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Reliable BIER with Peer Caching
Yoann Desmouceaux, Juan Antonio Cordero Fuertes, Thomas Heide Clausen

Abstract—BIER (Bit-Indexed Explicit Replication) alleviates
the operational complexities of multicast protocols (associated
to the multicast tree and the incurred state in intermediate
routers), by allowing for source-driven, per-packet destination
selection, efficient encoding thereof in packet headers, and state-
less forwarding along shortest-path multicast trees. BIER per-
packet destination selection enables efficient reliable multicast
delivery: packets not received by a subset of intended destinations
can be efficiently BIER-retransmitted to only that subset. While
BIER-based reliable multicast exhibits attractive performance
attributes, relying on source retransmissions for packet recovery
may be costly – even unnecessary, if topologically close peers are
able to provide a copy of the packet.

Thus, this paper extends the use of reliable BIER multicast
to allow recovery also from peers, using Segment Routing (SR)
to steer retransmission requests through a set of potential (local)
candidates, before requesting retransmissions from the source as
a last resort only. A general framework is introduced, which
can accommodate different policies for the selection of candidate
peers for retransmissions. Simple (both static and adaptive)
policies are introduced and analyzed, both (i) theoretically and
(ii) by way of simulations in data-center-like and real-world
topologies. Results indicate that local peer recovery is able to
substantially reduce the overall retransmission traffic, and that
this can be achieved through simple policies, where no signalling
is required to build a set of candidate peers.

Index Terms—Multicast, Reliable multicast, Bit-Indexed Ex-
plicit Replication (BIER), Segment Routing (SR), Policies, Per-
formance evaluation.

I. INTRODUCTION

As the size and complexity of Data-Center Networks
(DCNs) [1] and Content Distribution Networks (CDNs) [2]
grow, efficient multicast distribution of content becomes in-
creasingly desirable [3], [4], [5]. Multicast protocols were
never widely deployed in the Internet, due to their intrinsic
complexity and their requiring state in intermediate routers [6].
Protocols such as PIM (Protocol Independent Multicast) [7],
which operate by clients “subscribing” to multicast traffic
flows by sending join messages, offer a best-effort data deliv-
ery service. Several protocols have been proposed, which offer
different data delivery services – notably, reliability. NORM
(Negative-acknowledgement-Oriented Reliable Multicast) [8],
among others, uses sequence numbers in data packets to de-
tect packet losses, and negative acknowledgements (NACKs)
which trigger a multicast transmission of the missing packet
to the multicast group. Other protocols [5], [9] use unicast
retransmissions to those destinations having missed a packet.

Bit-Indexed Explicit Replication (BIER) [10] is a multicast
protocol that removes the need for flow-state in intermediate

The authors are with École Polytechnique, 91128 Palaiseau,
France, emails: {yoann.desmouceaux, juan-antonio.cordero-fuertes,
thomas.clausen}@polytechnique.edu. Y. Desmouceaux is also with Cisco
Systems Paris Innovation and Research Laboratory (PIRL), 92782 Issy-les-
Moulineaux, France, email: ydesmouc@cisco.com.

0 1 2 3 4 5

101110BS

101000BS

100000BS

000110BS

000010BS000100BS001000BS

Figure 1. Example of BIER packet forwarding

routers. Intermediate routers replicate and forward packets
over the interfaces providing shortest paths (according to
unicast routes) to the specified destinations, as illustrated in
figure 1. BIER-based reliable multicast [11] enables the source
to detect and efficiently retransmit (with BIER), missing
packets to their requesting destinations.

“Local recovery” may, if available, be preferable to retrans-
missions from the source, and numerous reliable multicast
protocols have proposed such an approach [5], [12], [13]. This
has benefits in terms of Quality-of-Experience (e.g., when the
source and the destination having lost a packet experience a
substantial round-trip delay), or when there are links towards
the source whose usage should be limited (e.g., so as to not
overload the source, or for traffic engineering or economic
reasons). Several usage scenarios can be listed, in which it is
interesting to provide local recovery rather than source-based
retransmissions:
• live [14], [15] or linear [16] multicast video delivery, for

which it is crucial to provide low-latency services to the end
users, and where retransmissions from sources behind costly
(for instance, transcontinental) links can be detrimental to the
packet reception delay;
• multicast pre-placement of content in CDNs [3], [4], [17],

for which it can be costly (in terms of link usage, and in
terms of global transmission speed) to rely on remotely-located
sources to perform retransmissions;
• pushing of software updates to multiple machines in data-

center networks [18] (or more generally, of arbitrary files to
distributed storage systems relying on replication [19]) from
exterior sources, for the same reasons as above – and espe-
cially because data centers feature sub-millisecond machine-
to-machine latencies, making them interesting candidates for
local retransmissions.

Therefore, a desirable reliable multicast protocol would
be able to minimize the amount of state in the routers
and retransmission traffic, while allowing for locally-emitted
retransmissions.
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Figure 2. Comparison of different reliability mechanisms. In this example, red clients are assumed to have missed reception of a packet and sent a NACK.
With “standard” multicast retransmissions [8], the source re-floods the whole tree as a result (a). With BIER retransmissions [11], the source re-floods only
the subset of failing destinations (b). With peer-based BIER retransmissions introduced in this paper, the NACKs are sent to a peer that had cached the packet,
which then floods the failing destinations, spanning a smaller tree (c).

A. Statement of Purpose

The purpose of this paper is to extend reliable BIER [11] to
allow a destination, having lost a multicast packet, to request
local retransmission thereof from local peers (i.e., which are
topologically close, and part of the destination set for the
multicast flow) which may have successfully received a copy
thereof – before requesting a retransmission from the source.
This is achieved by (i) each destination caching successfully
received packets for a small amount of time, and (ii) des-
tinations detecting a packet loss sending a NACK through
an ordered set of peers (that might offer a retransmission)
followed by the source, by way of Segment Routing (SR) [20].

The advantages of this approach are threefold: (i) the use
of peer-based recovery reduces the number of retransmissions
from the source, (ii) the use of SR allows a destination
to generate a single NACK for a lost packet, which ulti-
mately and automatically will be forwarded to the source if
no local retransmissions are possible, and (iii) BIER-based
retransmissions (from the source or from any peer) reduce the
overall traffic by avoiding both unnecessary duplicate unicast
retransmissions across a link close to the source, and multicast
floods across the entire multicast tree.

B. Related Work

Different approaches to reliable multicast exist, most of
which are not based on BIER, and will be reviewed in
section I-B1. The proposal in this paper is built on edge-
caching and cooperative content management – which has
some notions in common with Information Centric Network-
ing (ICN), discussed in section I-B2. BIER, and reliable BIER,
as well as Segment Routing, will be explored in further details
in section I-B3 and in section I-B4.

1) Reliable Multicast: Reliable multicast protocols assume
the existence of a multicast tree (e.g., built using PIM, or
similar), to which are added (i) detection, (ii) reporting, and
(iii) loss recovery via packet retransmission. Depending on the
notion of reliability, the mechanisms differ on the intended set
of receivers, on transmission requirements, and on available
trade-offs for each purpose [21]. Since strict reliability is
hard to achieve and does not scale, a weaker notion of semi-
reliability, associated to time-limited efforts (retransmissions,
NACKs) before dropping a packet, is sometimes used in
multicast systems with large number of destinations.

Loss estimation and recovery can be handled exclusively
at the source, as in XTP [22], or through receiver detection

and source retransmission, as in RMP [23], SRM [24] or
NORM [8], [25]. Local recovery has been explored by several
approaches, either from designated intermediate devices, as in
PGM [26], from designated receives, as in RMTP [27], or
from a backup overlay of destinations, as in RDCM [5].

2) Information-Centric Networking (ICN): ICN [28] is a
paradigm where content is stored as named data packets,
and where users send interest packets requesting named data
packets. As data packets are only identified by names, caching
by intermediate routers is possible, and a packet needs only
be delivered once per interface, corresponding to a previously-
emitted interest. ICN thus shares properties with reliable
multicast protocols, by enabling recovery of data from nearby
routers.

What is proposed in this paper differs from ICN in that it
(i) assumes push-based multicast applications and (ii) does
not rely on routers performing caching, by offloading this
task exclusively to the set of destinations – i.e., requires no
extensive modifications to routers nor to applications.

3) Bit-Indexed Explicit Replication (BIER): BIER [10] is a
multicast protocol allowing for delivery of a packet to a group,
with each destination explicitly indicated by the source. Each
possible destination is assigned an index; a bitstring, where
the i-th bit is set if and only if the i-th possible destination
is intended to receive the packet, is included in each packed
header.

On receiving a packet, a BIER router maps intended desti-
nations to IP addresses, consults its routing table to identify
over which interfaces the packet should be forwarded to reach
the destinations indicated in the bitstring, and makes one
replica of the packet for each of these interfaces. Finally,
just before transmitting the (replica of the) packet over an
interface, the included bitstring is updated, leaving only those
bits corresponding to destinations reachable via this interface,
set (figure 1). No per-source or per-flow state is required in
any router – only a (standard unicast) routing table and the
static mapping between bit index numbers and IP addresses
must be present.

BIER can be used to provide reliable BIER, a reliable mul-
ticast service with per-packet (rather than per-flow) granularity
[11]. Schematically, when a destination detects a packet to be
lost, it sends a NACK towards the source – which collects
NACKs for this packet for a small amount of time, recording
the destinations requesting retransmission. When that time
expires, it uses BIER to send the retransmission to exactly the
set of destinations which sent a NACK (figure 2c). This both
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avoids flooding the whole original multicast tree (figure 2a),
and prevents duplicate retransmissions over the same link
(as would be the case, for unicast retransmissions to each
destination, figure 2b).

4) Segment Routing (SR): SR [20] is an architecture allow-
ing packets to traverse a source-specified, explicit, ordered set
of interconnections (called “segments”), before reaching their
final destination. A segment can be associated with different
functions, from the simple (forwarding a packet to the next
segment) to arbitrarily complex (e.g., handing over a packet to
a Virtual Network Function for processing). In IPv6 Segment
Routing [29], segments are identified by IPv6 addresses, and
carried in an IPv6 Extension Header [30]. After a segment
is processed, the processing router will replace the current
IP destination address of the packet with the available next
segment – and forward it using regular unicast IP forwarding.
This enables transparent delivery of segment routed packets
across non-SR-capable routers.

C. Paper Outline

The remainder of this paper is organized as follows. Sec-
tion II gives a birds-eye view of the proposed extension to
reliable BIER, and section III a detailed specification of how
BIER is used to construct a reliable multicast framework
which can accommodate diverse policies for selecting peers for
local retransmissions. Section IV introduces basic taxonomy
and example peer selection policies. Section V provides a
theoretical analysis and discussion of performance and cost
trade-offs for each of these policies, which are experimentally
evaluated by way of network simulations in sections VI-VIII:
section VI introduces the characteristics of the simulation
environment, and sections VII and VIII describe and discuss
the main performance results over both a data center topology
and a real ISP topology. Finally, section IX concludes this
paper.

II. OVERVIEW: RELIABLE BIER WITH PEER CACHING

In this paper, the reliable BIER mechanism introduced
in [11] is extended to support recovery from peers. Rather than
sending a NACK directly to the source to request retransmis-
sion of a lost packet, this paper proposes that a NACK be first
sent through an ordered set of peer(s), each of which might be
able to provide a retransmission if they have a cached copy of
the lost packet (figure 2d). Retransmission from the source is
solicited as a “last resort”. As with reliable BIER, peers can,
of course, aggregate NACKs, before performing a BIER-based
retransmission. This locality in retransmissions is expected to
reduce delays, as well as to reduce the load on the source, and
on its egress links [13], [21].

A. Segment Routing Recovery

Requesting retransmission from an ordered list of peers,
followed by the source, is done by sending a NACK using
Segment Routing (an “SR-NACK”). Each segment will trigger
an action which is: (i) if the peer is unable to perform the
retransmission, forward the packet to the next segment; (ii) if

the peer is able to perform the retransmission, stop forwarding
the segment and perform a BIER retransmission (figure 2d).

This is illustrated in figure 3: in (a) an SR-NACK is received
by a peer, which is able to satisfy the retransmission; in (b) an
SR-NACK is received by a peer, which is not able to satisfy the
retransmission request, and where the next segment is another
peer – which, then, is able to satisfy the retransmission request;
in (c) neither of the two peers receiving the SR-NACK is able
to satisfy the retransmission request, and the SR-NACK is
therefore forwarded to the source of the multicast packet.

The combined approach thus consists of the source per-
forming an initial BIER transmission of a multicast packet.
Destinations receiving the packet may (in addition to process-
ing it) cache it for a short amount of time for possible peer-
retransmission. A destination detecting a packet loss (e.g., by
receiving a subsequent packet belonging to the same multicast
flow) will construct an SR-NACK, containing a number of
peers followed by the source. A peer receiving an SR-NACK
for which it is able to offer a retransmission will behave as if it
was the source in reliable BIER: collect NACKs for this packet
for a small amount of time, record the destinations requesting
retransmission, and use BIER for retransmitting the packet to
exactly the set of destinations from which an SR-NACK was
received, when the timer expires.

B. Peer Caching with Peerstrings
This recovery mechanism is, of course, agnostic to the

manner in which the set of candidate peers is chosen. If the
network operator has instrumented the network in such a way
that some peers are “better” candidates for retransmissions
(e.g., they are more likely to have cached packets, they are
behind less costly or less lossy links, etc.), destinations can
be administratively configured to send NACKs to those – with
the drawback of requiring instrumentation and configuration.
Thus, this paper introduces a modification to the BIER for-
warding plane, allowing destinations to learn about candidate
peers.

To this end, an additional bitstring is introduced in BIER
headers, henceforth denoted a peerstring. This peerstring is
set so as to allow a destination, detecting a packet loss, to
identify potential peers from which a retransmission can be re-
quested. A-minima, the peerstring is empty, which defaults to
requesting retransmission from the source, as in reliable BIER.
A-maxima, the peerstring contains all destinations (i.e., is a
copy of the bitstring as inserted by the source) — and any
peerstring in between these two extremes is valid.

With the goal of encouraging locality in retransmissions,
one simple policy is that, for a given destination, the peerstring
contains the set of destinations that share the same parent as
itself. This is illustrated in figure 4: when destination 0 receives
a packet, the peerstring has a bit set for all destinations, which
have the same parent as itself (i.e., destination 2). When a
router forwards a reliable BIER packet over an interface i, it
must, in addition to updating the bitstring for that interface,
update the peerstring – essentially setting the peerstring to the
union of the bitstrings for all other outgoing interfaces.

An extension to this principle is to include two peerstrings
in a data packet received by a destination d: one peerstring
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Figure 3. SR-based recovery scenarios: SR-NACK sent by A. A red destination indicates that it is not able to satisfy the retransmission request, whereas a
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indicating destinations with the same parent as d, and a second
peerstring indicating destinations with the same grandparent
(but, not the same parent) as d – as illustrated in figure 5.
Thus, this affords more flexibility, but at the expense of more
per-packet overhead. This mode of operation will be referred
to as the two-peerstrings mode.

III. SPECIFICATION

In the proposed BIER extension, the BIER header defined
in [31] is extended to include an additional bitstring, the
peerstring, denoted PS1 and described in section II-B. When
BIER operates in two-peerstrings mode, the header will also
include a second peerstring, PS2. This header is included
in all multicast data packets, and is processed by each in-
termediate router. Each multicast data packet also includes a
reliable BIER header, defined in [11], which conveys flow
identifiers and sequence numbers, and which allows detecting
lost packets in a flow. This header only carries end-to-end
semantics, and is not processed by intermediate BIER routers.

A. Source Operation

Packet transmission: The source adds a reliable BIER
header to each multicast data packet, containing a flow iden-
tifier and a sequence number, as well as a standard BIER
header [31] extended with peerstrings, as described above.
The bitstring BS in the BIER header contains the set of
destinations receiving packets from within the flow. Also, the
peerstring PS1 is set to BS and, if included, PS2 is also set
to BS, as illustrated in figures 4 and 5. The multicast source
also caches a copy of each sent packet during a time interval
∆tscache.

Packet retransmission: When receiving an SR-NACK
for a given packet, a source starts a timer ∆tsagg , during
which it collects (potential) further SR-NACKs for the same
packet from other destinations. Upon expiration of this timer,
a retransmission of the packet is performed, with the set of
destinations that have sent a NACK as the BIER bitstring.

B. Intermediate Router Operation

BIER bitstring processing: BIER packets are processed
according to the BIER specification [10]. Only bits corre-
sponding to destinations for which the shortest-path is via
interface i are preserved in the bitstring contained in multicast
data packets transmitted over that interface i.

Peerstring processing: Upon receipt of a reliable BIER
packet with a bitstring BSin, and before forwarding it over
interface i (with outgoing bitstring BSouti ), a router must
update PS1 and, if included, also PS2. In two-peerstrings
mode, first PS2outi is set to PS1in. Then, the peerstring
PS1out is set to the OR of the bitstrings sent over all other
interfaces (formally, PS1outi ← ∪j 6=iBSoutj )1. This way, the
PS1 sent over each interface contains the set of those other
destinations, to which this router has sent a copy of the packet.
Note that the use of bitwise operators to compute peerstrings
makes it a simple operation to be implemented in hardware.

C. Destination Operation

Packet reception: Upon receipt of a packet by a destina-
tion, the packet can be cached for a duration of ∆tpcache (for
potential retransmission to a peer). The peerstring(s) of the
packet are inspected. The included PS1 is used for updating

1PS1outi ← BSin \ BSout
i is an equivalent way of proceeding, as

∪j 6=iBS
out
j = BSin \BSout

i holds as an invariant.
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the set P1 of “local” peers. If included, PS2 is used for
updating the set P2, of second-most local peers.

Packet loss: Upon detection of loss of a packet in a given
flow (e.g., by receiving a packet in the same flow, whose
reliable BIER header indicates a higher sequence number),
a destination builds an SR-NACK packet. The SR-NACK
contains a reliable BIER header with the flow identifier and the
sequence number of the requested packet, and its SR header
segment list is set to (p1, . . . , pn, s), where the pi’s are peers
selected from P1 and P2, and where s is the source. Different
policies can be used for deciding which peers to include from
P1 and P2, and in which order, as described in section IV.

While sending the SR-NACK, the destination starts a
∆tdretry timer. When this timer expires, if the no retrans-
mission is received, the same SR-NACK is retransmitted –
until either the missing packet is received, or a retransmission
request limit Rlim is reached – after which recovery is aborted.
(If semi-reliability is unacceptable, Rdlim must be set to ∞.)

Packet retransmission: Upon receipt of an SR-NACK, a
peer inspects the reliable BIER header of the SR-NACK and
extracts the flow identifier and sequence number. If a cached
copy of the requested packet is available, it is scheduled
for retransmission; otherwise, the SR-NACK is forwarded to
the next entry in the segment list (i.e., to the next peer or,
ultimately, to the source).

Retransmissions from peers use the same mechanism as
those from the source: a timer ∆tpagg is used to collect other
NACKs before sending the copy to the set of destinations
which have NACKed the packet.

IV. PEER SELECTION POLICIES

As introduced in section III-C, upon missing a packet, a
destination will build an SR-NACK with peer(s) extracted
from P1 and P2. The framework introduced in this paper
is agnostic to the policy used for selecting those peers. To
illustrate this, the remainder of this section suggests examples
of simple policies for selection of peers to be included in
SR-NACKs: random selection of peers, clustered selection of
peers, and a simple adaptive (statistically-driven) policy.

A. Random Peer Selection

This policy builds an SR segment list (p, s) where s is
the source, and p is a peer randomly selected from P1.
Randomly selecting peers from P1 may increase locality
of retransmissions, but rarely allows aggregation of multiple
retransmissions into a single BIER packet. As an example, if
ten destinations d1, . . . , d10 have the same parent (thus, for
each di, P1 = {d1, . . . , d10} \ {di}), and d1, d2 both detect
loss of the same packet, the probability that d1 and d2 send an
SR-NACK for this packet to the same peer in {d3, . . . , d10}
is 1/8.

B. Deterministically Clustered Peer Selection

This policy builds an SR segment list (p, s) such that all
destinations with the same parent router (i.e., all destinations

with the same P1) select the same p. As a convenient con-
vention, for this paper, all d will select as p the element in
P1 \ {d} with the highest index.

This policy generalises for two-peerstring mode by building
a SR segment list (p1, p2, s). All d will select as p1 the element
in P1 \ {d} with the highest index, and as p2 the element in
P2 \ {d} with the highest index.

While this policy favours aggregation of local retransmis-
sions into a single BIER packet, it does not guard against
selecting an unsuitable peer, e.g., a peer located behind a
particularly lossy link.

C. Adaptive Statistically-driven Peer Selection

As long as the constraint that the last segment in the SR
segment list for a SR-NACK must be the source is satisfied,
any adaptive policy – allowing a destination to observe and
“learn” which peers are good candidates from whom to request
retransmissions – can be be used for selecting additional peers
for inclusion.

Formally, this is an instance of the Multi-Armed Bandit
problem: an agent (a destination needing a retransmission)
repeatedly activates one of several casino arms (in this case:
sends an SR-NACK to a peer) and collects a reward (obtains,
or not, a retransmission). The goal is a policy for maximizing
the expected reward [32], [33], [34].

As an illustration, a simple ε-greedy peer selection policy is
employed: with probability ε (ε� 1), a destination detecting
a packet loss sends an SR-NACK to a random peer among
the set of available peers. With probability (1− ε), it sends an
SR-NACK to the peer from which it so far has received the
highest number of successful retransmissions. The value of ε
reflects the trade-off between exploration (contacting random
peers and gathering statistics) and exploitation (requesting
retransmission from the best known candidate) – between
reactivity to changes and performance after convergence.

V. POLICY ANALYSIS

The impact of using peer caching and peer retransmissions,
and of each of the policies introduced in section IV, can be
quantified analytically. Section V-A provides a basic analysis
of the benefits of local retransmissions, and section V-B
derives an analytical model for the random and clustered
policies. Section V-C then explores the benefits from a sim-
ple, adaptive policy. For tractability, as well as for ease of
interpretation of the results, the models formulated in this
section focus on a single multicast group, in a regular tree.
Formulating and solving a model to derive policies applicable
in the case of arbitrary topologies and multicast groups would
be an interesting extension that is out of the scope of this paper.
Proofs of the theoretical results presented in this section are
available in the appendix.

A. Recovery Locality

The assumption in this paper is, that sending local recovery
requests to a local peer is likely to be both “cheaper” than
sending the request to the multicast source, and successful –
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i.e., a “close” neighbour is likely to have successfully cached
the requested packet. This section explores the latter of these
two assumptions, by quantifying the probability distribution
of the distance from a destination having not received a given
packet, to the closest peer that has (and, therefore, is able to
perform retransmission).

A regular tree topology is assumed, wherein inner nodes
are intermediate BIER routers, and leaves are destinations.
Nodes at a given depth are assumed to have the same number
of children, and links at a given depth have the same loss
probability. As corresponds to the operation of BIER, the root
node of the tree is assumed to be the multicast source.

The tree is of height h, with node ranks indexed by
their depth in the tree, from 0 (the source) to h. Similarly,
links ranks are indexed from 0 (links from source to first
descendants) to h−1. Each node at rank i ∈ {0, . . . , h} has ci
children (with ch = 0) and αi is the loss probability of links
at rank i ∈ {0, . . . , h− 1}. Multicast transmission of a single
packet to all leaves is considered.

Lemma 1 gives the probability that no nodes in the subtree,
rooted at a given node, do not receive the multicast transmis-
sion.

Lemma 1 The probability bi that a multicast transmission
from a node at rank i ∈ {0, . . . , h} does not reach any
destination (within its subtree), is:

bi = [αi + (1− αi)bi+1]ci (1)

Proposition 1 The distribution of D, i.e., the shortest dis-
tance from an arbitrary destination to a destination having
successfully received the multicast transmission can for k ∈
{1, . . . , h} be derived from (1):

fD(2k) =

[
h−k−1∏
i=0

(1− αi)

]
(αh−k + (1− αh−k)bh−k+1)×

×[1− [(1− αh−k)bh−k+1 + αh−k]ch−k−1]
(2)

with: {
fD(0) =

∏h−1
i=0 (1− αi)

fD(∞) = b0

In proposition 1, fD(0) corresponds to the probability that
a destination has successfully received the multicast transmis-
sion.
D̄ denotes the random variable of distance towards closest

successful destination for destinations having not received the
packet. The probability distribution of D̄ can be computed as
the conditional distribution of D (see proposition 1) given that
the packet is not received (which has probability 1− fD(0)),
as shown in corollary 1.

Corollary 1 The distribution of D̄, the minimum distance
from a destination that missed a packet and to a destination
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Figure 6. PDF of the recovery at 2k hops (conditioning to a loss).

which successfully received the packet is, for k ∈ {1, . . . , h}:

fD̄(2k) =
fD(2k)

1− fD(0)
=

=

∏h−k−1
i=0 (1− αi)

1−
∏h−1
i=0 (1− αi)

(αh−k + (1− αh−k)bh−k+1)×

× [1− [(1− αh−k)bh−k+1 + αh−k]ch−k−1] (3)

with: {
fD̄(0) = 0

fD̄(∞) = b0
1−fD(0) = b0

1−
∏h−1

i=0 (1−αi)

The probabilities αi of loss at each link appear in equa-
tions (2) and (3), allowing to reflect different topology as-
sumptions. In some topologies, loss probabilities may, e.g., be
assumed negligible for links close to the source, and more
significant for links close to destinations (i.e., αi < αj if
i < j). Two models for rank-dependent link loss probabilities
are considered:
• Linear increase (lin): αi = αmax

i
h−1 .

• Exponential increase (exp): αi = αmax
ei−1
eh−1−1

.
Figure 6 depicts the distribution of the minimum distance

from a destination that missed a multicast transmission, and to
a destination successfully receiving a multicast transmission,
fD̄(2k). Two tree topologies with 256 destinations are consid-
ered: (i) h = 5, (c0, . . . , c5) = (1, 2, 2, 2, 32); and (ii) h = 7,
(c0, . . . , c7) = (1, 2, 2, 2, 2, 2, 8).

It can be observed that the expected shortest distance
between a failing destination and a successful peer is lower
for the exponential loss model (in which the loss probability
for top links is lower) than for the linear loss model. In other
words, as expected, if top links are less lossy, it is more likely
for a failing destination to be able to recover from a close
destination.

This confirms the intuition that in networks with this type
of loss distribution (such as can be envisioned in data-centres,
or in networks where the “last hop” is, e.g., a wireless link,
or a consumer grade residential xDSL), selection of local
recovery peers (e.g., peers that are in the same subtree or in the
immediately upper subtree) should be preferred to selection of
peers farther away.

B. Clustered and Random Policies

The properties and performance of the two simplest, static,
and (to some degree) most “extreme” peer policies of sec-
tion IV – random and clustered peer selection – is studied
by way of two metrics: the number of recovery successes
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1 2 3 4 5 6 7 8 9 10

Figure 7. Example with a policy X over n = 10 destinations, with K = 4
destinations (2, 5, 6 and 7) having lost a packet. Arrows indicate recovery
requests (SR-NACKs): destination 2 requests recovery from peer 1; destination
5 from peer 2; and destinations 6 and 7 from peer 10; SX = 3 recovery
requests are successful (i.e., those from 2, 6 and 7), as peers 1 and 10 have
correctly received the original packet; TX = 2 retransmissions are performed
(from 1 and 10).

(performance) and the number of incurred recovery retrans-
missions (cost). A recovery is successful if a destination
detecting the loss of a packet sends an SR-NACK to a peer
that previously has received and cached a copy thereof. The
number of recovery retransmissions incurring is the number
of unique peers, which are selected for retransmission by the
set of destinations which have lost that packet. This is because
each selected peer will send only one BIER transmission as
a response to receiving a set of SR-NACKs for the same
multicast packet.

For the remainder of this section, a subtree with n desti-
nations is considered, and recovery of one packet within this
subtree is examined.

The following variables are introduced (where X denotes a
particular selection policy):
• K, the number of destinations which did not receive the

packet by way of the original multicast transmission from
the source;

• SX , the number of recovery successes, i.e., destinations
which did not received the packet by way of the orig-
inal multicast transmission from the source, but which
successfully received a retransmission from a peer, in
response to an SR-NACK.

• TX , the number of recovery retransmissions, i.e., of
unique peers which received an SR-NACK for a given
multicast packet.

Figure 7 shows an example with n = 10 destinations, K =
4 destinations missing a packet, SX = 3 successful requests
(out of 4) and TX = 2 retransmissions.

Lemmas 2 and 3 describe the probability density function
(PDF) for the number of recovery successes (SR, SD) and
for the number of retransmissions (TR, TD), for the random
and clustered policies, respectively. For the number of retrans-
missions with the clustered policy, it is assumed that a peer,
from receiving the first SR-NACK and until retransmission
of the packet, waits a sufficiently large amount time so as
to maximise the ability of aggregating retransmissions into a
single BIER-transmission.

Lemma 2 (Random selection policy) Given K = k desti-
nations (0 ≤ k ≤ n) that did not receive the multicast
transmission from the source, the probability that, from among
these k destinations, s (0 ≤ s ≤ k) will choose a peer
which did receive the multicast transmission from the source,
Pr[SR = s|K = k] ≡ fSR,k(s), is:

fSR,k(s) =

(
k

s

)(
k − 1

n− 1

)k−s(
n− k
n− 1

)s
(4)
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Figure 8. Number of destinations able to obtain a retransmission of a packet
from a peer, when k = 35 out of n = 100 have not received the initial
multicast transmission.

Given s recovery successes, the probability of t retransmis-
sions (0 ≤ t ≤ s), Pr[TR = t|SR = s,K = k] ≡ fTR,k,s(t),
is:

fTR,k,s(t) =

(
n− k
t

) t∑
i=0

(−1)t−i
(
t

i

)(
i

n− k

)s
(5)

Lemma 3 (Clustered selection policy) Similar to Lemma 2,
the probability that s destinations (out of k ≥ 2 destinations
that did not receive the multicast transmission from the source)
will choose a peer which did receive the multicast transmission
from the source, Pr[SD = s|K = k] ≡ fSD,k(s), is:

fSD,k(s) =


n−k
n if s = k
k
n

(
1− k−1

n−1

)
if s = 1

k
n
k−1
n−1 if s = 0

0 otherwise

(6)

The probability of having t retransmissions, Pr[TD =
t|K = k] ≡ fTD,k(t), is:

fTD,k(t) =


1− k

n
k−1
n−1 if t = 1

k
n
k−1
n−1 if t = 0

0 otherwise
(7)

As edge cases, when k = 1, there is one recov-
ery/retransmission: SD = TD = 1; and when k = 0, there
are no recoveries/retransmissions: SD = TD = 0.

From lemmas 2 and 3 follow two key results, describing
the average number of recovery successes (proposition 2) and
the average number of retransmissions (proposition 3 and
corollary 2).

Proposition 2 Assuming K = k destinations that did not re-
ceive the multicast transmission from the source, the expected
number of recovery successes for the random and clustered
approaches is the same, and has the value:

E[SR|K = k] = E[SD|K = k] =
k(n− k)

n− 1
(8)

Proposition 3 Assuming K = k destinations that did not re-
ceive the multicast transmission from the source, the expected
number of retransmissions for random (SR) and clustered
(SD) policies have the following expressions:
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E[TR|K = k] = (n− k)− (n− k)

(
n− 2

n− 1

)k
(9)

E[TD|K = k] =

{
1− k(k−1)

n(n−1) if k ≥ 1

0 if k = 0
(10)

The following corollary compares the behavior of both poli-
cies when considering that each destination has, independently,
the same probability of having not received the multicast
transmission from the source.

Corollary 2 Assuming that each destination has (indepen-
dently of the others) a probability β ∈ [0, 1] of not having
received the multicast transmission from the source (i.e., the
probability of having k destinations, that did not receive
the multicast transmission from the source, is binomial with
parameter β, and thus Pr[K = k] =

(
n
k

)
βk(1−β)n−k), then

the expected number of retransmissions with the random policy
grows linearly with the number of destinations, whereas the
expected number of transmissions with the clustered policy is
bounded:{

E[TR] ∼n→∞ n(1− β)(1− e−β) = Θ(n)

E[TD] ∼n→∞ 1− β2 = Θ(1)
(11)

From proposition 2, both policies yield the same perfor-
mance on average, i.e., the expectation of the number of
recovery successes is the same for both policies. The clustered
policy achieves the same reliability as the random policy
by concentrating recovery requests on a single peer, which
allows aggregation of retransmissions into a single BIER
retransmission. Since aggregation occurs less often in the
random policy, in terms of retransmission cost, the random
policy is more expensive (linear in the number of destinations
vs constant), as shown in corollary 2.

This difference is only possible because random and
clustered policies achieve their (equal) average performance
through different probability density distributions, as shown
in figure 8. In this example, it is assumed that k = 35
destinations out of n = 100 have not received the initial
multicast transmission. While with the random policy there
is negligible chance that no less than 15 and no more than 30
destinations are able to obtain a retransmission from a peer,
the clustered policy operates on an all-or-nothing fashion: all
35 destinations will obtain a retransmission from a peer with
high probability – but recovery may be mostly unsuccessful
with non-negligible probability (∼ 12% for 0 successes, 23%
for only one success over 35).

For the purpose of illustrating the relative performance of
random and clustered policies, it is possible to consider a
Service Level Agreement (SLA) commitment specifying a
minimum fraction of destinations (1− δ) (with δ � 1) being
served without the need for source retransmission. Source
retransmissions are unneeded when destinations receive the
packet in the first BIER transmission from the source, and
when the first peer recovery request is successful. Since source
retransmission may lead to a substantial increase in packet
latency, the previously described SLA can be reformulated in
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Figure 9. Probability that a fraction of (1− δ) of destinations successfully
receive the packet (1) directly from the source in the first transmission, or (2)
from a contacted peer – i.e., excluding source retransmissions, with n = 100,
β = 0.2.

terms of reduced latency experienced by a higher fraction of
destinations. The probability that a fraction (1−δ) of desti-
nations is served without resorting to source retransmissions,
under policy X , gn,β,X(δ), is:

gn,β,X(δ) = Pr[SX > K − nδ] =

=

n∑
k=0

Pr[SX > K − nδ|K = k]Pr[K = k] (12)

where Pr[SX > x|K = k] can be computed from equa-
tions (4) and (6).

Figure 9 illustrates the value of gn,β,X as a function of
δ, when n = 100, β = 0.2, and for the random and
clustered policies2. Figure 9 can be used to help an operator
decide which policy to choose. For strict SLAs where a
large fractions of the destinations must be served without
source retransmissions (δ ≈ 0), there is a higher probability
that systems are compliant when using the clustered policy
(δ < 0.05 in figure 9). Conversely, with looser SLAs, there is a
higher probability that systems are compliant when the random
policy is used (δ > 0.05 in figure 9), and both policies behave
identically for highly-loose SLAs (δ > 0.25 in figure 9). To
conclude, when source retransmissions are significantly less
preferable than peer retransmissions (e.g., due to a substan-
tially higher delay incurred), the clustered policy might be
preferable with respect to the random policy.

C. Going Adaptive: the ε-Greedy Policy

For the purpose of this analysis, a binary (c = 2) multicast
BIER transmission tree, with height h = 7, to illustrate the
ability of the simple ε-greedy adaptive policy and to learn and
adapt to changes in networking conditions, under two different
scenarios:
• A (static) scenario (figures 10(a) and 11(a)), where all

links are lossy (α = 0.1), except for links between the
source and destination 0 – i.e., with a static “best” (ideal)
peer from which to request retransmission.

2While the gap amplitude is dependent on the value of β (i.e., lower loss
probabilities at destination lead to shorter gaps, as it can be expected), the
trend shown in figure 9 is invariant for values of n and β.
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the ε-greedy policy, in (a) static and (b) dynamic scenarios.

• A (dynamic) scenario (figures 10(b) and 11(b)) which
reflects a situation with failure of a “good” peer. Specif-
ically destination 0 is, as in the static scenario and for
the same reasons, the “best” (ideal) destination (α = 0
for links from destination 0 and to the source) up until
multicast packet # 8000, after which it becomes a bad
destination behind very lossy (α = 0.4) links. Concur-
rently, destination 32 is a relatively good, though not
perfect, destination (α = 0.01) during the entire duration
of the flow.

It is worth to observe that, in these simulations, recoveries
are idealized: retransmissions from contacted peers are always
successful if the contacted peer holds a copy of the requested
BIER packet.

Unsurprisingly, ε = 0 (i.e., choosing deterministically the
destination with highest success record) achieves more steady
performance than does ε = 0.2 (i.e., choosing random des-
tinations for recovery 20% of the time) in static conditions
(figure 10(a)). Using ε = 0.2 policy, however, performance is
less impacted by the failure of destination 0, and the system
adapts faster to the new conditions (figure 10(b)): as shown in
figure 11(b), failing destinations when using ε = 0.2 switch
to destination 32 quicker, after the failure of (former ideal)
destination 0.

VI. SIMULATION ENVIRONMENT

The reliable multicast mechanism, described in this paper,
has been implemented in NS-3 [35] as four components: (i) a
BIER forwarding plane (as described in section III-B), (ii) a
Segment Routing forwarding plane, (iii) a reliable BIER layer
for a source (section III-A), and (iv) a reliable BIER layer for
destinations (section III-C).

The reliable BIER layer at the source interfaces with the
UDP socket API, to transform UDP multicast packets into

Top-Of-Rack

Aggregation

Core

Source

Datacenter

Figure 12. Datacenter topology for simulations of section VII

BIER packets, while also caching a copy of sent packets so
as to be able to retransmit them on receipt of SR-NACKs.
The reliable BIER layer at a destination also interfaces with
the UDP socket API, collecting received BIER packets before
handing them (in-order) over to the UDP socket. This layer
also caches a copy of received packets, so as to be able to
retransmit them on receipt of a SR-NACK from a peer, and
generate SR-NACKs when a packet loss is detected.

The parameters as defined in section III are: ∆tsagg =
∆tpagg = 7 ms, ∆tpcache = 50 ms, ∆tscache = 100 ms,
∆tdretry = 15 ms, Rdlim = 3. Notably, the value of the SR-
NACK retry delay is set significantly greater than the NACK
aggregation delay, ∆tdretry � ∆tagg , so that a second NACK
is only sent if the source (or peer) has had the chance to send
a retransmission and has failed.

A. Links and Link Loss Model

All links are point-to-point, with 1 Gbps throughput and
1 µs propagation delay, have an MTU of 1500 bytes, and are
attached to interfaces with drop-tail queues of size 512 packets.

The link loss model used for all links in the simulations
is a clock-based Gilbert-Elliott model [36], [37], where the
probability of a successful transmission is k = 1 in good state
and h = 0.5 in bad state. Transitions from bad to good, and
from good to bad, are triggered with exponential clocks, of
mean 1/r = 2.5 ms and 1/p = (h−α)

αr = (0.5−α)
α × 2.5 ms,

respectively, where α ∈ [0, 1] is a parameter representing
“packet loss probability”.

According to [38], the probability πB of being in bad state
is πB = p

p+r = 1
1+(h−α)/α = α

0.5 , yielding an expected link
loss rate of πB(1− h) + (1− πB)(1− k) = 0.5πB = α. This
justifies using α as a parameter to tune the average packet loss
probability. This loss model is only applied to multicast data
packets – SR-NACKs are not subject to losses, as the path
from destinations to the source is supposedly less lossy3.

VII. DATA-CENTER SIMULATIONS

For the purpose of evaluating the mechanism introduced in
this paper, a data-center-like topology is first used.

3Whereas traffic from the source to the destination is bursty, and therefore
likely to cause interface buffers to run full, and drop packets, traffic from
destinations to the source is expected to be sparse (essentially, SR-NACKs).
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Figure 13. Clustered vs random peer selection within same subtree, and for different values of the Gilbert-Elliott link loss probability α.

A. Network Topology

The topology used in this set of simulations is as follows,
illustrated in figure 12:

• a source, “outside” the data-center – reachable across
a capacity constrained connection (e.g., a connection
incurring higher delays, which has limited throughput, or
subject to a higher, congestion-induced, loss probability)
is attached to a core router;

• the core router is attached to 2 aggregation routers;
• each aggregation router is attached to 2 Top-of-Rack

(ToR) routers;
• each ToR router is attached to 10 servers in a rack

(destinations).

In other words, the topology is a regular tree, in which
successive arities are (1, 2, 2, 10).

This topology has been chosen for the simulations for two
reasons. First, it can be used to reason about actual data-center-
specific scenarios (as introduced in section I) – e.g., distributed
storage, distribution of software upgrades, or pre-placement of
content. Second, as BIER packets in any arbitrary topology
will effectively be spread along a shortest-path tree, reasoning
about a regular tree is a first step towards understanding the
properties of the proposed mechanism (simulations on non-
regular trees are deferred to section VIII).

It is to be noted that such a topology does not allow
for evaluating what happens in multi-path-enabled data-center
topologies, such as BCube [39] or DCell [40]. However,
such topologies rely on source-routing to effectively transmit
packets, and would thus require modifications to the BIER
forwarding plane so as to properly encode the multicast tree,
which is outside of the scope of this paper. Furthermore,
interpreting evaluations based on these topologies would make
it difficult to highlight how the mechanism introduced in this
paper reacts to congestion on a link, since these topologies
would tend to naturally spread congestion across all links.

B. Evaluation Objectives

The objective of using SR-NACKs for requesting retrans-
missions from peers, rather than directly from the source,
is specifically not to minimize the number of transmissions,
globally – but, rather, to maximize the number of retransmis-
sions that can be satisfied locally, i.e., within the data-center.
Consequently, one key metric is the number of retransmissions
performed by the source – corresponding to the load of the link
between the source and the core router (bold link in figure 12).

C. Static Peer Policy – One-Peerstring Mode

To baseline the benefits of locality, the two static peer
selection policies introduced in section IV-A (random) and in
section IV-B (clustered) are tested in one-peerstring mode: a
destination, which detects that a packet has been lost, sends an
SR-NACK towards first a “local” peer4 according to the policy,
then to the source. These two static peer selection policies are
compared with classic reliable BIER without peer recovery
(i.e., wherein NACKs are sent directly to the source).

Figure 13 depicts the results of 19 four-second-long simu-
lations using a 500 Mbps multicast flow (i.e., 166673 BIER-
packets generated by the source), for different values of α
(see section VI) applying uniformly to all links. Figure 13a
shows the link usage of the ingress link to the core router (see
figure 12), averaged over the duration of the simulation. Using
classic reliable BIER, the source performs all retransmissions,
and the ingress link to the core router saturates for α ≥ 7%.
With peer-based retransmissions, even with α = 10%, this
link remains well below saturation, with a link usage below
680 Mbps. This is detailed in figure 13a, and explained through
figure 13b, which depicts the number of times a retransmission
has been performed by the source.

On receiving an SR-NACK, a peer waits for ∆tpagg , to
allow receiving SR-NACKs from other peers, before a single

4A peer is considered “local” if it has the same parent – in which case, it
is indicated in the received PS1in.
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Figure 14. Data-center topology: clustered peer selection in two subtrees vs
in one subtree, for different values of the Gilbert-Elliott link loss probability
α.

aggregate BIER retransmission is made. Thus, the number
of destinations in the bitstring is an indicator of the ability
to reduce the number of retransmissions. This is depicted in
figures 13c and 13d, for retransmissions made by the source
or by a peer, respectively, and for random and clustered peer
selection policies. Retransmissions by the source are required
when both the originator of an SR-NACK, and the selected
peer, have not received a given packet – e.g., when the packet
was lost over the link between an aggregation router and a
ToR router (see figure 12), in which case all destinations below
that ToR router would need to receive a retransmission. This
explains why most source retransmissions are destined to 2 to
10 destinations (figure 13c). Similarly, but to a lesser extent,
a consequent number of source retransmissions are destined
to between 11 and 20 destinations, which can be explained
in most cases by a loss over the link between an aggregation
router and the core router. Figure 13d also shows that random
peer selection (expectedly) does not facilitate aggregation in
peer-issued retransmissions, whereas clustered peer selection
allows for some aggregation – which occurs when a packet is
lost several time in the same subtree.

D. Static Peer Policy – Two-Peerstrings Mode

A variation of the clustered peer policy (section IV-B) is
possible when using two peerstrings. A destination, detecting
that a packet has not been received, sends an SR-NACK

Table I
SIGNALING OVERHEAD (AVERAGE SR-NACK-TRAFFIC PER DATA

PACKET) FOR THE CLUSTERED PEER SELECTION POLICY

α Reliable BIER One-peerstring Two-peerstring
0.01 2.65 3.23 4.44
0.05 13.0 18.1 26.9
0.10 40.4 34.2 47.7

towards first the leftmost “local” peer, then to the leftmost
second-most local5 peer, and finally to the source. The objec-
tive is, again, to reduce the number of retransmissions needed
from the source, at the cost of potentially more total (but,
local) traffic.

The baseline for this approach is the clustered peer selection
policy of section VII-C, as well as standard reliable BIER,
thus the same topology, traffic patterns, and link loss model,
are used. The simulation results for different values of α
are depicted in figure 14, where figure 14a shows that the
two-peerstring approach yields a further reduction in the link
usage on the ingress link to the core router, due to fewer
retransmissions being required by the source. In figure 14b,
this reduction appears to be from 2.2× less (when α = 0.05)
to 3.3× less (when α = 0.02), when comparing to the one-
peerstring approach.

To understand the ability of the proposed mechanism to
reduce retransmission traffic, figure 14c depicts the number of
destinations in the retransmission bitstrings. Using the two-
peerstring mode, retransmissions by the source are required
only when neither the originator of an SR-NACK, nor its
selected local peer, nor its selected second-most local peer,
have received a given packet – most usually when the packet
was lost over the link between an aggregation router and the
core router. This explains why the majority of retransmissions
are sent to between 11 and 20 destinations, and confirms a
greater degree of aggregation (among 20 destinations, rather
than 10) of source retransmissions, as compared to the one-
peerstring mode. Furthermore, due to their ability to collect
SR-NACKs from an adjacent subtree, designated peers will
sometimes perform retransmissions to a whole rack (when a
link from an aggregation router to a ToR router has failed),
thereby also increasing aggregation as compared to the one-
peerstring mode.

Finally, to understand the impact of the proposed mech-
anism in terms of incurred signaling traffic, table I reports
the signaling overhead caused by SR-NACKs emitted during
the simulations, for both the one-peerstring and two-peerstring
mode, as well as for standard reliable BIER. Signaling over-
head is computed in terms of packet-links, i.e., SR-NACKs per
traversed links (in the tree). An SR-NACK traversing n links
in the tree counts as n packet-links6. For each mechanism
and each value of α, table I displays the average signaling
overhead per multicast data packet, i.e., the number of (SR-
NACK) packet-links needed, in average, before all destinations

5A peer is considered “second-most local” if it has the same grandparent,
but not the same parent – in which case, it is indicated in the received PSin

2 .
6Given figure 12, an SR-NACK will have traversed two links if reaching

the most local peer, six links if then reaching the second-most local, and ten
links if then reaching the source.
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Figure 15. Data-center topology with one ideal peer per rack: ε-greedy peer
selection in subtree vs random, for different values of the Gilbert-Elliott link
loss probability α.

have received a new multicast dat packet from the source.
Results show that signaling overhead incurred by the two-
peerstring policy is approximately 1.4× the overhead related
to the one-peerstring policy, but this extra signaling overhead is
what allows for greatly reducing the number of source-induced
retransmissions (as depicted in figure 14a), thus providing
better quality of service for the clients.

E. Adaptive Peer Policy

To simulate the existence of some local peers being “more
suitable” than others, the link loss model is modified such that
each ToR router has exactly one destination with a non-lossy
ToR-to-destination link. An adaptive policy should enable all
other destinations connected to that ToR router to “learn” that
this peer is the “most suitable” peer for retransmissions, and
therefore, when detecting that a packet has not been received,
send an SR-NACK towards first this “most suitable” peer, and
only then to the source. To exemplify this, and to examine
the intuitions from section V-C, the ε-greedy policy has been
implemented and tested against the random peer selection
policy7 (section VII-C) and standard reliable BIER. In order
to allow for sufficient exploration, ε = 0.2 is used.

Simulations are run for different values of α, with results
depicted in figure 15. As ε-greedy allows directing an SR-
NACK towards peers that have a greater chance of being
able to retransmit a packet, these are less often forwarded
to the source, reducing the number of source retransmissions
(figure 15b) and the link usage of the ingress link to the core
router (figure 15a). Finally, when a SR-NACK is received
by a “more suitable” peer, its retransmissions are more often

7The comparison is made to the random peer selection policy, rather than
to any of the clustered peer selection policies. Selecting the destination with
the non-lossy link for any of the clustering policies would amount to biasing
in favour of that policy – selecting any other, would amount to biasing in its
disadvantage.

(a) Network topology (picture from
[41]).
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Figure 16. ISP topology for simulations of section VIII

successful (as it is connected to its ToR router over a non-lossy
link), reducing further retransmissions of that packet.

VIII. ISP SIMULATIONS

To validate the genericness of the proposed approach with
respect to the network topology, another set of simulations has
been conducted, this time in a real ISP topology. As compared
to section VII, the resulting spanning tree is non-regular. Use
cases for reliable multicast in such topologies include video
streaming of live events.

A. Network Topology

The topology used for the purpose of this set of simulations
is the BT Europe, August 2010 topology, extracted from the
Internet Topology Zoo [41]. The topology is depicted in
figure 16a, and consists of 24 nodes. All nodes are located in
Europe, except for nodes 11 (New York) and 12 (Washington
DC), which are not visible on the figure, and have each a
link to node 17 (London). As this topology features remote
(transatlantic) nodes, it is suited to evaluate scenarios wherein
it is costly to traverse certain links. As such, the scenario
studied in this section will be the transmission of a multicast
stream from node 11 (New York) to all other nodes.

Another point of interest of using such a non-regular
topology is, that it provides a more natural framework to test
adaptive peer selection policies. Indeed, some destination(s)
will automatically be both close to the source (thus, more
prone to have received packets because there are less links
in the path to the source) and close to an important number of
other peers. As an illustration, figure 16b shows the closeness
centrality of each node in the graph, defined as the inverse of
the mean distance to the other nodes. It can be observed that
nodes 17 (London), 21 (Amsterdam) and 5 (Frankfurt) exhibit
the highest centrality, meaning that they are ‘local’ to a large
part of destinations, and would therefore be natural candidates
to act as retransmitting peers.

B. Peer Selection Policies Evaluation

For the purpose of the simulations, a client is attached to
each of the nodes, except for node 11 (NYC), to which a
source is attached; the Dijkstra algorithm is first run offline to
construct routing tables. As in section VII, links have 1 Gbps
capacity, and the same simulation parameters are used. A
multicast flow of 500 Mbps is sent from the source to each of
the clients during four seconds, in 19 different simulations,
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Figure 17. ISP topology: ε-greedy vs. random peer selection in subtree, for
different values of the Gilbert-Elliott link loss probability α.

for different values of the average link loss probability α.
The random selection policy with one peerstring is used to
evaluate the core properties of the mechanism introduced in
this paper. Additionally, the ε-greedy policy is evaluated, as a
way to examine the convergence of destinations under adaptive
policies towards highly-central nodes as retransmitters. Finally,
as a baseline, reliable BIER as in [11] is used.

Results are reported in figure 17. Figure 17a depicts the
average usage of the link between the source and the router
to which it is attached. Whereas with standard reliable BIER
the link is saturated for high values of α (α ≥ 6%), usage
of this link is reduced with peer-based BIER retransmissions
(the worst case being 720 Mbps for α = 10%), showing
that the proposed mechanism allows protecting the source
from having to retransmit too many packets. This can be also
observed on figure 17b, depicting the number of individual
packet retransmissions performed by the source: the number
of source retransmissions falls by a factor of at least 2.2×
when using peer-based retransmissions.

With respect to the comparison between static and adaptive
policies, figure 17b shows that the number of source-based
retransmissions is further reduced when using the adaptive
policy. This can be explained by observing, for each peer,
the number of packets successfully recovered through this
peer, for the static policy and the adaptive policy (figure 17c)
– the figures display the distribution for the lossiest tested
scenario (corresponding to α = 0.1), so as to better visualize

the differences. Whereas with the static policy the distribution
of retransmitters is relatively uniform, with the adaptive policy
it can be clearly observed that peers 17 and 5 (and, to a lesser
extend, peer 21) contributes to most of the recoveries. This
confirms that retransmissions are handled by peers with high
centrality (see figure 16b).

IX. CONCLUSION

This paper extends the reliable multicast service based on
BIER. The proposed extension uses BIER for ensuring that
data traffic is forwarded over minimal shortest path trees, and
SR-based NACKs for reporting losses and requesting retrans-
missions. SR-NACKs allow failing destinations to contact, in
order, peers for (local) recovery before requesting retrans-
mission from the source. All retransmissions are performed
through BIER-enabled shortest paths.

The proposed protocol is compatible with standard BIER
operation (RFC 8279 [10]): no caching is made by interme-
diate routers, retransmissions are regular BIER packets, and
the retransmission logic is handled exclusively by sources and
destinations. In addition, a lightweight extension to the BIER
forwarding plane is proposed (the processing of a peerstring in
the BIER header), allowing destinations to automatically learn
about potential candidates from which to ask retransmissions.
In absence of this extension, peer-based recoveries can still
be requested if destinations are manually configured to do so.
By allowing for local repair of multicast failures, the proposed
mechanism limits the amount of source retransmissions, and
thus their impact in terms of network traffic and delay.

The proposed framework is generic enough to accommodate
a broad spectrum of policies for selection of recovery peers,
including static, adaptive, and operator-defined. Example of
such policies are introduced and analyzed, both analytically
and by way of network simulations. Evaluation suggests that
substantial benefits in terms of increasing locality of recoveries
and reducing usage of costly links can be achieved with
relatively simple policies.
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APPENDIX

A. Proof of lemma 2

Proof:
Consider the transmission of a multicast packet to a cluster

of n destinations, from among which k do not receive the
packet. Each of the k non-successful destinations then selects
a peer at random among (n − 1) peers (all peers but itself),
and there are (n − k) successful peers, thus this selection
is successful with probability n−k

n−1 . Therefore, the probability
that s of the k non-successful destinations sends a NACK to
a successful peer follows a binomial law with parameter n−k

n−1 ,
yielding equation (4).

To derive equation (5), assume that there are s successful
recoveries. The number of retransmissions t incurred by these

http://www.internet-of-everything.fr
http://www.internet-of-everything.fr
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s recoveries corresponds to the number of unique elements
sampled when drawing with replacement s elements from a
set of (n− k) elements. From [42], this is:

1

(n− k)s
× (n− k)!

(n− k − t)!
×
{
s

t

}
where

{
s
t

}
(Stirling number of second kind) represents the

number of ways to partition s elements into t non-empty
subsets, and can be expressed as:{

s

t

}
=

1

t!

t∑
i=0

(−1)t−i
(
t

i

)
is

Combining these two expressions yields equation (5), which
concludes the proof.

B. Proof of lemma 3

Proof:
Consider the clustered policy, whereby a failing destination

sends a NACK to a designated peer p, and p itself if failing
sends NACKs to another designated peer p∗. Consider the
transmission of a multicast packet to a cluster of n destina-
tions, from among which k do not receive the packet. Each
of the k non-successful destinations then sends a recovery
request (NACK) to p (or p∗ if the non-successful destination is
p itself). If the designated peer p is not amongst the k failing
destinations (which happens with probability n−k

n ), all the
recoveries are successful, and SD = k. If the designated peer
p is among the failing destinations, but not its retransmitter
p∗ (which happens with probability k

n

(
1− k−1

n−1

)
), then only

one recovery request is successful (the one from the designated
peer p), and SD = 1. Finally, if both the designated peer p and
its retransmitter p∗ are among the k failing destinations (which
happens with probability k

n
k−1
n−1 ), no retransmission request is

successful, and SD = 0. Combining these three cases yields
equation (6).

To derive equation (7), it suffices to note that both cases
SD = k and SD = 1 yield one retransmission, and that SD =
0 yields zero retransmissions. Thus Pr[TD = 1|K = k] =
Pr[SD = k|K = k] + Pr[SD = 1|K = k] and Pr[TD =
0|K = k] = Pr[SD = 0|K = k], yielding equation (7).

C. Proof of Proposition 2

Proof:
Assuming that k destinations have missed the multicast

packet, SR has a binomial distribution with k samples and
with success probability n−k

n−1 . Thus, E[SR|K = k] = k× n−k
n−1

by definition, which proves equation (8) for the random policy.
From equation (6), the expected value of SD can be

computed as:

E[SD|K = k] = k × n− k
n

+ 1× k

n

(
1− k − 1

n− 1

)
=

k

n− 1
(n− k)

which proves that E[SR|K = k] = E[SD|K = k].

D. Proof of Proposition 3

Proof: Assuming that k destinations have missed the
multicast packet, and that s recoveries are successful, the
expected number of incurred recovery retransmissions for the
random policy is computed by averaging equation (5):

E[TR|SR = s,K = k] =

s∑
t=0

t× Pr[TR = t|SR = s,K = k]

= (n− k)

[
1−

(
n− k − 1

n− k

)s]
Then, the average number of retransmissions with no assump-
tion on s can be obtained by combining this result with
equation (4), yielding (with p = k−1

n−1 to ease notation):

E[TR|K = k] =

k∑
s=0

E[TR|SR = s,K = k]× Pr[SR = s,K = k]

= (n− k)− (n− k)

k∑
s=0

(
k

s

)
pk−s(1− p)s

(
n− k − 1

n− k

)s

= (n− k)− (n− k)

(
n− 2

n− 1

)k

For the clustered policy, deriving the expected number of
retransmissions is done by averaging equation (7), and by
noting that since the number of retransmissions is either 0
or 1, the expected value is simply the probability that there is
one retransmission:

E[TD|K = k] = Pr[TD = 1|K = k]

=

{
1− k(k−1)

n(n−1) k ≥ 1

0 k = 0

concluding the proof.

E. Proof of Corollary 2

Proof:
Assuming that each destination has missed the multicast

packet independently with probability β, the number K of
failing destinations follows a binomial distribution:

Pr[K = k] =

(
n

k

)
βk(1− β)n−k (13)

For the random policy, it is possible to deduce the ex-
pected number of retransmissions (averaged over the failing
destinations k) by combining equations (9) and (13):

E[TR] =

n∑
k=0

E[TR|K = k]× Pr[K = k]

= (n− nβ)−
n∑
k=0

(
n

k

)
βk(1− β)n−k(n− k)

(
n− 2

n− 1

)k
= n(1− β)

[
1−

(
1− β

n− 1

)n]
which is, if n→∞ and β 6= 0, β 6= 1, using Taylor’s 1st-term
approximation of

(
1− β

n−1

)n
:

E[TR] = n(1− β)(1− e−β) +O(1) (14)
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The same reasoning can be used for the clustered policy. The
expected number of retransmissions becomes, by using (10)
and (13):

E[TD] =

n∑
k=0

E[TD|K = k]× Pr[K = k]

=

n∑
k=1

(
n

k

)
βk(1− β)n−k

(
1− k

n

k − 1

n− 1

)
= 1− (1− β)n − β2

which is, if n→∞ and β 6= 0:

E[TD] = 1− β2 + o(1) (15)

concluding the proof.

REFERENCES

[1] K. Bilal, S. U. Khan, L. Zhang, H. Li, K. Hayat, S. A. Madani, N. Min-
Allah, L. Wang, D. Chen, M. Iqbal et al., “Quantitative comparisons of
the state-of-the-art data center architectures,” Concurrency and Compu-
tation: Practice and Experience, vol. 25, no. 12, pp. 1771–1783, 2013.

[2] M. Pathan and R. Buyya, “A taxonomy of cdns,” Content delivery
networks, pp. 33–77, 2008.

[3] J. Y. Kim, G. M. Lee, and J. K. Choi, “Efficient multicast schemes using
in-network caching for optimal content delivery,” IEEE Communications
Letters, vol. 17, no. 5, pp. 1048–1051, 2013.

[4] J. Ni and D. H. Tsang, “Large-scale cooperative caching and application-
level multicast in multimedia content delivery networks,” IEEE Commu-
nications Magazine, vol. 43, no. 5, pp. 98–105, 2005.

[5] D. Li, M. Xu, Y. Liu, X. Xie, Y. Cui, J. W. Wang, and G. Chen, “Reliable
multicast in data center networks,” IEEE Transactions on Computers,
vol. 63, no. 8, Aug. 2014.

[6] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen,
“Deployment issues for the ip multicast service and architecture,” IEEE
network, vol. 14, no. 1, pp. 78–88, 2000.

[7] J. Nicholas, A. Adams, and W. Siadak, “Protocol Independent Multicast
- Dense Mode (PIM-DM): Protocol Specification (Revised),” RFC
3973, 2005. [Online]. Available: https://rfc-editor.org/rfc/rfc3973.txt

[8] B. Adamson and J. P. Macker, “Reliable messaging for tactical
group communication,” in Military Communications Conference, 2010-
MILCOM 2010. IEEE, 2010, pp. 1899–1904.

[9] S. Paul, K. K. Sabnani, J.-H. Lin, and S. Bhattacharyya, “Reliable
multicast transport protocol (rmtp),” IEEE Journal on Selected Areas
in Communications, vol. 15, no. 3, pp. 407–421, 1997.

[10] I. Wijnands, E. C. Rosen, A. Dolganow, T. Przygienda, and S. Aldrin,
“Multicast Using Bit Index Explicit Replication (BIER),” RFC 8279,
2017. [Online]. Available: https://rfc-editor.org/rfc/rfc8279.txt

[11] Y. Desmouceaux, T. Clausen, J.-A. Cordero, and W. M. Townsley,
“Reliable Multicast with B.I.E.R.” Journal of Communications and
Networks, vol. 20, no. 2, pp. 182–197, 2018.

[12] R. Yavatkar, J. Griffoen, and M. Sudan, “A reliable dissemination
protocol for interactive collaborative applications,” in Proceedings of
the third ACM international conference on Multimedia. ACM, 1995,
pp. 333–344.

[13] B. N. Levine and J. J. Garcia-Luna-Aceves, “Improving internet multi-
cast with routing labels,” in Proc. International Conference on Network
Protocols (ICNP), 1997.

[14] J. Rückert, J. Blendin, and D. Hausheer, “Software-defined multicast for
over-the-top and overlay-based live streaming in isp networks,” Journal
of Network and Systems Management, vol. 23, no. 2, pp. 280–308, 2015.

[15] J. Rückert, J. Blendin, R. Hark, and D. Hausheer, “Flexible, efficient, and
scalable software-defined over-the-top multicast for isp environments
with dynsdm,” IEEE Transactions on Network and Service Management,
vol. 13, no. 4, pp. 754–767, 2016.

[16] J. Choi, A. S. Reaz, and B. Mukherjee, “A survey of user behavior in
vod service and bandwidth-saving multicast streaming schemes,” IEEE
Communications Surveys & Tutorials, vol. 14, no. 1, pp. 156–169, 2012.

[17] S. Seyyedi and B. Akbari, “Hybrid cdn-p2p architectures for live video
streaming: Comparative study of connected and unconnected meshes,” in
2011 International Symposium on Computer Networks and Distributed
Systems (CNDS). IEEE, 2011, pp. 175–180.

[18] S. James and P. Crowley, “Fast content distribution on datacenter
networks,” in 2011 ACM/IEEE Seventh Symposium on Architectures for
Networking and Communications Systems. IEEE, 2011, pp. 87–88.

[19] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation. USENIX Association, 2006, pp. 307–320.

[20] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois,
“The segment routing architecture,” in 2015 IEEE Global Communica-
tions Conference (GLOBECOM). IEEE, 2015, pp. 1–6.

[21] J. W. Atwood, “A classification of reliable multicast protocols,” IEEE
network, vol. 18, no. 3, pp. 24–34, 2004.

[22] W. T. Strayer, B. J. Dempsey, and A. C. Weaver, XTP: the Xpress
Transfer Protocol. Redwood City, CA: Addison-Wesley, 1992.

[23] B. Whetten, T. Montgomery, and S. M. Kaplan, “A high performance
totally ordered multicast protocol,” in Proc. Dagstuhl Seminar on
Distributed Systems, 1994.

[24] S. Floyd, V. Jacobson, S. McCanne, C.-G. Liu, and L. Zhang, “A reliable
multicast framework for light-weight sessions and application level
framing,” ACM SIGCOMM Computer Communication Review, vol. 25,
no. 4, pp. 342–356, 1995.

[25] C. Bormann, M. J. Handley, and B. Adamson, “NACK-Oriented
Reliable Multicast (NORM) Transport Protocol,” RFC 5740, 2009.
[Online]. Available: https://rfc-editor.org/rfc/rfc5740.txt

[26] J. Gemmell, T. Montgomery, T. Speakman, and J. Crowcroft, “The pgm
reliable multicast protocol,” IEEE network, vol. 17, no. 1, pp. 16–22,
2003.

[27] S. Paul, K. K. Sabnani, J. C.-H. Lin, and S. Bhattacharyya, “Reliable
multicast transport protocol (rmtp),” IEEE Journal on Selected Areas of
Communications, vol. 15, no. 3, pp. 407–421, 1997.

[28] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. CoNEXT’09,
2009.

[29] C. Filsfils et al., “SRv6 Network Programming,” In-
ternet Engineering Task Force, Internet-Draft draft-filsfils-
spring-srv6-network-programming-03, Dec. 2017, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-filsfils-spring-srv6-network-programming-03

[30] S. Previdi et al., “IPv6 Segment Routing Header
(SRH),” Internet Engineering Task Force, Internet-Draft
draft-ietf-6man-segment-routing-header-08, Jan. 2018, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ietf-6man-segment-routing-header-08

[31] I. Wijnands, E. C. Rosen, A. Dolganow, J. Tantsura, S. Aldrin, and
I. Meilik, “Encapsulation for Bit Index Explicit Replication (BIER) in
MPLS and Non-MPLS Networks,” RFC 8296, Jan. 2018. [Online].
Available: https://rfc-editor.org/rfc/rfc8296.txt

[32] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, pp. 235–256,
2002.

[33] V. Kuleshov and D. Precup, “Algorithms for the multi-armed bandit
problem,” Journal of Machine Learning Research, vol. 1, pp. 1–48, 2000.

[34] J. Velmorel and M. Mohri, “Multi-armed bandit algorithms and empirical
evaluation,” in Proc. ECML’2005, 2005, pp. 437–448.

[35] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,”
Modeling and tools for network simulation, pp. 15–34, 2010.

[36] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell Labs Technical
Journal, vol. 39, no. 5, pp. 1253–1265, 1960.

[37] E. O. Elliott, “Estimates of error rates for codes on burst-noise channels,”
The Bell System Technical Journal, vol. 42, no. 5, pp. 1977–1997, 1963.

[38] G. Hasslinger and O. Hohlfeld, “The gilbert-elliott model for packet
loss in real time services on the internet,” in Proc. 14th GI/ITG
Conference on Measurement, Modelling and Evaluation of Computer
and Communication Systems (MMB 2008), Mar. 2008.

[39] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “BCube: a high performance, server-centric network architecture
for modular data centers,” ACM SIGCOMM Computer Communication
Review, vol. 39, no. 4, pp. 63–74, 2009.

[40] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “DCell: a
scalable and fault-tolerant network structure for data centers,” in ACM
SIGCOMM Computer Communication Review, vol. 38, no. 4. ACM,
2008, pp. 75–86.

[41] “Internet Topology Zoo,” Feb. 2017. [Online]. Available: http:
//www.topology-zoo.org

[42] A. F. Mendelson, M. A. Zuluaga, B. F. Hutton, and S. Ourselin, “What
is the distribution of the number of unique original items in a bootstrap
sample?” arXiv preprint arXiv:1602.05822, 2016.

https://rfc-editor.org/rfc/rfc3973.txt
https://rfc-editor.org/rfc/rfc8279.txt
https://rfc-editor.org/rfc/rfc5740.txt
https://datatracker.ietf.org/doc/html/draft-filsfils-spring-srv6-network-programming-03
https://datatracker.ietf.org/doc/html/draft-filsfils-spring-srv6-network-programming-03
https://datatracker.ietf.org/doc/html/draft-ietf-6man-segment-routing-header-08
https://datatracker.ietf.org/doc/html/draft-ietf-6man-segment-routing-header-08
https://rfc-editor.org/rfc/rfc8296.txt
http://www.topology-zoo.org
http://www.topology-zoo.org

	Introduction
	Statement of Purpose
	Related Work
	Reliable Multicast
	Information-Centric Networking (ICN)
	Bit-Indexed Explicit Replication (BIER)
	Segment Routing (SR)

	Paper Outline

	Overview: Reliable BIER with Peer Caching
	Segment Routing Recovery
	Peer Caching with Peerstrings

	Specification
	Source Operation
	Intermediate Router Operation
	Destination Operation

	Peer Selection Policies
	Random Peer Selection
	Deterministically Clustered Peer Selection
	Adaptive Statistically-driven Peer Selection

	Policy Analysis
	Recovery Locality
	Clustered and Random Policies
	Going Adaptive: the -Greedy Policy

	Simulation Environment
	Links and Link Loss Model

	Data-Center Simulations
	Network Topology
	Evaluation Objectives
	Static Peer Policy – One-Peerstring Mode
	Static Peer Policy – Two-Peerstrings Mode
	Adaptive Peer Policy

	ISP Simulations
	Network Topology
	Peer Selection Policies Evaluation

	Conclusion
	Proof of lemma 2
	Proof of lemma 3
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Corollary 2

	References

