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Preface 

This book is a revised and updated version, including a substantial portion 
of new material, of J. D. Cole's text Perturbation Methods in Applied Mathe­
matics, Ginn-Blaisdell, 1968. We present the material at a level which assumes 
some familiarity with the basics of ordinary and partial differential equations. 
Some of the more advanced ideas are reviewed as needed; therefore this book 
can serve as a text in either an advanced undergraduate course or a graduate 
level course on the subject. 

The applied mathematician, attempting to understand or solve a physical 
problem, very often uses a perturbation procedure. In doing this, he usually 
draws on a backlog of experience gained from the solution of similar examples 
rather than on some general theory of perturbations. The aim of this book is 
to survey these perturbation methods, especially in connection with differ­
ential equations, in order to illustrate certain general features common to 
many examples. The basic ideas, however, are also applicable to integral 
equations, integrodifferential equations, and even to_difference equations. 

In essence, a perturbation procedure consists of constructing the solution 
for a problem involving a small parameter B, either in the differential equation 
or the boundary conditions or both, when the solution for the limiting case 
B = 0 is known. The main mathematical tool used is asymptotic expansion 
with respect to a suitable asymptotic sequence of functions of B. 

In a regular perturbation problem a straightforward procedure leads to 
an approximate representation of the solution. The accuracy of this approxi­
mation does not depend on the value of the independent variable and gets 
better for smaller values of B. We will not discuss this type of problem here 
as it is well covered in other texts. For example, the problem of calculating 
the perturbed eigenvalues and eigenfunctions of a self adjoint differential 
operator is a regular perturbation problem discussed in most texts on differ­
ential equations. 

v 



VI Preface 

Rather, this book concentrates on singular perturbation problems which 
are very common in physical applications and which require special tech­
niques. Such singular perturbation problems may be divided into two broad 
categories: layer-type problems and cumulative perturbation problems. 

In a layer-type problem the small parameter multiplies a term in the 
differential equation which becomes large in a thin layer near a boundary 
(e.g., a boundary-layer) or in the interior (e.g., a shock-layer). Often, but not 
always, this is the highest derivative in the differential equation and the 
B = 0 approximation is therefore governed by a lower order equation which 
cannot satisfy all the initial or boundary conditions prescribed. In a cumu­
lative perturbation problem the small parameter multiplies a term which 
never becomes large. However, its cumulative effect becomes important for 
large values of the independent variable. In some applications both categories 
occur simultaneously and require the combined use of the two principal 
techniques we study in this book. 

This book is written very much from the point of view of the applied 
mathematician; much less attention is paid. to mathematical rigor than to 
rooting out the underlying ideas, using all means at our disposal. In particular, 
physical reasoning is often used as an aid to understanding a problem and to 
formulating the appropriate approximation procedure. 

The first chapter contains some background on asymptotic expansions. 
The more advanced techniques in asymptotics such as the methods of steepest 
descents and stationary phase are not covered as there are excellent modern 
texts including these techniques which, strictly speaking, are not perturbation 
techniques. In addition, we introduce in this chapter the basic ideas of limit 
process expansions, matching asymptotic expansions, and general asymptotic 
expansions. 

Chapter 2 gives a deeper exposition of limit process expansions through a 
sequence of examples for ordinary differential equations. Chapter 3 is 
devoted to cumulative perturbation problems using the so-called multiple 
variable expansion procedure. Applications to nonlinear oscillations, flight 
mechanics and orbital mechanics are discussed in detail followed by a survey 
of other techniques which can be used for this class of problems. 

In Chapter 4 we apply the procedures of the preceding chapters to partial 
differential equations, presenting numerous physical examples. Finally, 
the last chapter deals with a typical use of asymptotic expansions, the con­
struction of approximate equations; simplified models such as linearized 
and transonic aerodynamics, and shallow water theory are derived from 
more exact equations by means of asymptotic expansions. In this way the 
full meaning of laws of similitude becomes evident. 

The basic ideas used in this book are, as is usual in scientific work, the 
ideas of many people. In writing the text, no particular attempt has been 
made to cite the original authors or to have a complete list of references and 
bibliography. Rather, we have tried to present the" state of the art" in a 



Preface Vll 

systematic manner starting from elementary applications and progressing 
gradually to areas of current research. 

For a deeper treatment of the fundamental ideas of layer-type expansions 
and related problems the reader is referred to the forthcoming book by P. A. 
Lagerstrom and J. Boa of Cal tech. 

To a great extent perturbation methods were pioneered by workers in 
fluid mechanics and these traditional areas are given full coverage. Appli­
cations in celestial mechanics, nonlinear oscillations, mathematical biology, 
wave propagation, and other areas have also been successfully explored since 
the publication of J. D. Cole's 1968 text. Examples from these more recent 
areas of application are also covered. 

_ We believe that this book contains a unified account of perturbation 
theory as it is understood and widely used today. 

Fall 1980 J. Kevorkian 
J. D. Cole 
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