
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 6, DECEMBER 2009 1393

Cooperative Control and Potential Games
Jason R. Marden, Gürdal Arslan, and Jeff S. Shamma

Abstract—We present a view of cooperative control using the
language of learning in games. We review the game-theoretic
concepts of potential and weakly acyclic games, and demonstrate
how several cooperative control problems, such as consensus and
dynamic sensor coverage, can be formulated in these settings.
Motivated by this connection, we build upon game-theoretic con-
cepts to better accommodate a broader class of cooperative control
problems. In particular, we extend existing learning algorithms to
accommodate restricted action sets caused by the limitations of
agent capabilities and group-based decision making. Furthermore,
we also introduce a new class of games called sometimes weakly
acyclic games for time-varying objective functions and action
sets, and provide distributed algorithms for convergence to an
equilibrium.

Index Terms—Cooperative control, game theory, learning in
games, multi-agent systems.

I. INTRODUCTION

THE GOALS of this paper are twofold: 1) to establish
a relationship between cooperative control problems and

game-theoretic methods, and demonstrate the effectiveness of
utilizing game-theoretic approaches for controlling multiagent
systems, and 2) motivated by this connection, to build upon
existing game-theoretic results to better accommodate a broader
class of cooperative control problems.

The results presented here are of independent interest in
terms of their applicability to a large class of games. However,
we will use the consensus problem as the main illustration
of the approach. In a discrete-time version of the consensus
problem initiated in [1], a group of players (or agents) P =
{P1, . . . ,Pn} seeks to come to an agreement, or consensus,
upon a common scalar value1 by repeatedly interacting with

Manuscript received September 16, 2008; revised January 28, 2009. First
published April 14, 2009; current version published November 18, 2009. This
work was supported in part by the Social and Information Sciences Labora-
tory, California Institute of Technology, by the Army Research Office under
Grant W911NF04316, by the Air Force Office of Scientific Research under
Grant FA9550-08-1-0375, and by the National Science Foundation under Grant
ECS-0501394 and Grant ECCS-0547692. This paper was recommended by
Associate Editor T. Vasilakos.

J. R. Marden is with the Social and Information Sciences Laboratory,
California Institute of Technology, Pasadena, CA 91125 USA (e-mail:
marden@caltech.edu).

G. Arslan is with the Department of Electrical Engineering, University of
Hawaii, Honolulu, HI 96822 USA (e-mail: gurdal@hawaii.edu).

J. S. Shamma is with the School of Electrical and Computer Engineer-
ing, Georgia Institute of Technology, Atlanta, GA 30332-0250 USA (e-mail:
shamma@gatech.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2009.2017273

1The forthcoming results will also hold for multidimensional consensus.

one another. By reaching a consensus, we mean converging to
the agreement space characterized by

a1 = a2 = · · · = an

where ai is referred to as the state of player Pi. Several papers
study different interaction models and analyze the conditions
that lead to a consensus [2]–[9].

A well-studied protocol, which is referred to here as the “con-
sensus algorithm,” can be described as follows: At each time
step t ∈ {0, 1, . . .}, each player Pi is allowed to interact with
a group of other players, who are referred to as the neighbors
of player Pi and denoted as Ni(t). During an interaction, each
player Pi is informed of the current (or possibly delayed) state
of all its neighbors. Player Pi then updates its state by forming
a convex combination of its state, along with the state of all its
neighbors. The consensus algorithm takes on the general form

ai(t + 1) =
∑

Pj∈Ni(t)

ωij(t)aj(t) (1)

where ωij(t) is the relative weight that player Pi places on
the state of player Pj at time t. The interaction topology is
described in terms of a time-varying directed graph G(V,E(t))
with the set of nodes V = P and the set of edges E(t) ⊂
P × P at time t. The set of edges is induced by the neighbor
sets as follows: (Pi,Pj) ∈ E(t) if and only if Pj ∈ Ni(t). We
will refer to G(V,E(t)) as the interaction graph at time t.

There has been extensive research centered on understanding
the conditions that are necessary for guaranteeing the conver-
gence of all states, i.e., limt→∞ ai(t) → a∗, for all players Pi ∈
P . The convergence properties of the consensus algorithm have
been studied under several interaction models encompassing
delays in information exchange, connectivity issues, varying
topologies, and noisy measurements.

There has been considerable recent research in the area of
cooperative control (e.g., [10]–[12]). Surprisingly, there has
been relatively little research that explicitly links cooperative
control problems to the very relevant branches of learning in
game literature [13] or multiagent system literature [14], [15]
that address coordination problems. The goal of this paper is to
better establish this link and develop new algorithms for broader
classes of cooperative control problems and games.

In Section II, we establish a connection between coopera-
tive control problems and a particular class of games known
as “potential games,” and we model the consensus problem
as a potential game. In Section III, we introduce a learning
algorithm for potential games with state-dependent action sets.
We show that the algorithm, when applied to the consensus
problem, guarantees that players will come to a consensus,
even in an environment filled with nonconvex obstructions.

1083-4419/$25.00 © 2009 IEEE

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 9, 2009 at 19:29 from IEEE Xplore.  Restrictions apply. 



1394 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 6, DECEMBER 2009

In Section IV, we introduce a new class of games called
sometimes weakly acyclic games, which generalize potential
games, and present simple learning dynamics with desirable
convergence properties. We go on to illustrate these methods
on the consensus problem modeled as a sometimes weakly
acyclic game. In Section V, we develop learning algorithms
that can accommodate group-based decisions. In Section VI,
we illustrate the connection between cooperative control and
potential games on three separate problems, including func-
tional consensus, sensor deployment, and sensor coverage. In
Section VII, we present some final remarks.

II. COOPERATIVE CONTROL PROBLEM AND

POTENTIAL GAME

Cooperative control problems entail several autonomous
players seeking to collectively accomplish a global objective.
The consensus problem is one example of a cooperative control
problem, where the global objective is for all players to reach
a consensus upon a given state. The challenge in cooperative
control problems is designing local control laws and/or local
objective functions for each of the individual players, so that
they collectively accomplish the desired global objective.

One approach for cooperative control problems is to assign
each individual player a fixed protocol or policy. This protocol
precisely specifies what each player should do under any envi-
ronmental condition. The consensus algorithm set forth in (1)
is an example of such a policy-based approach. A challenge in
this approach is to incorporate dynamic or evolving constraints
on player policies. For example, suppose that a global planner
desires a group of autonomous agents to physically converge to
a central location in an environment that contains obstructions.
The standard consensus algorithm may not be applicable to this
problem since the limitations of control capabilities caused by
environmental obstructions are not considered. Variations of the
consensus algorithm could possibly be designed to accommo-
date obstructions, but the analysis and control design would be
more challenging.

An alternative game-theoretic approach to cooperative con-
trol problems, which is our main interest in this paper, is to
assign each individual player a local objective (utility) function.
In this setting, each player Pi ∈ P is assigned an action set
Ai and a local objective function Ui : A → R, where A =∏

Pi∈P Ai is the set of joint actions. Provided that the assigned
objective functions fall under a suitable category of games, one
can appeal to algorithms with guaranteed properties for all the
games within this category. In terms of the previous discussion,
we will see that consensus, with or without obstacles, falls
under the same category of games.

The challenge of control design in the game-theoretic ap-
proach lies in designing both the player objective functions
and the learning dynamics, so that players collectively accom-
plish the objective of the global planner. Learning dynamics
will be formulated as a repeated game, in which a one-stage
game is repeated at each time step t ∈ {0, 1, 2, . . .}. At every
time step t > 0, each player Pi ∈ P selects an action ai ∈
Ai according to a prescribed learning rule that specifies how
the player processes past observations from the interactions

at times {0, 1, . . . , t − 1} to select an action at time t. The
learning dynamics that will be used throughout this paper is
referred to as single-stage memory dynamics, which has a
structural form that is similar to that of the consensus algorithm,
i.e., the decision of any player Pi at time t is made using only
observations from the game played at time t − 1. Of course,
more general learning dynamics need not be restricted to single-
stage memory.

A. Potential Games

Suppose that the objective of the global planner is captured
by a potential function φ : A → R. We will impose that each
player’s objective function be appropriately “aligned” with the
objective of the global planner. This notion of utility alignment
(as presented in [16]) for multiagent systems has a strong
connection to potential games [17].

Let

a−i = (a1, . . . , ai−i, ai+1, . . . , an)

denote the collection of actions of players other than player Pi.
With this notation, we will frequently express joint action a as
(ai, a−i).

Definition 2.1 (Potential Games): Player action sets
{Ai}n

i=1, together with player objective functions {Ui : A →
R}n

i=1, constitute a potential game if, for some potential
function φ : A → R

Ui (a′′
i , a−i) − Ui (a′

i, a−i) = φ (a′′
i , a−i) − φ (a′

i, a−i) (2)

for every player Pi ∈ P , for every a′
i, a′′

i ∈ Ai, and for every
a−i ∈ ×j �=iAj .

A potential game, as previously defined, requires perfect
alignment between the global objective and the players’ local
objective functions in the following sense: If a player unilat-
erally changed its action, the change in its objective function
would be equal to the change in the potential function. There
are weaker notions of potential games called weakly acyclic
games, which will be discussed later.2 The connection between
cooperative control problems and potential games is important,
because learning algorithms for potential games have been
extensively studied in the game theory literature [17]–[21].
Accordingly, if it is shown that a cooperative control problem
can be formulated as a potential game, established learning
algorithms with guaranteed asymptotic results could be used
to tackle the cooperative control problem at hand.

Most of the learning algorithms for potential games guaran-
tee convergence to a (pure) Nash equilibrium.

Definition 2.2 (Nash Equilibrium): An action profile a∗ ∈ A
is called a pure Nash equilibrium if, for all players Pi ∈ P

Ui

(
a∗

i , a
∗
−i

)
= max

ai∈Ai

Ui

(
ai, a

∗
−i

)
. (3)

2We will omit mentioning other classes of potential games, such as gener-
alized ordinal or weighted potential games, as they are just special cases of
weakly acyclic games.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 9, 2009 at 19:29 from IEEE Xplore.  Restrictions apply. 



MARDEN et al.: COOPERATIVE CONTROL AND POTENTIAL GAMES 1395

It is easy to see that, in potential games, any action profile
maximizing the potential function is a pure Nash equilibrium.
Hence, every potential game possesses at least one such equi-
librium. However, there may also exist suboptimal pure Nash
equilibria that do not maximize the potential function.

B. Consensus Modeled as a Potential Game

In this section, we will illustrate these concepts by showing
that the consensus problem can be modeled as a potential
game by appropriately defining the players’ utilities. First, we
establish a global objective function that captures the notion
of consensus. Next, we show that local objective functions
can be assigned to each player, so that the resulting game
is, in fact, a potential game. The potential game formulation
of the consensus problem discussed in this section requires
the interaction graph to be time invariant and undirected. In
Section IV-D, we relax these requirements by formulating the
consensus problem as a sometimes weakly acyclic game.

Consider a consensus problem with n-player set P , where
each player Pi ∈ P has a finite action set Ai. A player’s action
set could represent the finite set of locations that a player could
select.

We will consider the following potential function for the
consensus problem3:

φ(a) := −
∑
Pi∈P

∑
Pj∈Ni

‖ai − aj‖
2

(4)

where Ni ⊂ P is player Pi’s time-invariant neighbor set. In
the case where the interaction graph induced by neighbor sets
{Ni}n

i=1 is connected,4 the aforementioned potential function
achieves the value of 0 if and only if action profile a ∈ A
constitutes a consensus, i.e.,

φ(a) = 0 ⇔ a1 = · · · = an. (5)

The goal is to assign each player an objective function that is
perfectly aligned with the global objective in (4). One approach
would be to assign each player the following objective function:

Ui(a) = φ(a). (6)

This assignment would require each player to observe the deci-
sion of all players to evaluate its payoff for a particular action
choice, which may be infeasible. An alternative approach would
be to assign each player an objective function that captures the
player’s marginal contribution to the potential function. For the
consensus problem with an undirected interaction topology, this
translates to each player being assigned the objective function

Ui(ai, a−i) = −
∑

Pj∈Ni

‖ai − aj‖. (7)

3This discussion uses a norm as a distance measure. Since we are dealing
with finite actions sets, the norm ‖ai − aj‖ could be replaced with a more
general symmetric distance function δ(ai, aj), i.e., 1) δ(ai, aj) > 0 ⇔ ai �=
aj , 2) δ(ai, aj) = 0 ⇔ ai = aj , and 3) δ(ai, aj) = δ(aj , ai) for all ai, aj .

4A graph is connected if there exists a path from any node to any other node.

Now, each player’s objective function is only dependent on the
actions of its neighbors. An objective function of this form is
referred to as wonderful life utility (WLU, see [16] and [22]). It
is known that assigning each agent a WLU leads to a potential
game [16], [22]; however, we will explicitly show this for the
consensus problem in the following claim:

Claim 2.1: Player objective functions (7) constitute a poten-
tial game with potential function (4), provided that the time-
invariant interaction graph induced by neighbor sets {Ni}n

i=1 is
undirected, i.e.,

Pj ∈ Ni ⇔ Pi ∈ Nj .

Proof: Since the interaction graph is time invariant and
undirected, the potential function can be expressed as

φ(a)=−
∑
Pj∈Ni

‖ai−aj‖−
∑

Pj �=Pi

∑
Pk∈Nj\Pi

‖aj−ak‖
2

. (8)

The change in the objective function of player Pi by switching
from action a1

i to action a2
i , provided that all other players

collectively play a−i, is

Ui

(
a2

i , a−i

) − Ui

(
a1

i , a−i

)
=

∑
Pj∈Ni

−∥∥a2
i − aj

∥∥ +
∥∥a1

i − aj

∥∥ (9)

= φ
(
a2

i , a−i

) − φ
(
a1

i , a−i

)
. (10)

�
Note that the preceding claim does not require the interac-

tion graph to be connected. There may exist other potential
functions and subsequent player objective functions that can
accommodate more general setups. For a detailed discussion
on possible player objective functions derived from a given
potential function, see [22].

It is straightforward to see that any consensus point is a
Nash equilibrium of the game characterized by player objective
functions (7). This is because a consensus point maximizes
the potential function and the player objective functions (7).5

However, the converse statement is not true. Let A∗ denote
the set of Nash equilibria and Ac denote the set of consensus
points. We know that Ac ⊂ A∗, where the inclusion can be
proper. In other words, a Nash equilibrium, e.g., a∗ ∈ A∗, can
be suboptimal, i.e., φ(a∗) < 0, and hence fail to be a consensus
point.

With the consensus problem now formulated as a potential
game, there are a large number of learning algorithms that
are available with guaranteed results [13], [17], [20]–[23].
Most of the learning algorithms for potential games guarantee
that the player behavior converges to a (possibly suboptimal)
Nash equilibrium. In the ensuing section, we will focus on a
particular learning algorithm for potential games that guaran-
tees probabilistic convergence to a pure Nash equilibrium that
maximizes the potential function.

5Let a be any consensus point. Then, φ(a) = 0 and Ui(a) = 0 for all
players Pi. Therefore, a is a Nash equilibrium.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 9, 2009 at 19:29 from IEEE Xplore.  Restrictions apply. 



1396 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 6, DECEMBER 2009

III. POTENTIAL GAME WITH STATE-DEPENDENT

ACTION SET

In this section, we analyze potential games with state-
dependent action sets. We will consider the special case where
the set of actions available for a given player depends on the
player’s previous action.6 We will refer to state-dependent ac-
tion sets of this form as (range) restricted action sets. We present
a learning algorithm for this class of games and demonstrate
that, when applied to the consensus problem, this algorithm
guarantees consensus, even in an environment that contains
arbitrary obstructions.

A. Background: SAP

Before stating the learning algorithm, we start with some
notation. Let the strategy for player Pi at time t be denoted by
probability distribution pi(t) ∈ Δ(Ai), where Δ(Ai) denotes
the set of probability distributions over set Ai. Using this
strategy, player Pi randomly selects an action from Ai at time
t according to pi(t).

Consider the following learning algorithm known as spatial
adaptive play (SAP) [13], [25], [26]: At each time t > 0, one
player Pi ∈ P is randomly chosen (with equal probability for
each player) and allowed to update its action. All other players
must repeat their actions, i.e., a−i(t) = a−i(t − 1). At time t,
the updating player Pi randomly selects an action from Ai

according to its strategy pi(t) ∈ Δ(Ai), where the aith com-
ponent pai

i (t) of its strategy is given as

pai
i (t) =

exp {βUi (ai, a−i(t − 1))}∑
āi∈Ai

exp {βUi (āi, a−i(t − 1))} (11)

for some exploration parameter β ≥ 0. Constant β determines
how likely player Pi is to select a suboptimal action. If β = 0,
player Pi will select any action ai ∈ Ai with equal probability.
As β → ∞, player Pi will select an action from its best
response set
{

ai ∈ Ai : Ui (ai, a−i(t − 1)) = max
a′

i
∈Ai

Ui (a′
i, a−i(t − 1))

}

(12)

with arbitrarily high probability.
In a repeated potential game in which all players adhere to

SAP, the stationary distribution μ ∈ Δ(A) of the joint action
profiles is given in [25] as

μ(a) =
exp {βφ(a)}∑

ā∈A exp {βφ(ā)} . (13)

One can interpret stationary distribution μ as follows: For suf-
ficiently large times t > 0, μ(a) is equal to the probability that
a(t) = a. As β ↑ ∞, all the weight of the stationary distribution
μ is on the joint actions that maximize the potential function.

6We note that this scenario could have been formulated as a stochastic game
[24], where the state is defined as the previous action profile, and the state-
dependent action sets are defined accordingly. We will avoid formally defining
the game as a stochastic game in favor of a direct presentation.

In the potential game formulation of the consensus problem,
the joint actions that maximize the potential function (4) are
precisely the consensus points, provided that the interaction
graph is connected. Therefore, if all players update their actions
using the learning algorithm SAP with sufficiently large β,
then the players will asymptotically reach a consensus with
arbitrarily high probability.

B. Learning Algorithm for Potential Games With Suboptimal
Nash Equilibria and Restricted Action Sets

One issue with the applicability of the learning algorithm
SAP to the consensus problem is that it permits any player to
select any action in its action set. Because of player mobility
limitations, this may not be possible. For example, a player
may only be able to move to a position within a fixed radius
of its current position. Therefore, we seek to modify SAP by
conditioning a player’s action set on its previous action. Let
a(t − 1) be the joint action at time t − 1. With restricted action
sets, the set of actions available to player Pi at time t is a
function of its action at time t − 1 and will be denoted as
Ri(ai(t − 1)) ⊂ Ai. We will adopt the convention that ai ∈
Ri(ai) for any action ai ∈ Ai, i.e., a player is always allowed
to stay with its previous action.

We will introduce a variant of SAP called binary restrictive
SAP (RSAP) to accommodate the notion of restricted action
sets. RSAP can be described as follows: At each time step t >
0, one player Pi ∈ P is randomly chosen (with equal probabil-
ity for each player) and allowed to update its action. All other
players must repeat their actions, i.e., a−i(t) = a−i(t − 1).
At time t, the updating player Pi randomly selects one trial
action âi from its allowable set Ri(ai(t − 1)) with the fol-
lowing probabilities, where zi denotes the maximum number
of actions in any restricted action set for player Pi, i.e., zi :=
maxai∈Ai

|Ri(ai)|:
1) Pr[âi = ai] = (1/zi) for any ai ∈ Ri(ai(t − 1)) \

ai(t − 1);
2) Pr[âi = ai(t − 1)] = 1 − ((|Ri(ai(t − 1))| − 1)/zi).

After player Pi selects a trial action âi, the player chooses its
action at time t as follows:

Pr [ai(t) = âi] =
exp {βUi (âi, a−i(t − 1))}

D
(14)

Pr [ai(t) = ai(t − 1)] =
exp {βUi (a(t − 1))}

D
(15)

where

D = exp {βUi (âi, a−i(t − 1))} + exp {βUi (a(t − 1))}
(16)

and β ≥ 0 is an exploration parameter. Note that, if âi is
selected as ai(t − 1), then Pr[ai(t) = ai(t − 1)] = 1.

We make the following assumptions regarding the restricted
action sets:

Assumption 3.1 (Reversibility): For any player Pi ∈ P and
any action pair a1

i , a2
i ∈ Ai

a2
i ∈ Ri

(
a1

i

) ⇔ a1
i ∈ Ri

(
a2

i

)
.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 9, 2009 at 19:29 from IEEE Xplore.  Restrictions apply. 



MARDEN et al.: COOPERATIVE CONTROL AND POTENTIAL GAMES 1397

Assumption 3.2 (Feasibility): For any player Pi ∈ P and any
action pair a0

i , am
i ∈ Ai, there exists a sequence of actions

a0
i → a1

i → · · · → am
i that satisfies ak

i ∈ Ri(ak−1
i ) for all k ∈

{1, 2, . . . ,m}.
Theorem 3.1: Consider a finite n-player potential game with

potential function φ(·). If the restricted action sets satisfy
Assumptions 3.1 and 3.2, then RSAP induces a Markov process
over state space A, where the unique stationary distribution
μ ∈ Δ(A) is

μ(a) =
exp {βφ(a)}∑

ā∈A exp {βφ(ā)} for any a ∈ A. (17)

Proof: The proof follows along the lines of the proof
of Theorem 6.2 in [13]. By Assumptions 3.1 and 3.2, we
know that the Markov process induced by RSAP is irreducible
and aperiodic; therefore, the process has a unique stationary
distribution. Here, we show that this unique distribution must be
(17) by verifying that the distribution (17) satisfies the detailed
balanced equations

μ(a)Pab = μ(b)Pba (18)

for any a, b ∈ A, where

Pab := Pr [a(t) = b|a(t − 1) = a] . (19)

Note that the only nontrivial case is where a and b differ by
exactly one player Pi, i.e., a−i = b−i but ai �= bi, where ai ∈
Ri(bi), which also implies that bi ∈ Ri(ai). Since player Pi has
probability 1/n of being chosen in any given period and any
trial action bi ∈ Ri(ai), bi �= ai, has probability 1/zi of being
chosen, it follows that

μ(a)Pab =
[

exp {βφ(a)}∑
z∈A exp {βφ(z)}

]

×
[(

1
n

)(
1
zi

)
exp {βUi(b)}

exp {βUi(a)} + exp {βUi(b)}
]

.

(20)

Letting

λ=
(

1∑
z∈A exp {βφ(z)}

)
×

(
(1/n)(1/zi)

exp {βUi(a)}+exp {βUi(b)}
)

(21)
we obtain

μ(a)Pab = λ exp {βφ(a) + βUi(b)} . (22)

Since Ui(b) − Ui(a) = φ(b) − φ(a), we have

μ(a)Pab = λ exp {βφ(b) + βUi(a)} (23)

which leads us to

μ(a)Pab = μ(b)Pba. (24)

�
Note that, if all players adhere to the learning dynamics

RSAP in a consensus problem where the interaction graph is

Fig. 1. Consensus problem with restricted action sets and arbitrary (noncon-
vex) obstructions.

time invariant and undirected, the restricted action sets satisfy
Assumptions 3.1 and 3.2, and players are assigned the utilities
(7); then, at sufficiently large times t, the players’ collective
behavior will maximize the potential function (4) with arbi-
trarily high probability, provided that β is sufficiently large.
Furthermore, if the interaction graph is connected and consen-
sus is possible, meaning (A1 ∩ A2 ∩ · · · ∩ An) �= ∅, then, at
sufficiently large times t > 0, the players’ actions will consti-
tute a consensus with arbitrarily high probability, even in an
environment filled with nonconvex obstructions.

C. Example: Consensus in an Environment
With Arbitrary Obstructions

Consider the 2-D consensus problem with player set P =
{P1,P2,P3,P4}. Each player Pi has an action set Ai =
{1, 2, . . . , 10} × {1, 2, . . . , 10}, as shown in Fig. 1.

The arrows represent the time-invariant and undirected edges
of the connected interaction graph. The restricted action sets
are highlighted for players P2 and P4. At any given time, any
player can have at most nine possible actions; therefore, zi = 9
for all players Pi ∈ P . The action sets are further restricted by
the given obstruction.

We simulated RSAP on the consensus problem with the in-
teraction graph, environmental obstruction, and the initial con-
ditions shown in Fig. 1. The simulations reflect an increasing
exploration parameter β = t/200 during player interactions.
The complete action path of all players reaching a consensus
is shown in Fig. 1.

IV. WEAKLY ACYCLIC AND SOMETIMES WEAKLY

ACYCLIC GAMES

In potential games, the player objective functions must be
perfectly aligned with the potential of the game. In the potential
game formulation of the consensus problem, this alignment
condition required that the interaction graph be time invariant
and undirected. In this section, we will seek to relax this
alignment requirement by allowing player objective functions
to be “somewhat” aligned with the potential of the game. We
will review a weaker form of potential games called weakly
acyclic games and introduce a new class of games called
sometimes weakly acyclic games. We will also present simple
learning dynamics that guarantee convergence to an invariant
Nash equilibrium, to be defined later, in any sometimes weakly
acyclic game.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 9, 2009 at 19:29 from IEEE Xplore.  Restrictions apply. 



1398 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 6, DECEMBER 2009

A. Weakly Acyclic Games

Consider any finite game G with player set P , action set A,
and utility functions {Ui}n

i=1. A better reply path is a sequence
of action profiles a1, a2, . . . , aL such that, for every 1 ≤ � ≤
L − 1, there is exactly one player Pi�

such that a�
i�
�= a�+1

i�
,

a�
−i�

= a�+1
−i�

, and Ui�
(a�) < Ui�

(a�+1). In other words, one
player moves at a time, and each time that a player moves, it
increases its own utility.

Suppose now that G is a potential game with potential func-
tion φ. Starting from an arbitrary action profile a ∈ A, construct
a better reply path a = a1, a2, . . . , aL until it can no longer
be extended. Note first that such a path cannot cycle back on
itself, because φ is strictly increasing along the path. Since A is
finite, the path cannot indefinitely be extended. Hence, the last
element in a maximal better reply path from any joint action a
must be a Nash equilibrium of G.

This idea may be generalized as follows: Game G is weakly
acyclic if, for any a ∈ A, there exists a better reply path
starting at a and ending at some pure Nash equilibrium of G
[13], [23]. Potential games are special cases of weakly acyclic
games.

The preceding definition does not clearly identify the sim-
ilarities between potential games and weakly acyclic games.
Furthermore, using this definition to show that a given game G
(i.e., the players, objective functions, and action sets) is weakly
acyclic can be problematic in that being weakly acyclic is a
pathwise, rather than pointwise, property of the joint actions.
With these issues in mind, we will now derive an equiva-
lent definition for weakly acyclic games that utilizes potential
functions.

Proposition 4.1: A game is weakly acyclic if and only if
there exists a potential function φ : A → R such that, for any
action a ∈ A that is not a Nash equilibrium, there exists a
player Pi ∈ P with an action a′

i ∈ Ai such that Ui(a′
i, a−i) >

Ui(ai, a−i) and φ(a′
i, a−i) > φ(ai, a−i).

Proof: (⇐) Select any action a0 ∈ A. If a0 is not a Nash
equilibrium, there exists a player Pi ∈ P with an action a′

i ∈
Ai such that Ui(a1) > Ui(a0) and φ(a1) > φ(a0), where a1 =
(a′

i, a
0
−i).

Repeat this process, and construct a path a0, a1, . . . , an

until it can no longer be extended. Note first that such a path
cannot cycle back on itself, because φ is strictly increasing
along the path. Since A is finite, the path cannot indefinitely
be extended. Hence, the last element in this path must be a
Nash equilibrium.

(⇒) We will recursively construct a potential function φ :
A → R. Select any action a0 ∈ A. Since the game is weakly
acyclic, there exists a better reply path a0, a1, . . . , an, where an

is a Nash equilibrium. Let A0 = {a0, a1, . . . , an}. Define the
(finite) potential function φ over set A0 satisfying the following
conditions:

φ(a0) < φ(a1) < · · · < φ(an). (25)

Now select any action ã0 ∈ A \ A0. There exists a better
reply path ã0, ã1, . . . , ãm, where ãm is a Nash equilibrium.
Let A1 = {ã0, ã1, . . . , ãm}. If A1 ∩ A0 = ∅, then define the

potential function φ over set A1 satisfying the following
conditions:

φ(ã0) < φ(ã1) < · · · < φ(ãm). (26)

If A1 ∩ A0 �= ∅, then let k′ = min{k ∈ {1, 2, . . . ,m} : ãk ∈
A0}. Define the potential function φ over the truncated (re-
defined) set A1 = {ã0, ã1, . . . , ãk′−1} satisfying the following
conditions:

φ(ã0) < φ(ã1) < · · · < φ(ãk′
). (27)

Now select any action â0 ∈ A \ (A0 ∪ A1), and repeat until no
such action exists.

The construction of potential function φ guarantees that, for
any action a ∈ A that is not a Nash equilibrium, there exists a
player Pi ∈ P with an action a′

i ∈ Ai such that Ui(a′
i, a−i) >

Ui(ai, a−i) and φ(a′
i, a−i) > φ(ai, a−i). �

As with potential games, there are several learning algo-
rithms with guaranteed results available for weakly acyclic
games [20], [23], [27]. There are both advantages and disadvan-
tages to formulating a cooperative control problem as a weakly
acyclic game as opposed to a potential game. One advantage
is flexibility in designing the player objective functions. In
potential games, the player objective functions must perfectly
be aligned with the potential function. In contrast to potential
games, weakly acyclic games only require that at least one
player’s objective function is aligned with the potential function
for any action profile. This flexibility in designing objective
functions could be exploited in several ways to design more
desirable control architectures for distributed systems. One
example of this involves relaxing the structural requirements
on the player objective functions, such as system requirements,
e.g., an invariant interaction graph, or minimizing the degree
to which a player’s objective function depends on the actions
of other players. An alternative example involves equilibrium
manipulation, i.e., designing objective functions such that all
pure Nash equilibrium are desirable.

When looking at the consensus problem, the potential game
formulation required the interaction topology to be undirected
as the following example illustrates:

Consider a consensus problem with three players P1, P2, and
P3 with the following neighbor sets: N1 = {P1,P2}, N2 =
{P2,P3}, and N3 = {P3,P1}. Suppose that the action set of
each player Pi is Ai = {a, b} for some a, b ∈ R. Consider
the following better reply path, where the top, middle, and
bottom actions are the actions of players P1, P2, and P3,
respectively:

⎡
⎣ a

b
a

⎤
⎦ → ⎡

⎣ b
b
a

⎤
⎦ →

⎡
⎣ b

a
a

⎤
⎦
→

⎡
⎣ b

a
b

⎤
⎦

→ ⎡
⎣ a

a
b

⎤
⎦ →

⎡
⎣ a

b
b

⎤
⎦
→

⎡
⎣ a

b
a

⎤
⎦ . (28)

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 9, 2009 at 19:29 from IEEE Xplore.  Restrictions apply. 



MARDEN et al.: COOPERATIVE CONTROL AND POTENTIAL GAMES 1399

If this were a potential game, then each deviation would also
increase the potential function. However, this is not possible,
because there exists a better reply cycle.

This requirement on the interaction graph is no longer nec-
essary when formulating the consensus problem as a weakly
acyclic game. For example, it is easy to see that the example
in (28) is a weakly acyclic game, because there exists a better
reply path from any action profile to a Nash equilibrium (or, in
this case, a consensus point).

A disadvantage of weakly acyclic games when compared
with potential games as a paradigm for designing distributed
systems is the lack of a systematic procedure for utilizing
this flexibility in designing the player objective functions from
a given global objective. For example, there are several sys-
tematic procedures for designing the player objective func-
tions such that the resulting game is a potential game [22].
One such example is the WLU discussed earlier. An open
research question is understanding whether such a procedure
for weakly acyclic games can be obtained and quantifying the
possible gains by considering weakly acyclic games over poten-
tial games.

To avoid redundancy, we will explicitly omit modeling
a general consensus problem with a time-invariant directed
interaction topology as a weakly acyclic game. Rather, in
Section IV-D, we will model the more general consensus
problem with a time-varying directed interaction topology as
a sometimes weakly acyclic game.

B. Sometimes Weakly Acyclic Games

In this section, we will extend the notion of weakly acyclic
games to include state-dependent objective functions. This
framework is known as a Markov or stochastic game [24].

In the potential game formulation of the consensus problem,
each player was assigned a time-invariant objective function
of the form (7). However, in the case of a time-varying in-
teraction topology, we would like to allow player objective
functions to be time varying. In this framework, each player
Pi is now assigned a local state-dependent objective function
Ui : A× X → R, where X is the set of states. In the con-
sensus problem, X could represent the set of possible inter-
action topologies. Denote the objective function of player Pi

at time t as Ui(a(t), x(t)), where a(t) and x(t) are the action
profile and state at time t. The state dynamics take on the
general form

x(t) = f (x(t − 1), a(t − 1),N (t)) (29)

where N (t) is nature’s influence at time t.7

An action profile a∗ is an invariant Nash equilibrium if

Ui(a∗, x) = max
ai∈Ai

Ui

((
ai, a

∗
−i

)
, x

) ∀x ∈ X. (30)

A game is sometimes weakly acyclic if there exists a po-
tential function φ : A → R and a finite time constant T such
that the following property holds: For any time t0 > 0, if

7For example, one can think of N (t) as time-varying neighborhood sets in
the consensus problem.

a(t0) = a0 is not an invariant Nash equilibrium, then there ex-
ists a player Pi ∈ P , an action a′

i ∈ Ai, and a time t ∈ [t0, t0 +
T ], where Ui((a′

i, a
0
−i), x(t)) > Ui(a0, x(t)) and φ(a′

i, a
0
−i) >

φ(a0), provided that a(t0) = a(t0 + 1) = · · · = a(t − 1). Note
that the sometimes weakly acyclic property depends on the
objective functions, state dynamics, and nature’s influence.

Note that a sometimes weakly acyclic game has at least
one invariant Nash equilibrium, i.e., any action profile that
maximizes potential function φ.

C. Learning Dynamics for Sometimes Weakly Acyclic Games

We will consider the better reply with inertia dynamics for
games involving state-dependent objective functions. These
dynamics are a slight extension of the finite memory and
inertia dynamics in [23] to include state-dependent objective
functions. Before stating the learning dynamics, we redefine a
player’s better reply set for any action profile a ∈ A and state
x ∈ X as

Bi(a, x) := {a′
i ∈ Ai : Ui ((a′

i, a−i) , x) > Ui(a, x)} . (31)

The better reply with inertia dynamics can be described as
follows: At each time t > 0, each player Pi presumes that
all other players will continue to play their previous actions
a−i(t − 1). Under this presumption, each player Pi ∈ P selects
an action according to the following strategy at time t:

Bi (a(t − 1), x(t))
= ∅ ⇒ ai(t) = ai(t − 1) (32)

Bi (a(t − 1), x(t))

�= ∅ ⇒
{Pr [ai(t) = ai(t − 1)] = α(t)

Pr [ai(t) = a′
i] = (1−α(t))

|Bi(a(t−1),x(t))|
(33)

for any action a′
i ∈ Bi(a(t − 1), x(t)), where α(t) ∈ (0, 1) is

the player’s inertia at time t. According to these rules, player
Pi will stay with the previous action ai(t − 1) with proba-
bility α(t), even when there is a perceived opportunity for
improvement. We make the following standing assumption on
the players’ willingness to optimize:

Assumption 4.1: There exists constants ε and ε̄ such that, for
all times t ≥ 0 and for all players Pi ∈ P

0 < ε < αi(t) < ε̄ < 1.

Theorem 4.1: Consider any n-player sometimes weakly
acyclic game with finite action sets. If all players adhere to the
better reply with inertia dynamics satisfying Assumption 4.1,
then the joint action profiles will almost surely converge to an
invariant Nash equilibrium.

Proof: Let φ : A → R and T be the potential function
and time constant for the sometimes weakly acyclic game,
respectively. Let a(t0) = a0 be the action profile and x(t0) be
the state at time t0. If a0 is an invariant Nash equilibrium, then
a(t) = a0 for all times t ≥ t0, and we are done. Otherwise,
there exists a time t1 ∈ [t0, t0 + T ], a player Pi ∈ P , and an ac-
tion a′

i ∈ Ai such that Ui(a′
i, a

0
−i, x(t1)) > Ui(a0, x(t1)) and

φ(a′
i, a

0
−i) > φ(a0), provided that a(t0) = a(t0 + 1) = · · · =

a(t1 − 1). Because of the players’ inertia, action a1 = (a′
i, a

0
−i)

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 9, 2009 at 19:29 from IEEE Xplore.  Restrictions apply. 



1400 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 6, DECEMBER 2009

will be played at time t1 with at least probability εn−1((1 −
ε̄)/|A|)εnT .

One can repeat this argument to show that, for any time t0 >
0 and any action profile a(t0), there exists an invariant Nash
equilibrium a∗ such that

Pr [a(t) = a∗ ∀t ≥ t∗] ≥ ε∗ (34)

where

t∗ = t0 + T |A| (35)

ε∗ =
(

εn−1 (1 − ε̄)
|A| εnT

)|A|
. (36)

�

D. Consensus Modeled as a Sometimes Weakly Acyclic Game

Two main drawbacks arose in the potential game formulation
of the consensus problem. The first problem was that a Nash
equilibrium was not necessarily a consensus point, even when
the interaction graph was connected and the environment was
obstruction free. Therefore, we needed to employ a stochastic
learning algorithm such as SAP or RSAP to guarantee that the
collective behavior of the players would be a consensus point
with arbitrarily high probability. SAP or RSAP led to consensus
by introducing noise into the decision-making process, meaning
that a player would occasionally make a suboptimal choice.
The second problem was that the interaction graph needed
to be time invariant, undirected, and connected to guarantee
consensus.

In this section, we will illustrate that, by modeling the con-
sensus problem as a sometimes weakly acyclic game, one can
effectively alleviate both problems. For brevity, we will show
that the 1-D consensus problem with appropriately designed
player objective functions is a sometimes weakly acyclic game.
One can easily extend this to the multidimensional case.

1) Setup: Consensus Problem With a Time-Varying and Di-
rected Interaction Graph: Consider a consensus problem with
an n-player set P and a time-varying and directed interaction
graph. Each player has a finite action set Ai ⊂ R, and without
loss of generalities, we will assume that A1 = A2 = · · · = An.
Each player Pi ∈ P is assigned an objective function Ui : A×
Xi → R, where Xi is the set of states for player Pi. We define
the state of player Pi at time t as the tuple

xi(t) = {Ni(t), ai(t − 1)} (37)

where Xi := 2P × Ai, X :=
∏

Pi
Xi, and 2P denotes the

power sets of P . We note that there are many alternative
possibilities for the state selection. For example, one could
alternatively define the state of player Pi at time t as

xi(t) =
{

Ni(t), Ni(t − 1), {aj(t − 1)}j∈Ni(t)
,

{a(t − 2)}j∈Ni(t−1)

}
. (38)

This structure allows a player’s utility function to depend on
information from the last two time periods. Hence, a player’s
utility function could be designed to depend on how players are
changing, as opposed to a static view of the players’ actions,
which is the structure of the consensus algorithm (1).

In this section, we will focus on the 1-D consensus problem
with player states as defined in (37) and a disagreement function
of the form

D(a, P̄) := max
Pi,Pj∈P̄

(ai − aj) (39)

for some nonempty player set P̄ ⊆ P . We note that this
measure could be generalized for larger dimensional spaces;
however, we will focus purely on the state definition (37) and
the disagreement measure (39) to highlight the connections
between the consensus problem and sometimes weakly acyclic
games.

Rather than specifying a particular objective functions as in
(7), we will introduce a class of admissible objective functions.
An objective function for player Pi is called a reasonable
objective function if, for any action profile a ∈ A and state
xi ∈ Xi, the better response set satisfies the following two
conditions:

Bi(a, xi) ⊂ {a′
i ∈ Ai : D ((a′

i, a−i) , Ni) ≤ D(a,Ni)} (40)

|{a′
i ∈ Ai : D ((a′

i, a−i) , Ni) ≤ D(a,Ni)}| > 1

⇒ Bi(a, xi) �= ∅. (41)

Roughly speaking, these conditions ensure that a player will not
value moving further away from its belief about the location of
its neighbors. An example of a reasonable objective function is

Ui (a, {Ni, āi}) = −D(a,Ni) − γI{ai = āi} (42)

where {Ni, āi} ∈ Xi, I{·} is the usual indicator function, and γ
penalizes players for immobility. If γ > 0 is sufficiently small,
then it is easy to verify that (42) is a reasonable objective
function (since action sets Ai are finite).

We will now relax our requirements on the connectivity
and time invariance of the interaction graph in the consensus
problem. A common assumption (e.g., [8]) on the interaction
graph is connectedness over intervals.

Assumption 4.2 (Connectedness Over Intervals): There ex-
ists a constant T > 0 such that, for any time t > 0, the interac-
tion graph with nodes P and edges E = E(t) ∪ · · · ∪ E(t + T )
is connected.

Proposition 4.2: Under Assumption 4.2, reasonable objec-
tive functions satisfying (40) and (41) constitute a sometimes
weakly acyclic game. Furthermore, every invariant Nash equi-
librium constitutes consensus.

Proof: To prove that the game is sometimes weakly
acyclic, we introduce the following potential function φ : A →
R, which depends on the disagreement measure (39) and the
number of players at the boundaries

φ(a) = −D(a,P) + δA

(
1 − n̄(a)

n

)
(43)

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 9, 2009 at 19:29 from IEEE Xplore.  Restrictions apply. 



MARDEN et al.: COOPERATIVE CONTROL AND POTENTIAL GAMES 1401

where

Pmin(a) :=
{
Pi ∈ P : ai = min

j
aj

}
(44)

Pmax(a) :=
{
Pi ∈ P : ai = max

j
aj

}
(45)

n̄(a) := min (|Pmin(a)| , |Pmax(a)|) (46)
δA := min

{ ∣∣D(a1,P1) − D(a2,P2)
∣∣ : a1, a2 ∈ A,

P1,P2 ∈ 2P ,D(a1,P1) �= D(a2,P2)
}
.

(47)

Note that the potential function is a nonpositive function that
achieves the value of 0 if and only if the action profile consti-
tutes a consensus. Furthermore, note that the potential function
is independent of the interaction topology.8

To show that the reasonable objective functions constitute
a sometimes weakly acyclic game, we need to show that (43)
satisfies the conditions set forth in Section IV-B. It is easy to see
that any consensus point is an invariant Nash equilibrium. We
will show that, if an action profile is not a consensus point, then
there exists a player who can increase its objective function and
the potential function at some time in a fixed time window. This
implies that every invariant Nash equilibrium is a consensus
point and, furthermore, that the game is sometimes weakly
acyclic.

Let a0 = a(t0) be any joint action that is not a consensus
point. We will show that, for some time t1 ∈ [t0, t0 + T ],
there exists a player Pi ∈ P with an action a′

i ∈ Ai such that
Ui((a′

i, a
0
−i), xi(t1)) > Ui(a0, xi(t1)) and φ(a′

i, a
0
−i) > φ(a0),

provided that a(t0) = · · · = a(t1 − 1). To see this, let P′(a0)
be the minimum boundary player set, i.e., P′(a0) = Pmin(a0)
if |Pmin(a0)| ≤ |Pmax(a0)| and P′(a0) = Pmax(a0) other-
wise. Since the interaction graph satisfies Assumption 4.2,9 for
some t1 ∈ [t0, t0 + T ], there exists at least one player Pi ∈ P′

with a neighbor Pj ∈ Ni(t1) \ P′. Therefore
∣∣Bi

(
a0,

{
Ni(t1), a0

i

})∣∣ �= ∅. (48)

This is true, because there exists at least two actions for player
Pi that do not increase the disagreement measure, i.e., a0

i ,
trivially, and a0

j , as D(a0
j , a

0
−i) ≤ D(a0).

Let a′
i ∈ Bi(a0, xi(t1)), a′

i �= a0
i , and for notional con-

venience, let a1 = (a′
i, a

0
−i). We know that D(a1,P) ≤

D(a0,P). If D(a1,P) < D(a0,P), then

φ(a1) = − D(a1,P) + δA

(
1 − n̄(a1)

n

)

> − D(a0,P) + δA

(
1 − n̄(a1)

n

)
+ δA

> − D(a0,P) + δA

(
1 − n̄(a0) + n

n

)
+ δA

= φ(a0). (49)

8In the 1-D consensus problem, there are two boundaries, i.e., the maximum
and minimum values. In higher dimensional spaces, one would need to be
more careful with the definition of boundaries. However, the same structural
form of the potential function in (43) could be used to prove that higher
dimensional consensus problems with appropriately defined player objective
functions constitute a sometimes weakly acyclic games.

9Note that Assumption 4.2 is stronger than necessary for this proof.

If D(a1,P) = D(a0,P), then

φ(a1) = − D(a0,P) + δA

(
1 − n̄(a1)

n

)

> − D(a0,P) + δA

(
1 − n̄(a1) + 1)

n

)

= − D(a0,P) + δA

(
1 − n̄(a0)

n

)

= φ(a0) (50)

where the third equality comes from the fact that n̄(a1) =
n̄(a0) − 1. Therefore, a0 is not an invariant Nash equilibrium,
and the game is sometimes weakly acyclic. This completes the
proof. �

Combining Proposition 4.2 and Theorem 4.1, we conclude
that, if all players adhere to the better reply with inertia dynam-
ics in a consensus problem where the interaction graph satisfies
Assumption 4.2 and the players are assigned reasonable objec-
tive functions, then the joint action profile will almost surely
converge to a consensus point.

This section illustrates the main advantages of designing
objective functions and state dynamics within the framework of
sometimes weakly acyclic games. For the consensus problem,
we reduced the structural requirement on the player objective
functions, thereby allowing a time-varying directed interaction
graph. Furthermore, the aforementioned design ensured that all
invariant Nash equilibria were desirable, i.e., consensus points.
This did not hold in the potential game formulation.

V. GROUP-BASED DECISION PROCESS

FOR POTENTIAL GAMES

In this section, we analyze the situation where players are
allowed to collaborate with a group of other players when mak-
ing a decision. In particular, we extend SAP to accommodate
such a grouping structure. Our main motivation for considering
group-based decision processes is the possibility of coupled
constraints on the players’ action sets.

A. SAP With Group-Based Decisions

We consider a variation of traditional noncooperative games
to include group-based decisions. The structure of these group-
based games is given as follows: There exists a finite set of
players P = (P1, . . . ,Pn), each player has a finite action set
Ai, and each group or players G ⊆ P is assigned a group utility
function UG : A → R. We will call such a game a group-based
potential game if there exists a potential function φ : A →
R such that, for any group G ⊆ P , collective group actions
a′

G, a′′
G ∈ AG :=

∏
Pi∈G Ai, and a−G ∈ ∏

Pi �∈G Ai, i.e.,

UG (a′′
G, a−G)−UG (a′

G, a−G)=φ (a′′
G, a−G)−φ (a′

G, a−G) .
(51)

Notice that any group-based potential game is also a poten-
tial game.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 9, 2009 at 19:29 from IEEE Xplore.  Restrictions apply. 



1402 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 6, DECEMBER 2009

We will now introduce a variant of SAP to accommodate
group-based decisions. At each time t > 0, a group of players
G ⊆ P is randomly chosen according to a fixed probability
distribution q ∈ Δ(2P). We will refer to qG as the probability
that group G will be chosen. We make the following assumption
on the group probability distribution:

Assumption 5.1 (Completeness): For any player Pi ∈ P ,
there exists a group G ⊆ P such that Pi ∈ G and qG > 0.

Once a group is selected, the group is unilaterally allowed to
alter its collective strategy. All players not in the group must
repeat their actions, i.e., a−G(t) = a−G(t − 1), where aG is the
action tuple of all players in group G, and a−G is the action
tuple of all players not in group G. At time t, the updating group
G randomly selects a collective action from AG according to
collective strategy pG(t) ∈ Δ(AG), where the aGth component
paG

G (t) of the collective strategy is defined as

paG

G (t) =
exp {βUG (aG, a−G(t − 1))}∑

āG∈AG
exp {βUG (āG, a−G(t − 1))} (52)

for some exploration parameter β ≥ 0.
We will now show that the convergence properties of the

learning algorithm SAP still hold with group-based decisions.
Theorem 5.1: Consider a finite n-player group-based poten-

tial game with potential function φ(·) and a group probability
distribution q satisfying Assumption 5.1. SAP with group-based
decisions induces a Markov process over state space A, where
the unique stationary distribution μ ∈ Δ(A) is

μ(a) =
exp {βφ(a)}∑

ā∈A exp {βφ(ā)} for any a ∈ A. (53)

Proof: The proof follows along the lines of the proof of
Theorem 6.2 in [13]. By Assumption 5.1, the Markov process
induced by SAP with group-based decisions is irreducible
and aperiodic; therefore, the process has a unique stationary
distribution. Here, we show that this unique distribution must be
(53) by verifying that the distribution (53) satisfies the detailed
balanced equations

μ(a)Pab = μ(b)Pba (54)

for any a, b ∈ A, where

Pab := Pr [a(t) = b|a(t − 1) = a] . (55)

Note that there are now several ways to transition from a and
b when incorporating group-based decisions. Let Ḡ(a, b) repre-
sent the group of players with different actions in a and b, i.e.,

Ḡ(a, b) := {Pi ∈ P : ai �= bi}. (56)

Let G(a, b) ⊆ 2P be the complete set of player groups for
which the transition from a to b is possible, i.e.,

G(a, b) :=
{
G ∈ 2P : Ḡ(a, b) ⊆ G

}
. (57)

Since a group G ∈ G(a, b) has probability qG of being chosen
in any given period, it follows that

μ(a)Pab =
[

exp {βφ(a)}∑
z∈A exp {βφ(z)}

]

×
⎡
⎣ ∑

G∈G(a,b)

qG
exp {βUG(b)}∑

āG∈AG
exp {βUG(āG, a−G)}

⎤
⎦ .

(58)

Letting

λG :=
(

1∑
z∈A exp {βφ(z)}

)

×
(

qG∑
āG∈AG

exp {βUG(āG, a−G)}
)

(59)

we obtain

μ(a)Pab =
∑

G∈G(a,b)

λG exp {βφ(a) + βUG(b)} . (60)

Since UG(b) − UG(a) = φ(b) − φ(a) and G(a, b) = G(b, a),
we have

μ(a)Pab =
∑

G∈G(b,a)

λG exp {βφ(b) + βUG(a)} (61)

which leads us to

μ(a)Pab = μ(b)Pba. (62)

�

B. Coupled Constraints on Group Action Sets

In the previous section, the updating group employed a
strategy with a probability distribution having full support on
group action set AG =

∏
Pi∈G Ai. In this section, we consider

the situation where the actions available to a given group are
constrained, i.e., AG ⊂ ∏

Pi∈G Ai.
In this setting, the updating group G randomly selects a

collective action from AG according to collective strategy
pG(t) ∈ Δ(AG), where, for any action aG ∈ AG

paG

G (t) =
exp {βUG (aG, a−G(t − 1))}∑

āG∈AG
exp {βUG (āG, a−G(t − 1))} (63)

for some exploration parameter β ≥ 0. Otherwise, for any
action aG �∈ AG, paG

G (t) = 0.
These dynamics define a Markov process over a constrained

state space Ā ⊆ A that can be characterized as follows: Let
a(0) be the initial actions of all players. If ā ∈ Ā, then there
exists a sequence of action profiles a(0) = a0, a1, . . . , an =
ā, with the condition that, for all k ∈ {1, 2, . . . , n}, ak =
(ak

Gk
, ak−1

−Gk
) for a group Gk ⊆ P , where qGk

> 0 and ak
Gk

∈
AGk

. In words, Ā is the recurrent class of reachable states
starting from a(0).

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 9, 2009 at 19:29 from IEEE Xplore.  Restrictions apply. 



MARDEN et al.: COOPERATIVE CONTROL AND POTENTIAL GAMES 1403

Theorem 5.2: Consider a finite n-player group-based poten-
tial game with potential function φ(·) and a group probability
distribution q satisfying Assumption 5.1. SAP with group-based
decisions and constrained group action sets {AG}G⊆P induces
a Markov process over the constrained state space Ā ⊆ A. The
unique stationary distribution μ ∈ Δ(Ā) is

μ(a) =
exp {βφ(a)}∑

ā∈A exp {βφ(ā)} for any a ∈ Ā. (64)

The proof of Theorem 5.1 also applies to Theorem 5.2.

C. Restricted SAP With Group-Based Decisions

Extending these results to accommodate restricted action sets
is straightforward. Let a(t − 1) be the action profile at time
t − 1. At time t, the updating group G randomly selects one
trial action âG from the group’s restricted action set RG(aG(t −
1)) ⊆ AG with the following probabilities, where zG denotes
the maximum number of actions in any restricted action set for
group G, i.e., zG := maxaG∈AG

|RG(aG)|:
• Pr[âG = aG] = (1/zG) for any aG ∈ RG(aG(t − 1)) \

aG(t − 1);
• Pr[âG =aG(t−1)]=1 − ((|RG(aG(t − 1))| − 1)/zG).

After group G selects a trial action âG, the updating group G
selects its action aG(t) according to the collective strategy, i.e.,

Pr [aG(t)= âG] =
exp {βUG (âG, a−G(t−1))}

D
(65)

Pr [aG(t)=aG(t−1)] =
exp {βUG (a(t−1))}

D
(66)

where

D = exp {βUG (âG, a−G(t − 1))} + exp {βUG (a(t − 1))}
(67)

and β ≥ 0 is an exploration parameter. Note that, if âG is
selected as aG(t − 1), then Pr[aG(t) = aG(t − 1)] = 1.

As before, these dynamics define a Markov process over
a constrained state space Ā ⊆ A, where Ā is the set of
reachable states from a(0). Following the previous discus-
sion, if ā ∈ Ā, then there exists a sequence of action profiles
a(0) = a0, a1, . . . , an = ā, with the condition that, for all k ∈
{1, 2, . . . , n}, ak = (ak

Gk
, ak−1

−Gk
) for a group Gk ⊆ P , where

qGk
> 0 and ak

Gk
∈ AGk

. Furthermore, ak
Gk

∈ RGk
(ak−1

Gk
) ⊆

AGk
for all k ∈ {1, . . . , n}.

We will state the following theorem without proof since it
follows from arguments similar to the proof of Theorem 5.1.

Theorem 5.3: Consider a finite n-player group-based poten-
tial game with potential function φ(·) and a group probability
distribution q satisfying Assumption 5.1. If the group restricted
action sets are reversible (i.e., satisfies Assumption 3.1 for
all groups), then RSAP with group-based decisions and con-
strained group action sets {AG}G⊆P induces a Markov process

over constrained state space Ā ⊆ A. The unique stationary
distribution μ ∈ Δ(Ā) is

μ(a) =
exp {βφ(a)}∑

ā∈Ā exp {βφ(ā)} for any a ∈ Ā. (68)

VI. ILLUSTRATION

In this section, we will illustrate the broad applicability of the
theoretical results presented in this paper to three separate prob-
lems: 1) power management in sensor networks; 2) dynamic
sensor coverage; and 3) functional consensus.

A. Sensor Deployment Problem

In this section, we consider the sensor deployment prob-
lem described in [28] and the references therein. Consider
the problem of transferring data from immobile sources to
immobile destinations through the use of mobile intermediate
nodes or relays. The deployment problem concerns positioning
the intermediate nodes to successfully transfer the data from
the sources to the destinations while optimizing some network
performance metric.

We will model the nodes, both immobile and mobile, as
players {P1, . . . ,Pn}, with finite action sets Ai representing
the set of physical locations that the node can reach. For
example, in the case of an immobile node, the action set is a
singleton consisting of only the node’s fixed location. We will
assume that the number of nodes and the information flow are
set a priori. The information flow is determined by a fixed
undirected graph G(V,E) with the set of nodes V = P and
the set of edges E ⊂ P × P . The set of edges defines the
information flow. We will adopt the notation that, if information
is passed from player Pi to player Pj , then player Pj is in the
neighbor set of player Pi, i.e., Pj ∈ Ni.

A common metric used to assess the transmission cost
between nodes is power. For a given allocation of sensors
(a1, . . . , an), the power for transmitting information from sen-
sor Pi to Pj typically takes on the form

e(ai, aj) = α1 + α2‖ai − aj‖2 (69)

where α1 and α2 are positive constants [28], [29]. A well-
studied performance objective is to find a minimum power
deployment. That is, to find an allocation (a∗

1, . . . , a
∗
n) ∈ A that

minimizes the total transmission power used in the network
∑
Pi∈P

∑
Pj∈Ni

e
(
a∗

i , a
∗
j

)
. (70)

This is equivalent to maximizing performance metric φ : A →
R, where

φ(a) = −
∑
Pi∈P

∑
Pj∈Ni

‖ai − aj‖2. (71)

At this stage, it is interesting to note that the potential
function used in the consensus problem (4) is equivalent (see
footnote 3) to the potential function representing the minimum

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 9, 2009 at 19:29 from IEEE Xplore.  Restrictions apply. 



1404 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 6, DECEMBER 2009

Fig. 2. Final configuration of nodes in the environment with and without
obstructions.

power in the network (71). This implies that, if each node is
assigned a local utility function Ui : A → R of the form

Ui(ai, a−i) = −2
∑

Pj∈Ni

‖ai − aj‖2 (72)

then we have an exact potential game with potential func-
tion (71). Therefore, if all agents update their locations using
SAP or RSAP (assuming restricted action sets), the stationary
distribution of the process is

μ(a) =
exp {βφ(a)}∑

ā∈A exp {βφ(ā)} for any a ∈ A. (73)

As β ↑ ∞, all the weight of the stationary distribution is placed
on action profiles that maximize the potential function. In the
problem of consensus, these action profiles represent consensus
points. Alternatively, in the problem of sensor deployment,
these action profiles represent minimum power allocations.

For illustration purposes, we consider a sensor deployment
problem with 17 nodes (i.e., six immobile and 11 mobile
nodes). We fix the location of the six immobile nodes and the
interaction graph, as shown in Fig. 2, and randomly choose
the starting locations of the remaining 11 mobile nodes. We
consider the sensor deployment problem in two settings. In the
first setting, suppose that the power of a transmission is given by

e(ai, aj) = ‖ai − aj‖2. (74)

We simulated the sensor deployment problem using RSAP,
with the exploration parameter chosen as β(t) = 1 + t/300.
The final configuration of the sensors is given in Fig. 2(a).
The evolution of the total transmission power in the network
is shown in Fig. 3. One can observe that an efficient network is
realized after approximately 100 iterations.

It is well known that solving for the optimal node locations
in such a setting is a convex optimization problem. With that
in my mind, we will make the problem more challenging
(and nonconvex) by adding obstructions to the environment.
Obstructions can be thought of as introducing variations in
transmission costs. In this setting, the transmission power takes
on the form

e(ai, aj) =
{ ‖ai − aj‖2, if no obstruction

1.3‖ai − aj‖2, if obstruction.
(75)

One could imagine that an obstruction, such as bad terrain,
could require additional transmission power.

Fig. 3. Evolution of transmission power utilized in network.

We simulated this new sensor deployment problem using
RSAP, with the exploration parameter chosen as β(t) = 1 +
t/300. The environmental obstructions and the final con-
figuration of the sensors are given in Fig. 2(b). The evolution
of the total power utilized in the network is shown in Fig. 3.
One can observe that an efficient network is realized after
approximately 200 iterations. Furthermore, the environmental
obstructions did not significantly impact the total transmission
power as the intermediate nodes were able to adjust their
positions to compensate for the obstructions.

B. Dynamic Sensor Coverage Problem

In this section, we will develop the dynamic sensor coverage
problem described in [28] and the references therein to further
illustrate the range applicability of the theory developed in this
paper. The goal of the sensor coverage problem is to allocate
a fixed number of sensors across a given “mission space” to
maximize the probability of detecting a particular event.

We will divide the mission space into a finite set of sectors
denoted as S. There exists an event density function or value
function V (s) that is defined over S. We will assume that
V (s) ≥ 0 ∀s ∈ S and

∑
s∈S V (s) = 1. In the application of en-

emy submarine tracking, V (s) could be defined as the a priori
probability that an enemy submarine is situated in sector s.

There are a finite number of autonomous sensors denoted as
P = {P1, . . . ,Pn} allocated to the mission space. Each sensor
Pi can position itself in any particular sector, i.e., the action set
of sensor Pi is Ai = S. Furthermore, each sensor has limited
sensing and moving capabilities. If an event occurs in sector s,
the probability of sensor Pi detecting the event, given its current
location ai, is denoted as pi(s, ai). Typically, each sensor has a
finite sensing radius ri, where the probability of detection obeys
the following:

‖s − ai‖ < ri ⇔ pi(s, ai) > 0. (76)

For a given joint action profile a = {a1, . . . , an}, the joint
probability of detecting an event in sector s is given by

P (s, a) = 1 −
∏
Pi∈P

[1 − pi(s, ai)] . (77)

In general, a global planner would like the sensors to allocate
themselves in such a way as to maximize the following potential

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 9, 2009 at 19:29 from IEEE Xplore.  Restrictions apply. 



MARDEN et al.: COOPERATIVE CONTROL AND POTENTIAL GAMES 1405

Fig. 4. Sensor coverage: final configuration and evolution of potential func-
tion over mission.

function:

φ(a) =
∑
s∈S

V (s)P (s, a). (78)

We will assign each sensor a WLU [16], [22]. The utility of
sensor Pi, given any action profile a ∈ A, is now

Ui(a) = φ(ai, a−i) − φ
(
a0

i , a−i

)
(79)

where action a0
i is defined as the null action, which is equivalent

to sensor Pi turning off all sensing capabilities. The term
φ(a0

i , a−i) captures the value of the allocation of all sensors
other than sensor Pi. In this setting, a sensor can evaluate his
utility using only local information. Furthermore, the resulting
game is a potential game with potential function φ(·).

In the following simulation, we have the mission space
and value function as shown in Fig. 4. The mission space is
S = {1, 2, . . . , 100} × {1, 2, . . . , 100}, and the value function
satisfies

∑
s∈S V (s) = 1. We have 18 different autonomous

sensors (i.e., six sensors with a sensing radius of 6, six sensors
with a sensing radius of 12, and six sensors with a sensing
radius of 18). For simplicity, each sensor will have perfect
sensing capabilities within its sensing radius, i.e., for any sector
s satisfying ‖s − ai‖ < ri, then pi(s, ai) = 1. Each sensor is
endowed with the WLU, as expressed in (79). All 18 sensors
originally started at location (1, 1), and each sensor has range
restricted action sets that are identical to those in the consensus
problem shown in Fig. 1. We ran the binary RSAP with β =
0.6. Fig. 4 shows a snapshot of the sensor configuration at the
final iteration, along with the evolution of the potential function
over the mission. The highlighted circles indicate the sensing
radii of the sensors.

C. Functional Consensus

In the consensus problem, as described in Section II-B,
the global objective was for all agents to reach consensus. In
this section, we will analyze the functional consensus problem
where the goal is for all players to reach a specific consensus
point, which is typically dependent on the initial action of all
players, i.e.,

lim
t→∞ ai(t) = f (a(0)) ∀Pi ∈ P (80)

where a(0) ∈ A is the initial action of all players, and f : A →
R is the desired function. An example of such a function for an

n-player consensus problem is

f (a(0)) =
1
n

∑
Pi∈P

ai(0) (81)

for which the goal would be for all players to agree upon the
average of the initial actions of all players. We will refer to this
specific functional consensus problem as average consensus.

To achieve average consensus, the consensus algorithm of
(1) requires that the interaction graph is connected and that
the associated weighting matrix Ω = {ωij}Pi,Pj∈P is doubly
stochastic [6]. A doubly stochastic matrix is any matrix where
all coefficients are nonnegative and all column sums and rows
sums are equal to 1. The consensus algorithm takes on the
following matrix form:

a(t + 1) = Ω a(t). (82)

If Ω is a doubly stochastic matrix, then, for any time t > 0

1T a(t + 1) = 1T Ω a(t) = 1T a(t). (83)

Therefore, the sum of the actions of all players is invariant.
Hence, if the players achieve consensus, they must agree upon
the average.

The consensus algorithm imposes coupled constraints on the
players’ action sets by requiring the sum of the actions of all
players to be invariant. In this setting, if a player unilaterally
acted and altered its action, the invariance of the desired func-
tion would no longer be preserved. We will seek to replicate this
approach in a game-theoretic setting by modeling the functional
consensus problem as a group-based potential game.

1) Setup—Functional Consensus Problem With Group-
Based Decisions: Consider the consensus problem with a
time-invariant undirected interaction graph, as described in
Section II-B. To apply the learning algorithm SAP or RSAP
with group-based decisions to the functional consensus prob-
lem, one needs to define both the group utility functions and
the group selection process.

2) Group Utility Function: We will assign any group G ⊆
P the following local group utility function:

UG(a) = −(1/2)
∑
Pi∈G

∑
Pj∈Ni∩G

‖ai − aj‖

−
∑
Pi∈G

∑
Pj∈Ni\G

‖ai − aj‖. (84)

It is straightforward to show that this group utility function de-
sign results in a group-based potential game with the potential
function as in (4).

3) Group Selection Process and Action Constraints: Let
a(t − 1) be the action profile at time t − 1. At time t, one player
Pi is randomly (uniformly) chosen. Rather than unilaterally
updating its action, player Pi first selects a group of players
G ⊆ P , which we will assume to be the neighbors of player Pi,
i.e., G = Ni. The group is assigned a group utility function as
in (84) and a constrained action set AG ⊂ ∏

Pi∈G Ai.
A central question is how one can constrain the group action

set, using only location information to preserve the invariance

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 9, 2009 at 19:29 from IEEE Xplore.  Restrictions apply. 



1406 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 6, DECEMBER 2009

Fig. 5. Evolution of each player’s action in the average consensus problem.

of the desired function f . In this case, we will restrict our
attention to functions where “local” preservation is equal to
“global” preservation. This means that, for each group G ⊆ P ,
there exists a function fG : AG → R such that, for any group
actions a′

G, a′′
G ∈ AG and a−G ∈ ∏

Pi �∈G Ai

fG (a′
G) = fG (a′′

G) ⇒ f (a′
G, a−G) = f (a′′

G, a−G) . (85)

Examples of functions that satisfy this constraint are

fG(a) =
1
|G|

∑
Pi∈G

ai ⇒ f(a) =
1
|P|

∑
Pi∈P

ai (86)

fG(a) = max
Pi∈G

ai ⇒ f(a) = max
Pi∈P

ai (87)

fG(a) = min
Pi∈G

ai ⇒ f(a) = min
Pi∈P

ai. (88)

In each of these examples, the structural forms of f and fG are
equivalent. There may exist alternative functions where this is
not required.

4) Illustration: We will illustrate this approach by solving
the average consensus problem of the example developed in
Section III-C. Given the initial configuration, all players should
agree upon the action (5, 5). We will solve this average con-
sensus problem using the learning algorithm binary RSAP
with group-based decisions, where the group restricted action
set satisfies RG(aG) = AG ∩ (

∏
Pi∈G Ri(ai)). However, we

will omit the nonconvex obstruction in this illustration. This
omission is not necessary but convenient for not having to
verify that consensus is possible, given the initial conditions
and the constrained action sets.

Fig. 5 shows the evolution of each player’s actions using
the stochastic learning algorithm binary RSAP with group-
based decisions and an increasing β coefficient β(t) = 1.5 +
t(2/1000).

VII. CONCLUSION

We have proposed a game-theoretic approach to cooperative
control by highlighting the connection between cooperative
control problems and potential games. We have introduced a
new class of games and enhanced existing learning algorithms
to broaden the applicability of game-theoretic methods to co-
operative control setting. We have demonstrated that one could
successfully implement game-theoretic methods on the coop-
erative control problem of consensus in a variety of settings.
While the main example used was the consensus problem, the
results in Theorems 3.1, 4.1, and 5.1 and the notion of a some-
times weakly acyclic game are applicable to a broader class
of games and other cooperative control problems, such as the
sensor deployment problem or the dynamic sensor allocation
problem.

REFERENCES

[1] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed asynchro-
nous deterministic and stochastic gradient optimization algorithms,” IEEE
Trans. Autom. Control, vol. AC-31, no. 9, pp. 803–812, Sep. 1986.

[2] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. Tsitsiklis, “Conver-
gence in multiagent coordination, consensus, and flocking,” in Proc. 44th
IEEE Conf. Decision Control, Dec. 2005, pp. 2996–3000.

[3] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, no. 1, pp. 65–78, Sep. 2004.

[4] L. Xiao and S. Boyd, “A scheme for robust distributed sensor fusion based
on average consensus,” in Inf. Process. Sensor Netw., 2005, pp. 63–70.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 9, 2009 at 19:29 from IEEE Xplore.  Restrictions apply. 



MARDEN et al.: COOPERATIVE CONTROL AND POTENTIAL GAMES 1407

[5] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[6] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation
in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–
233, Jan. 2007.

[7] L. Moreau, “Stability of continuous-time distributed consensus
algorithms,” in Proc. 43rd IEEE Conf. Decision Control, 2004,
pp. 3998–4003.

[8] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Trans. Autom.
Control, vol. 48, no. 6, pp. 988–1001, Jun. 2003.

[9] A. Kashyap, T. Basar, and R. Srikant, “Consensus with quantized
information updates,” in Proc. 45th IEEE Conf. Decision Control, 2006,
pp. 2728–2733.

[10] R. Murray, “Recent research in cooperative control of multivehicle sys-
tems,” Trans. ASME, J. Dyn. Syst. Meas. Control, vol. 129, no. 5, pp. 571–
583, Sep. 2007.

[11] J. Shamma, Ed., Cooperative Control of Distributed Multi-Agent Systems.
Hoboken, NJ: Wiley-Interscience, 2008.

[12] F. Bullo, J. Cortés, and S. Martínez, Distributed Control of Robotic Net-
works, ser. Applied Mathematics Series. Princeton, NJ: Princeton Univ.
Press, 2008.

[13] H. P. Young, Individual Strategy and Social Structure. Princeton, NJ:
Princeton Univ. Press, 1998.

[14] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorith-
mic, Game-Theoretic, and Logical Foundations. Cambridge, U.K.:
Cambridge Univ. Press, 2008.

[15] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of
the art,” Auton. Agents Multi-Agent Syst., vol. 11, no. 3, pp. 387–434,
Nov. 2005.

[16] D. Wolpert and K. Tumor, “An overview of collective intelligence,” in
Handbook of Agent Technology, J. M. Bradshaw, Ed. Cambridge, MA:
MIT Press, 1999.

[17] D. Monderer and L. Shapley, “Potential games,” Games Econom. Behav.,
vol. 14, no. 1, pp. 124–143, May 1996.

[18] D. Monderer and L. Shapley, “Fictitious play property for games with
identical interests,” J. Econ. Theory, vol. 68, no. 1, pp. 258–265,
Jan. 1996.

[19] D. Monderer and A. Sela, Fictitious Play and No-Cycling Condi-
tions, 1997. [Online]. Available: http://www.sfb504.uni-mannheim.de/
publications/dp97-12.pdf

[20] J. R. Marden, G. Arslan, and J. S. Shamma, “Regret based dynamics: Con-
vergence in weakly acyclic games,” in Proc. Int. Conf. AAMAS, Honolulu,
HI, May 2007, pp. 194–201.

[21] J. R. Marden, G. Arslan, and J. S. Shamma, “Joint strategy fictitious play
with inertia for potential games,” IEEE Trans. Autom. Control, vol. 54,
no. 2, pp. 208–220, Feb. 2009.

[22] G. Arslan, J. R. Marden, and J. S. Shamma, “Autonomous vehicle-target
assignment: A game theoretical formulation,” Trans. ASME, J. Dyn. Syst.
Meas. Control, vol. 129, no. 5, pp. 584–596, Sep. 2007.

[23] H. P. Young, Strategic Learning and its Limits. London, U.K.: Oxford
Univ. Press, 2005.

[24] L. S. Shapley, “Stochastic games,” Proc. Nat. Acad. Sci. U. S. A., vol. 39,
no. 10, pp. 1095–1100, Oct. 1953.

[25] L. Blume, “The statistical mechanics of strategic interaction,” Games
Econom. Behav., vol. 5, no. 3, pp. 387–424, Jul. 1993.

[26] L. Blume, “Population games,” in The Economy as an Evolving Com-
plex System II, B. Arthur, S. Durlauf, and D. Lane, Eds. Reading, MA:
Addison-Wesley, 1997, pp. 425–460.

[27] J. R. Marden, H. P. Young, G. Arslan, and J. S. Shamma, “Payoff
based dynamics for multi-player weakly acyclic games,” SIAM J. Control
Optim., vol. 48, no. 1, pp. 373–396, 2009.

[28] W. Li and C. G. Cassandras, “Sensor networks and cooperative control,”
Eur. J. Control, vol. 11, no. 4/5, pp. 436–463, 2005.

[29] W. Heinzelman, “Application-specific protocol architectures for wireless
networks,” Ph.D. dissertation, MIT, Cambridge, MA, 2000.

Jason R. Marden received the B.S. and Ph.D. de-
grees in mechanical engineering from the Univer-
sity of California, Los Angeles, in 2001 and 2007,
respectively.

Since 2007, he has been a Junior Fellow with
the Social and Information Sciences Laboratory,
California Institute of Technology, Pasadena. His re-
search interests include game-theoretic methods for
feedback control of distributed multiagent systems.

Gürdal Arslan received the Ph.D. degree in elec-
trical engineering from the University of Illinois,
Urbana, in 2001.

From 2001 to 2004, he was an Assistant Re-
searcher with the Department of Mechanical and
Aerospace Engineering, University of California,
Los Angeles. In August 2004, he joined the De-
partment of Electrical Engineering, University of
Hawaii, Manoa, where he is currently an Asso-
ciate Professor. His current research interests include
the design of cooperative multiagent systems using

game-theoretic methods.
Dr. Arslan was the recipient of the National Science Foundation CAREER

Award in May 2006.

Jeff S. Shamma received the B.S. degree from
Georgia Institute of Technology (Georgia Tech),
Atlanta, in 1983 and the Ph.D. degree from
Massachusetts Institute of Technology, Cambridge,
in 1988, both in mechanical engineering.

He has held faculty positions at the Univer-
sity of Minnesota, Minneapolis; the University of
Texas, Austin; and the University of California,
Los Angeles. In 2007, he returned to Georgia Tech,
where he is currently a Professor of electrical and
computer engineering and the Julian T. Hightower

Chair of Systems and Controls with the School of Electrical and Computer
Engineering.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 9, 2009 at 19:29 from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


