudes and time scales. One can distinguish be-
tween two basic scenarios, a steady state situation in which the
input rate does not exceed the link capacity, and a situation in
which the incoming flows exceed the node’s bandwidth. The
FPI controller is supposed to operate equally well in both op-
erating regimes. The design goal is to minimize the MSE. As
the magnitude of errors differs significantly between both sce-
narios, the MSE for steady state behavior and for respon-
siveness to overload are observed separately. The MSEs
are then normalized by the equivalent indices and

of the PI controller. The total is calculated
as the average between the normalized MSEs.

(10)

The term measures how well the FPI suppresses
small signal disturbances under steady state conditions. The
term takes into account how the FPI responds in highly
dynamic situations, such as link capacity overloads caused by
a sudden increase in the number of flows.

The overall fitness which the GA aims to maximize is com-
puted as the inverse of the averaged

(11)

V. IMPLEMENTATION, TUNING AND

PERFORMANCEEVALUATION

A. Simulation Setup

We have implemented and tested the fuzzy controller as an
active queue manager under the well known simulator [37].
Taildrop,RED,andthePI (accordingto thepseudo-codereported
in [3]) are also evaluated in this environment under identical test
conditions. The single-bottleneck network topology adopted in
the parameters tuning process and in the first set of experiments
is reported in Fig. 3. The single-bottleneck topology consists of
traffic generator nodes, connected to traffic sinks by means of
three hops path. The AQM controllers are installed in the router
accessing the bottleneck link. The network load is generated
by FTP and HTTP sources. HTTP flows are short lived flows
with a bursty behavior. They cannot be easily controlled by the
congestion control mechanism and are adopted as noise. FTP
flowsarecharacterizedbyan intensivedata transferandrepresent
the traffic load to be controlled in the fluid flow dynamic model.
All the flowsareconveyed in the16Mb/sbottleneck linkbetween
the AQM router and the router . The routers , , ,
and are introduced to measure the different FTP and HTTP
input and output traffic in the bottleneck link. The propagation
delay of the paths between sources and destinations is uniformly
distributed in the range 80–120 ms; the average round trip time
is 200 ms. The maximum queue length in the AQM router is set
to the delay-bandwidth product, i.e., 800 500-byte packets for

Fig. 3. Experimental topology.

a 16 Mb/s link and average RTT of 200 ms. The parameters of
PI controller are determined for operating conditions where the
number of FTP flows is 60 and the desired value of the queue
length is 200 packets. Section V-B describes the tuning of the
parametersof theFPIcontrollerbymeansofageneticalgorithm.

B. GA-Based FPI Parameters Tuning

This set of experiments is devoted to the tuning of FPI con-
troller parameters (peak values of membership functions and
scaling factors) by means of the genetic algorithm described in
Section IV. The first step is to identify a suite of representative
benchmark scenarios for which the genetic algorithm evaluates
the controller performance. To this regard, the main design ob-
jectives of the FPI AQM controller are: 1) disturbance rejection
in steady state conditions; 2) dynamic response to load fluctu-
ations. The simulation experiments are designed in a way that
reflects these objectives. The fitness of a controller is evaluated
for a constant load of 60 FTP flows over the entire simulation
period (from 0 to 70 s) and a second group of 480 additional
FTP flows which transmit in the time interval between 30 and 50
s. This particular scenario is motivated by the requirement that
both steady-state and dynamic behavior enter the performance
index. Moreover, the range of the number of flows for which it
is interesting to evaluate the behavior of a queue management
policy is related to the network operating conditions as follows:

(12)

where is the link capacity, is the average round trip time,
is the average packet size and is the max advertised

TCP window. When the flows are , maximum transmission
rate at sources can reach full link utilization; when the flows
are the link capacity allows each of sources to
send only 1 packet every . Under the operating conditions
of 200 , 16 , and
cw 20 , the range is 40–800
flows. In this case, the choice of an overload of 480 flows rep-
resents a fair trade-off between the design goals of fast response
to load variations that exceed the links bandwidth and optimal
operating conditions in case link utilization is sufficient for all
sources. The GA parameters are set as follows:

— number of generations 80;
— population size 40;
— cross probability ;
— mutation probability .
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Fig. 4. Fitness values.

The population size and mutation probability depend on the
chromosome length. The mutation rate is chosen such that
the per individual mutation probability is smaller than one.
No attempt has been made to identify optimal GA parameters
in advance. The population size, crossover probability and
mutation rate are determined according to the heuristics in
[38]. The number of generations is constrained by computa-
tional resources for running the network simulation. As the
GA evaluates the individuals in one generation in parallel,
the population size was chosen according to the number of
available workstations.

The simulations were carried out on a forty nodes Linux
workstation cluster, such that the fitness of controllers is
evaluated in parallel. Figs. 4 and 5 show the evolution of fitness
for the entire population and the best and average fitness. As
shown in Fig. 5, the fitness of the population stabilizes after
about 40 generations. Table II shows parameters of the FPI
controller which represent the optimal solution generated by
the GA.

In order to validate the choice of an overload of 480 flows,
evolutionary runs have been carried out for additional overloads
of 60, 120, 240, and 600 flows. The results of these evolutions
are summarized in Table III. The evolutionary run with 480 ad-
ditional FTP flows gives better performance both in terms of
overall best fitness value and in terms of average fitness value
in the last generation.

Finally, the nonlinear surface corresponding to the optimal
FPI controller generated by the GA is shown in Fig. 6. In
Section V-C we evaluate the performance of the optimal FPI
controller whose parameters are given in Table II.

C. FPI Controller Evaluation

A queue management policy should match input rate to link
capacity to maximize utilization and to reduce packet queuing
delay at a bottleneck link. Full queue should be avoided even if
they provide high utilization. Buffer capacity is needed to absorb
packet bursts. Congestion typically happens when the number of
connections which share the link bandwidth increases. In gen-
eral, when the number of connections changes, AQM task is to
redistribute link bandwidth among the connections, thus each
connection can get a fair share.

Fig. 5. Average and best fitness values.

Fig. 6. FPI surface.

The main criteria which can be adopted to evaluate AQM
policies are efficiency, fairness, regulation and responsiveness.
Efficiency is measured both as link utilization, in terms of the
ratio between the aggregate throughput and the link bandwidth,
and a low queuing delay. When multiple connections share
link and buffer resources a measure of fairness quantifies how
equally the resources are distributed and reveals if there are
connections which are discriminated. The first design objective
is queue length regulation, which is the performance criterion
based on which the GA tunes the FPI controllers. The system
should reach a steady state in minimal time and subsequent
fluctuations in queue length around the reference value should
be small. Responsiveness is defined by the rate at which the
queue stabilizes at the reference value after an overload has
been introduced. It can be observed in the controlled variable
(queue length) as well as in the controller output (dropping
probability).

Finally, any AQM policy, when used for responsive flows,
should minimize the number of dropped packets in routers.

1) Utilization, Queue Length, and Dropped Packets:In this
set of experiments a first group of 60 FTP flows (design condi-
tions) and 180 HTTP flows (noise), which last the whole simu-
lation time (from 0 to 120 s), are adopted. Three different sets
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TABLE II
OPTIMAL VALUES OF THEFPI CONTROLLER PARAMETERS

TABLE III
SUMMARY OF FITNESSRESULTS

Fig. 7. Link utilization.

of experiments are carried out, in order to show the utilization
of the link bottleneck and to verify the behavior of the optimal
FPI controller (Table II) under operating conditions that differ
from the design ones. The average link utilization for different
AQM policies has been measured under different conditions
(Table IV), respectively, under heavy load fluctuations, different
RTTs, and different link capacity. In the first set of simulations
an additional group of FTP flows (overload) transmits data in
the time interval between 40 and 80 s. In the second set the round
trip time of FTP and HTTP flows has been uniformly distributed
in different ranges in the interval 80–480 ms. In the third set the
bottleneck link capacity has been changed. All AQM policies
show high utilization in almost all cases; nevertheless, the FPI
controller exhibits a better performance under heavy overload
in comparison to the PI controller. The difference between the
FPI and the PI controllers has been further investigated in the
particular case of additional 480 FTP flows. Fig. 7 shows the
aggregate throughput at the bottleneck link. An underutilization
period shows up at when the additional FTP flows stop
transmitting data. However, the underutilization phenomenon is
significantly shorter in FPI than in PI controller. The better re-
sponsiveness of the FPI is confirmed in the queue length (Fig. 8)
and the dropping probability (Fig. 9). Finally, in the analysis of
the cumulative number of dropped packets (Fig. 10) the two con-
trollers have a similar behavior till 80 s. In the final part of the
simulation, although the link underutilization, less responsive-
ness of PI determines a higher number of dropped packets than
FPI. The expected faster response time of the FPI controller has
been confirmed under heavy load fluctuations.

Fig. 8. Queue length.

Fig. 9. Dropping probability.

2) Fairness: A fair AQM policy would be one which does
not penalize any flow arbitrarily. In general, fairness implies that
each competing flow gets the same share of the congested re-
source. Nevertheless, AQM policy is not the only responsible for
fairness toward flows. In the congestion control and avoidance
algorithm of TCP Reno there is an unavoidable source of un-
fairness: the transmission rate is inversely proportional to round
trip time. This means that two TCP flows which experience
the same congestion (loss probability) will achieve different av-
erage transmission rates according to their own round trip times.
Another fairness issue is the discrimination of long-lived (FTP)
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Fig. 10. Cumulative number of dropped packets.

and short-lived (HTTP) flows. Short TCP flows are generally
more conservative than long flows and tend to get less than their
fair share when they compete for the bottleneck bandwidth [39].
Furthermore, when a TCP flow traverses more congested links,
it experiences larger end-to-end loss probability and, thus, gets
less bandwidth. In the latter case the flow does consume more
resources and it is arguable if this case is unfair.

We adopt the Jain’s fairness index [40] to investigate fairness
attributes of the FPI-based AQM policy in relation to round-trip
delay bias and HTTP/FTP discrimination. Given a set of mea-
sures of which we want to evaluate the fairness distribu-
tion, Jain’s index is defined as

(13)

The fairness index (13) is applicable to any resource sharing
or allocation problem. It is independent from the total amount
of the resource and is a continuous function always bounded
between 0 and 1. An index value of 1 means that the distribution
of values is totally fair, and a value of 0 means it is totally
unfair.

We ran two simulations to evaluate the fairness among FTP
flows with different round trip times and the fairness between
FTP and HTTP flows of different AQM policies.

In the first simulation 100 FTP flows with different round trip
times uniformly distributed in the range 60–900 ms share the
single bottleneck of topology in Fig. 3. In [41] it is shown that
85% of the RTT values in the Internet lies in that range.

In the second simulation 60 FTP flows and 180 HTTP flows
share the bottleneck link and both groups have RTT uniformly
distributed in the range 160–240 ms.

We compute the fairness index of the average throughput
for each flow during the entire simulation (50 s). Fur-

thermore, we compute the fairness index of the overall packet
drop rate for each flow. In the latter case equals the
drop packet rate of flow divided by the fair dropping proba-
bility (total number of drops over total number of packets arrived

TABLE IV
SUMMARY OF LINK UTILIZATION RESULTS

TABLE V
FAIRNESSINDEXESF (t) AND F (p)

Fig. 11. Parking lot topology.

at the bottleneck link). Table V shows the values of the fairness
index obtained with different AQM policies. Both PI and FPI
controllers provide better fairness than RED and tail drop poli-
cies in all cases. In the “FTP/HTTP” case, even though the index

indicates a low fairness in the throughput distribution for
all policies, shows that PI-based policies do not discrim-
inate HTTP flows in packet dropping as much as RED and tail
drop.

3) Multibottleneck Topology:The aim of this experiment is
to investigate more complex scenarios where TCP flows tra-
verse several AQM managed routers. We adopt a more com-
plex topology, illustrated in Fig. 11, and more realistic traffic
patterns in order to evaluate the performance of multiple AQM
controllers. All the horizontal links are managed by AQM con-
trollers and have the same capacity of 16 Mb/s, whereas the ver-
tical links of 100 Mb/s carry aggregated traffic to feed the for-
mers. The traffic which traverses all links in the straight path of
the topology (the straight arrow in the figure), is constituted by
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Fig. 12. Overall throughput versus the number of bottleneck links.

sixty greedy FTP flows and sixty HTTP flows used as under-
lying noise. The same flow composition has also been used to
produce the traffic crossing each single bottleneck, illustrated by
the curved arrows. Propagation delays have been assigned to the
topology links, such that the overall RTT for every flow ranges
in the interval , independently from the number of
links in the path. In order to simulate realistic traffic, we set FTP
session arrivals of the crossing flows according to a Poisson dis-
tribution [42]. The mean value of the exponential distribution
is uniformly distributed in the time interval of the experiment
period. Moreover, we used a Pareto distribution to set the FTP
session lengths with average of 10 KB according to [43].

Fig. 12 shows the overall throughput achieved by the main
group of FTP flows when the number of bottleneck links varies
in the range . The performances of FPI, PI, RED, and
tail drop AQM policies are compared. All the AQM policies
show a similar behavior. When the number of traversed links in-
creases the overall throughput achieved by the aggregated flow
decreases. However, this can be considered a desirable behavior,
since flows which use more valuable resources, such as con-
gested links, should be more penalized.

Fig. 13 shows the average delay experienced by the packets
of the main sixty FTP flows, when a parking lot topology with
20 edges is considered. As expected, the delays produced by the
PI and FPI controllers are sensibly lower than the ones caused
by RED and tail drop AQM policies. The figure also clearly
shows the slow convergence time of RED. Finally, in order to
investigate the dynamic of a multibottleneck topology, we set an
experiment with a four-parking-lot topology. The crossing flow
groups are composed by 40 FTP flows and the number of FTP
flows in the main group is varying in the range between 20 and
100. Table VI summarizes the utilization of each link achieved
by the aggregate FTP flows for FPI and PI controllers. The first
column reports the number of FTP sessions which constitute
the horizontal group of flows and the second one indicates the
bottleneck link number. The overall percentage utilization of
each link and the goodput of the main group of flows along the
four bottlenecks path have been reported.

Fig. 13. Average delay with 20 bottleneck links.

TABLE VI
SUMMARY OF LINK UTILIZATIONS IN A FOUR-PARKING-LOT TOPOLOGY

The results, presented in Fig. 12 and Table VI, show two dif-
ferent aspects of a multi-bottleneck path. The throughput of the
aggregated flow is inversely proportional to the number of con-
gested links that the flow traverses along its path. Secondly, if
we look at the single link we can notice a lower utilization at
those links which are more distant from sources due to the flow
throughput downgrading. When a packet is dropped, the trans-
mission capacity that was used at each upstream link for that
packet transmission has been wasted.

VI. CONCLUSIONS

A fuzzy proportional integral controller for AQM has been
adopted in order to achieve both good queue regulation and high
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link utilization. In this paper a genetic algorithm has been pro-
posed and evaluated for the optimal tuning of the FPI controller
parameters. The main objectives of the controller design method
are fast response to high load variations and disturbance rejec-
tion in steady-state behavior. These design goals are encoded in
a performance index and the genetic algorithm optimally tunes
the fuzzy controller parameters, such as center points of mem-
bership functions and scaling factors. The FPI controller has
been tested under different traffic conditions and compared to
other AQM policies. The experimental results demonstrate that
the FPI controller outperforms the other AQM policies under
various operating conditions, especially for traffic that exceeds
the nominal bandwidth causing severe overload on the node.
The improvement in terms of response time and link utilization
is due to the fact that the nonlinear fuzzy controller has a variable
gain that allows the AQM to recover faster from large variation
in traffic loads.
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