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Abstract—Boolean network tomography is a powerful tool to
infer the state (working/failed) of individual nodes from path-
level measurements obtained by egde-nodes. We consider the
problem of optimizing the capability of identifying network
failures through the design of monitoring schemes. Finding an
optimal solution is NP-hard and a large body of work has been
devoted to heuristic approaches providing lower bounds. Unlike
previous works, we provide upper bounds on the maximum
number of identifiable nodes, given the number of monitoring
paths and different constraints on the network topology, the
routing scheme, and the maximum path length. These upper
bounds represent a fundamental limit on identifiability of failures
via Boolean network tomography. Our analysis provides insights
on how to design topologies and related monitoring schemes
to achieve the maximum identifiability under various network
settings. Through analysis and experiments we demonstrate the
tightness of the bounds and efficacy of the design insights for
engineered as well as real networks.

I. INTRODUCTION AND MOTIVATION

The capability to assess the states of network nodes in the
presence of failures is fundamental for many functions in
network management, including performance analysis, route
selection, and network recovery. In modern networks, the tra-
ditional approach of relying on built-in mechanisms to detect
node failures is no longer sufficient, as bugs and configuration
errors in various customer software and network functions
often induce “silent failures” that are only detectable from end-
to-end connection states [1]. Boolean network tomography [2]
is a powerful tool to infer the states of individual nodes of a
network from binary measurements taken along selected paths.
We consider the problem of Boolean network tomography in
the framework of graph-constrained group testing [3]. Classic
group testing [4], [5] studies the problem of identifying defec-
tive items in a large set S by means of binary measurements
taken on subsets Si ⊆ S (i = 1, . . . ,m). Close to the problem
of group testing, Boolean network tomography aims at iden-
tifying defective network items, i.e. nodes or links, in a large
set S including all the network components, by performing
binary measurements over subsets Si, i.e., monitoring paths.
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As in graph-based group testing, the composition of the testing
sets conforms to the structure of the network. In this regard,
Cheraghchi et al. [3] studied graph-constrained group testing
with the goal of minimizing the number of monitoring paths
needed to identify the state (defective or normal) of all network
nodes, under the assumption that the maximum number of
defective nodes is given. In their work, paths are defined by
random walks in the graph, and the authors give upper bounds
on the number of paths needed.

In our work, we tackle the problem of maximizing the
number of nodes whose states can be uniquely determined
from binary measurements on a given number of monitoring
paths. Unlike [3], we consider that monitoring paths are
constrained not only by the network topology, but also by
the routing scheme adopted in the network, and by additional
requirements in case of passive monitoring, i.e. monitoring
paths coinciding with some service related paths.

Due to the inherent hardness in computing the exact max-
imum value, we focus on deriving easily computable upper
bounds which allow us to: (i) evaluate the room of improve-
ment for a given monitoring scheme in a specific network
setting, and (ii) extract rules for network design to maximize
the number of identifiable nodes in a general setting.

The main contributions of this work are the following:

• We upper-bound the maximum number of identifiable
nodes with a given number of monitoring paths, in the
following scenarios: (1) paths between arbitrary nodes
under arbitrary routing (Theorem IV.1); (2) paths between
arbitrary nodes under consistent routing (Theorem IV.2);
(3) paths between arbitrary nodes under partially consis-
tent routing (Theorem IV.3); (4) paths from a single server
to multiple clients under consistent routing (Theorem
V.1); (5) paths from multiple servers to multiple clients
with fixed/flexible assignment under consistent routing
(Theorems V.2 and V.3).

• We give insights on the design of topologies and monitor-
ing schemes to approximate the bounds, grounded upon
the bound analysis.

• We demonstrate the tightness of the upper bounds by
providing constructive approaches and comparisons with
the results of known heuristics [6] on engineered as well
as real network topologies.

• We compare the bounds in different scenarios to evaluate
the impact of the routing scheme, the number of monitor-
ing paths, and the maximum path length on the number
of identifiable nodes.

ar
X

iv
:1

90
3.

10
63

6v
1 

 [
cs

.N
I]

  2
6 

M
ar

 2
01

9



2

II. RELATED WORK

Pioneered by Duffield [2], Boolean network tomography
has direct applications in network failure localization. The
early works focused on best-effort inference. For example,
Duffield et al. [2], [7] and Kompella et al. [1] aimed at
finding the minimum set of failures that can explain the
observed measurements, and Nguyen et al. [8] aimed at finding
the most likely failure set that explains the observations.
Later, the identifiability problem attracted attention. Ma et al.
characterized in [9] the maximum number of simultaneous
failures that can be uniquely localized, and then extended the
results in [10] to characterize the maximum number of failures
under which the states of specified nodes can be uniquely
identified as well as the number of nodes whose states can be
identified under a given number of failures. Galesi et al. [11]
study upper and lower bounds on the maximum identifiability
index of a topology, i.e. the maximum number of simultaneous
failures under which the monitoring system is still capable
of identifying the state of all network nodes. These studies
are orthogonal to ours, as we aim at bounding the number
of identifiable nodes, within a given identifiability index. The
related optimization problems have also been studied. The
problem of optimally placing monitors to detect failed nodes
via round-trip probing was introduced and proven to be NP-
hard by Bejerano et al. in [12]. The work by Cheraghchi et al.
[3] aimed at determining the minimum number of monitoring
paths to uniquely localize a given number of failures, under
the assumption that any path can be monitored. For monitoring
paths that start/end at monitors, Ma et al. [13] proposed
polynomial time heuristics to deploy a minimum number of
monitors to uniquely localize a given number of failures under
various routing constraints. When monitoring is performed at
the service layer, He et al. [6] proposed service placement
algorithms to maximize the number of identifiable nodes by
monitoring the paths connecting clients and servers.

Boolean network tomography is not to be confused with
robust network tomography, which aims at inferring fine-
grained performance metrics (e.g., delays) of non-failed links
under failures. For robust network tomography, Tati et al.
[14] proposed a path selection algorithm to maximize the
expected rank of successful measurements subject to random
link failures, and Ren et al. [15] proposed algorithms to
determine which link metrics can be identified and where to
place monitors to maximize the number of identifiable links,
subject to a bounded number of link failures. Robust network
tomography has also been studied under settings not limited
to failures [16], [17] to study the identifiability of additive link
metrics under topology changes.

Our work addresses the problem of maximizing the number
of identifiable nodes under failures. It extends a previous
work [18] with improved bounds, new design techniques and
characterization of monitoring topologies.

III. PROBLEM FORMULATION

Throughout the paper we use the definitions given in Table I,
and we use the short forms wrt for ”with respect to” and iff
for ”if and only if”. We model the network as an undirected

graph G = (V, E), where V is a set of nodes, and E is the set
of links. According to the needs of the discussion, a path p
defined on G is represented as either a set of nodes p, or as an
ordered sequence of nodes p̂, from one endpoint to the other.
Each node may be in working or failed state. The state of a
path is working if and only if all traversed nodes (including
endpoints) are in working state. Without loss of generality, we
assume that links do not fail and model network links through
logical nodes so that a link failure corresponds to the failure of
a logical node. The set of all failed nodes, denoted by F ⊆ V ,
defines the state of a network, and is called failure set.

Notation Description
T Testing matrix, T ∈ {0, 1}m×n, for m paths and n nodes
P Set of m monitoring paths P = {p1, . . . , pm}

p, p̂ ∈ P monitoring path as a set or a list of nodes, respectively
b(v) Boolean encoding of node v wrt P
b(v)|i i-th element of b(v) (equal to 1 iff v ∈ pi, to 0 otherwise)
χ(v) Crossing number of node v wrt a set of paths P
PF Incident set of paths of a failure set F
I(p) Set of identifiable nodes traversed by path p
M(p̂) Path matrix of path p̂
B Set of all the node encodings in {0, 1}m, with m paths

B|i ⊂ B {b ∈ B, s.t. b|i = 1}, i = 1, . . . ,m
B(k) ⊂ B {b ∈ B, s.t.

∑m
i=1 b|i = k}, k = 1, . . . ,m

`i(B) `i(B) = |B ∩ B|i|, where B ⊆ B

TABLE I
NOTATION TABLE

We assume that node states cannot be measured di-
rectly, but only indirectly via monitoring paths. Let P =
{p1, p2, . . . , pm} be a given set of m monitoring paths. We
call the incident set of vi the set of paths affected by the
failure of node vi and denote it with Pvi . We define with
χ(vi) , |Pvi |, the crossing number of node vi, which is the
number of monitoring paths traversing vi, i.e., the cardinality
of its incident set. We also denote the incident set of paths of
a failure set F with PF , ∪vi∈FPvi .

The testing matrix T is an m × n matrix, whose element
T |i,j = 1 if node vj is traversed by path pi, i.e., vj ∈ pi, and
zero otherwise. The j-th column of the test matrix T |∗,j is
the characteristic vector1 of Pvj , hereby denoted with b(vj) ,
T |∗,j and called the binary encoding of vj . Note that multiple
nodes may have the same binary encoding.

Observation III.1. Consider a node v, and a set P =
{p1, . . . , pm} of monitoring paths. It holds that v ∈ pi iff
the i-th element of its binary encoding is equal to 1, i.e.,
b(v)|i = 1; consequently, the crossing number χ(v) is equal
to the number of ones in the binary encoding of v, namely
χ(v) =

∑m
i=1 b(v)|i.

A. Identifiability

The concept of identifiability refers to the capability of
inferring the states of individual nodes from the states of
the monitoring paths. Informally, we say that a node v is 1-
identifiable with respect to a set of paths P , if its failure and

1A characteristic vector of a subset S of an ordered set of n elements
V = {v1, v2, . . . , vn} is a binary vector with ‘1’ only in the positions of
the elements of V that are included in S.
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the failure of any other node w cause the failure of different
sets of monitoring paths in P , i.e. v and w have different
incident sets. This concept can be extended to the case of
concurrent failures of at most k nodes, where a node is k-
identifiable in P if any two sets of failures F1 and F2 of size
at most k, which differ at least in v (i.e., one contains v and
the other does not), cause the failures of different monitoring
paths in P , i.e. F1 and F2 have different incident sets.

He et al. in [6] formalized the concept of k-identifiability
that we reformulate as follows:

Definition III.1. Given a set of monitoring paths P and a
node vi ∈ V , vi is called k-identifiable wrt P when for any
failure sets F1 and F2 such that F1 ∩ {vi} 6= F2 ∩ {vi}, and
|Fj | ≤ k (j ∈ {1, 2}), the incident sets PF1

and PF2
are

different. Equivalently, it holds that:∨
vs∈F1

b(vs) 6=
∨

vz∈F2
b(vz)

where with ”
∨

” we refer to the element-wise logical OR.

The following Lemma considers the special case of k = 1.

Lemma III.1. A node vi is 1-identifiable wrt P iff b(vi) 6= 0,
and ∀vj 6= vi, b(vj) 6= b(vi), i.e., its binary encoding is not
null and not identical with that of any other node.

Proof. Let us assume that vi is 1-identifiable, and consider
Definition III.1, for any two sets F1 and F2, each with
cardinality at most 1. Without loss of generality, we consider
vi ∈ F1, then F2 is either empty or contains only one node
vj , such that vj 6= vi. Therefore, Definition III.1 implies that
b(vi) 6= 0 (if we choose F2 = ∅) and b(vj) 6= b(vi), ∀vj 6= vi
(if we choose F2 = {vj}).

Let us now assume that node vi is such that b(vi) 6= 0,
and ∀vj 6= vi, b(vj) 6= b(vi). The assumption implies that
Pvi 6= ∅ and for any other node vj 6= vi, Pvj 6= Pvi , i.e., vi
is 1-identifiable according to Definition III.1.

We clarify that by Lemma III.1, a node with null encoding
is not 1-identifiable, even if its encoding were unique, which
happens when it is the only non-monitored node. This is
because, for a node to be considered identifiable, we must
be able to assess its status, working or failed, based only on
the status of the monitoring paths, which requires the node to
be traversed by at least a path.

B. Bounding identifiability

The set of monitoring paths P is usually the result of design
choices related to topology, monitoring endpoints, routing
scheme, etc. Given a collection of candidate path sets P under
all possible designs2, the question is: how well can we monitor
the network using path measurements in P and which design is
the best? Using the notion of k-identifiability, we can measure
the monitoring performance by the number of nodes that are
k-identifiable wrt P ∈ P , denoted by φk(P ), and formulate
this question as an optimization: ψk(P) , maxP∈P φk(P ).

2For example, P may be the class of path sets of given cardinality, or
paths of a given length between given sources and each of multiple candidate
destinations.

Although extensively studied [12], [3], [13], [6], the optimal
solution is hard to obtain due to the (exponentially) large size
of P , and heuristics are used to provide lower bounds. There
is, however, a lack of general upper bounds. In this work we
establish upper bounds on ψk(P) in representative scenarios.
Knowledge of these upper bounds is key to understanding the
fundamental limits of Boolean network tomography, and gives
insights on the optimal network design to facilitate network
monitoring.

Note that if vi is k-identifiable wrt P for any k ≥ 1, then
vi is also 1-identifiable wrt P .

Lemma III.2. For any k ≥ 1 and any collection P of
candidate path sets, ψ1(P) ≥ ψk(P).

Proof. Given the optimal choice of monitoring paths P ∗ ∈ P
achieving ψk(P), we have ψ1(P) ≥ φ1(P ∗) ≥ φk(P ∗) =
ψk(P), where the first inequality is by definition of ψ1(P)
and the second inequality is by Definition III.1.

Therefore, in the sequel, we look for upper bounds on
ψ1(P), simply denoted by ψ(P), where we will replace P
by specific parameters in each network setting. We hereafter
shortly call the 1-identifiable nodes “identifiable”.

IV. GENERAL NETWORK MONITORING

We initially consider a generic network with a given number
of monitoring paths between any nodes. We analyze ψ(P) in
three cases: (i) arbitrary routing, (ii) consistent routing, and
(iii) partially-consistent routing.

A. Arbitrary routing

1) Identifiability bound: Given a network with n nodes,
and m monitoring paths, the number of nodes that are 1-
identifiable may grow exponentially with the number of paths.

Proposition IV.1. Given a network with n nodes, and a set of
m monitoring paths pi, i = 1, . . . ,m, we denote with I(pi)
the set of identifiable nodes traversed by pi and with di ≤ n
the length of pi in number of nodes. It holds that |I(pi)| ≤
min{di; 2m−1}.

Proof. By Lemma III.1, in order for a node to be identifiable,
its binary encoding must be unique. By Observation III.1,
the encodings of all the nodes traversed by path pi, have a
one in the i-th position. It follows that the number |I(pi)| of
identifiable nodes traversed by path pi is upper-bounded by its
length di and by the number of sequences of m bits (binary
encodings), where the i-th bit is a one, which is 2m−1.

Theorem IV.1 (Identifiability under arbitrary routing with
known average path length). Given a network with n nodes,
and a set P of m > 1 arbitrary routing paths, where d̄ ≤ n is
the average path length, the maximum number of identifiable
nodes in the network satisfies:

ψAR(m,n, d̄)≤min

{
imax∑
i=1

(
m

i

)
+

⌊
Nmax −

∑imax
i=1 i ·

(
m
i

)
imax + 1

⌋
;n

}
,

where imax = max{k |
∑k

i=1 i ·
(
m
i

)
≤ Nmax},
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and3 Nmax = m ·min{d̄; 2m−1}.

Proof. The number |I(pi)| of identifiable nodes traversed
by a path pi of length di, i ∈ {1, . . . ,m}, is bounded as
described by Proposition IV.1. Consequently, the number of
identifiable nodes is also bounded from above as follows:
| ∪mi=1 I(pi)| ≤

∑m
i=1 |I(pi)| ≤

∑m
i=1 min{di; 2m−1} ≤

m ·min{d̄; 2m−1} = Nmax.
Since we used the union bound to calculate Nmax, this value

considers some encodings multiple times when the related
node belongs to more than one path. This happens, according
to Observation III.1, χ(v) times for each node v.

It follows that the number of distinct encodings is maxi-
mized when we minimize the number of encoding replicas
and therefore the crossing number of the related nodes. This
is achieved, within the limits of the path length, when we
have

(
m
1

)
nodes with crossing number equal to 1 (counted

only once in Nmax),
(
m
2

)
nodes with crossing number equal to

2 (counted twice in Nmax), and so forth, until the total number
of encodings (counting the replicas) is Nmax.

More formally, let imax = max{k |
∑k

i=1 i ·
(
m
i

)
≤ Nmax}.

For each i ≤ imax, we have
(
m
i

)
nodes with crossing number

equal to i, i.e., traversed by i paths. Considering that the
remaining Nmax −

∑imax
i=1 i ·

(
m
i

)
encodings will have at least

(imax + 1) digits equal to 1 and thus are counted at least
(imax + 1) times in Nmax, the number of distinct encodings
out of the Nmax encodings is upper-bounded by:

ψAR(m,n, d̄) ≤
∑imax

i=1

(
m
i

)
+

⌊
Nmax−

∑imax
i=1 i·(m

i )
imax+1

⌋
.

Considering also that the number of identifiable nodes cannot
exceed n, we have the final bound.

We underline that Theorem IV.1 provides a topology-
agnostic bound, i.e., a theoretical limit which is valid for any
topology and only considers the number of nodes, the number
of monitoring paths, and the average path length4 d̄.

We observe that when paths have arbitrary unbounded
length, we have Nmax = m · 2m−1, and imax = m. In such
a case, Theorem IV.1 reduces to the following corollary for
unbounded path length.

Corollary IV.1 (Identifiability under arbitrary routing and
unbounded path length). Given a network with n nodes and
a set P of m monitoring paths, the maximum number of
identifiable nodes satisfies:

ψAR(m,n) ≤ min{n; 2m − 1}.

Notice that it may be of interest to have a bound on the
number of identifiable nodes when the average length of
monitoring paths is not known but there are topology or QoS
related constraints on the length of a path expressed in terms
of a maximum value dmax. In this case, we have the following
variation of the bound due to the fact that:

d̄ ≤ max
i
{di} ≤ dmax.

3By definition Nmax is an integer number.
4As the constraints imposed by the topology of the network and path routing

are not taken into account in this theorem, its validity holds also for any group
testing problem where m groups of known average size, are used to inspect
the state of n elements.

Corollary IV.2 (Identifiability under arbitrary routing and
bounded maximum path length). Given a network and a set P
of m > 1 arbitrary routing paths with maximum length dmax,
the maximum number of identifiable nodes in the network is
upper-bounded as in Theorem IV.1, except that Nmax is now
defined as: Nmax = m ·min{dmax; 2m−1}.

2) Design via Incremental Crossing Arrangement (ICA):
The proof of Theorem IV.1 suggests a technique to build a
network topology G = (V,E) and related monitoring paths
P with maximum identifiability, where |P | = m. We call this
technique Incremental Crossing Arrangement (ICA).

ICA, the idea. The technique works by generating node
encodings in increasing order of crossing number with respect
to the monitoring paths in use, until the number of gener-
ated encodings reaches the bound defined in Theorem IV.1.
Monitoring paths must be designed so as to traverse nodes
according to the generated encodings: path pi traverses any
node v for which b(v)|i = 1, ∀i ∈ {1, . . . ,m}. The network
topology is then constructed by considering a node for each
of the generated Boolean encodings, and adding links between
any pair of nodes appearing sequentially in any path.

ICA in details. In the following we consider an arbitrarily
large number of nodes n, such that n is larger than the
bound on identifiability provided by Theorem IV.1, to exclude
settings where the bound is trivially equal to the number
of nodes n. Algorithm 1 formalizes the incremental crossing
arrangement design, used to determine the binary encodings
of the identifiable nodes.

As we consider m paths, the node encodings will be
sequences of m bits in B , {0, 1}m. We also denote with
B|i ⊂ B the set of m-digits binary encodings having a 1 in
the i-th position, i.e., B|i = {b ∈ B s.t. b|i = 1}. The nodes
corresponding to encodings of B|i will be monitored (at least)
by path pi. Moreover, we denote with B(k) ⊂ B the set of all
binary encodings having exactly k digits equal to 1, therefore
B(k) , {b ∈ B s.t.

∑m
i=1 b|i = k}. The nodes corresponding

to encodings in B(k) have crossing number equal to k.
Finally, given a generic set of binary encodings B ⊆ B, we

denote with `i(B) the number of encodings of B having a one
in the i-th position: `i(B) , |B ∩ B|i|. The value of `i(B)
represents the length of a path pi traversing all the nodes in
B ∩ B|i, exactly once.

Without loss of generality, we consider paths of balanced
length, i.e. we set the length di of path pi to a value di ∈
{bd̄c, bd̄c+ 1} (lines 2 - 4).

The incremental crossing arrangement approach incremen-
tally generates the solution set BV by incuding all the en-
codings of B(i), i = 1, . . . , imax corresponding to nodes with
crossing number lower than or equal to imax. It then considers
some encodings with (imax + 1) digits equal to one. For this
purpose it generates a family F of subsets in B(imax + 1),
i.e., F ⊆ 2B(imax+1) (line 7) whose elements B are such that
`k(B ∪ BV ) ≤ dk. The algorithm then looks for a maximal
cardinality set B∗ in the family F and adds it to the solution
BV , s.t. BV = ∪imaxk=1B(k)∪B∗. Notice that the maximality of
the cardinality of B∗ implies that no encoding with (imax +1)
digits equal to one can be added to the set BV without
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violating the path length constraint `k(BV ) ≤ dk for some
path k = 1, . . . ,m, or without removing at least one encoding
already in BV .

The procedure described so far is sufficient to produce a
network topology and related paths, meeting the bound of
Theorem IV.1, with m paths of average length lower than
or equal to d̄. In the produced topology, there can be values
of k ∈ {1, . . . ,m} for which `k(BV ) < dk and, more
precisely, given the balanced path length, `k(BV ) = dk − 1,
corresponding to paths longer than strictly necessary to meet
the bound of Theorem IV.1, i.e. overlength paths. Overlength
paths cannot traverse nodes with the same encoding without
compromising the achievement of maximum identifiability.
Therefore, to meet the bound with average path length exactly
equal to d̄, we proceed as follows, with a procedure that we
call Path Completion.

Let S ⊂ {1, . . . ,m} be the set of overlength path indexes,
namely S , {k, s.t. `k(BV ) = dk − 1}. It holds |S| =[
(Nmax −

∑imax
i=1 i ·

(
m
i

)
) mod (imax + 1)

]
, hence the number

of overlength paths is lower than or equal to imax.
We choose an encoding b′ ∈ BV ∩ B(imax + 1− |S|) such

that b′|k = 0,∀k ∈ S, and such that
(∨

k∈S ek ∨ b′
)
/∈ BV ,

where ek is an m-dimensional identity vector with all zeroes
but a one in the k-th position5. Then we remove b′ from the
solution set BV and replace it with b′′ ,

∨
k∈S ek ∨ b′, i.e.,

with a new encoding b′′ such that b′′|k = 1,∀k ∈ S, and
b′′|k = b′|k otherwise.

〈0100〉

〈1100〉

〈1000〉 〈0010〉

〈0011〉

〈0001〉

〈1010〉

〈0101〉

p1
p2
p3
p4

Fig. 1. ICA execution on Example A.

〈1000〉

〈1100〉

〈1110〉 〈0011〉

〈1001〉

〈0001〉〈0100〉

〈0010〉 〈0101〉

〈1010〉
p1
p2
p3
p4

Fig. 2. ICA execution on Example B.

ICA: example A (where path completion is not necessary).
Figure 1 shows an example of a topology generated by means
of incremental crossing arrangement. We are given m = 4 and

5We can always find an encoding b′ with the described properties because
BV contains all the encodings of B(imax+1−|S|) and not all the encodings
b of the set B(imax + 1) for which b|i = 1, ∀i ∈ S.

Algorithm 1: Incremental Crossing Arrangement
Input: m and d̄.
Output: A set of encodings BV which can be mapped to a topology

graph G = (V,E), with m paths with average length d̄, such
that ψ∗AR(m, d̄) corresponding nodes are identifiable.

1: Calculate Nmax and imax according to Theorem IV.1, and

ψ∗AR(m, d̄) ,
∑imax

i=1

(m
i

)
+

⌊
Nmax−

∑imax
i=1 i·

(
m
i

)
imax+1

⌋
2: Calculate m1 , m · (d̄− bd̄c) ;
3: For i = 1, . . . ,m1 do set di = bd̄c+ 1
4: For i = m1 + 1, . . . ,m do set di = bd̄c
5: BV = ∅
6: For i = 1, . . . , imax do BV = BV ∪ B(i)
7: Calculate the family F defined as
F , {B : B ⊆ B(imax + 1) ∧ `k(B ∪BV ) ∈ [dk − 1, dk], ∀k}

8: Choose B∗ = arg maxB∈F |B|
9: BV = BV ∪B∗

10: if ∃k ∈ {1, . . . ,m} s.t. `k(BV ) = dk − 1 then
Perform path completion and update BV

11: Return BV

d̄ = 3, and n arbitrarily large (any value larger than 8 works in
this example). Applying Algorithm 1 we have Nmax = m · d̄ =
12, and imax = 1. We also have ψ∗AR = 8. We set di =
3,∀i ∈ {1, . . . , 4} (lines 2 - 4). According to ICA, we first
generate all the encodings of B(imax) = B(1) and set BV =
B(1) = {1000, 0100, 0010, 0001} (line 6). Then we generate
some encodings in B(2) until no other encoding can be added
without violating the path length constraint (line 9), obtain-
ing BV = {1000, 0100, 0010, 0001, 1100, 0011, 1010, 0101},
where each encoding corresponds to a node of the graph G.
Then we define the corresponding monitoring paths, by letting
path pi traverse all the nodes whose encoding has a 1 in the
i-th position, in arbitrary order, ∀i ∈ {1, . . . ,m}. Finally, we
design the underlying topology by connecting each pair of
nodes appearing in a sequence in any of the paths, as shown
in Figure 1.

ICA: example B (with path completion). Figure 2 shows
another example of a topology generated by means of
incremental crossing arrangement. We are given m = 4
and d̄ = 4.25, and n arbitrarily large (any value larger than
10 works in this example). Applying Algorithm 1 we have
Nmax = m·d̄ = 17, and imax = 2. We also have ψ∗AR = 10. To
meet the requirement on average lenght, we set d1 = 5, and
d2 = d3 = d4 = 4 (lines 2 - 4). According to ICA (line 6), we
first generate all the encodings of B(1) and B(2) and set BV =
{1000, 0100, 0010, 0001, 1100, 1010, 1001, 0110, 0101, 0011}.

Finally, we observe that `1(BV ) = 4 < d1. We then
perform the path completion procedure (line 10) and choose
one of the encodings b′ in BV ∩ B(imax + 1 − |S|) = B(2)
for which b′|1 = 0 and b′ ∨ e1 /∈ BV . One encoding
that satisfies this condition is b′ = 0110. We replace
b′ with b′′ = 1110. We obtain the set of encodings
{1000, 0100, 0010, 0001, 1100, 1010, 1001, 1110, 0101, 0011},
each corresponding to a node of the graph G. Then we define
the corresponding monitoring paths, by letting path pi traverse
all the nodes whose encoding has a 1 in the i-th position,
in arbitrary order, ∀i ∈ {1, . . . ,m}. Finally, we design
the underlying topology by connecting each pair of nodes
appearing in a sequence in any of the paths, obtaining the
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topology of Figure 2.
It is worth observing the following.

Observation IV.1. ICA produces a network topology and
related monitoring paths such that all nodes have a crossing
number lower than or equal to (imax + 1).

3) Tightness of the bound on identifiability under arbitrary
routing: In this section we show that the bound given by
Theorem IV.1 can be achieved tightly for a specific family
of topologies constructed via ICA.

Proposition IV.2 (Tightness of Theorem IV.1). For any m ∈
Z+ (positive integer) and d̄ > 0, there exists a set P of m
monitoring paths with average length d̄, such that the number
of nodes identifiable by monitoring P equals the bound given
in Theorem IV.1:

ψ∗AR(m, d̄) =

imax∑
i=1

(
m

i

)
+

⌊
Nmax −

∑imax
i=1 i ·

(
m
i

)
imax + 1

⌋
.

Proof. We recall that the ICA technique builds a topology by
creating nodes with unique encodings, in increasing order of
crossing number, up to (imax+1). To prove the proposition, we
need to show that the number of identifiable nodes is equal to
the one provided by the bound of Theorem IV.1. ICA initially
generates all the encodings of B(i), for i = 1, . . . , imax. As
a consequence, notice that each path will traverse at least
d(imax) ,

∑imax−1
i=0

(
m−1

i

)
identifiable nodes. In fact, the

encodings of the nodes of I(pi) (identifiable nodes traversed
by path pi), must have a ”1” in the i-th position. Therefore the
number of distinct encodings corresponding to nodes of I(pi)
is at least equal to the number of binary sequences of (m−1)
elements, with up to (imax − 1) ones, which is d(imax).

Under incremental crossing arrangement, each path also
traverses other nodes with crossing number equal to (imax +
1). Each of these nodes will appear in exactly (imax + 1)
paths. The number of such nodes is therefore given by⌊∑m

k=1(dk−d(imax))
(imax+1)

⌋
.

In conclusion, with this construction, ICA generates the
following number of node encodings:
•
(
m
i

)
encodings corresponding to nodes with crossing

number equal to i, for i = 1, . . . imax, and
•
⌊∑m

k=1(dk−d(imax))
(imax+1)

⌋
encodings corresponding to nodes

with crossing number equal to (imax + 1).
The number of generated encodings does not change if ICA

applies the path completion procedure, which consists in a
replacement of an encoding b′ ∈ ∪imaxi=1B(i) with an encoding
b′′ ∈ B(imax+1). In both cases, ICA constructs the set BV in a
way that each encoding corresponds to a unique node, and the
nodes are traversed by paths of average length d̄, guaranteeing
identifiability of all the nodes corresponding to the generated
encodings.

In order to show that the number of identifiable nodes is
equal to the one provided by the bound of Theorem IV.1, we

need to prove that
⌊∑m

k=1(dk−d(imax))
(imax+1)

⌋
=

⌊
Nmax−

∑imax
i=1 i·(m

i )
(imax+1)

⌋
,

which holds because
∑m

k=1 dk = m · d̄ = Nmax, and m ·

d(imax) = m ·
∑imax−1

i=0

(
m−1

i

)
=
∑imax

i=1 i ·
(
m
i

)
, which can

easily be proven by expanding the binomial coefficients.

Notice that Proposition IV.2 requires d̄ ≤ 2m−1 as having
longer paths would require at least a path to traverse different
nodes with duplicate encodings, losing identifiability with
respect to the bound value.

While Proposition IV.2 gives a characterization of suffi-
cient conditions for building a network topology achieving
the bound, we note that there exist topologies that do not
meet the conditions, but still achieve the bound. We leave
the characterization of necessary conditions for achieving the
bound defined in Theorem IV.1 to future work.

B. Consistent routing

As we have seen in Theorem IV.1, given a number of
monitoring paths, the number of identifiable nodes can be
exponential in the number of paths. Nevertheless the bound
of Theorem IV.1 is achieved only when the routing scheme
allows paths to traverse arbitrary sequences of nodes.

If routing needs to meet additional requirements, the theo-
retical bound given by Theorem IV.1 can be reduced.

We now consider the impact of the routing scheme on the
identifiability of nodes via Boolean tomography.

1) Identifiability bound: In the sequel, we assume that paths
satisfy the following property of routing consistency.

Definition IV.1. A set of paths P is consistent if ∀p, p′ ∈ P
and any two nodes u and v traversed by both paths (if any),
p and p′ follow the same sub-path between u and v.

Figure 2 is an example of non-consistent routing. Indeed,
some monitoring paths traverse different routes between the
same pair of nodes. For example paths p1 and p3 choose dif-
ferent routes to go from node 1110 to node 1010, across nodes
1001 and 0011, respectively. Nevertheless, if p1 followed the
same route as p3, through node 0011, the node currently
having encoding 1001 would have the new encoding 0001,
and it would no longer be identifiable due to the simultaneous
presence of another node with the same encoding.

An example of consistent routing of monitoring paths is
instead given in Figure 3.

We remark that routing consistency is satisfied by many
practical routing protocols, including but not limited to shortest
path routing (where ties are broken with a unique deterministic
rule). Note that routing consistency implies that paths are
cycle-free.

We define the path matrix of p̂i as a binary matrix M(p̂i), in
which each row is the binary encoding of a node on the path,
and rows are sorted according to the sequence p̂i. Notice that
by definition M(p̂i)|∗,i has only ones, i.e., M(p̂i)|r,i = 1, ∀r.

Lemma IV.1. Under the assumption of consistent routing, if
any two different rows of the matrix M(p̂i) are equal, then
the corresponding nodes are not 1-identifiable.

Proof. Under consistent routing, the path p̂i cannot contain
any cycle, so every row of M(p̂i) corresponds to a different
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node. If two different nodes have the same binary encoding,
by Lemma III.1, the two nodes are not identifiable.

Definition IV.2. A column M(p̂)|∗,k (k = 1, . . . ,m) of a path
matrix M(p̂) has consecutive ones if all the “1”s appear in
consecutive rows, i.e., for any two rows i and j (i < j), if
M(p̂)|i,k = M |j,k = 1, then M |h,k = 1 for all i ≤ h ≤ j.

Lemma IV.2. Under the assumption of consistent routing, all
the columns in all the path matrices have consecutive ones.

Proof. The assertion is true for M(p̂i)|∗,i since it contains
only ones. Let us consider column M(p̂i)|∗,j , with j 6= i.
Assume by contradiction that there are two rows k1 < k2
s.t. M(p̂i)|k1,j = M(p̂i)|k2,j = 1 but there is a row h with
k1 < h < k2 for which M(p̂i)|h,i = 0. Let v1, v2, and
vh be the nodes with encodings M(p̂i)|k1,∗, M(p̂i)|k2,∗, and
M(p̂i)|h,∗, respectively. Then the paths p̂i and p̂j traverse both
nodes v1 and v2 following different paths, of which only p̂i
traverses node vh, in contradiction with consistent routing.

Lemma IV.3. Given m = |P | > 1 consistent routing paths,
each path pi having length di, the maximum number of
different encodings in the rows of M(p̂i) is upper-bounded
by min{di; 2 · (m− 1)}.

Proof. While the number of different encodings appearing in
the rows of M(p̂i) is trivially bounded by di, it can even be
lower. By considering each column of M(p̂i) separately we
observe the following. First, column M(p̂i)|∗,i contains only
ones. Second, for any column M(p̂i)|∗,j with j 6= i, it holds,
by Lemma IV.2, that it has a consecutive ones.

We say that column k has a flip in row r if M(p̂i)|r−1,k 6=
M(p̂i)|r,k. Due to Lemma IV.2 any column of M(p̂i) can have
up to two flips or it would create a fragmented sequence of
ones, violating Lemma IV.2. In fact, if the column starts with
a 0 in the first row, it can flip from 0 to 1 in row r1 and
then back in row r2, with r2 > r1, but if it flips from 1 to
0 it can not flip back in a successive column. If instead the
column starts with a 1 in the first row, it can only flip once.
In order to have a change in the encoding contained in any
two successive rows r − 1 and r of the matrix M(p̂i), i.e.,
M(p̂i)|r−1,∗ 6= M(p̂i)|r,∗, there must be at least a column
that flips in r. The number of columns that can flip is m− 1
and each of them can flip at most two times. The number
of different rows that can be observed in M(p̂i) is therefore
upper-bounded by the smallest between the path length di and
2 · (m− 1).

〈0010〉

〈0110〉

〈1110〉

〈1100〉

〈1000〉〈0100〉

〈1011〉〈0011〉〈0001〉 〈1001〉

p1
p2
p3
p4

Fig. 3. Consistent routing paths identifying all nodes of the network.

For example, the matrices of the paths of Figure 3 have
columns with consecutive ones and each column flips at most
twice, so the number of different rows is lower than, or equal
to 2 · (m− 1) = 6. For instance, M(p̂3) is:

M(p̂3) =


flips b1 b2 b3 b4
0 0 0 1 0
1 0 1 1 0
2 1 1 1 0
3 1 0 1 1
4 0 0 1 1


We now give an upper bound on the number of identifiable

nodes under consistent routing.

Theorem IV.2 (Identifiability with consistent routing). Given
n nodes, and a set P of m > 1 consistent routing paths, with
average path length d̄, the maximum number of identifiable
nodes ψCR, for any G and any location of the path endpoints,
is upper-bounded as in Theorem IV.1,

ψCR(m,n, d̄)≤min

{
imax∑
i=1

(
m

i

)
+

⌊
Nmax −

∑imax
i=1 i ·

(
m
i

)
imax + 1

⌋
;n

}
,

where imax = max{k |
∑k

i=1 i ·
(
m
i

)
≤ Nmax}, except that

Nmax is now defined as follows:

Nmax = m ·min{d̄ ; 2 · (m− 1)}.

Proof. The proof is analogous to the one of Theorem IV.1,
as again we want to minimize the number of ones in the
encodings of the nodes in order to avoid repetitions. The
difference with the arbitrary routing case lies in the value of
Nmax, that now is the sum, extended to all paths, of the bound
shown in Lemma IV.3.

As we did in the case of arbitrary routing, we focus on
the situation in which there is an upper bound on the length
of monitoring paths, but the individual path length is not
fixed, nor is the average path length. In this case, we have
the following variation of the bound due to the fact that

d̄ ≤ max
i
{di} ≤ dmax.

Corollary IV.3 (Identifiability under consistent routing, and
bounded maximum path length). Given a network and a set P
of m > 1 consistent routing paths with maximum length dmax,
the maximum number of identifiable nodes in the network is
upper-bounded as in Theorem IV.1, except that Nmax is now
defined as: Nmax = m ·min{dmax; 2 · (m− 1)}.

2) Tightness of the bound and design insights: It must
be noted that differently from the case of arbitrary routing,
ICA is not always applicable to produce tight topologies, as
additional requirements on the path length and number of paths
are needed to ensure routing consistency. Nevertheless, we can
still use ICA for certain values of m, n and d̄, and obtain a
network topology that achieves the bound of Theorem IV.2. In
particular we aim at creating a topology and routing scheme
with the maximum number of nodes with unique encoding and
minimum crossing number.

First, we use ICA to generate the topology shown in Figure
4, that we name half-grid. In this example, the number of paths
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t1, t2 t3 t4 t5 t6 t7 t8

s8

s7

s6

s5

s4

s3

s2

s1

Fig. 4. An example of half-grid graph

t1, t2 t3 t4 t5 t6 t7 t8

s8

s7

s6

s5

s4

s3

s2

s1

Fig. 5. An example of half-grid graph with two additional nodes.

is m = 8. The figure highlights the source si and destination
ti of any path pi, i = 1, . . . ,m, where di = 8 for all paths,
hence d̄ = m = 8. Observe that the half-grid satisfies the
condition of routing consistency, and all the n =

(
8
1

)
+
(
8
2

)
=

36 nodes are identifiable. In agreement with Observation IV.1,
the maximum crossing number in this topology is equal to
imax = 2.

Such topology can be easily generalized by observing that
its nodes are exactly those traversed by either one or two paths,
hence it can be built for any m paths, n = m·(m+1)/2 nodes
and di = m. In the resulting half-grid, routing is consistent
and all nodes are identifiable.

Then, in Figure 5, we modified the half-grid of Figure 4, by
adding two new nodes (the two red nodes of the figure) using
m = 8 paths, numbered as above, and d1 = . . . = d6 = 9,
d7 = d8 = 8, meaning that d̄ = 70

8 = 8.75. Also in this
case, we generated the node encodings in increasing order of
the crossing number, and the maximum crossing number is
equal to imax = 3. Again, it holds that routing is consistent
and that the bound of Theorem IV.2 is achieved tightly, ψCR =(
8
1

)
+
(
8
2

)
+
⌊
6
3

⌋
= 38.

We conclude that the topology of the half-grid can be
modified by allowing paths to have longer lengths, adding
some nodes with crossing number equal to 3 positioned in a
way that routing is still consistent, while the bound of Theorem
IV.2 will still be tight. Notice that if m ≤ 4, the half-grid
topology meets the bound of Theorem IV.2 for all values of
d̄.

However, half-grid based topologies are not the only ones
that can achieve the bound. An example is given in Figure 6

Fig. 6. A topology that meets the bound of Theorem IV.2 with m = 7 and
d̄ = 82

7
, and dmax = 12.

where ICA was used for m = 7 consistent routing paths, each
with length 12, except for one that has length 10, thus d̄ = 82

7
and dmax = 12. All the 39 nodes in the figure are identifiable,
and so the bound of Theorem IV.2 is achieved tightly and with
nodes whose crossing number is always lower than or equal
to 3. It remains open to find the general family of topologies
that can achieve the bound in Theorem IV.2.

C. Partially-consistent routing

In this section, we relax the notion of routing consistency
to provide a more general bound, which considers a limited
number of violations of routing consistency.

Definition IV.3. If each path pi ∈ P can be divided into
up to q segments s1(pi), s2(pi), . . . , sq(pi), such that the
property of routing consistency holds for the set P1/q =
∪pi∈P {s1(pi), s2(pi), . . . , sq(pi)}, then the routing scheme is
called 1/q - consistent.

The following Lemma provides an analysis of the combi-
natorial patterns of consecutive ones under the assumption of
1/q-consistent routing.

Lemma IV.4. Under the assumption of 1/q-consistent routing,
given a path p̂i ∈ P , all the columns k = 1, . . . ,m of the path
matrix M(p̂i) have up to q sequences of consecutive ones.

Proof. Due to the 1/q-consistency property of Definition IV.3,
the sub-matrices formed by the rows corresponding to the
consistent routing segments of any path matrix will meet
the consecutive ones property expressed by Lemma IV.2.
Therefore, 1/q-consistency implies that each column can only
have up to q sequences of consecutive ones.

In the following Lemma, we compute the maximum number
of different encodings of a path matrix.

Lemma IV.5. Given a path pi ∈ P of length di, under
the assumption of 1/q-consistent routing, with m = |P | > 1
monitoring paths, the maximum number of different encodings
in the rows of M(p̂i) is min{2m−1; 2q · (m− 1); di}.

Proof. The number of different encodings in the rows of
M(p̂i) is bounded by the length of p̂i, di. As the i-th column of
M(p̂i) contains only ones, the different encodings in its rows
can only be obtained by varying the values of the elements
in the other columns. Accordingly, the number of different
encodings in the rows of M(p̂i) is also bounded by 2m−1.
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Furthermore, for any column M(p̂i)|∗,j with j 6= i, it holds,
by Lemma IV.4, that it has at most q sequences of consecutive
ones. As a consequence, every column of M(p̂i) can have no
more than 2q flips. In order to have different encodings in any
two successive rows r and r+ 1 of the matrix M(p̂i), that is
M(p̂i)|r,∗ 6= M(p̂i)|r+1,∗, there must be at least a column that
flips in r. Notice that the total number of columns that can
flip is m−1 and each of them can flip no more than 2q times.
When this bound is achieved, all columns other than the i-th
column would have started from 0, flipped to 1, and then to
0 q times. The number of different rows that can be observed
in M(p̂i) is therefore upper-bounded by 2q · (m− 1).

We derive the upper-bound on the maximum number of
identifiable nodes under partially-consistent routing in the
following Theorem:

Theorem IV.3 (Partially-consistent routing). In a general
network with n nodes, m > 1 monitoring paths and average
path length d̄, the number of identifiable nodes under 1/q-
consistent routing is upper bounded as in Theorem IV.1, except
that Nmax is replaced by

Nmax = m ·min{2m−1; 2q · (m− 1); d̄}.

Proof. The proof can be addressed as the one of Theorem
IV.1. The maximum number of different encodings that can
be observed in m path matrices under the assumption of
1/q-consistent path routing is bounded by Nmax = m ·
min{2m−1; 2q · (m − 1); d̄}, that is the sum for all paths of
the bound shown in Lemma IV.5.

In the particular case of q = 2, we use the term half-
consistency. Such a case is of particular interest. In fact, Al-
Fares et al. in [19] proposed a half-consistent routing scheme
to be adopted in fat-tree topologies, with the purpose to
optimize bisection bandwidth. The proposed routing scheme
spreads outgoing traffic among interconnected hosts as evenly
as possible. We devote the following Section VI-D to the
analysis of half-consistent routing in fat-tree topologies.

Another motivating example for the study of 1/q-consistent
routing is a multi-domain network with q domains, in which
routing consistency is guaranteed inside each domain, but
inter-domain traffic can be split among multiple gateways
between domains.

D. A case study on half-consistent routing: fat-tree networks

Typical data-center topologies are based on two or three
levels of switches arranged into tree-like topologies. A com-
mon topology built of commodity Ethernet switches is the
fat-tree topology [20]. Recent works on data-center design and
optimization propose the use of fat-tree topologies to deliver
high bandwidth to hosts at the leaves of the fat-tree. A special
instance of a k-ary fat-tree together with a related addressing
and routing scheme is described in the work of Al-Fares et al.
in [19]. Here the authors suggest the use of homogeneous
k-port switches to build the fat-tree topology and connect
up to k3/4 hosts. An example with 3 layers and k = 4 is
shown in Figure 7. In order to achieve maximum bisection
bandwidth, which requires spreading the pod’s outgoing traffic

Fig. 7. Fat-tree with 3 layers and k = 4. Blue and red paths highlight routing
inconsistency.

uniformly to the core switches, the authors of [19] propose
the use of a joint routing and addressing scheme which
violates the consistent routing assumption in two aspects: (1)
routes between different source-destination pairs may not be
consistent, (2) routes in different directions between the same
source-destination pair may not be consistent either.

As an example consider the highlighted paths in
Figure 7. The blue path p1 is used to send probing
packets from the host 10.1.0.3 to the host 10.3.1.3.
p1 consists of the following list of nodes: p1 =<

10.1.0.3, 10.1.0.1, 10.1.3.1, 10.4.2.1, 10.3.3.1, 10.3.1.1, 10.3.1.3 >.
Consider now, the red path p2 that is used to send
a packet from host 10.1.1.3 to host 10.3.0.2. This
path consists of the following list of nodes: p2 =<

10.1.1.3, 10.1.1.1, 10.1.3.1, 10.4.2.2, 10.3.3.1, 10.3.0.1, 10.3.0.2 >.
It follows that the routing scheme shown in Figure 7 is not
consistent, as the path between the aggregation switches
10.1.3.1 and 10.3.3.1 can be different depending on the
source and the destination hosts. Nevertheless, this is a case
of half-consistent routing scheme, because the routing scheme
only affects the choice of the core switches, while the other
parts of the paths are fixed.

Proposition IV.3. Any shortest-path routing scheme on a fat-
tree is half-consistent.

Proof. Let us call us(p) and ut(p) the source and the desti-
nation endpoints of p, and let us call the upper node um(p)
the node of p that is the farthest from the endpoints. Due to
the structure of the fat-tree, there is only a unique path s1(p)
from us(p) to um(p), and a unique path s2(p) from um(p)
to ut(p). Therefore, for any two intermediate nodes on si(p)
(i = 1, 2), there cannot be any alternative path between them,
and the routing of these path segments is consistent.

We devote Section VI-D to an experimental evaluation of
identifiability bounds on fat-tree topologies.

V. SERVICE NETWORK MONITORING

We consider a service network where we monitor paths
between clients and servers, under consistent routing in the
case of (i) single-server and (ii) multi-server monitoring. To
this purpose we refer to the work of He et al. [6], in which
passive measurements along service paths are used to infer the
status (working or not working) of the traversed nodes.
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A. Single-server monitoring

1) Identifiability bound: Consider the scenario where a
single server communicates with multiple clients and we can
only monitor the paths in between. The number of paths m
coincides with the number of clients, and all the monitoring
paths must share a common endpoint (the server).

We start by showing the special structure of the topology
spanned by the monitoring paths.

Lemma V.1. Under consistent routing, any monitoring paths
with a common endpoint r must form a tree rooted at r.
Proof. We consider any two paths pi and pj . Starting from r,
the next hops on these paths lead to either a common node or
two different nodes. In the latter case, the two paths cannot
intersect at any subsequent node v, as otherwise the two path
segments from r to v following paths pi and pj would violate
routing consistency. As this is true for all the paths, the paths
must form a tree rooted at r.

As a consequence many paths will have some common
nodes and links, and this implies that the number of iden-
tifiable nodes with m paths will be lower than in the general
case expressed by Theorem IV.2. In the following (Theorem
V.1) we show that this number has indeed an upper bound as
small as 2m− 1.

Before we formalize this result let us introduce the concept
of optimal monitoring tree, which is any tree topology (and
related monitoring paths) that guarantees the identifiability of
all its nodes and for which the number of identifiable nodes is
maximum. Given m paths with maximum path length dmax, the
optimal monitoring tree is a tree with m leaves and maximum
depth6 dmax−1, that has the maximum number of identifiable
nodes when its root-to-leaf paths are monitored.

Lemma V.2. If the maximum path length dmax satisfies dmax ≥
dlog2me+1, the optimal monitoring tree is a full binary tree7

with m leaves. If dmax < dlog2me + 1, then the optimal
monitoring tree is a tree composed of

⌊
m

2(dmax−2)

⌋
perfect

binary trees8 with depth (dmax− 2), and up to one full binary
tree with depth at most (dmax − 2) and

(
m mod 2(dmax−2)

)
leaves, connected to a common root.
Proof. Let us first consider the case of unbounded path
length. By contradiction, assume the existence of an optimal
monitoring tree that is not a full binary tree. Such a tree must
have at least a node u whose number of children is either (a)
strictly greater than two or it is (b) exactly one.

If (a), u has at least three children v1, v2 and v3. Let p1, p2
and p3 be the paths from these nodes to u, as in Figure 8. We
can build a new graph, starting from this, with an additional
identifiable node x, by removing the links between u and v1,
v2 and adding x as a parent of v1 and v2 and child of u. The
modified topology is shown in Figure 9. Node x is identifiable
as its encoding is different from the encodings of the leaves v1,
v2, as x is traversed by the union of the set of paths traversing

6The depth of a tree is the maximum distance from the root to any leaf, in
number of links.

7We recall that a full binary tree is a binary tree where each node is either
a leaf or it has exactly two children.

8We also recall that a perfect binary tree is a full binary tree where all
leaves are at the same distance from the root.

them, and from the encodings of v3 and of the root u, as x
is not traversed by path p3. If (b), u has only one child v,

〈111〉

〈001〉 〈010〉 〈100〉
v3 v2 v1

u

p1
p2
p3

Fig. 8. Three children tree

〈111〉

〈001〉 〈110〉

〈010〉 〈100〉

v3

v2 v1

u

x

Fig. 9. Full binary tree

as shown in Figure 10. If v is not traversed by any path,
or all the paths traversing u also traverse v, then node v is
not identifiable, and the removal of v from the tree would
not decrease the identifiability. If instead there is a path p1
traversing both u and v, and a path p2 traversing u which
ends before reaching node v, as in Figure 10, then path p2
can be prolonged to traverse a new node x added as a child of
node u to increase the identifiability of the topology, as shown
in Figure 11.

〈11〉

〈10〉

u

v

p1
p2

Fig. 10. One child tree

〈11〉

〈10〉 〈01〉

u

v x

Fig. 11. Full binary tree

Notice that as long as the maximum path length is dmax ≥
dlog2me + 1, that is the unbounded case, we can apply the
previous discussion and build an optimal full binary tree with
up to m leaves and depth dlog2me + 1 (maximum distance
from the root to the leaves, in number of nodes). If instead
dmax < dlog2me+ 1, the largest number of leaves that can be
obtained in a full binary tree topology with depth dmax − 1 is
2dmax−1 which is lower than the number of paths m. Therefore,
in such a case, the maximum identifiability is obtained by
creating the maximum number b m

2(dmax−2) c of perfect binary
trees of depth dmax − 2 and up to one full binary tree (not
perfect) with depth at most dmax − 2, connecting them to a
same root, thus ensuring that the number of nodes with either
no children or two only children is maximized.

Example: Figure 12(a) shows an optimal monitoring tree
for m = 7 and dmax = 4, i.e. a full binary tree. In Figure 12(b)
m = 7 but dmax = 3, so the optimal monitoring tree is made
of 3 perfect binary trees of depth 1 and a full binary tree of
depth at most 1, connected to the same root.

The following fact about full binary trees will be useful
for bounding the identifiability in the case of single-server
monitoring.

Fact V.1. Given a full binary tree with m leaves, the number
of nodes is zfb(m) , max{0, 2m− 1}.

Proof. The fact can be proved by induction on m. If m = 1 or
2 the assertion is trivially true as the corresponding binary tree
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s1, . . . , s7

t1 t2 t3 t4 t5 t6

t7

s1, . . . , s7

t1 t2 t3 t4 t5 t6

t7

(a) (b)

Fig. 12. Optimal monitoring tree:m = 7 and dmax = 4 (a) or dmax = 3 (b).

is unique and has 1 or 3 nodes, respectively. Let us assume that
the assertion is true for m−1 and zfb(m−1) = 2(m−1)−1 =
2m−3. Let us now consider a generic full binary tree t with m
leaves. Let us remove the two leaves of any node v of such a
tree, obtaining the tree t′. The tree t′ is also a full binary tree.
t′ has m−1 leaves as node v is now a leaf itself. Therefore the
number of nodes of the new tree is zfb(n− 1) = 2m− 3. As
the initial tree t has two more nodes than t′ we can calculate
zfb(n) = 2m−3+2 = 2m−1 which concludes the proof.

Given the above properties we can formulate the following
tight bound for the case of m monitoring paths sharing a
common endpoint, i.e, for single server monitoring.

Theorem V.1 (Identifiability for single-server monitoring).
Consider monitoring paths between a server and m clients
in a network of n nodes and maximum path length dmax. Then
the maximum number of identifiable nodes ψSS(m,n, dmax) is
upper-bounded by:

min {zfb(m), n} , if dmax ≥ dlog2me+ 1

min
{
n; 1 +

⌊
m

2(dmax−2)

⌋
· zfb(2(dmax−2))+

+zfb(m mod 2(dmax−2))
}
, otherwise

(1)

where zfb(m) , max{0, 2m − 1} is the number of nodes in
a full binary tree with m leaves.

Proof. Let us first consider the case of unbounded path length.
Due to Lemma V.1 the monitoring paths form a tree topology.
Since we are interested in the case of maximum identifiability
with a given number of paths, Lemma V.2 provides the case of
full binary tree to maximize the number of identifiable nodes
given m monitoring paths. It follows from Fact V.1 that such
a number is either zfb(m) or n whichever is the lowest.

In the case of bounded path length, if dmax ≥ dlog2me+1,
we apply Lemma V.2 to see that the path length limit has no
implications on the value of the bound, which therefore would
still be zfb(m) or n, whichever is the lowest.

If instead dmax < dlog2me + 1, according to Lemma
V.2 we know that the topology that guarantees maximum
identifiability can be obtained by creating several full binary
tree of depth dmax − 1 and connecting them to a unique
root. The maximum number of leaves of a full binary tree
of depth dmax − 1 is 2(dmax−2). Therefore with m paths we
can create

⌊
m

2(dmax−2)

⌋
full binary trees of depth dmax−1, each

guaranteeing identifiability of a root plus zfb(2(dmax−2)) nodes
(according to Fact V.1) and a full binary tree with depth lower

than dmax with the remaining [m mod 2(dmax−2)] leaves, of
depth lower than dmax which will ensure the identifiability of
other zfb(m mod 2(dmax−2)) nodes.

2) Tightness of the bound and design insights: Under the
constraint that monitoring paths have a common endpoint,
for any given number of monitoring paths m, maximum path
length dmax, and sufficiently large n, it is possible to design
a network topology according to the structure of an optimal
monitoring tree, as described by Lemma V.2, with a number
of identifiable nodes equal to the bound in Theorem V.1.

In particular, if dmax ≥ dlog2me+ 1 the topology would be
a full binary tree as in the example of Figure 12(a), while if
dmax < dlog2me + 1 the topology would be the composition
of b m

2(dmax−2) c perfect binary trees of depth dmax−2, and a full
binary tree of depth at most dmax−2, connected to a common
root, as in the example of Figure 12(b).

B. Multi-server monitoring

We now consider the case in which monitoring is performed
through the paths of an overlay service network, with a set of
S servers, where each server s (s = 1, . . . , S) has ms clients.
We want to determine an upper bound on the number of
identifiable nodes that can be obtained by varying the location
of the servers in S and related clients.

1) Identifiability bound: Since all the paths going from
the ms clients to a deployed server s will have the same
destination, under the assumption of consistent routing they
will form a tree with ms leaves, as shown in Lemma V.1.
Hence, we will have S such trees of paths intersecting each
other to increase identifiability.

We analyze two subcases: (i) fixed client assignment, where
the number of clients ms for each server is predetermined,
and (ii) flexible client assignment, where the total number of
clients

∑S
s=1ms is fixed but the distribution across servers

can be designed.
Let us first consider the paths of one monitoring tree at a

time. The following lemma holds.

Lemma V.3. Let us consider a tree of ms monitoring paths.
The maximum number of identifiable nodes along any one of
the ms paths is ms.

Proof. By induction on m and considering the tree structure
we can see that in order for the root to be identifiable, its
children must have diverting paths, and so forth for every new
level in the tree. Given that the maximum number of diverting
paths is bounded by m, then m is the maximum number of
identifiable nodes that can be found along a single monitoring
path. More specifically this bound is met tightly when the tree
is an unbalanced full binary tree.

Following a similar approach to the analysis we made for
the proof of Theorem IV.1, we want to give a value of an upper
bound Nmax on the sum of the number of different encodings
in each path matrix.

Lemma V.4. Given a monitoring tree with ms leaves vi,
i = 1, . . . ,ms. Let `k be the maximum number of identifiable
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nodes on the path from the leaf vk to the root r (calculated
in number of traversed nodes). Let L ,

∑m
k=1 `k. The value

of L is bounded above as follows:

L ≤ ψ(ms) ,
m2

s + 3ms − 2

2
.

Proof. By induction, when ms = 1, L = 1 and the assertion is
trivially true. When ms = 2 it is also true, and the sum of the
paths of the tree is L = 4. Assume that the assertion is valid
for all trees with ms−1 leaves, which means that ψ(ms−1) =
(m2

s +ms − 4)/2. Let t by any tree with ms − 1 leaves, and
L(t) be the value of L for such a tree. Let us consider the
addition of a new path pms to the tree t, to obtain a new tree
t′ with ms paths. According to Lemma V.3, the maximum
length of the new path pms

in terms of identifiable nodes is
ms. In order for all its nodes to be identifiable, it is necessary
for the new path to cross ms−1 identifiable nodes of the tree t
going from the root r to a leaf v at distance ms−1 (in number
of nodes) from r. Let pv be the monitoring path of t running
from v to r. We can use the new path pms

of t′ to produce a
maximum increase of identifiability by considering two new
leaves v′ and v′′ appended to v. Of these two leaves, the leaf
v′ can be identified by prolonging the path pv , while the leaf
v′′ can be identified by the new path pms only. According to
this construction, the value of L(t′) is obtained my adding
ms + 1 to the value of L(t), where ms nodes are due to the
length of the new path pms

and the term +1 is due to the
increase in the length of the path pv .

L(t′) = L(t) + (ms + 1).

Considering the inductive hypothesis according to which
L(t) ≤ (m2

s+ms−4)/2 , we obtain the proof of the assertion:
L(t′) ≤ ψ(ms) = ms + 1 +

m2
s+ms−4

2 =
m2

s+3ms−2
2 .

Let us denote with m ≤
∑S

i=1mi the total number of
clients, where the inequality derives from the fact the the same
clients may be interested in multiple services. We consider the
number of unique encodings appearing in each path matrix
of a service i, with mi clients, where i = 1, 2, . . . , S. If
these encodings represent nodes that appear also in other
paths, the same encodings will also appear in their respective
path matrices. Thanks to Lemma V.4 we derive the following
lemma.

Lemma V.5. Let us consider S services with mi clients each,
where i = 1, 2, . . . , S, and a total of m ≤

∑S
i=1mi clients.

The sum of the maximum numbers of different binary encod-
ings in each of the m path matrices (including repetitions
across different matrices) is

Nmax ,
S∑

i=1

[
m2

i + 3mi − 2

2
+ 2mi · (m−mi)

]
.

Proof. In each path matrix related to the client-server path of
a given service i = 1, . . . , S, there are mi columns related
to the paths of the same service and other m −mi columns
related to paths of the other services. The sequence of bits of
these latter columns may flip twice, due to Lemma IV.2.

As each of these columns flip potentially creates a new
encoding with respect to the encodings that the columns

related to the mi paths of the same service would generate
alone, these column flips contribute additional 2(m − mi)
encodings to each path matrix.

This occurs across all the mi path matrices, where the
number of the potentially different encodings related to the
first columns (over all the mi matrices) is ψ(mi) as detailed
in Lemma V.4 and where the column flips of all the other
m−mi columns will add 2(m−mi) ·mi encodings.

We conclude that the mi path matrices of the same service
would generate m2

i+3mi−2
2 + 2mi · (m − mi) potentially

different encondings with possible repetitions in the different
path matrices. As this holds for the path matrices of all the
services we can derive the formula for Nmax.

Theorem V.2 (Multiple servers, fixed client assignment).
Let us consider S servers with ms clients each, where
s = 1, 2, . . . , S, and a total of m ≤

∑S
s=1ms clients.

Let also n = |N | be the total number of nodes and d̄ the
average path length.The maximum number of identifiable
nodes ψMS(m, n, d̄) is upper bounded as in Theorem IV.1,
except that Nmax is replaced by

Nmax = min

{
m · d̄;

S∑
s=1

[
m2

s+3ms−2
2 + 2ms(m−ms)

]}
.

Proof. The proof is analogous to that of Theorem IV.1, where
Nmax is given by Lemma V.5.

In a more general case, each client can be assigned to
any of S available servers. In this case, a valid bound on
the identifiable nodes corresponding to the monitoring paths
between clients and servers should hold for all the possible
assignments of the clients to the servers. In the following we
denote any of these assignments as an S-dimensional integer
vector m, where each element ms gives the number of clients
assigned to the server s ∈ S, and where it holds that ms ≥ 0,
∀s ∈ S and

∑S
s=1ms = m.

The following theorem aims at characterizing the maximum
identifiability that can be achieved by means of passive moni-
toring through service paths, in a multi-server scenario, when
every client can be assigned to any server.

Theorem V.3 (Identifiability for multi-server monitoring with
flexible client assignment). Consider monitoring the paths
between S servers and m clients with arbitrary client-
server assignment in a network with n nodes, with aver-
age path length d̄. Then the maximum number of identi-
fiable nodes ψMS(m,S, n, d̄) is upper-bounded as in The-
orem IV.1, except that Nmax is specified by Nmax =
min

{
m · d̄;m2(2− 3

2S ) + 3m/2− S
}
.

Proof. Let A be the set of possible assignments of m clients
to S servers: A = {m ∈ N|ms ≥ 0, and

∑S
s=1ms = m}.

The bound on the number of identifiable nodes in
the case of S servers and undistinguished clients can be
formulated as in Theorems IV.2 and V.2, where Nmax =

min
{
md̄; maxm∈A

∑S
s=1

[
m2

s+3ms−2
2 + 2ms · (m−ms)

]}
.

In order to calculate NMax we address the optimization,
in the integer variables ms, of the objective function
f(m) =

∑S
s=1

[
(m2

s + 3ms − 2)/2 + 2ms · (m−ms)
]

=
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2m2 + 3m/2 − S − 3/2
∑S

s=1m
2
s (obtained by replacing∑S

s=1ms with m where possible), under the constraint that
m ∈ A. A relaxation of this problem leads to the following
solution: ms = m/S, ∀s = 1, . . . , S, and an objective value
of m2(2− 3

2S )+3m/2−S, which is an upper bound to f(m),
from which we derive the assertion of the theorem.

2) Design insights: In a setting in which the m monitoring
paths connect a given number of servers to their clients, the
maximum identifiability is obtained by letting the branches of
several server-rooted optimal monitoring trees intersect with
each other, while satisfying the consistent routing assumption
and the constraint on the average path length d̄.

While in the case of fixed client assignment to servers, the
number of leaves of each tree is predetermined, in the case of
flexible client assignment, the proof of Theorem V.3 suggests
that the highest identifiability is obtained through a uniform
assignment of clients to servers. In terms of topology design
this implies that the maximally identifiable topology would
require uniformly sized monitoring trees.

VI. PERFORMANCE EVALUATION

To evaluate the tightness of the proposed upper bounds,
we compare them with lower bounds obtained by known
heuristics on synthetic and real network topologies. Since
the bound in Theorem IV.1 is achievable under arbitrary
routing (see Section IV-A3), but it is higher than the bound
in Theorem IV.2 when applied to consistent routing schemes,
we show it once in Figure 13 and we omit it in the rest of the
evaluation. In all the experiments, where not otherwise stated
we have a uniform path length, therefore di = d̄ = dmax, and
vary the number of paths.

A. Consistent routing

We analyze the tightness of the upper bound in Theo-
rems IV.1 and IV.2 under consistent routing. In Figure 13 the
upper bounds (UB) computed as in Theorems IV.1 and IV.2 are
shown together with a lower bound (LB) obtained by placing
monitoring endpoints as in Section IV-B2. We vary the number
of paths while fixing the average path length d̄ = dmax = 12.

Notice that the upper bounds given by Theorems IV.1 and
IV.2 for dmax = 12, are the same for m = 2, 3, that is when
min{di; 2m−1} = min{di; 2 · (m−1)}, and for m ≥ 7, that is
the threshold above which min{di; 2·(m−1)} = di = 12. This
result highlights how consistent routing reduces the maximum
number of identifiable nodes as far as d̄ is not too small.
The figure also shows the identifiability of the half-grid
topology, (see Figures 4 and 5). Notice that, as we pointed
out in Section IV-B2, the bound on the number of identifiable
nodes under the assumption of consistent routing (Theorem
IV.2) is tight on the half grid topology when m satisfies
m2+3m−6

m ≥ di (that in this example is when m ≥ 10) and
when m ≤ 4. The green triangle in the figure represents the
topology shown in Figure 6.

In Figure 14 we show, for the same network, how the bound
of Theorem IV.2 varies with the number of monitoring paths
m and the maximum path length dmax. For small values of
dmax the bound has an almost linear growth with m. For
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Fig. 14. Bound of Th. IV.2, for n =
78, varying m and different values of
dmax.

larger values of dmax the bound shows two regions: an initial
super-linear growth for small values of m, and a linear growth
for large values of m. The figure also shows that while the
number of paths m has a major impact on the number of
identifiable nodes, the length of the monitoring paths has a
significant impact only when dmax is small, and diminishing
impact otherwise.

B. Single-server monitoring

Figure 15 shows two scenarios with different topologies.
The first scenario is a network of 95 nodes, connected as a
full binary tree with 48 leaves, with dmax = 7 (in number of
nodes). The figure shows the increase of the optimal number
of identifiable nodes by varying the number of monitoring
paths having a common endpoint. By using 48 paths each
of length di = 7 from the leaves to the root, it is possible to
identify all the network nodes. Notice that the optimal number
of identifiable nodes that can be obtained by varying server
location and placement of clients coincides with the value of
the bound of Theorem V.1. Lemma V.2 shows in fact that
for such a topology, the optimal identifiability is achieved by
placing the endpoints of the m different monitoring paths one
in the root of the tree and the others in a way that the paths
form a full binary tree topology.

For the second scenario we consider a stricter limit on the
path length: di = d∗ = dmax = 3. We consider a tree topology
where a common root is connected to 24 binary trees of depth
1, for a total of 48 leaves, and 73 nodes (this topology is
constructed extending the case of Figure 12(b) to connect 24
subtrees). In this topology, by using 48 paths each of length
di = 3, from the leaves to the root, it is possible to identify all
the nodes. Also in this case, the bound of Theorem V.1 is tight,
and coincides with the optimal, which is a tree of paths where
dm/2e binary trees of depth 1 descend from a common root.
The Figure also shows that the values of the bound obtained

with Theorem IV.2, are considerably looser than those of
Theorem V.1. This is because the former considers any m
paths generated with any consistent routing scheme, while the
latter considers the additional requirement that the monitoring
paths share a unique common endpoint.

Figure 16 illustrates an experiment on an existing AT&T
topology mapped with Rocketfuel [21], with 108 nodes and
141 links. We consider a single server and a random placement
of m clients. We obtained a lower bound, called ”Random”,
by running 100 trials for each value of m and using the
largest number of nodes identified by client-server paths under
consistent shortest path routing. We then compare this value to
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Fig. 15. Bound for single-server monitoring (Th. V.1) - full binary tree for
dmax = 7 (a), multiple binary trees with a single root for dmax = 3 (b).
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Fig. 17. UB of Th. V.2 and LB of GD
[6], AT&T topology, dmax = 4, vary-
ing m and S (3 clients per server).

the upper bound given by Theorem V.1. As the figure shows,
the lower bound is not as close to the upper bound as in the
case of the engineered topologies in Figure 15.

C. Multi-server monitoring

In these experiments we also consider the AT&T topology
with 108 nodes and 141 links. We analyze the case of multiple
servers, each serving 3 clients. We increase the number of
servers and vary the number of clients accordingly. Figure
17 shows the upper bound of Theorem V.2 compared to a
lower bound obtained with the heuristic greedy distinguisha-
bility maximization (GD)9 proposed in [6]. Notice that this
heuristic finds a good approximation to the optimal number
of identifiable nodes in this problem setting. Although the
heuristic only optimizes server placement, while Theorem V.2
considers the optimal placement of servers as well as clients,
the experiment shows a good approximation of the upper and
the lower bounds when m is sufficiently small.

Figure 18 shows a comparison of the three bounds of The-
orems IV.2 (arbitrary sources/destinations), V.2 (fixed client
assignment) and V.3 (flexible client assignment) for the same
topology, where we vary the numbers of services and clients,
with an average path length d̄ = 20. In the figure, the bound
of Theorem IV.2 represents the special case of one client
per server. We calculate the bound of Theorem V.2 assuming
first a uniform assignment of clients to servers, as shown in
Figure 18(a), and then an uneven assignment, which is shown
in Figure 18(b). For uneven assignment: in the case of two
servers, one server is assigned to 4/5 of the clients, while the
other to the rest 1/5; in the case of three servers, one server

9Note that GD requires client locations to be predetermined. Here we place
clients on some of the 78 dangling nodes, and then use GD to place servers.
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Fig. 18. UB of Theorems IV.2, V.2 and V.3, AT&T topology, dmax=20, S
servers, m clients - even (a) and uneven (b) distribution of clients to servers.
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Fig. 20. UB of Th. IV.3 and LB for
a 4-ary fat-tree with 3 layers.

is assigned to 3/4 of the clients, the second server to 3/16,
and the third server to 1/16. It can be seen that in the case
of even assignment of clients to servers, the two bounds of
Theorems V.2 (fixed client assignment) and V.3 (flexible client
assignment) give the same values. By contrast, in the case of
uneven distribution of clients to servers, Theorem V.2 gives a
considerably smaller bound than Theorem V.3, which assumes
an even distribution of clients to servers.

D. Data-center network monitoring

The identifiability of a fat-tree depends on the topology
parameters k, ` and the number of paths m. In the following,
we show that only with a high number of layers, routing
half-consistency plays a role in optimizing identifiability. To
this purpose Figure 19 evidences the difference in the upper
bounds of the case of a more flexible half-consistent routing
scheme considered in Theorem IV.3, with respect to the
case of consistent routing considered in Theorem IV.2. It
considers a general network with 100 nodes. The difference
of identifiability between consistent and half-consistent routing
grows by increasing the maximum length of monitoring paths
as dmax = 5, 15, 25, which in a fat-tree would correspond to
values of ` = 2, 7, 12. In conclusion, we can affirm that for
topologies with very short diameter, such as in the case of
fat-trees, having a higher degree of freedom in routing (half-
consistent routing) has a significant impact on the identifiabil-
ity of the network only for a high number of layers.

We now consider the case in which monitoring is performed
along paths between hosts of a data-center network with a
fat-tree topology and the routing scheme proposed in [19]. In
Figure 20 we consider a 4-ary fat-tree with three layers and
study the tightness of the bound of Theorem IV.3. Due to the
high complexity in selecting the optimal monitoring paths, we
resort to an empirical selection of paths that give us a lower



15

bound on the number of identifiable nodes. It is interesting to
see that with only 16 monitoring paths we are able to monitor
all the 36 nodes of this fat-tree.

VII. CONCLUSION

We consider the problem of maximizing the number of
nodes whose states can be identified via Boolean network
tomography. We formulate the problem in terms of graph-
based group testing and exploit the combinatorial structure
of the testing matrix to derive upper bounds on the number
of identifiable nodes under different assumptions, includ-
ing: arbitrary routing, consistent routing, monitoring through
client-server paths with one or multiple servers (and even
or uneven distribution of clients), and half-consistent routing.
These bounds show the fundamental limits of Boolean network
tomography in both real and engineered networks. We use the
bound analysis to derive insights for the design of topolo-
gies with high identifiability in different network scenarios.
Through analysis and experiments we evaluate the tightness of
the bounds and demonstrate the efficacy of the design insights
for engineered as well as real networks.
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