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Abstract—The paper addresses the problem of selecting the
most informative sensor locations out of all possible sensing
positions in prediction of spatial phenomena by using a wireless
sensor network. The spatial field is modelled by Gaussian
Markov random fields (GMRF), where sparsity of the precision
matrix enables the network to benefit from computation. A new
spatial sensor selection criterion is proposed based on mutual
information between random variables at a selected locations
and those at unselected locations and interested but unlikely
sensor placed positions, which enhances resulting prediction. The
GMRF based optimality criterion is then proved to be very
computationally efficiently resolved, especially in a large-scale
sensor network, by a polynomial time approximation algorithm.
More importantly, with demonstrations of monotonicity and
submodularity properties of the mutual information set function
in the proposed selection criterion, our near-optimal solution
is also guaranteed by at least within (1 — 1/¢) of the optimal
performance. The effectiveness of the proposed approach is
compared and illustrated using two real-life large data sets with
promising results.

Index Terms—Wireless sensor networks, sensor selection, spa-
tial prediction, Gaussian Markov random fields.

I. INTRODUCTION

Recently, technological developments in micro-electro-
mechanical systems and wireless communications, which in-
volve the substantial evolution in reducing the size and the
cost of components, have led to the emergence of a wireless
sensor network (WSN) [1], [2] that are increasingly useful in
crucial applications in environmental monitoring [3]. Not only
do these systems provide a virtual connection with the physical
field in general, the WSN is particularly dominant in remote
and hazardous environments where many essential phenomena
have hardly been investigated due to their inaccessibility. In
addition to collecting data, combining the measurements with
a model, the WSN is also competent to estimate and predict
the spatial phenomenon at unobserved locations. For instance,
the posterior rainfall field in Switzerland is predicted by using
467 measurements collected from 467 recording stations on 8
May 1986, as illustrated in Fig. 1.

Typical task of a WSN consists of gathering measurements
of a spatial field over a region of interest. However, multiple
wireless sensor nodes co-located within the vicinity of a
phenomenon in a dense WSN may generate similar data
samples, which is called an over-sampling problem. This
over-sampling problem has the potential to create a sizable
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Fig. 1: The predicted field of rainfall in Switzerland on 8 May
1986 using 467 measurements. X Coord and Y Coord are in
km.

redundancy in sensed data that adversely affects good-put, i.e.
effective usage to provide intelligence about the phenomenon,
of the WSN as the redundant samples do not contribute to
gain any additional information about the phenomenon. Fur-
thermore, the over-sampling issue also causes data collection
and analysis of long-term monitoring to be very expensive
due to practical constraints like higher energy consumption,
elevated maintenance burden, and increased computational
cost. On the other hand, owing to resource constraints, the
number of active sensors at one particular time is limited.
Consequently, it is crucial to select the most informative subset
of wireless sensor nodes out of all potential ones, which
should participate in the sensing task. The selection procedure
is called a spatial sensor selection problem in which the
resulting prediction is required to conform requirement of the
higher sensing quality in realistic applications. Additionally,
the sensor selection problem enables the network to save
energy since only the selected subset of sensors will be active
in a particular sampling interval.

In statistics, selecting observations has been considered as
an experimental design problem [4]-[7]. The design objective
is to derive the deployment of sensing devices by the use of
model uncertainty, which could be formulated by complicated
statistical techniques. The optimality criteria are constructed
based upon the properties of the inverse moment matrix.



For instance, D-optimality considers the determinant [8], A-
optimality examines the trace and E-optimality calculates
the maximum eigenvalue [5]. However, in the context of
spatial prediction, the design objective frequently concerned
is the quality of sensing, which is described as the accuracy
of prediction or the uncertainty at unobserved locations of
interest, after the observations are made. This requirement
has been utilized to develop information-theoretic criteria [9]-
[12]. The information-theoretic approaches such as entropy
[13] or mutual information [14] were proposed to consider the
prediction uncertainty of the random variables at unobserved
locations in space, as demonstrated in the works [9], [15]-[18].
The primary principle of the entropy approach is to minimize
the uncertainty of conditional entropy of unobserved locations,
given measurements. As proposed by Ko ef al. [16], a greedy
yet near-optimal heuristic algorithm is used to maximize the
joint entropy of random variables at selected sensor locations.
Nonetheless, Guestrin et al. in in [17] have shown that the
entropy based sensor selection approach causes sensed infor-
mation waste since it tends to pick measuring locations along
the border of interested space. Hence, to address the drawbacks
of the entropy approach, the authors in [17] and then in
[9], [18] have proposed a mutual information based sensor
selection criterion. The premise behind the mutual informa-
tion based approach is to maximize the mutual information
between random variables at selected sensor locations and at
an unselected sensor set. Up until now, all sensor selection
optimality criteria have been proven to be a combinatorial
NP-hard problem [16], [19]. Under assumption the modeling
spatial field by Gaussian processes (GP) [20]-[22], a greedy
but efficient algorithm can be utilized to obtain a near-optimal
solution for the sensor selection problem.

In aforementioned existing works, the authors principally
utilized the GP to statistically model the spatial fields. The
specification of the GP is the covariance function that intu-
itively interprets the field properties. Nevertheless, the compu-
tational issues of the GP have always been a bottleneck, since
the computational complexity of factorizing dense matrices
is cubic in the dimension of observations. Therefore, even
suppose that the spatial sensor selection problem is solved by a
greedy heuristic algorithm, the GP based approaches are only
reasonable in a small-scale sensor network but time consuming
in a large-scale network.

Therefore, in this paper we first deal with the computational
complexity associated with the GP regression under large-
scale sensor networks in order to efficiently and effectively
address the sensor selection problem in the spatial prediction.
In the context of spatial statistics, the challenge in the GP
computation has been addressed in [23]-[26] by replacing the
GP by a computationally efficient Gaussian Markov random
field (GMRF) [27], [28]. It is worthwhile to note that this
discretely indexed Gaussian field (aka GMRF) can approxi-
mate the GP surprisingly well [23]. The computational benefits
come from the sparsity of the precision matrix, an inverse of a
dense covariance matrix, whose zero elements relate directly to
conditional independence assumptions. The advantage of the
precision matrix motivates us to propose a new spatial sensor
selection optimality criterion based on the GMRF. The crite-

rion is to maximize the mutual information between random
variables collected at best selected sensor locations and those
at unselected sensing positions and interested but unlikely
placed sensor locations. Incorporating interested locations,
where there is no availability of sensor deployment, allows
the sensor networks to improve the accuracy of prediction
results. The GMRF based mutual information maximization
problem is resolved by an approximation algorithm, which is
proved to be very computationally efficient. More importantly,
by using properties of monotonicity and submodularity of
the proposed mutual information set function in the sensor
selection problem, the near-optimal solution obtained by our
proposed algorithm is theoretically proven to be guaranteed
by a lower bound, which is (1 — 1/e) of the optimum.
Our proposed approach is finally demonstrated to appealingly
outperform the GP based method on two real-life large data
sets.

Although the GMRF was used to design an adaptive sam-
pling strategy for mobile sensor networks in [29], Xu et
al. restricted their solutions to a regular lattice in which
the hyperparameters were chosen a priori from a discrete
support set. Hence, in this work we consider the GMRF model
represented on an irregular lattice, where the model parameters
are learned from all available observations. On the other hand,
the sensor selection criterion based on the mutual information
was studied in [9], where spatial field is modeled by the
GP. Due to the bottleneck problem, the GP based methods
are limited to small-scale networks. More importantly, the
GP based mutual information is only monotonic under cer-
tain conditions [9], which leads to a resulting guarantee of
(1 —1/e —€) as compared with the optimal performance for
any € > 0. Nevertheless, by using the GMRF to model the
spatial phenomena, we demonstrate that our approach not only
deal with the sensor selection problem efficiently in large-scale
networks but also enhances a better lower bound to (1 —1/¢)
of the optimal solution when the monotonicity of the GRMF
based mutual information is comprehensively apparent.

The remainder of the paper is arranged as follows. Section II
first introduces the concept of the GMREF, and then represents
how to model the spatial field by using the GMRF. In Section
III, the GMRF modeled spatial field is represented on a
triangulation mesh by the use of stochastic partial differential
equations (SPDE) approach, which is then utilized to formulate
the mutual information based spatial sensor selection problem.
This problem is solved by a near-optimal algorithm and its
solution is proved to be bounded in Section IV. Section V
illustrates the efficiency of our proposed approach on two real-
world large data sets before Section VI concludes the paper.

II. PRELIMINARIES

In this section, we introduce Gaussian Markov random fields
and a spatial field model, which are utilized as a basis for the
spatial sensor selection proposed in this paper.

A. Notations

Let R denote the set of real numbers. The Euclidean
distance function is defined by || - ||. We let Q be a convex



polytope in R?. A convex polytope is the convex hull of
a finite point set. If two random variables =z and y are
independent, it is written as | y. Let cov(-) denote the
operator of the covariance and det(-) denote the operator of
the determinant. We let O(-) denote the operator of running
time of an algorithm. The inner product operator is defined
by (.,.). v and log(-) denote the gradient and the logarithm
operators, respectively. In addition, E(-) defines expectation
operator, and | - | is used for a cardinality. Other notations will
be explained as and when they occur.

B. Gaussian Markov Random Fields

A Gaussian Markov random field (GMRF) is a spatial
process whose realizations contain random variables observed
in a spatial field. Moreover, the GMRF not only follows
Gaussian processes (GP) [21] but also satisfies additional
conditional independence concepts, which is also known as
Markovian property. For a more detailed discussion about
GMRFs, readers are referred to [27].

Let z = (21, ..., 2,) T with z ~ A(m, Q') denote a GMRF
that is specified by a mean m and a symmetric and positive
definite precision matrix (), an inverse of the covariance
matrix, X, of the GP. Therefore, the density of z has the form

p(2) = (27) " (@ex(@)) exp{—5 (= - m)TQ(z — m)}.

The advantage of the Markovian property enables the
GMREF to represent the conditional distributions for each
component given all the others in terms of the neighbourhood
structure of the process. In other words, the full conditional
distribution of z; (i = 1,...,n) is only dependent on the
elements set of its neighbours and is designed by

p(zilz—i) = p(zil2n,),

where z_; denotes all the elements in z excluding z;, and zy;,
is the neighbour elements of z;. Thus, it is stated that given
the neighbour elements, z; is independent on any others in z
except for zy,, which constitutes the conditional independence
definition as

zi L z_ g Ny |2

for i = 1,...,n. Rue et al. [27] derived that the mean m is not
related to the pairwise conditional independence properties of
z, so it results in that this characteristic must be specified only
in the precision matrix Q.

In general, if z; and z; are conditionally independent,

zi Lo zjlz_(i 5y
is equivalent to @);; = 0. This specification leads to @Q;; # 0

if j € {i, N;} and derives the sparsity of the precision matrix
@, which benefits substantially in the computation.

C. Spatial Field Model via GMRF

In this subsection, we introduce the basic concepts and
results on the spatial field model that are used in this paper.
The discussion here follows the models represented in [22],
[20].

Fig. 2: The spatial field @ C R2. Voronoi cells are partitioned
by dash red lines and a mesh of a triangulation is created by
solid blue lines.

We consider the spatial field of interest, Q C R9, that is dis-
cretized into n Voronoi partitions [30] in which their centroids
are n vertices of a mesh. In this special consideration, the
mesh is represented as an irregular lattice of a triangulation as
illustrated in Fig. 2. In a real application, a much denser mesh
will be considered. We denote spatial locations at the vertices
of the mesh as v = (v7,v1,...,vT)T and a corresponding
vector y(v) denoted by y(v) = (y(v1),y(v2),...,y(v,))T
describes a vector of noisy measurements of the field. In this
study, the random variables are modelled as a summation of
a large scale component, a random field and an independent
and identically distributed (i.i.d.) noise. The model is defined
by

y(v) = X(v)B + 2(v) + £(v), (D

where X (v)8 = E(y(v)) is the expectation of y(v). X (v)
denotes a n x p matrix of spatially referenced non-random
variables (known as covariates) at location v and (8 is a p
unknown column vector of mean parameters. z is a GMRF
with a n zero mean vector and a n X n precision matrix Q).
Note that the precision matrix consists of a small number of
non-zero elements. Construction of () will be considered in
Section III-A. e(v) is a noise with a zero mean vector and
a known covariance matrix o21. Here [ is a n X n identity
matrix.

As discussed in [26], the GMRF can be constructed explic-
itly and accurately represents a Gaussian random field when
the continuous domain SPDE has a solution of a stationary
GP with a Matérn covariance function as given

2

cov(h) = W

(kh)' K, (kh),
where h denotes the Euclidean spatial distance h =|| v; —v; ||,
o? is the marginal variance, x denotes the spatial scale param-
eter, v is the Matérn smoothness, K, denotes the modified
Bessel function of the second kind and order v > 0.

In this case, the term X (v;)3 is referred to as the mean
function of the GP.




III. PROBLEM STATEMENT

The spatial sensor selection focuses on finding the most
informative subset of sensor locations out of all potential sen-
sor positions, which can be utilized in monitoring, modelling
and predicting spatial phenomena. It has been shown that
addressing the sensor selection problem in the spatial field
modelled by the GP is time consuming when the number
of observations increases, especially in a large-scale sensor
network. In this section, we propose a new computationally ef-
ficient sensor selection criterion for environmental monitoring
applications. In this proposition, we first model the physical
field by using Gaussian Markov random fields. The sparsity
of the precision matrix then allows us to productively develop
a mutual information based criterion.

A. Sensor Measurement Modelled by GMRF using SPDE
Approach

When dealing with the spatial field, the stochastic partial
differential equations (SPDE) approach proposed by Lindgren
et al. [26] particularly illustrates a computational effectiveness.
This method represents the random field models as solutions
to the continuous domain SPDEs. The premise behind the
SPDE approach is to represent a continuously indexed spatial
process, e.g. GP, as a discretely indexed GMREF. In other
words, this technique is to construct the GMRF with local
neighbourhood and the sparse precision matrix @ to address
the ”’big n problem” [31].

As shown in [26], the SPDE approach utilizes the Finite
Element method [32] to project the SPDE onto a basis
representation that consists of piece-wise linear basis functions
described by a triangulation of the domain of interest. The
triangulation is constructed by a set of non-intersecting trian-
gles. Assume that a realization of the spatial process z(s) is
observed at N spatial locations s = (s7,sT', ..., s1)7; then the
triangle initial vertices are imposed at these spatial locations.
Moreover, for spatial prediction, additional vertices are added
to complete a fully large triangulation.

Given the triangulation of the domain Q, the GMRF model
is built on the basis function representation

n

z(s) = Zﬂ(s)wl, 2)

i=1

where {f;(s)} represents the basis function, and {w;} repre-
sents Gaussian distributed weight. The functions {f;(s)} are
piece-wise linear on each triangle, which denotes that f;(s)
is 1 at the 7*" vertex of the mesh and 0 at all other vertices.
w; is the value of the spatial field at each triangle vertex <.
Therefore, in the perspective of the continuous domain, the
GP can be developed by the joint distribution of the weights
{w;}. It can be concluded that the finite element represen-
tation (2) enables not only the description of the continuous
interpretation of the spatial field but also the implementation
of the practical computations effectively. The SPDE method
provides the explicit link between the GP and the GMRF that
maps from the parameters of the covariance function to the
elements of the precision matrix ().

The precision matrix @ with the size of n x n is calculated
by
Q = (x*C +25°G + GCT1Q), (3)

where C' and G are the n x n matrices with C;; = (f;, f;),
Gi; = (v fi,/f;), and 7 is utilized to control the variance.
The dimension of the precision matrix is defined by the num-
ber of the vertices of the triangulation in the domain of interest.
It can be clearly seen that () expresses as a function of 7 and
k. Here, we define 6 = (log(7),log(x)) as a hyperparameter
vector. We can say that the GMRF representation constructed
by the linear basis functions holds the sparse property of the
precision matrix.

Suppose that the latent random field at the n vertices of the
triangulation is represented by a GMRF as

2|0 ~ N (0,Q71). )

In order to map between the basis function representation
responded at n vertex locations of the triangulation mesh and
the random field at sensor locations with a dimension of IV,
we let A denote a projector matrix that projects the latent
random field modelled at the triangulation vertices to the data
locations. The size of the projector matrix, A, is N x n. Under
the spatial field model as described in subsection II-C, the
measurements at [V locations are given

ylz,0,8,02, A~ N (X(s)B+ Az,021y) , )

where X (s) denotes a N x p matrix of covariates, 3,6 are
parameters estimated by the maximum likelihood approach
[22] from all the available observations, and Iy denotes the
N x N identity matrix. If all model parameters are learned, the
joint distribution of y and 2, which is computed by employing
the technique in [33] is specified by

z,yl0, B,02, A ~ (©6)

0 Q_l Q_lAT
il )
X(s)B

ATQ71
In probabilistic terms, the full conditional distribution of z
given y is also Gaussian, derived from (6) by using the block-
wise inversion approach [34] and the Schur complement, as
follows

b

o2l + AQ~1AT

2 -1
21y, 0. 8,02 A~ N (11, Q7)) )
where the vector of posterior means and the posterior precision
matrix are given as

fayy = X(VB+ QL AT (02In) (y — X(s)B), (8

zly
Q.ly =Q+AT(02In) A 9)

The primary computation of (8) is to factorize the sparse
matrix @).|,, which can be obtained in a short time. On the
other hand, Qz‘y is not dependent on collection of measure-
ments. This contrasts to the standard GP model [21], where
computational complexity is cubic in dimension of dataset.
And the GP-based computational issues become intractable
with the increase in the number of observations.



B. Sensor Selection Problem

Now we describe the sensor selection problem in terms of
optimizing the spatial field monitoring. In other words, we
must deploy a limited number of sensors so that the spatial
field at unobserved locations can be effectively and efficiently
predicted. To the best of our knowledge, the most efficient
criterion for the sensor selection problem up to now is based
on mutual information [15], [9]. In information theory, mutual
information (MI) is a quantity that measures the dependency
between two random variables [35]—[37]. That is, it measures
how much information is acknowledged in one random vari-
able about another. In a learning task of a selection, the MI
between two physical quantities can be utilized to reflect the
amount of information redundancy between them. Therefore,
when the mutual dependence between two random variables
is high, removing one of them from a selected set would not
have much effect on the solution.

As discussed in the works of Caselton et al. [15] and Krause
et al. [9], the sensor selection criterion is formulated so that the
MI between random variables gathered by selected subset of
sensors and those at unselected sensor locations is maximized.
Let us consider a two dimensional sensor network that has
a set of possible sensor locations S, which provide point
measurements of some physical quantities. Sensor selection
addresses the problem of choosing a subset, C C S, at
which the subset of the measurements can closely represent
the distribution of the physical quantity in the whole space. It
is then given the MI between the selected subset C' and the
rest of the space S\ C as follows

MI(C,S\C)=H(S\C)—H(S\C|C), (10)
where H(S \ C) and H(S \ C|C) are the entropy and the
conditional entropy of random variables ys\c and ys\c|c at
unmeasured locations .S\ C' before and after deploying sensors
at the locations C), respectively. If the spatial field is modelled
by Gaussian processes, MI(C,S \ C) can be computed by

1
MI(C,5\C) = ;{log det(Es\c) ~log det(Es\cic)}, (1D)

where ¥ g\ ¢ and X g\ ¢c|c are covariance matrices of ys\ ¢ and
Yys\c|c» respectively.

It can be clearly seen that computing the mutual information
MI(C,S \ C) is dependent on a number of the possible
sensor locations. Since cost of logarithm of determinant of
a covariance matrix is cubic in dimension of the data set,
if the objective is to select the k best locations out of n
possible sensor positions, a greedy heuristic algorithm can
near-optimally resolve the objective function (11) in O(kn?).
As a result, addressing the sensor selection problem in a large-
scale sensor network, though by a polynomial technique, is
really time consuming. For instance, in the typical example of
the Swiss rainfall data set [38], there are 467 possible gauge
positions which facilitate placing rainfall sensors. Selecting the
100 best gauge locations out of these 467 positions by greedily
adding sensors in sequence to maximize the MI introduced
above in a modern computer (refer to Section V for more
details) takes more than 6 hours.

On the other hand, if it is required to effectively improve
resulting prediction quality at locations of interest, where for
some reasons we cannot deploy any sensors in (for example,
the locations are out of wireless communication range of a
network, or the network is short of energy), it seemingly shows
that the previous works have not embedded these interested
positions in the sensor selection criterion. Therefore, in this
paper, we propose a new spatial sensor selection criterion
that computes the mutual information between the variables at
selected sensor locations and those at a set of unselected sensor
locations and unmeasured yet interested locations which are
unlikely within sensor placements.

We now consider a spatial space of interest as a discrete set
of locations V = S U U, where S is a set of possible sensor
locations in which sensors can be deployed to observe the
physical field, and U is a set of interested locations in which
no sensor placements are available. Selecting the best subset
C with k locations out of S via Gaussian Markov random
fields is described as follows. We first create a triangulation
mesh whose vertices consist of all locations V' \ C. If z
is defined a vector of latent random field at the n» mesh
vertices, we then compute the mutual information between
z and yo, MI(z,yc). Hence, the goal of the new spatial
sensor selection criterion is to find the best measurements
correspondingly gathered at the optimal subset C' so that
M1I(z,yc) is maximized. This leads to most efficiently predict
the field in whole space. Mathematically, we formulate the
spatial sensor selection problem as follows.

OOpt = argmax MI(Z7yC)7
ccs
=k

where MI(z,yc) = H(z) — H(z|yc) in which H(z) and
H(z|yc) are the entropy and the conditional entropy of z and
z|yc, respectively.

As discussed in the previous subsection, the entropy of
Gaussian Markov random variables z and z|yc can be obtained
as

H(z) = %log (2re)" det(@ 1)) = —% log ((27¢)" det(Q))

12)

H(z|yo) = %log ((zm)n det(Q! ))

zlye
1
=—3 log ((2me)™ det(Q + AL (021x) " Ap))

where Ay is a k X n projector matrix that maps between the
triangulation mesh vertices and the selected locations C, I, is
a k x k identity matrix. Therefore, (12) is equivalent to

C°P* = argmax logdet(Q+ AL (621},) 1 Ay) —log det(Q).
ccs
IC| =k
(13)
To select the best subset C' out of the possible set .S in order
to maximize M I(z,yc) is a combinatorial NP-hard problem
[16], [19]. In terms of the global optimization techniques,
branch and bound method [39] was employed to resolve the
kind of this problem [40]. Nevertheless, this accurate approach



is often computationally intensive [41], even with modest
values of n and k, and not attractive in real world solutions.
Thus, one of very often chosen methods to effectively solve the
NP-hard optimization problem is the greedy algorithm, which
will be discussed in the next section.

It can be obviously seen that computing the mutual infor-
mation based on the GP (11) is subject to the number of the
possible sensor locations while since the precision matrix )
is constructed on the triangulation mesh vertices, computing
the GMRF based mutual information in (12) is free from
the number of observations. The new spatial sensor selection
criterion (13) allows the sensor network not only to incorporate
all possible sensor locations and interested locations into one
context but also to gain significant benefits in computation due
to the use of the sparse property of the precision matrix.

IV. NEAR-OPTIMAL SOLUTION

Addressing the combinatorial NP-hard optimization prob-
lem (13) in polynomial time can only be achieved by a greedy
algorithm. In this section, we first describe the algorithm in
the context of the spatial sensor selection. A bound is then
presented to guarantee the proposed near-optimal solution.

A. Algorithm

In order to find the near-optimal informative subset of sensor
locations C'* from all possible locations set S, the proposed
algorithm starts from an empty set C* = @ which means
that the corresponding vector of the random variables yc+«
is also empty. We first choose one location s; € S and its
corresponding measurement y,, and then compute

1
MI(z,ys,) = logdet(Q + —2A1TA1) — log det(Q),
UE

where A; is a n row vector that projects the triangulation
mesh vertices to s;. Select the maximum value from the
sequential computations of MI(z, ys, ), we equivalently obtain
the first near-optimal sensor locations s; and the corresponding
measurement ys:. Both s} and y,+ are then added to C* and
yc~, respectively; and s} is removed from S. Repeatedly, we
now run this iteration of the algorithm with given non-empty
sets of C* and yc~. In other words, each chosen ys, at this
stage is temporarily added to yo+ to calculate

MI(z,yc~) = logdet(Q + AL (61,,) ' A,) — log det(Q),

where m is the size of the temporary yco- in the current
iteration. At each iteration, the solutions s; and Ysz, corre-
sponding to the maximum M I(z, yco~ ), are sequentially added
to C* and yc-, respectively. Similarly, s; is removed from S.
The algorithm stops when m = k, or the number of selected
sensor locations is reached. As a consequence, the cost of the
polynomial approximation algorithm to near-optimally address
(13) can be described by the following theorem.

Theorem 1: The approximate solution of the problem (13)
can be obtained by a greedy algorithm in time O(kNn?),
where N is a number of possible sensor locations S.

Proof: Note that the size of @) is n x n. As discussed in
[42],

log det(Q) =2 Zn: log(Ly;),
i=1

where Q = LLT. This Cholesky decomposition is calculated
in time O(n%) in two dimensional space. Since size of S is
N, in order to find one best locations out of all possible sensor
positions, the greedy algorithm needs running such logarithm
of determinant in O(N) times. Therefore, finding the k best
sensor locations requires O(k) iterations. So, the optimization
problem (13) can be finalized in running time O(kNn?). m

The proposed greedy algorithm for finding approximately
maximum informative subset of sensor locations is summa-
rized in Algorithm 1.

Algorithm 1 Near-optimal algorithm for maximizing the
GMREF based mutual information
Input:

1) Set of potential sensor locations S

2) Set of interested locations U

3) Number of selected sensor locations k
4) Hyperparameters 6 and o2

Output:
1) Near-optimal set of sensor locations C*

At beginning, do
C* 0
Yor — O

1: for i = 1 to length of S do
S; € S
find the corresponding random variable at s;, ys,
MI(z,ys,) = logdet(Q + %AlTAl) — log det(Q)
: end for -
. 8§ < argmax MI(z,ys,)

s; €S

7: ysr < argmax MI(z,ys,)

g CF e OV st

9: Yo < Yo Uys;‘
10: S+ S\ s}
11: while |C*| < k do
12: for i = 1 to length of S do

A o

13: s; €8
14: C* temporarily receives s;
15: yc~ temporarily receives ys,
16: MI(z,yc~) = logdet(Q + AL (621,,) " As) —
log det(Q)
17: end for
18: s§ < argmax MI(z,yc~)
s; €S
19: Ysr < argmax MI(z,yc~)
20: C* Ciﬁssf
21: Yor < Yc- U Ys:

22: S S\ sf
23: end while




B. A Solution Bound

As previously discussed, the solution of the spatial sensor
selection problem (13) obtained by the algorithm proposed
in Subsection IV-A is near-optimal. Although it has been
shown that the greedy algorithm is very effective to solving a
combinatorial NP-hard issue in spatial prediction using mobile
robotic wireless sensor networks [43], a theoretical bound
on the approximated solution of the spatial sensor selection
problem is paramount. Mathematically, Nemhauser et al. in
their work [44] presented that the solution obtained by a
greedy heuristic algorithm can be guaranteed by a specific
level of the optimum if the objective optimization function is
monotonic and submodular. In this subsection, we first prove
that the set function

F(C) = MI(z,yc) (14)

holds both the monotonicity and submodularity properties.
And, we then present a lower bound of our near-optimal
solution of the objective optimization problem (13).

In the context of information theory, it is apparent that
adding one measurement to a small set of observations pro-
vides more information to the sensor network than adding it
to a large set. In other words, as described in [9], the mutual
information holds a property of diminishing returns, or the
function F'(C) is submodular.

On the other hand, it has been presented that the GP
based mutual information is not totally monotone [9], [43].
Nonetheless, by representing the mutual information via the
GMREF, we prove that the proposed function F'(C) satisfies
monotonicity as following lemma.

Lemma 2: The set function C' — MI(z,yc) with

MI(z,yc) = logdet(Q + Ag(aflk)_lAk) — log det(Q)

is monotonic.

Proof: Suppose that we have two subsets C; and Cs
selected from the potential sensor locations S. Here cardinal-
ities of C and Cs are k and m, respectively. Let A denote a
k X n projector matrix that maps between the selected sensor
locations C'; and the triangulation mesh vertices. Similarly, a
matrix B with a dimension of m X n projects locations C5 to
all mesh vertices. It is straightforward to have

MI(z,yc,) = logdet(Q + AT (621},) "t A) — log det(Q).
If we define C' = C; U (s, then

MI(ZvyC) :logdCt <Q + [AT BT} (U?Ik+m)71 [g:|>
- logdet(Q)v

where Ijinm, is a (k+m) x (k +m) identity matrix.

In order to prove the monotonicity of the mutual information
in (12), it is required to show that F'(C; UC2) > F(Cy). That
is, MI(z,yc) — M1(z,yc,) > 0. Let us define

Al = MI(z,yc) — MI(z,yc,).
It can be clearly seen that
AT =logdet(Q + AT (¢21;) ' A+ BT (6%1,,) "' B)
—logdet(Q + AT (021;) "1 A).

By the use of the matrix determinant lemma, we have
logdet(Q + AT (¢21,) A+ BT (021,,) 'B) =
= logdet(Q + AT (02I;) "1 A)
1
+ log det <Im + 5B(Q+ AT(Ugfk)—lA)—lBT) ,
g,

€

where [, is a m x m identify matrix. Therefore,
1
AT = logdet ([m + —QB(Q + AT(a?Ik)—lA)—lBT> .
06

Since @ and (02I;)~! are positive semidefinite, both
AT (021;)7*A and Q + AT(02I;)"'A are also positive
semidefinite. Then, 5 B(Q + AT (02I,) "' A)~*BT is pos-
itive semidefinite. As represented by Horn et al. in their
work [45], if {\}7" are eigenvalues of the matrix 5 B(Q +

AT(021},)71A)~1 BT, then

det (Im + %B(Q + AT(aglk)—lA)—lBT) = H(l + i)
g

£ i=1
>1+4 H ;.
i=1

As a result,

AT >log(1+ [T 2)-
i=1
Because the positive semidefinite property of the matrix
LB(Q+AT(o21,) 1 A) BT,

A > 0.

—-

s
Il
—

This leads to
Al >0,

which completes the proof. [ ]

That the GMRF based mutual information function in (12)
and (13) satisfies properties of submodularity and monotonic-
ity allows the near-optimal solution of the spatial sensor selec-
tion problem (13), which is resolved by a greedy algorithm,
to be bounded. Using the fundamental results in [44], we
can say that our near-maximum mutual information solution,
which is a basis to select the most informative spatial sensor
locations, is guaranteed by a lower bound within (1 —1/e) of
the optimum. In equivalent words,

F(C) > (1 - i) F(Co).

This demonstrates that approximate solutions in the spatial
sensor selection with the mutual information criterion repre-
senting via the GMREF is better bounded when compared with
those in the problem representing via the GP. For instance,
Krause et al. in [9] show that the approximation algorithm can
provide a resulting guarantee of (1 — 1/e — ¢) as compared
with the optimal solution for any € > 0.

Notice that an upper bound can be found as
(e/(e—=1))F(C*) for any other solutions obtained by
other methods.



V. EXPERIMENTAL RESULTS

In this section, we provide experimental performances of
our proposed approach on selecting the best spatial sensors
out of all potential measuring locations in two real-world data
sets. In both real-life data sets, they had utilized two large-
scale sensor networks to take daily rainfall measurements
in Switzerland [38] and average winter rainfall in Parand
State, Brazil [46], respectively. Illustrations of the results in
this section demonstrate the effectiveness of our method to
efficiently employ a sensor network in real environmental
monitoring applications.

Fig. 3a illustrates 467 recording stations (in dot points)
in Switzerland to gauge the rainfall on 8§ May 1986. In this
demonstration, the rainfall values at the sensor locations are
also shown by the different levels of grey colours of the
dots. Note that the unit of the rainfall measurements is 1/10
mm. Likewise, 143 rainfall measuring stations (in triangles)
were deployed in Parand State, Brazil as shown in Fig. 3b. In
addition, the average values of winter rainfall in this area of
Brazil is represented by the grey colours of the triangles.

As can be seen in Fig. 3, the rainfall values range in
Switzerland data set from 0.5 to 585 and in Parand data set
from 163 to 414. Therefore, the Gaussian processes can hardly
model these drastically-changed data sets. In other words, the
rainfall fields in the illustrative experiments are non-Gaussian.
In these scenarios, we first transform the data sets into spatially
Gaussian fields before implementing our proposed approach.
One of very frequently used classes of transformations is the
Box-Cox family [47]. If we assume that a random variable at
measurement stage is y, then the transformed field is given

=52 ezl
logy, a=0
where « is a transformation parameter, which is chosen within
the Box-Cox class. In this work, we chose oo = 0.5.

As introduced in Section III, in order to represent the
rainfall spatial fields by the use of the GMRF, we need to
construct a triangulation lattice mesh for the whole space.
In this implementation, the lattice of triangles is created by
the INLA package [48], installed in R. Since in our proposed
method all possible sensor locations and locations of interest
are imposed on the mesh vertices, the number of the lattice
vertices is dependent on size of a sensor network and total
of interested locations. For instance, in the example of Swiss
rainfall data set, a mesh with 467 sensor positions and 200
unmeasured and randomly chosen locations in the space is
sized to 803 vertices. Note that some vertices need to be added
to construct a proper triangulation. One can also customize the
mesh by setting the maximum allowed triangle edge length
in the INLA package; however, this may cause increase in
number of the mesh vertices. As analysed previously, cost
of computing our proposed mutual information criterion is
mainly subject to the size of the precision matrix @ that is
created based on triangulation mesh vertices. Thus, increas-
ing the size of the triangulation mesh definitely results in
increment of computation time, as illustrated in Table I. In
this analysis, we examine how choosing the mesh of triangles
affect computational time and results. The implementations

TABLE I: COMPARISON OF RUNNING TIME AT DIF-
FERENT SIZES OF TRIANGULATION MESHES IN SWISS
RAINFALL DATASET

Running time (in seconds) of GMRF based MI criteria on meshes
Mesh 1 Mesh 2 Mesh 3 Mesh 4
2641 3271 3992 9490

were conducted on R V3.0 with a PC of 3.1GHz Intel Core
15-2400 Processor. It is assumed that the noise variances were
estimated by the GP method, which are 6.0 and 1.5 for Swiss
and Parand rainfall data sets, respectively.

In these experiments, for each dataset case, we created
four triangulation meshes with different sizes, representing
the rainfall physical fields. In Swiss rainfall, four meshes,
named mesh 1, mesh 2, mesh 3 and mesh 4, are sized to
803, 1017, 1309 and 2370 vertices, respectively. Similarly, in
Parana rainfall, four meshes with similar names to those of
Swiss rainfall are sized to 444, 627, 766 and 1177 vertices,
respectively. Notice that we have only 143 possible locations
for measuring rainfall in Parana.

Corresponding to each studied case, from four triangulation
meshes, running our proposed algorithm 1, for each mesh,
we selected the best subset of sensor locations out of 467 in
Switzerland and 143 in Parand possible recording positions.
For the purpose of comparison, one best sensor subset in each
real-life application was also chosen by using the GP based
mutual information criterion [15], [9]. For instance, subsets of
100 best sensing locations from 467 possible positions in the
Swiss data set and subsets of 30 best sensing locations from
143 possible stations in the Paranad data set were selected by
our proposed approach and the method in [15], [9]. Figures 4
and 5 demonstrate the results of mutual information and root
mean square errors obtained by the selected sensor subsets.

In Fig. 4a, the resulting mutual information values between
the rainfall values at 100 selected sensor location subsets and
those at the rest of the space, including unselected sensor
locations and interested locations, were computed. There are
8 MI curves in this figure. It can be seen that on each
created triangulation mesh two corresponding MI curves were
computed by the use of 100 best sensor subsets, which were
selected by our proposed method and the GP based technique.
The Parand results are illustrated in the same way, but note
that the selected sensor subsets are sized 30. In overall,
the MI results obtained by our approach outperforms those
obtained by the GP based method. This accounts for why we
incorporate the interested but unlikely sensor placed locations
into the selection criterion. More importantly, Fig. 4 shows
that the MI values with respect to each approach mostly does
not depend on the size of the triangulation meshes. However,
if we look at Table I, the running time of our algorithm is
nearly proportional to number of the lattice vertices. As a
consequence, in our spatial sensor selection criterion, the mesh
of triangles only need to be designed as simple as it is enough
to include all possible sensor locations and interested locations.

In terms of prediction quality, we consider the root mean
square errors (RMSE), which are shown in Fig. 5. In this
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Fig. 3: Maps of Switzerland (a) and Parana State, Brazil (b) illustrating the locations of the sensor stations and the corresponding

logged rainfall values. X Coord and Y Coord are in km.

TABLE II: COMPARISON OF RUNNING TIME AT SELECTING DIFFERENT NUMBERS OF BEST SENSORS FROM
467 POSSIBLE LOCATIONS IN SWISS RAINFALL DATASET

Criterion Running time (in seconds) of selecting ns best sensors from 467 possible locations
ns = 100 ns =175 ns = 50 ns =25 ns =1
GP based MI 22642 18637 13665 7443 325
GMREF based MI 2641 2118 1394 740 31

calculation, the measurements at the best selected sensor loca-
tions were first utilized to model the spatial rainfall fields. The
model was then used to predict the field at unselected sensing
locations. In other words, the measurements at unselected
sensor locations were employed for the purpose of validation.
For instance, in the Swiss rainfall data set, if 100 sensors
were chosen from 467 possible locations, then the data at 367
other sensing stations were used to compute the RMSE. As
mentioned previously, we have four selected sensor subsets at
four triangle meshes created in each consideration. Therefore,
we computed four RMSE value curves in Fig. 5a for Swiss
rainfall and in Fig. 5b for Parand rainfall. It can be apparently
seen that these curves in each figure, 5a and 5b respectively,
are mostly close. In equivalent words, the resulting prediction
quality is not subject to choosing the triangulation lattice
as well. More interestingly, we also computed the RMSE
where the best sensors were selected by the GP based MI
criterion, which are illustrated by the blue curves in Fig.
5. This illustrative comparison shows that the prediction in
terms of the RMSE values obtained by our method and the
previous technique are fairly similar. Nonetheless, if we have
a look at Table II where we compare the computing time
of our proposed algorithm and the GP based algorithm in
[9] in selecting the best sensors out of 467 possible sensing
locations in Switzerland, the proposed approach based on the
GMREF gains significant benefit in computation. There are five
particular numbers of selected sensor locations are utilized in

this comparison. Table II shows that our technique improves
10 times faster than the GP based method.

One pivotal advantage in our proposed spatial sensor selec-
tion criterion as compared with the criterion based on the GP is
that the computing time of finding the greedy algorithm based
solution is not much affected by the size of a sensor network.
For instance, in the experiment of the Swiss rainfall data set,
for the purpose of comparison, we selected 30 best sensing
locations from a small-scale and a large-scale networks of
possible sensor locations, respectively. As results are shown
in Table III, 30 best sensors were first chosen from 100
potential measuring locations, and then they were selected
from 467 possible positions, by both criteria based on the
GP and the GMRF. The running time of both approaches in
the small-scale network of 100 sensing locations is practically
reasonable, while those in the large-scale network of 467
measuring positions are much different. Our proposed method
took around 14 minutes to find the best subset of sensor
locations, meanwhile, the GP based approach required more
than 2.3 hours to obtain the solution. Notice that, as discussed
previously, the prediction results, for example the RMSE,
obtained by using the selected subsets in both methods are
highly comparable. Therefore, our approach is considerably
advantageous to the large-scale sensor network in terms of
computation time of the spatial sensor selection.

For the purpose of comparing the predicted fields in the
whole space, including unselected sensor locations and inter-
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Fig. 4: Mutual information between random variables at selected sensor subsets and at the rest of the space, corresponding to

rainfall Swiss (a) and Parana (b) data sets, respectively.

TABLE III: COMPARISON OF RUNNING TIME AT DIF-
FERENT NUMBERS OF POSSIBLE SENSOR LOCATIONS
IN SWISS RAINFALL DATASET

Running time (in seconds) of selecting 30 best
Criterion sensor locations from
100 possible locations | 467 possible locations
GP based MI 36 8394
GMRF based MI 106 884

ested but unlikely deployed locations, we implemented the GP
regression and the GMRF posterior prediction as described in
Subsection III-A. Figures 6 and 7 demonstrate the posterior

means and posterior variances of the rainfall on 8§ May 1986 in
the whole Switzerland, using 10, 50 and 100 sensor locations
and measurements, respectively, selected out of 467 possible
sensor positions and measurements. Fig. 7 also illustrates
the locations of the sensors selected by two methods. The
left columns in these figures were obtained by the GMRF
posterior prediction technique given particular 10, 50 and 100
sensing locations and measurements selected by our proposed
approach. Similarly, the right columns in these figures are
results of the GP regression, utilizing the sensor locations and
measurements chosen by the GP based MI criterion [15], [9]. It
can be apparently seen that while the predicted rainfall fields
obtained by the use of 50 and 100 chosen sensor locations
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respectively.

and measurements as shown in Figures 6c, 6d, 6e and 6f are
highly comparable to the predicted field obtained by using 467
locations and measurements, illustrated in Fig. 1, the predicted
fields obtained from 10 selected locations and measurements
in Figures 6a and 6b are visibly different. The values of the
predicted rainfall obtained by our method range around from
50 to 550 (one tenth mm), whereas those obtained by the
GP based approach are around 200 (one tenth mm). This
difference is accounted for that our 10 selected measurements
have full information representing entire space, meanwhile 10
measurements chosen by the GP based technique are about
200 (one tenth mm). Furthermore, the range of the posterior
rainfall variances in the entire Switzerland obtained by our
proposed GMRF based MI criterion in the left column of Fig.
7 is lower than that obtained by the GP based MI criterion as
shown in the right column of the same figure. This is a result
of that our proposed method presents the interested locations
in the spatial sensor selection criterion.

VI. CONCLUSION

This paper proposed a new approach to select the most
informative spatial sensor locations in monitoring the spatial
phenomena that are modelled by the Gaussian Markov random
fields. By maximizing the MI between random variables
at selected locations and those at potential yet unselected
locations and interested but impossibly deployed locations, the
GMREF based MI criterion improves the quality of prediction.
Despite its NP-hard completeness, the spatial sensor selection
problem is computationally efficiently solved by a greedy
algorithm. Particularly, in terms of computational time, the
proposed approach outperforms the GP based method in a
large-scale sensor network. The GMRF based sensor selection
solution is also proved to be bounded by at least a (1 — 1/e)
level of the optimum. The performance of our method was
evaluated and compared with that of the GP based technique
in two real-world data sets.
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