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Abstract—Product co-creation based on company-sponsored
online community has come to be a paradigm of developing new
products collaboratively with customers. In such a product co-
creation campaign, the sponsoring company needs to interact
intensively with active community members about the design
scheme of the product. We call the collection of the rates of the
company’s response to active community members at all time in
the co-creation campaign as a company response policy (CRP).
This paper addresses the problem of finding a cost-effective CRP
(the CRP problem). First, we introduce a novel community state
evolutionary model and, thereby, establish an optimal control
model for the CRP problem (the CRP model). Second, based on
the optimality system for the CRP model, we present an iterative
algorithm for solving the CRP model (the CRP algorithm).
Thirdly, through extensive numerical experiments, we conclude
that the CRP algorithm converges and the resulting CRP exhibits
excellent cost benefit. Consequently, we recommend the resulting
CRP to companies that embrace product co-creation. Next,
we discuss how to implement the resulting CRP. Finally, we
investigate the effect of some factors on the cost benefit of the
resulting CRP. To our knowledge, this work is the first attempt
to study value co-creation through optimal control theoretic
approach.

Index Terms—product co-creation, company-sponsored online
community, company response policy, cost benefit, state evolu-
tionary model, optimal control model, optimality system, iterative
algorithm, convergence

I. INTRODUCTION

THE unprecedented advancement of computer and com-
munications techniques has radically transformed all

aspects of human life. In particular, the customers of a
company like to share their ideas and experiences about their
purchased products through social networking sites, which
has a significant influence on the company’s reputation and
sales. Under the great pressure to survive and grow in the
fiercely competitive market, companies can no longer design
and develop products exclusively on their own. Instead, they
need to interact with customers to co-create products [1], [2].
In practice, a well-managed product co-creation process can
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yield successful innovations and substantial cost reduction [3],
[4].

Company-sponsored online communities are characterized
by fluidity and voluntariness [5], [6]. First, the participants of
a company-sponsored online community may come and go at
their will. Second, the sponsoring company takes responsibility
of coordinating value co-creation but lacks authority to issue
command [7]. Company-sponsored online communities have
come to be an effective initiative to co-create value [8]. In
the past decade, many real-world company-sponsored online
communities, ranging from Dell IdeaStorm [9] and Starbucks
[10] to SAP [11] and Aston Martin Community [12], have
sprung up.

A. Problem formulation

Suppose a company intends to co-create a product with
the participants of its sponsored online community. At the
beginning, the company delivers a product design draft to
the community. Then, the company interacts intensively with
the community participants in the following iterative way:
some participants make valuable suggestions about the product
design scheme, the company responds by drawing on the
suggestions to revise the scheme, and the like. The interaction
process continues until the product co-creation activity termi-
nates. As a result, a perfect product design scheme comes into
being [13].

In the above product co-creation process, the company’s
continuous response helps to boost the participants’ engage-
ment enthusiasm and hence yield a perfect product design
scheme. In the context, we call the collection of the company’s
response rates at all time of the product co-creation activity
as a company response policy (CRP). We dream of an optimal
CRP, i.e., a CRP with the highest cost benefit. However,
the dream never comes true. This is because there are so
many candidate CRPs that finding an optimal CRP from these
candidate CRPs is computationally prohibitive. Therefore, we
are forced to take a step back. Specifically, by defining
a satisfactory CRP as a CRP that outperforms most other
candidate CRPs in terms of the cost benefit, we are satisfied
with dealing with the following weaker problem:

Company response policy (CRP) problem: Finding a satis-
factory CRP from all the candidate CRPs.

This is a novel problem. This paper aims to address the
problem.
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B. Contributions

The main contributions of this work are outlined below.
• The CRP problem is reduced to an optimal control model.

First, by using the epidemic modeling technique and
taking the effect of CRP into account, we introduce a
novel ‘epidemic’ model for capturing the evolutionary
process of state of the online community. Second, based
on the introduced ‘epidemic’ model, we estimate the cost
benefit of a CRP. Finally, with the intent of finding a
CRP with the highest cost benefit, we establish an optimal
control model for the CRP problem (the CRP model).

• The CRP model is solved. First, by using the well-known
Pontryagin Maximum Principle, we derive the optimal-
ity system for the CRP model. Second, by invoking a
standard procedure for solving optimal control problems,
we present an iterative algorithm for solving the CRP
model. Next, through extensive numerical experiments,
we corroborate the convergence and effectiveness of
the presented algorithm. Therefore, we recommend the
resulting CRP to those companies that embrace product
co-creation. Finally, we discuss how to implement the
resulting CRP. Additionally, we examine the effect of
some factors on the cost benefit of the resulting CRP.

The remaining materials are organized in this fashion:
Section II reviews the related work. Section III establishes
the CRP model. In section IV, the optimality system for
the CRP model is derived, and an algorithm for solving the
CRP model is presented. Section V validates the convergence
and effectiveness of the algorithm. Section VI makes further
discussions. Section VII closes this work.

II. RELATED WORK

This section aims to review the related work and highlight
the innovations of the present paper.

A. Online co-creation communities

Online co-creation communities (O3Cs, for short) can
be classified as two categories: autonomous and company-
sponsored [14]. The participants of an autonomous O3C
(AO3C, for short) perform value co-creation activities inde-
pendently of any companies. In contrast, value co-creation
activities in a company-sponsored O3C (CSO3C, for short)
are directed for the benefit of the sponsoring company.

AO3Cs have received considerable interests from value co-
creation researchers and practitioners. To name just a few
examples, [15] suggested a method for cultivating the trust
of an AO3C in a company, [16] explored the formation
mechanism of collaboration in an AO3C, [17], [18] proposed
some effective measures to enhance the engagement of the
participants of an AO3C in value co-creation, and [19], [20],
[21] identified some key factors that help to co-create value
in an AO3C. To our knowledge, the previous researches on
AO3Cs are all empirical and the resulting conclusions are all
qualitative. This indicates that our understanding of AO3Cs is
still in its infancy.

Also, CSO3Cs have attracted intense attentions. To name
but a few examples, [22], [23] revealed some motives for

an individual to participate in a CSO3C, [24] presented an
empirical evidence for the effectiveness of value co-creation
in a CSO3C, [8] validated that company’s internal employees
play an important role in CSO3C-based value co-creation. [25]
made a comprehensive survey on the references that are related
to CSO3C and were published before 2020. In particular,
[26] is closely related to the present paper. In this paper,
the authors empirically found that the response rate of the
sponsoring company to the participants’ valuable suggestions
has significant influence on both the community contribution
level and the duration of active participation. Still, the extant
efforts on CSO3Cs are all empirical, indicating that the study
of CSO3Cs is in the early stage.

Mathematics is the foundation of all sciences. The science
of value co-creation is no exception. In our opinion, the
very key to revealing the mystry of value co-creation lies in
establishing and studying mathematical models characterizing
the major features of value co-creation.

B. Epidemic modeling

Mathematical analysis of epidemic diseases originates from
the work by Daniel Bernoulli, the famous Swiss mathemati-
cian, about the effectiveness evaluation of a then popular
inoculation procedure against the smallpox virus [27]. At
the beginning of the 20th century, differential and difference
equations started to be used to model and analyze the spread
of epidemics. In particular, in the seminal work by Kermack
and McKendrick [28], [29], the authors suggested the classical
susceptible-infected-removed (SIR) model for the spread of
epidemics with no recurrence and the classical susceptible-
infected-susceptible (SIS) model for the spread of recurrent
and endemic diseases, and established the threshold theory
about the SIS model. This work laid a solid foundation for
the mathematical theory of epidemic modeling.

From then on, the classical epidemic models have been
extended and generalized rapidly toward different directions,
e.g., from population-based epidemic models to network-
based epidemic models [30], [31], from deterministic epidemic
models to stochastic epidemic models [32], [33], from spread
of epidemics to resource allocation for the control of epidemics
[34], [35], and from epidemic models on static networks to
epidemic models on dynamic networks [36], [37]. See [38] for
a comprehensive survey on the theory of epidemic modeling.
As one of the main goals of epidemic modeling, different
epidemic models have been developed for understanding and
containing the spread of various real-life epidemic diseases
such as SARS [39] and COVID-19 [40].

In nature, human society, and engineering area, there exist
a wide spectrum of propagation phenomena other than the
spread of biological epidemics, ranging from the diffusion
of information [41] to the propagation of failure [42]. In
the elegant paper published in 1964 by Goffman and Newill
[43], an epidemic process is defined as transition from one
state to another owing to exposure to some phenomenon. For
example, the authors compared the transmission of ideas to the
spread of infectious diseases. Finally, the authors elucidated
the importance of inspecting various propagation processes
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through epidemic modeling. Since then, a multitude of ‘epi-
demic’ models, ranging from rumor spreading models [44],
[45] and malware propagation models [46], [47] to word-of-
mouth propagation models [48], [49], have emerged.

Every participant of a CSO3C must be in one of two
possible states: active, i.e., actively engaging in the design
of the product, and inactive, i.e., not active. We define the
state of the community as the collection of the states of all
participants of the community. Following [43], the process of
transition between the active state and the inactive state can
be viewed as an ‘epidemic’ process and hence can be studied
through epidemic modeling. To our knowledge, to date there
is no such an ‘epidemic’ model.

C. Optimal control theory combined with epidemic modeling

Optimal control theory as an integral part of optimization
theory is dedicated to finding a time-varying control strategy
of a dynamical system so that a given performance index is
optimized [50]. Optimal control theory when combined with
epidemic modeling is especially suited to the development of
cost-effective control policies of various ‘epidemic’ processes,
such as the spread of infectious diseases [51], [52], the
propagation of malware [53], [54], and the diffusion of rumors
[55], [56].

Differential game theory as an extension of optimal con-
trol theory studies time-varying strategic interactions between
informed and rational players [57]. Differential game theory
when combined with epidemic modeling provides a power-
ful tool for the design of cost-effective control policies of
‘epidemic’ processes in the presence of strategic adversary,
ranging from clarification of rumors in the presence of strate-
gic rumormonger [58] to defense against cyberattacks in the
presence of strategic cyber attacker [59], [60].

The prerequisite for developing a cost-effective control
policy of an ‘epidemic’ process through game theoretic ap-
proach lies in having the ability to acquire quite a number
of adversary-related parameters. In practice, these parameters
are often unavailable. In contrast, the optimal control theoretic
approach to the design of cost-effective control policy of an
‘epidemic’ process is feasible if a few relevant parameters
are known, and these parameters may be estimated relatively
accurately by leveraging relevant historical data. Consequently,
we choose to deal with the CRP problem through optimal
control approach.

D. Innovations of the present paper

In the context of product co-creation in company-sponsored
online community, a new problem (i.e., the CRP problem) is
proposed and studied, with the goal of enhancing the cost
benefit of product co-creation. This is the core innovation of
this paper. The key step to the solution of the CRP problem
is to establish an optimal control model for the CRP problem.
For this purpose, the benefit of a CRP needs to be estimated.
To this end and in view of the mobility and voluntariness of
the product co-creation participants, a new ‘epidemic’ model
for characterizing the evolutionary process of state of the
company-sponsored online community is introduced. This is

TABLE I
NOTATIONS AND THEIR MEANINGS

T product co-creation period
x company response policy (CRP)
x maximal response rate

XT,x set of feasible CRPs
ω1 standard cost

C(x) overall cost for implementing the CRP x
A(t) number of active participants at time t
I(t) number of inactive participants at time t
µ community inflow rate
δ1 first community outflow rate
δ2 second community outflow rate
β1 first influence function
β2 second influence function
α inaction rate
ω2 standard benefit
J(x) cost benefit of implementing the CRP x

H(A, I, x, λ1, λ2) Hamiltonian function for the CRP model
(λ1, λ2) ajoint for H

another innovation of the present paper. Although there exist
similar known epidemic models, our epidemic model has
special meaning in the context of product co-creation.

III. MODELING THE CRP PROBLEM

This section is devoted to modeling the CRP problem
proposed in section I. First, a CRP is formalized. Second, the
state evolutionary model for the company-sponsored online
community is proposed. Finally, the CRP problem is modeled
as an optimal control problem. See Table I for a list of major
notations used in this article and their meanings.

A. Company response policy

Consider the CRP problem. Suppose the company intends to
organize a product co-creation activity in its sponsored online
community. At the beginning, the company delivers a product
design draft to the community. Next, the company interacts
with the community participants in the following iterative way:
some participants propose suggestions for the revision of the
product design scheme, the company responds by drawing
on good suggestions to revise the scheme, and the like. The
interaction process continues until the activity terminates.

Suppose the above-mentioned product co-creation activity
starts from the initial time t = 0 and terminates at the time
t = T . We call the parameter T as the product co-creation
period. For 0 ≤ t ≤ T , let x(t) denote the company response
rate at time t. We call the function x as a company response
policy (CRP, for short).

On the one hand, for ease in implementation, assume a
feasible CRP is piecewise continuous. Let PC[0, T ] denote
the set of piecewise continuous functions defined on [0, T ].
On the other hand, owing to the limited product co-creation
budget, assume a feasible CRP is bounded from above. Let
x denote the common upper bound on the response rates of
a feasible CRP at all time of the product co-creation process.
We call the parameter x as the maximal response rate. In a
word, a CRP is feasible if and only if it is in the set

XT,x = {x ∈ PC[0, T ] : 0 ≤ x(t) ≤ x, 0 ≤ t ≤ T}. (1)
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The implementation of a feasible CRP comes at a cost.
Assume the rate of increase of the cost at any time is
proportional to the company’s response rate at that time. Then
the total cost for implementing the CRP x equals

C(x) = ω1

∫ T

0

x(t)dt. (2)

Here, ω1 represents the per-unit-time cost for the company
response, which is assumed to be positive and constant. We
call the parameter ω1 as the standard cost.

B. A state evolutionary model for the online community
At any time of the product co-creation activity, each par-

ticipant of the online community is in one of two possible
states: active, i.e., actively participating in the revision of the
product design scheme by proposing valuable suggestions in
a time interval of a given small length, and inactive, i.e., not
active in a time interval of the same length. Let A(t) and I(t)
denote the number of active and inactive participants at time
t, respectively. We call the ordered pair (A(t), I(t)) as the
state of the community at time t. The initial community state,
(A(0), I(0)), can be determined by a company worker through
continuously observing the active statuses of all community
participants in a time interval preceding the initial time t = 0.

On the one hand, since any individual may enter or exit the
community at his or her will, A(t) and I(t) vary over time. On
the other hand, the state of every participant of the community
is varying over time. Specifically, an active participant may
become inactive owing to various reasons (heavy work, being
on vacation, being tired, etc.), and an inactive participant may
become active owing to the influence of either the company
response or the active participants. As a result, A(t) and I(t)
are varying over time as well.

An epidemic model is established following a two-step pro-
cedure: First, introduce a set of epidemic-related assumptions
and parameters. Second, use these assumptions and parameters
to describe an epidemic model [38]. For the purpose of estab-
lishing an epidemic model for characterizing the evolutionary
process of the state of the community over time, let us
introduce a set of assumptions and parameters as follows.

(i) Assume an outside individual has no knowledge of the
product design scheme when entering the community.
As a result, the individual is inactive at that time.

(ii) Let µ denote the per-unit-time number of outside indi-
viduals entering the community, which is assumed to be
positive and constant. We refer to µ as the community
inflow rate.

(iii) Let δ1 denote the per-unit-time probability of an active
community participant exiting the community, which is
assumed to be positive and constant. We refer to δ1 as
the first community outflow rate.

(iv) Let δ2 denote the per-unit-time probability of an inactive
community participant exiting the community, which is
assumed to be positive and constant. We refer to δ2 as
the second community outflow rate. Intuitively, δ2 > δ1.

(v) Let β1(z) denote the per-unit-time probability of an
inactive participant becoming active owing to the influ-
ence of the company response rate z. We refer to the

function β1 as the first influence function. Intuitively, β1

is monotonically increasing and flattens out.
(vi) Let β2(z) denote the per-unit-time probability of an

inactive participant becoming active owing to the influ-
ence of the number z of active participants. We call the
function β2 as the second influence function. Intuitively,
β2 is monotonically increasing and flattens out. For
technical reasons, assume β2 is differentiable.

(vii) Let α denote the per-unit time probability of an active
participant becoming inactive owing to various reasons,
which is assumed to be positive and constant. We refer
to δ as the inaction rate.

On the one hand, the assumptions (ii)-(iv) quantitatively
characterize the fluidity of the company-sponsored online
community. On the other hand, the assumptions (v)-(vii)
quantitatively characterize the voluntariness of a community
participant to be active or inactive. See references [5], [6],
[7]. This set of assumptions provides a solid foundation for
the subsequent modeling of the CRP problem.

Remark 1. In practice, the inflow rate, the two outflow rates,
and the inaction rate are all time-varying. In our modeling, the
four rates are averaged over time and hence are assumed to
be constant. Anyway, averaging is a commonly used technique
in establishing epidemic models.

The above assumptions and parameters imply the following
result.

Theorem 1. Under the influence of the CRP x, the community
state evolves obeying the following rule:

dA(t)

dt
= [β1(x(t)) + β2(A(t))] I(t)− αA(t)− δ1A(t),

dI(t)

dt
= µ− [β1(x(t)) + β2(A(t))] I(t) + αA(t)− δ2I(t),

0 ≤ t ≤ T,

A(0) = A0, I(0) = I0.
(3)

We call the system (3) as the community state evolutionary
model. See Fig. 1 for a diagram of the model. According
to Goffman and Newill’s opinion [43], this is an ‘epidemic’
model, because it characterizes the ‘epidemic’ process of
transitions between the active state and the inactive state.
According to the taxonomy of epidemic models proposed in
[38], the state evolutionary model of the online community is
a population-based ‘epidemic’ model. The main function of
the community state evolutionary model (3) is to accurately
predict the community state in the future time interval [0, T ].
Without the model, it would be difficult to accomplish the goal.
As any long-term prediction lacks prediction accuracy, the pa-
rameter T should take on a relatively small value to guarantee
a relatively high prediction accuracy of the community state
evolutionary model.

C. Optimal control model for the CRP problem

In the CRP problem, all active participants make contribu-
tions to the final product design scheme. Let ω2 be the per-
unit-time benefit brought by an active participant, which is
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Fig. 1. Diagram of the community state evolutionary model.

assumed to be positive and constant. We call the parameter
ω2 as the standard benefit. The assumption that the per-
unit-time contribution is identical for all active participants
implies the per-unit-time contribution is averaged over all
active participants. Although this assumption is oversimplified,
it is trivial to generalize the yielded model to the more
general situation where different active participants may make
different per-unit-time contributions. Based on the accurate
prediction of the community state evolutionary model (3), the
cost benefit of implementing the CRP x is expected to be

J(x) = ω2

∫ T

0

A(t)dt− ω1

∫ T

0

x(t)dt. (4)

Therefore, the CRP problem may be reduced to the following
open-loop, deterministic optimal control problem:

max
x∈XT,x

J(x) = ω2

∫ T

0

A(t)dt− ω1

∫ T

0

x(t)dt

s.t.



dA(t)

dt
= [β1(x(t)) + β2(A(t))] I(t)− αA(t)− δ1A(t),

dI(t)

dt
= µ− [β1(x(t)) + β2(A(t))] I(t) + αA(t)

− δ2I(t), 0 ≤ t ≤ T,

A(0) = A0, I(0) = I0.
(5)

We call the optimal control problem (5) as the CRP model.
Every instance of the CRP model (CRP instance, for short) is
represented by a 12-tuple of the form

M = (A0, I0, T, x, µ, δ1, δ2, α, β1, β2, ω1, ω2). (6)

For this purpose, the prediction accuracy of the community
state evolutionary model (3) must be guaranteed. At the first
sight, the aim of the CRP model (5) is to find an optimal
control function, i.e., a control function that maximizes the
objective functional. But this is not the case. First, since the
CRP model is inherently complex and there are numerous
feasible control functions, finding an optimal control function
is computationally prohibitive. Second, since the aim of the
CRP problem is to find a satisfactory CRP, and the CRP model
is a mathematical model for the CRP problem, we should be
satisfied with finding a satisfactory control function, which
stands for a satisfactory CRP. For this purpose, the community
state evolutionary model (3) must own a guaranteed prediction
accuracy.

IV. SOLVING THE CRP MODEL

In the preceding section, we established the CRP model.
This section is committed to solving the CRP model.

The standard procedure of solving an open-loop, determin-
istic optimal control problem is as follows: First, derive the
optimality system for the optimal control problem. Second,
solve the optimality system. See [50]. The CRP model (5) is
an open-loop, deterministic optimal control problem. Below
let us follow the procedure to solve the CRP model.

A. The optimality system for the CRP model

The Hamiltonian function for the CRP model (5) reads

H(A, I, x, λ1, λ2)

= ω2A− ω1x+ λ1 {[β1(x) + β2(A)] I − αA− δ1A}
+ λ2 {µ− [β1(x) + β2(A)] I + αA− δ2I} .

(7)

Here, (λ1, λ2) is the adjoint variable for H .
We have the following result.

Theorem 2. Let x be an optimal CRP for the CRP model (5).
Let (A, I) be the solution to the associated community state
evolutionary model (3). Then, there exists an adjoint function
(λ1, λ2) such that

dλ1(t)

dt
= −ω2 + [α+ δ1 − β

′

2(A(t))I(t)]λ1(t)

− [α− β
′

2(A(t))I(t)]λ2(t), 0 ≤ t ≤ T,

dλ2(t)

dt
= −[β1(x(t)) + β2(A(t))]λ1(t)

+ [δ2 + β1(x(t)) + β2(A(t))]λ2(t), 0 ≤ t ≤ T,

λ1(T ) = λ2(T ) = 0.

(8)

Moreover,{
x(t) ∈ arg max

0≤x̃≤x
{[λ1(t)− λ2(t)]I(t)β1(x̃)− ω1x̃} ,

0 ≤ t ≤ T.
(9)

Proof: First, λ1(T ) = λ2(T ) = 0 follows from the
unspecified terminal cost and the free final state. Second, the
Pontryagin Maximum Principle [50] implies there is an adjoint
function (λ1, λ2) such that

dλ1(t)

dt
= −HA(A(t), I(t), x(t), λ1(t), λ2(t)),

dλ2(t)

dt
= −HI(A(t), I(t), x(t), λ1(t), λ2(t)),

0 ≤ t ≤ T.

(10)

The first two equations in the system (8) follow by direct cal-
culations. Finally, the Pontryagin Maximum Principle implies

x ∈ argmax
x̃∈X

H(A, I, x̃, λ1, λ2), (11)

The system (9) follows through simple calculations.
According to Theorem 2, the optimality system for the CRP

model (5) is shown in Eqs. (12). The optimality system may
be viewed as a system in the CRP x, where both the state
function (A, I) and the adjoint function (λ1, λ2) play the role
of auxiliary function.
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

dA(t)

dt
= [β1(x(t)) + β2(A(t))] I(t)− αA(t)− δ1A(t), 0 ≤ t ≤ T,

dI(t)

dt
= µ− [β1(x(t)) + β2(A(t))] I(t) + αA(t)− δ2I(t), 0 ≤ t ≤ T,

dλ1(t)

dt
= −ω2 + [α+ δ1 − β

′

2(A(t))I(t)]λ1(t)− [α− β
′

2(A(t))I(t)]λ2(t), 0 ≤ t ≤ T,

dλ2(t)

dt
= −[β1(x(t)) + β2(A(t))]λ1(t) + [δ + β1(x(t)) + β2(A(t))]λ2(t), 0 ≤ t ≤ T,

x(t) ∈ arg max
0≤x̃≤x

{[λ1(t)− λ2(t)]I(t)β1(x̃)− ω1x̃} , 0 ≤ t ≤ T,

A(0) = A0, I(0) = I0, λ1(T ) = λ2(T ) = 0.

(12)

B. An algorithm for solving the CRP model

It follows from Theorem 2 that an optimal CRP for the CRP
model (5) is a solution to the optimality system (12). In the
situation where the optimality system admits a sole solution,
this solution is an optimal CRP. However, if the optimality
system admits more than one solution, a solution to the opti-
mality system is not necessarily an optimal CRP for the CRP
model. Owing to the inherent complexity of the optimality
system, any attempt to prove the uniqueness of solution to
this system proves futile. As a matter of fact, the system may
admit multiple solutions. As a result, the CRP model is not
equivalent to the optimality system. Nevertheless, the task of
solving the CRP model may be reduced to two successive
subtasks: solving the optimality system and checking the cost
effectiveness of the yielded solution.

Owing to the complexity of the optimality system (12),
any attempt to analytically solve the system proves futile.
Hence, we turn to numerically solve the system. Invoking the
Forward-Backward Sweep Method for solving the optimality
system for an optimal control problem [61], we design an
algorithm for numerically solving the optimality system (12).
The basic idea of our algorithm is to yield a sequence of CRPs.
In the case where the sequence converges, the finally yielded
CRP is a numerical solution to the optimality system (12). In
algorithm 1 the algorithm is sketched and is referred to as the
CRP algorithm.

The overall time cost of the CRP algorithm is dominated
by that for solving the collection of maximization problems
involved in the optimality system (12). Hence, the key to
reducing the time cost of the CRP algorithm is to reduce the
time cost for solving each of these maximization problems.
To this end, we present the following theorem. See [62], [63].

Theorem 3. Let x be a solution to the optimality system (12),
(A, I) the associated state function, (λ1, λ2) the associated
adjoint function. For each t ∈ [0, T ], the following claims
hold.
(i) If [λ1(t)− λ2(t)]I(t)β

′

1(x) > ω1, then x(t) = x.
(ii) If [λ1(t)− λ2(t)]I(t)β

′

1(0) < ω1, then x(t) = 0.
(iii) If [λ1(t)−λ2(t)]I(t)β

′

1(x) < ω1, [λ1(t)−λ2(t)]I(t)β
′

1(0)

> ω1, then x(t) =
(
β

′

1

)−1 (
ω1

(λ1(t)−λ2(t))I(t)

)
.

Proof: Let Gt(x̃) = [λ1(t)− λ2(t)]I(t)β1(x̃)− ω1x̃.
(i) In this case, G

′

t(x̃) > 0 for 0 ≤ x̃ ≤ x. As a result,
Gt(x̃) is strictly increasing in the interval [0, x]. The claimed

Algorithm 1 CRP
Input: an instance M = (A0, I0, T, x, µ, δ1, δ2, α, β1, β2, ω1,
ω2) of the CRP model (5), convergence error ϵ.
Output: a control policy x.

1: k ← 0; x(0) ← 0;
2: repeat
3: k ← k + 1;
4: forwardly calculate the state function (A, I) using Eqs.

(3) with x← x(k−1); (A(k), I(k))← (A, I);
5: backwardly calculate the adjoint function (λ1, λ2) using

Eqs. (8) with x ← x(k−1) and (A, I) ← (A(k), I(k));
(λ

(k)
1 , λ

(k)
2 )← (λ1, λ2);

6: calculate the control policy x using Eqs. (9) with
(A, I) ← (A(k), I(k)), and (λ1, λ2) ← (λ

(k)
1 , λ

(k)
2 );

x(k) ← x;
7: until sup0≤t≤T |x(k)(t)− x(k−1)(t)| < ϵ;
8: return x(k).

result follows.
(ii) In this case, G

′

t(x̃) < 0 for 0 ≤ x̃ ≤ x. As a result,
Gt(x̃) is strictly decreasing in the interval [0, x]. The claimed
result follows.

(iii) In this case, Gt(x̃) > 0 for 0 ≤ x̃ ≤ ω1

(λ1(t)−λ2(t))I(t)
,

and Gt(x̃) < 0 for ω1

(λ1(t)−λ2(t))I(t)
≤ x̃ ≤ x. As a

result, Gt(x̃) is first strictly increasing then strictly decreasing,
and the turning point is ω1

(λ1(t)−λ2(t))I(t)
. The claimed result

follows.
This theorem helps to greatly reduce the time cost used for

solving the maximization problem (9) and hence the time cost
for solving the optimality system.

Remark 2. There are two fundamentally different approaches
to dealing with an actual optimal control problem. The first
approach is to reduce the problem to a continuous-type opti-
mal control model, derive a continuous-type optimality system
for the model, apply the classical forward-backward sweep
method to the optimality system to present a ‘continuous-type
algorithm’ for finding a satisfactory control for the model,
and finally discretize the ‘algorithm’ to yield a numerical
algorithm. The second approach is to reduce the problem
to a discrete-type optimal control model, derive a discrete-
type optimality system for the model, and apply the forward-
backward sweep method to the optimality system to present
a numerical algorithm for finding a satisfactory control for
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the model. Owing to three reasons, in this paper we choose
the first approach to deal with the CRP problem. First,
this is a commonly used approach to deal with open-loop,
deterministic optimal control models. Second, the results of the
relevant comparative experiments reported in the subsequent
section show that the CRP obtained through the approach
is satisfactory in terms of the cost benefit. Finally, a few
profound results about the structure of the resulting CRP (i.e.,
Theorem 3) are derived analytically. By the way, the CRP
algorithm comes from a direct application of the forward-
backward sweep method.

Remark 3. When encoding the CRP algorithm, the time
interval [0, T ] should be split into a collection of sub-intervals,
say, [0, T

N ], [ TN , 2T
N ], · · · , [ (N−1)T

N , T ], and the calculations
involved in the CRP algorithm should be performed at these
split points.

V. CONVERGENCE, EFFECTIVENESS, AND
IMPLEMENTATION OF THE CRP ALGORITHM

In the preceding section, we presented an algorithm for
solving the CRP model (i.e., the CRP algorithm). For the
algorithm to work properly, the sequence of CRPs yielded by
the algorithm must converge, and the finally yielded CRP must
be superior to most other feasible CRPs in terms of the cost
benefit. Owing to the highly complex structure of the optimal-
ity system (12), it is extremely difficult, if not impossible, to
rigorously prove the convergence and effectiveness of the CRP
algorithm. Instead, this section turns to experimentally inspect
the convergence and effectiveness of the algorithm, followed
by a discussion of some issues about the implementation of
this algorithm.

A. Convergence and effectiveness of the CRP algorithm

Experiment 1. Consider the following CRP instance.

M1 = (50, 10000, 50, 10, 12, 0.0001, 0.001, 0.1,

0.05 arctan(0.3z), 0.01 ln(0.01z + 1), 103, 20).

First, we observe that, when run on (M1, 10
−6), the CRP

algorithm converges in four iterative steps. The resulting
sequence of CRPs, denoted {x(k)}4k=1, is plotted in Fig. 2(a).
Let x∗

1 = x(4) denote the finally resulting CRP. Second,
randomly and uniformly generate 100 feasible CRPs, denoted
x1, · · · , x100. We observe from Fig. 2(b) that J(x∗

1) > J(x),
x ∈ {x1, · · · , x100}.

Experiment 2. Consider the following CRP instance.

M2 = (100, 10000, 80, 15, 15, 0.0001, 0.001, 0.15, 0.06z1/4,

0.003z1/3, 1200, 20).

First, we observe that, when run on (M2, 10
−6), the CRP

algorithm converges in five iterative steps. The resulting se-
quence of CRPs, denoted {x(k)}5k=1, is plotted in Fig. 3(a).
Let x∗

2 = x(5) denote the finally resulting CRP. Second,
randomly and uniformly generate 100 feasible CRPs, denoted
x1, · · · , x100. We observe from Fig. 3(b) that J(x∗

2) > J(x),
x ∈ {x1, · · · , x100}.

0 10 20 30 40 50
0

2

4

6

8

10

( )a

(4) *

1=x x

( ) 4

1{ }
=

k

k
x

t

(1)
x
(2)
x
(3)
x

3.7

3.8

3.8

3.9

4.0

4.0

4.1

4.2×106

( )J x

1x
...

10x 100x
*

1x

( )b

Fig. 2. The experimental results in Experiment 1: (a) the resulting sequence
of CRPs, denoted {x(k)}4k=1, (b) J(x) versus x, x ∈ {x∗

1, x1, · · · , x100}.
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Fig. 3. The experimental results in Experiment 2: (a) the resulting sequence
of CRPs, denoted {x(k)}5k=1, (b) J(x) versus x, x ∈ {x∗

2, x1, · · · , x100}.

Experiment 3. Consider the following CRP instance.

M3 = (150, 10000, 100, 20, 10, 0.0003, 0.001, 0.2,

0.04 ln(z + 1), 0.04 arctan(0.001z), 1000, 25).

First, we observe that, when run on (M3, 10
−6), the CRP

algorithm converges in five iterative steps. The resulting se-
quence of CRPs, denoted {x(k)}5k=1, is plotted in Fig. 4(a).
Let x∗

3 = x(5) denote the finally resulting CRP. Second,
randomly and uniformly generate 100 feasible CRPs, denote
x1, · · · , x100. We observe from Fig. 4(b) that J(x∗

3) > J(x),
x ∈ {x1, · · · , x100}.
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Fig. 4. The experimental results in Experiment 3: (a) the resulting sequence
of CRPs, denoted {x(k)}5k=1, (b) J(x) versus x, x ∈ {x∗

3, x1, · · · , x100}.

We conducted totally 10000 similar experiments. In each
of these experiments, we observed that (i) the CRP algorithm
converges rapidly, and (ii) the finally resulting CRP is superior
to 100 randomly generated feasible CRPs. Hence, we conclude
that, generally, the CRP algorithm converges rapidly and the
resulting CRP is cost-effective. Therefore, we recommend the
resulting CRP to companies that embrace product co-creation.

In all of our 10000 experiments, we observe the phe-
nomenon that the CRP yielded by the CRP algorithm starts at



8

x and then decreases. This phenomenon is caused by the fact
that the cost benefit yielded by achieving higher response rate
at early stage of a product co-creation campaign is higher than
that yielded by achieving higher response rate at later stage.

B. Another approach to solving the CRP model

Dynamic programming provides another method for solving
optimal control problems [64]. The dynamic programming
solution of a continuous-type optimal control problem consists
of two steps. In the first step, approximate the original problem
by a discrete-type optimal control problem. In the second step,
recursively solve the discrete-type Hamilton-Jacobi-Bellman
equation for this problem to get a discrete optimal control.

For the purpose of using dynamic programming technique
to solve the CRP model (5), we need to introduce a set of
notations as follows.

• Let t0 = 0, t1 = T
N , t2 = 2T

N , · · · , tN = T denote the
sequence of time points.

• For 0 ≤ i ≤ N , let Ai = A(ti), Ii = I(ti).
• Let s0 = 0, s1 = S

M , s2 = 2S
M , · · · , sM = S denote the

admissible values of all Ai and Ii, where S stands for
the maximum possible size of the online community.

• Let p0 = 0, p1 = x
P , p2 = 2x

P , · · · , pP = x denote the
admissible values of a control policy x at any time.

• For 0 ≤ i ≤ N , 0 ≤ j, k ≤ M , let x(i, j, k) denote
the value of an optimal control policy x at the time
point ti and in the state (sj , sk), let J(i, j, k) denote the
corresponding cost benefit.

• Let x̃ denote the value of a temporary control policy. Let
J̃ denote the corresponding cost benefit.

• Let λ denote the coefficient of a quadratic regularization
term, which is used to control the smoothness of the
resulting control policy.

We are ready to present a dynamic programming algorithm
for solving the CRP problem, which is detailed in the follow-
ing CRP2 algorithm.

Experiment 4. Let M1 denote the CRP instance given in
Experiment 1. Again, let x∗

1 denote the CRP obtained in
Experiment 1. Let N = 50, M = 2000, P = 100, λ = 0.1.
Running the CRP2 algorithm on (M1, N,M,P, λ), we get a
CRP, which is denoted x∗

2 and plotted in Fig. 5.
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Fig. 5. The CRP x∗
2 obtained in Experiment 4.

First, we observe that J(x∗
2) = 4.02 × 106. In contrast,

J(x∗
1) = 4.06 × 106. As a result, x∗

2 is inferior to J(x∗
1) in

terms of the cost benefit. This is largely attributed to the rough
discrete approximation of the CRP model. Second, the running

Algorithm 2 CRP2
Input: an instance M = (A0, I0, T, x, µ, δ1, δ2, α, β1, β2, ω1,
ω2) of the CRP model (5), three positive integers N , M , and
P , regularization coefficient λ.
Output: a control policy x.

1: // sentences 2-6 initialize all x(i, j, k) and J(i, j, k); //
2: for i← 0 to N do
3: for j, k ← 0 to M do
4: x(i, j, k)← 0; J(i, j, k)← 0;
5: end for
6: end for
7: // sentences 8-23 calculate a complete optimal control

policy; //
8: for i← N − 1 down to 0 do
9: // sentences 10-22 calculate an optimal control policy

at time point ti; //
10: for j, k ← 0 to M do
11: x̃← 0; J̃ ← −∞;
12: for p← 0 to P do
13: calculate (Ai+1, Ii+1) using the discretized version

of Eqs. (3) with (Ai, Ii) and xp;
14: j′ ← arg min

j̃∈{0,1,··· ,M}
|sj̃ −Ai+1|;

15: k′ ← arg min
k̃∈{0,1,··· ,M}

|sk̃ − Ii+1|;

16: J ← ω2Ii+1 − ω1xp + λx2
p + J(i+ 1, j′, k′);

17: if J > J̃ then
18: x̃← xp; J̃ ← J ;
19: end if
20: end for
21: x(i, j, k)← x̃; J(i, j, k)← J̃ ;
22: end for
23: end for

time of the CRP algorithm in Experiment 1 is only less than 10
seconds. In contrast, the running time of the CRP2 algorithm in
Experiment 4 is up to more than 6 hours. What is worse, with
the increased refinement of discrete approximation of the CRP
model, the time cost of the CRP2 algorithm would rise rapidly.
Additionally, Fig. 5 shows that x∗

2 is much less smooth than x∗
1.

Consequently, we conclude that the CRP2 algorithm is inferior
to the CRP algorithm from three perspectives: the cost benefit
of the resulting CRP, the time cost of running the algorithm,
and the smoothness of the resulting CRP. Consequently, we
recommend the CRP algorithm to serve as the basic algorithm
for solving the CRP model.

C. Implementation of the resulting company response policy

The very key to implementing the recommended company
response policy in real-world product co-creation activities lies
in understanding the instance of the CRP model. It is seen
from Eq. (6) that the instance involves 12 factors. Hence, the
company needs to understand these factors.

First, the initial community state can be observed by the
company. Second, the product co-creation period and the
maximal response rate are set directly by the company. Third,
by collecting and averaging a collection of historical data on
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the community inflow rate and the two community outflow
rates, the three rates can be estimated relatively accurately.
Fourth, by collecting and averaging a collection of historical
data on the inaction rate, the inaction rate may be estimated
relatively accurately. Next, the standard cost and the standard
benefit may be estimated relatively accurately by the company.
Fifth, by collecting and statistically fitting a collection of
historical data on the correspondence between the company
response rate and the inactive-active conversion rate, the first
influence functions may be approximated relatively accurately.
Finally, by collecting and statistically fitting a collection of
relevant historical data on the correspondence between the
number of active participants and the inactive-active conver-
sion rate, the second influence functions may be approximated
relatively accurately. When all these tasks are accomplished,
the recommended company response policy may be calculated
and implemented.

VI. FURTHER DISCUSSIONS

In the preceding section, we validated the convergence and
effectiveness of the CRP algorithm. In this section, we inspect
the influence of some factors on the cost benefit of the CRP
resulting from running the CRP algorithm (the resulting CRP,
for short) through numerical experiments.

A. Influence of the product co-creation period
First, examine the influence of the product co-creation

period on the cost benefit of the resulting CRP.

Experiment 5. Let T = {100, 110, · · · , 200}. Consider the
following set of CRP instances.

MT = (100, 10000, T, 15, 12, 0.0001, 0.001, 0.1,

0.05 arctan(0.3z), 0.01 ln(0.01z + 1), 800, 20), T ∈ T .
For each T ∈ T , let x∗

T denote the CRP resulting from running
the CRP algorithm on (MT , 10

−6). Fig. 6(a) displays J(x∗
T )

versus T , T ∈ T . We observe that J(x∗
T ) increases with the

increase of T .

We conduct totally 104 similar experiments. In each of
these experiments, we observe that the cost benefit of the
resulting CRP increases with the increase of the product co-
creation period. Hence, we conclude that, generally, the cost
benefit of the resulting CRP is increasing with the product
co-creation period. This conclusion informs that the extended
product co-creation period implies the increased cost benefit of
the co-creative product. Since the product co-creation period
is typically preset by the community, it is not regarded as a
key factor that helps enhance the cost benefit of product co-
creation activity.

B. Influence of the maximal response rate
Second, inspect the influence of the maximal response rate

on the cost benefit of the resulting CRP.

Experiment 6. Let X = {10, 11, · · · , 20}. Consider the
following set of CRP instances.

Mx = (100, 10000, 100, x, 12, 0.0001, 0.001, 0.1,

0.05 arctan(0.3z), 0.01 ln(0.01z + 1), 800, 20), x ∈ X .

For each x ∈ X , let x∗
x denote the CRP resulting from running

the CRP algorithm on (Mx, 10
−6). Fig. 6(b) exhibits J(x∗

x)
versus x, x ∈ X . We observe that, with the increase of x,
J(x∗

x) first increases rapidly and then flattens out.

We conduct totally 10000 similar experiments. In each
of these experiments, we observe that, with the increase of
the maximal response rate, the cost benefit of the resulting
CRP first increases rapidly and then flattens out. Hence, we
conclude that this is a universal phenomenon. Below let us
explain the phenomenon from two perspectives.

First, let x1 and x2 be a pair of maximal response rates
with x1 < x2. It is easily seen from Eq. 1 that XT,x1

⊂
XT,x2

. For any given T , µ, δ1, δ2, α, β1, β2, ω1, ω2, A0,
and I0, let xopt

1 and xopt
2 be an optimal solution to the

instance M1 = (A0, I0, T, x1, µ, δ1, δ2, α, β1, β2, ω1, ω2) and
the instance M2 = (A0, I0, T, x2, µ, δ1, δ2, α, β1, β2, ω1, ω2),
respectively. It is seen from the CRP model (5) that J(xopt

1 ) ≤
J(xopt

2 ). Therefore, we can safely say the cost benefit of the
resulting CRP is increasing with the increase of the maximal
response rate.

Second, it is seen from Figs. 2-4 that the response rate
of the resulting CRP declines over time from the maximal
response rate to zero. Furthermore, we observe that, with the
increase of the maximal response rate, the declination begins
at earlier time point. Hence, with the increase of the maximal
response rate, the cost and, hence, the benefit of the resulting
CRP tend to saturation. Therefore, with the increase of the
maximal response rate, the cost benefit of the resulting CRP
first increases rapidly and then flattens out. See Fig. 6(b).

In the physical world, there exists a maximum physically
feasible response rate, which may be evaluated accurately by
relevant experts. As a result, the actual maximal response
rate is only physically achievable if it doesn’t exceed the
maximum physically feasible response rate. In the case where
the restriction is met, the company may flexibly adjust the
actual maximal response rate. In view of the asymptotic
saturation of the cost effectiveness of the resulting CRP with
the increase of the maximal response rate (see Fig. 6(b)),
it is appropriate to choose a physically achievable maximal
response rate at which the cost benefit of the resulting CRP
flattens out.

C. Influence of the community inflow rate

Third, look into the influence of the community inflow rate
on the cost benefit of the resulting CRP.

Experiment 7. Let M = {10, 11, · · · , 20}. Consider the
following set of CRP instances.

Mµ = (100, 10000, 100, 15, µ, 0.0001, 0.001, 0.1,

0.05 arctan(0.3z), 0.01 ln(0.01z + 1), 800, 20), µ ∈M.

For each µ ∈ M, let x∗
µ denote the CRP resulting from

running the CRP algorithm on (Mµ, 10
−6). Fig. 6(c) shows

J(x∗
µ) versus µ, µ ∈ M. We observe that J(x∗

µ) increases
quickly with the increase of µ.

We conduct totally 10000 similar experiments. In each of
these experiments, we observed that the cost benefit of the
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Fig. 6. The experimental results in (a) Experiment 5, (b) Experiment 6, (c) Experiment 7, (d) Experiment 8, (e) Experiment 9, (f) Experiment 10, (g)
Experiment 11, and (h) Experiment 12.

resulting CRP increases with the increase of the community
inflow rate. Hence, we conclude that, generally, the cost benefit
of the resulting CRP is increasing quickly with the increase
of the community inflow rate. This conclusion informs that
the lifted community inflow rate leads to the increased cost
benefit of the co-creative product.

Engaging as many potential customers as possible in online
co-creation communities is the very key to realizing value
co-creation. When it comes to product co-creation through
company-sponsored online communities, more community
participants implies more active participants, which in turn
implies more valuable suggestions about the product design
scheme, which in turn implies perfect product design scheme.
Consequently, we suggest taking effective measures, such
as investing more advertising expenditure on popular social
media advertising platforms, to enlarge the customer base.
Since the community inflow rate is relatively controllable and
the resulting cost benefit is considerable, it is regarded as a
key factor that helps enhance the cost benefit of product co-
creation activity.

D. Influence of the two community outflow rates

Fourth, consider the influence of the two community outflow
rates on the cost benefit of the resulting CRP.

Experiment 8. Let ∆1 = {0.0001, 0.0002, · · · , 0.001}. Con-
sider the following set of CRP instances.

Mδ1 = (100, 10000, 100, 15, 12, δ1, 0.001, 0.1,

0.05 arctan(0.3z), 0.01 ln(0.01z + 1), 800, 20), δ1 ∈ ∆1.

For each δ1 ∈ ∆1, let x∗
δ1

denote the CRP resulting from run-
ning the CRP algorithm on (Mδ1 , 10

−6). Fig. 6(d) showcases
J(x∗

δ1
) versus δ1, δ1 ∈ ∆1. We observe that J(x∗

δ1
) decreases

with the increase of δ1.

Experiment 9. Let ∆2 = {0.001, 0.002, · · · , 0.01}. Consider
the CRP instances

Mδ2 = (100, 10000, 100, 15, 12, 0.0001, δ2, 0.1,

0.05 arctan(0.3z), 0.01 ln(0.01z + 1), 800, 20), δ2 ∈ ∆2.

For each δ2 ∈ ∆2, let x∗
δ2

denote the CRP resulting from run-
ning the CRP algorithm on (Mδ2 , 10

−6). Fig. 6(e) showcases
J(x∗

δ2
) versus δ2, δ2 ∈ ∆2. We observe that J(x∗

δ2
) decreases

with the increase of δ2.

We conduct totally 10000 similar experiments. In each
of these experiments, we observe that the cost benefit of
the resulting CRP decreases with the increase of either of
the two community outflow rates. Hence, we conclude that,
generally, the cost benefit of the resulting CRP is decreasing
with the increase of either of the two community outflow
rates. This conclusion informs that the two reduced community
outflow rates imply the increased cost benefit of the co-creative
product.

Indubitably, the massive outflow of participants from a
company-sponsored online community is a heavy blow to
value co-creation. After all, maintaining the stability of ex-
isting participants contributes to the emergence of numerous
valuable suggestions, leading to high-quality product design
scheme. Consequently, we suggest taking effective measures,
such as paying for valuable suggestions, to detain the commu-
nity participants. Since the two outflow rates are controllable,
they are regarded as key factors that help enhance the cost
benefit of product co-creation activity.

E. Influence of the inaction rate
Fifth, consider the influence of the inaction rate on the cost

benefit of the resulting CRP.

Experiment 10. Let A = {0.01, 0.02, · · · , 0.1}. Consider the
following set of CRP instances.

Mα = (100, 10000, 100, 15, 12, 0.0001, 0.001, α,

0.05 arctan(0.3z), 0.01 ln(0.01z + 1), 800, 20),∈ A.
For each α ∈ A, let x∗

α denote the CRP resulting from running
the CRP algorithm on (Mα, 10

−6). Fig. 6(f) depicts J(x∗
α)

versus α, α ∈ A. We observe that J(x∗
α) decreases with the

increase of α.

We conduct totally 10000 similar experiments. In each of
these experiments, we observe that the cost benefit of the
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resulting CRP decreases with the increase of the inaction rate.
Hence, we conclude that, generally, the cost benefit of the
resulting CRP is decreasing with the increase of the inaction
rate. This conclusion informs that the reduced inaction rate
leads to the increased benefit of product co-creation.

Around 400 years BC, Sophocles, the famous Ancient
Greek playwright, wrote the aphorism: Wisdom outweighs any
wealth. As the combination of experience, knowledge, and
sensible decision, wisdom is the key to wealth. With regard
to product co-creation through company-sponsored online
community, taking full advantage of the participants’ wisdom
undoubtedly helps to yield perfect product design scheme and
hence great wealth. Consequently, we suggest taking effective
measures, such as paying active participants for their excellent
ideas, to unearth their potential.

F. Influence of the standard cost

Next, consider the influence of the standard cost on the cost
benefit of the resulting CRP.

Experiment 11. Let W1 = {100, 200, · · · , 1000}. Consider
the following set of CRP instances.

Mω1
= (100, 10000, 100, 15, 12, 0.0001, 0.001, 0.1,

0.05 arctan(0.3z), 0.01 ln(0.01z + 1), ω1, 20), ω1 ∈ W1.

For each ω1 ∈ W1, let x∗
ω1

denote the CRP resulting
from running the CRP algorithm on (Mω1 , 10

−6). Fig. 6(g)
draws J(x∗

ω1
) versus ω1, ω1 ∈ W1. We observe that J(x∗

ω1
)

decreases with the increase of ω1.

We conduct totally 10000 similar experiments. In each of
these experiments, we observe that the cost benefit of the
resulting CRP decreases with the increase of the standard cost.
Hence, we conclude that, generally, the cost benefit of the
resulting CRP is decreasing with the increase of the standard
cost. This conclusion informs that the reduced standard cost
implies the increased cost benefit of the co-creative product.

With everything in business, the benefits gained should
exceed the cost incurred. Product co-creation is no exception.
While keeping the high intensity of interacting with the com-
munity participants, we suggest taking necessary measures,
such as improving the operational efficiency of the relevant
department, to reduce the cost for company response.

G. Influence of the standard benefit

Finally, examine the influence of standard benefit on the
cost benefit of the resulting CRP.

Experiment 12. Let W2 = {10, 20, · · · , 100}. Consider the
following set of CRP instances.

Mω2
= (100, 10000, 100, 15, 12, 0.0001, 0.001, 0.1,

0.05 arctan(0.3z), 0.01 ln(0.01z + 1), 800, ω2), ω2 ∈ W2.

For each ω2 ∈ W2, let x∗
ω2

denote the CRP resulting from
running the CRP algorithm on (Mω2

, 10−6). Fig. 6(h) depicts
J(x∗

ω2
) versus ω2, ω2 ∈ W2. We observe that J(x∗

ω2
) increases

with the increase of ω2.

We conduct totally 10000 similar experiments. In each of
these experiments, we observe that the cost benefit of the re-
sulting CRP increases with the increase of the standard benefit.
Hence, we conclude that, generally, the cost benefit of the
resulting CRP is increasing with the increase of the standard
benefit. This conclusion informs that the lifted standard benefit
leads to the increased cost benefit of the co-creative product.

One disruptive innovation outvalues one thousand minor
betterments. Generous rewards rouse one to heroism. The
recipe for increasing the standard benefit is to simulate active
participants’ potential to the maximum extent by posting
a high reward. Consequently, we suggest awarding active
participants differentially based on the quality of their ideas,
with the intention of arousing their passion for pursuing top-
level product design scheme.

Remark 4. It is of practical importance to ask if the perfor-
mance of the CRP algorithm is continuously dependent on the
model parameters. It can be seen from the above discussions
that the answer is yes. Therefore, it is expected that, with the
increasingly accurate observations of these parameters, the
performance of the CRP algorithm would become increasingly
predictable.

VII. CONCLUDING REMARKS

In the context of product co-creation through company-
sponsored online community, the problem of finding a cost-
effective company response policy has been proposed. This
problem has been reduced to an optimal control problem. An
algorithm for solving the latter problem has been presented.
The convergence and effectiveness of the algorithm has been
corroborated. Consequently, the company response policy re-
sulting from running the algorithm have been recommended.

There are several relevant problems to be resolved. First,
gathering numerous realistic CRP model-related data helps to
yield cases of calculating and implementing the recommended
CRP. Second, early contributions of a participant may inspire
others to become intrigued and look to make additional
contributions. In the future modification of the community
state evolutionary model, this delayed influence should be
incorporated. Thirdly, since product co-creation based on
company-sponsored online community may be viewed as a
cooperative game between the company and the community
participants, it is worthwhile to study the original problem
from the perspective of cooperative game theory [57]. Next, it
is worth exploring the formation mechanism of an autonomous
online co-creation community through epidemic modeling
[38]. Finally, the methodology developed in this paper may be
borrowed to address some other issues, such as cost-effective
advertising [65] and cost-effective cyber defense [54], [60].
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