
1

Augmentation-Free Graph Contrastive Learning of
Invariant-Discriminative Representations

Haifeng Li, Jun Cao, Jiawei Zhu*, Qinyao Luo, Silu He, Xuyin Wang

Abstract—Graph contrastive learning is a promising direction
toward alleviating the label dependence, poor generalization and
weak robustness of graph neural networks, learning representa-
tions with invariance, and discriminability by solving pretasks.
The pretasks are mainly built on mutual information estima-
tion, which requires data augmentation to construct positive
samples with similar semantics to learn invariant signals and
negative samples with dissimilar semantics in order to empower
representation discriminability. However, an appropriate data
augmentation configuration depends heavily on lots of empirical
trials such as choosing the compositions of data augmentation
techniques and the corresponding hyperparameter settings. We
propose an augmentation-free graph contrastive learning method,
invariant-discriminative graph contrastive learning (iGCL), that
does not intrinsically require negative samples. iGCL designs
the invariant-discriminative loss (ID loss) to learn invariant
and discriminative representations. On the one hand, ID loss
learns invariant signals by directly minimizing the mean square
error between the target samples and positive samples in the
representation space. On the other hand, ID loss ensures that
the representations are discriminative by an orthonormal con-
straint forcing the different dimensions of representations to
be independent of each other. This prevents representations
from collapsing to a point or subspace. Our theoretical analysis
explains the effectiveness of ID loss from the perspectives of the
redundancy reduction criterion, canonical correlation analysis,
and information bottleneck principle. The experimental results
demonstrate that iGCL outperforms all baselines on 5 node
classification benchmark datasets. iGCL also shows superior
performance for different label ratios and is capable of re-
sisting graph attacks, which indicates that iGCL has excellent
generalization and robustness. The source code is available at
https://github.com/lehaifeng/T-GCN/tree/master/iGCL.

Index Terms—Graph contrastive learning, representation
learning, graph neural network, self-supervised learning

I. INTRODUCTION

GRAPH contrastive learning (GCL) is a promising method
that addresses the label dependence, poor generalization,

and weak robustness of graph neural networks (GNNs). In
general, contrastive learning is mainly built on the idea of
mutual information estimation, which learns invariant and
discriminative representations. Contrastive learning can be in-
terpreted as a powerful discriminator that determines whether
a pair of samples is derived from a joint distribution (positive
samples) or from two marginal distributions (negative samples)
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[1]. Contrastive learning pulls the positive samples with similar
semantic information close to capture the invariant signal,
and negative samples with dissimilar semantic information are
pushed away to guarantee the discriminability of representa-
tions. Naturally, the quality of the positive/negative samples is
crucial for the performance of GCL [2].

GCL relies heavily on empirical data augmentation to
construct positive and negative samples. In computer vision,
positive samples are generated by randomly cropping, re-
sizing, and color distorting the target image, and negative
samples are randomly sampled from the rest of the im-
ages [3]. Similar to the data augmentation of images, the
common data augmentation techniques of graphs are node
feature masking, node feature shuffle, edge modification, graph
diffusion, and subgraph sampling [4]. GRACE [5] and CCA-
SSG [6] generate positive samples by randomly masking node
features and removing edges. MVGRL [7] proposes two graph
diffusion methods based on Personalized PageRank [8] and
heat kernel [9] to capture the global structural information
and treats the diffuse graphs as positive samples. Benefiting
from the adjacency of graphs, SUBG-CON [10] proposes
a subgraph contrastive learning method that uses subgraphs
of the target node as positive samples. Meanwhile, negative
samples are generated in various ways including row-wise
perturbing node features [11] and random sampling from the
remaining nodes [5]. You et al. [2] systematically analyzed
the impact of four data augmentation techniques and their
compositions on downstream tasks and summarized some
observations. However, determining the type of data aug-
mentation suitable for a particular task still relies heavily
on empirical trials. Meanwhile the hyperparameters of data
augmentation exponentially expand the search space of data
augmentation configurations. Therefore, an applicable data
augmentation configuration consumes a significant amount of
time and computation resources.

We rethink the essence of GCL to address the problem
of empirical data augmentation. For GCL, positive samples
are used to capture the invariant signal of data, and neg-
ative samples are used to prevent the representation from
being indistinguishable [12]. We separately analyze the role
of positive and negative samples in order to discard data
augmentation. For positive samples, data augmentation can
be considered a transformation function that does not destroy
the signal inherent in the data. Inspired by Siamese networks
[13], we argue that two neural networks with similar or
the same weights can transform the target sample into two
representations with similar semantic information. Kefato et
al. [14] used two projectors to transform the embeddings
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extracted by GNNs in order to obtain two representations with
similar semantic information. In addition, neighboring nodes
may have similar semantic information as the target node
based on the homophily assumption [15], [16]. For example,
neighboring nodes are often classified in the same community
as the target node in community detection. We argue that
neighboring nodes can potentially serve as positive samples.
Many loss functions, such as the mean square error (MSE), can
pull the positive samples close. The role of negative samples is
to avoid the representations from collapsing into a single point
or a subspace, ensuring that the representation is discriminative
[12]. To achieve this goal, a considerable number of negative
samples must be generated [17], which may lead to false
negative samples [18] and exacerbate the consumption of
computational resources. Recently, some studies addressed the
problem of negative sampling by modifying the model archi-
tecture [19]. According to the above analysis, we try to replace
the empirical positive samples with Siamese networks and
local structural information, and guarantee the discriminative
power of representations by some effective measures.

Here, we propose an augmentation-free GCL method called
the invariant-discriminative graph contrastive learning (iGCL),
which requires neither empirical data augmentation nor nega-
tive samples. Following the idea of Siamese networks, iGCL
consists of two GNNs (online network and target network)
with the same architecture that can generate high-quality pos-
itive samples with similar semantic information. We propose a
positive sample construction strategy that selects the K most
similar representations from the 1-hop neighboring nodes of
the target nodes as positive samples. To train the iGCL, we
design the Invariant-Discriminative loss (ID loss) to include
an invariance term and a discrimination term. To capture the
invariant signal, we choose the simple but effective MSE as
the invariance term to pull the positive samples close to the
target sample. To empower representations discriminability,
we add an orthonormal constraint as the discrimination term,
which forces the different dimensions of the representations to
be independent of each other and prevents the representation
space from collapsing. In addition, our theoretical analysis
explains the effectiveness of ID loss from the perspectives of
redundancy reduction, canonical correlation analysis, and the
information bottleneck principle.

We conduct numerous experiments to illustrate the superior
performance of the iGCL. iGCL not only outperforms super-
vised GCN and GAT but also all baselines on 5 node classifica-
tion benchmark datasets. We also evaluate the generalization
and robustness of the iGCL. The experimental results show
that iGCL still achieves excellent performance at label ratios
between 0.5% and 20% and alleviates the impact of graph
attacks. Moreover, we visualize the representations by t-SNE,
which intuitively illustrates the discriminative power. Finally,
the experimental results of hyperparameter sensitivity analysis
illustrate the effectiveness of the positive sample construction
strategy and the discrimination term. Our main contributions
are as follows.
• We propose iGCL, which does not require empirical data

augmentation or negative samples, to generate invariant
and discriminative representations.

• We show that ID loss is equivalent to the redundancy
reduction criterion and canonical correlation analysis
under specific conditions, and iGCL can be considered
an instance of the information bottleneck principle under
self-supervised learning.

• Experimental results show that iGCL outperforms all
baselines on 5 node classification benchmark datasets and
has superior generalization and robustness.

The remainder of the paper is organized as follows: in
Section 2, we briefly review related work on GCL. Section 3
describes the network architecture, positive sample construc-
tion strategy, and ID loss in detail. Section 4 evaluates the
performance, generalization, and robustness of iGCL through
extensive experiments. Section 5 concludes this paper.

II. RELATED WORKS

Graph contrastive learning. Inspired by the great success
of contrastive learning in computer vision, many works have
recently made significant progress in adapting it to graphs.
With regard to structure, graph contrastive learning (GCL)
develops cross-scale and same-scale contrastive learning. The
typical cross-scale GCL is DGI [11]. Following the idea of
Deep InfoMax [1], DGI attempts to train itself by maximizing
the mutual information between local patch (node-level) repre-
sentations and high-level global (graph-level) representations,
capturing globally relevant information and avoiding overem-
phasis on proximity. HDGI [20] and ConCH [21] further
generalize DGI to heterogeneous graphs by aggregating node
representations based on different types of edges. MVGRL
[7] also takes cross-scale contrastive learning and introduces
two graph diffusion approaches to generate similar semantic
samples. In addition, some works use same-scale contrastive
learning. Inspired by SimCLR [3], GRACE [5] constructs two
augmented views by randomly removing edge and mask node
features. Then, GRACE learns the informative representations
by reducing the distance between node representations of two
views and pushing away other node representations. Since
uniformly removing edges and shuffling features may lead
to suboptimal augmentation, GCA [22] improved GRACE
by using an adaptable augmentation technique. To address
the problem of negative sample sampling, BGRL [23] avoids
negative samples by adopting a network architecture similar
to BYOL [19]. CCA-SSG [6] proposes a loss function based
on canonical correlation analysis, which ensures that it no
longer requires the parameterized mutual information estima-
tor, additional projector, asymmetric structures, and negative
samples. AFGRL [24] devolops an augmentation-free GCL
method. AFGRL utilizes the nodes that share local structural
information and global semantic information for target nodes
as positive samples. iGCL differs from AFGRL in three ways:
1. the ID loss differs from the loss of AFGRL, 2. iGCL gen-
erates positive samples in a more efficient way than AFGRL
without losing performance, and 3. iGCL can be applied to
large-scale graphs with the help of neighbor sampling, while
AFGRL needs to load entire graphs into memory.

Data augmentation on graphs. In computer vision, Sim-
CLR [3] states that the composition of data augmentations
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plays a critical role in contrastive learning. GraphCL [2]
empirically illustrates that data augmentation is also crucial
for GCL and that the compositions of different augmentation
methods are beneficial for improving performance through
extensive experiments. Liu et al. [4] systematically categorized
the data augmentation on graphs into node feature masking,
node feature shuffle, edge modification, graph diffusion, and
subgraph sampling. For example, GRACE [5] and CCA-SSG
[6] generate positive samples by randomly masking node
features and removing edges. However, GraphCL indicates
that different types of graphs are suitable for different kinds
of data augmentation. The choice of data augmentation for
a given task relies heavily on trial and error, which is cer-
tainly time-consuming and computationally resource-intensive.
Meanwhile, the hyperparameters of data augmentations expo-
nentially expand the search space. We try to generate positive
samples based on the intrinsic signal of graphs instead of
empirical data augmentation.

III. METHODOLOGY

In this section, we propose a simple but effective GCL
method called invariant-discriminative graph contrastive learn-
ing (iGCL). iGCL utilizes the Siamese network architecture to
generate positive samples in the representation space. In ad-
dition, the positive sample construction strategy leverages the
similarity of representations and local structural information
to enhance the quality and diversity of positive samples. ID
loss not only ensures learning invariant representations but also
avoids trivial solutions.

A. iGCL framework

Fig. 1. Network architecture of iGCL.

The network architecture of iGCL is shown in Fig. 1.
iGCL consists of an online network fθ, a target network
fξ and a projector qθ . The learnable parameters θ, ξ of fθ
and fξ are shared, which can transform a sample into two
representations with similar semantic information. Suppose
we have a graph G = (V,E) with features on the nodes
H = (h1, h2, ..., hN ), hi ∈ RF . N = |V | is the number of
nodes, and F is the dimension of features. iGCL generates the
online representations and the target representations Hθ, Hξ ∈
RN×D, D is the dimension of representations, by inputting
H and the adjacency matrix A into fθ and fξ, respectively.
Then, iGCL transforms Hθ into Zθ ∈ RN×Dq

by qθ, Dq is
the dimension of zθi . Next, the positive sample construction
strategy automatically finds the qualified positive sample rep-
resentations from Hξ. Finally, ID loss guarantees the ability

to learn the invariant and discriminative Hθ. Intriguingly, the
experimental results of Hyperparameter sensitivity analysis
suggest that Hθ benefits from extremely high dimension.

Now, we elaborate on how the learnable parameters θ, ξ are
shared. When initializing fθ, fξ , the learnable parameters are
identical, i.e., θ = ξ. During training, θ is updated according to
ID loss, while ξ is updated by the exponential moving average
(EMA) technique. EMA can be formulated as Eq. 1, where
τ ∈ [0, 1] is the balance coefficient. EMA can improve the
effectiveness of the Siamese network in contrastive learning
[19].

ξ ← τξ + (1− τ)θ (1)

B. Learning invariant signal

1) Positive sample construction strategy: iGCL utilizes the
similarity of representations and the local structure to construct
multiple positive samples of target nodes. Benefiting from the
Siamese network, the representation Hξ

i can be considered as
the direct positive sample set {i} of the node i. Besides, the
positive sample construction strategy enriches the diversity of
positive samples. We argue that the neighboring nodes con-
nected to the target nodes potentially share similar semantic
information. For example, the similar semantic information
of nodes can be interpreted as having the same labels for
the node classification task. The red line (1-hop neighboring
nodes) in Fig. 2 indicates that the neighboring nodes tend to
have the same label as the target node, with the proportion
exceeding even 80%. Then, we explore the correlation between
feature similarity and semantic similarity. We choose the
cosine similarity to measure the feature similarity. Although
the yellow line (Feats.) in Fig. 2 indicates that feature simi-
larity is not highly correlated with semantic similarity, feature
similarity can enhance the correlation between 1-hop structural
information and semantic similarity, as shown by the green
line (1-Hop+Feats). As the local structure expands to a 2-
hop neighbor, the proportion of neighboring nodes with the
same label as the target node decreases significantly, as shown
by the blue line (2-Hop) in Fig. 2. In contrast, adding the
feature similarity can substantially exclude neighboring nodes
with different labels from the target nodes, as shown by the
purple line (2-Hop+Feats) in Fig. 2. We also observe that the
proportion of nodes with the same label decreases when the
number of the most similar nodes increases.

In light of the above observations, we regard the k-hop
neighboring nodes as the alternative positive sample set N (i)
for target node i. Meanwhile, there is still a portion of N (i)
whose semantics are not similar to those of i. We select
the k-nn algorithm to filter out these nodes and regard the
k most similar representations as the supplementary positive
sample set K(i). Given that ID loss is based on the MSE, the
shorter the Euclidean distance of the representations, the more
similar their semantic information is likely to be. Therefore,
the Euclidean distance is chosen as the metric function of
k-nn. Finally, the total positive sample set of target node i
is P(i) = ({i} ∪ K(i)). In this paper, we set the 1-hop
neighboring nodes as N (i).
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Fig. 2. Proportion of nodes with same class of target nodes obtained by
different construction strategies. Num of nodes indicates number of nodes
with most similar features to target node.

To evaluate ID loss, we need to organize P(i) into K =
1 + k parts. First, we treat the direct positive sample {i}
as a part P1(i) = i in which the index of positive nodes
is the same as the index of target nodes. Next, we process
the supplementary positive sample set K. For node i, we
descendingly sort the nodes in K(i) according to similarity.
K is divided into P2(i),P3(i),PK(i), for a total of K − 1
parts. Given 1 < n < m ≤ K, the similarity between node
Pn(i) and node i is always greater than that of node Pm(i).
Note that the number of positive samples of node i may be less
than K if the degree of node i is less than K−1. For example,
node i does not exist in P4 when K = 4 and Dii = 2. In other
words, node i is not involved in calculating P4 of the ID loss.

2) Invariant Loss: To maximize the invariant signal, we
simply but effectively minimize the MSE between the target
samples and positive samples in the representation space. The
representations are standardized as Z̄ = (Z − µ(Z))/(N ×
σ(Z)) to eliminate the effect of scale. For standardized
Z̄θ, H̄ξ, the invariant loss is formulated as Eq. 2.

Lθ,ξ =
∥∥Z̄θ − H̄ξ

∥∥2

F
(2)

Unfortunately, Eq. (2) allows the iGCL to obtain a trivial
solution, i.e., the representations collapse into a subspace or
point. For example, Z̄θ, H̄ξ are the same constant.

C. Guaranteeing discriminability of representations

Inspired by Laplacian Eigenmaps [25], we guarantee the dis-
criminability of representations by an orthonormal constraint.
The orthonormal constraint ensures that the different dimen-
sions of Z̄θ, H̄ξ are linearly independent of each other. In
other words, the orthonormal constraint ensures no redundant
dimensions for Z̄θ, H̄ξ. Furthermore, H̄θ avoids collapsing
into a subspace or point. To satisfy the above requirement,
Eq. 2 is modified to the invariant loss with an orthonormal
constraint, as shown in Eq. 3.

Lθ,ξ =
∥∥Z̄θ − H̄ξ

∥∥2

F

s.t. Z̄θTZ̄θ = I and H̄ξTH̄ξ = I
(3)

Eq. 3 encourages Z̄θ, H̄ξ to be as similar as possible, while
the orthonormal constraint ensures that different dimensions

Fig. 3. Illustration of effect of orthonormal terms. Coordinates of nodes rep-
resent two-dimensional representations. Nodes of same color are semantically
similar.

of representations are linearly independent of each other. We
illustrate the utility of the orthonormal constraint through 3. If
the representations collapse to a single point, we are com-
pletely unable to distinguish semantically dissimilar nodes,
as shown in Fig. 3-a. If the representations collapse into a
subspace, we have difficulty distinguishing nodes with similar
representations but dissimilar semantic information, such as
those points at two endpoints of the line in Fig. 3-b. It wastes a
dimension and impairs the discriminability of representations.
In contrast, the orthonormal constraint ensures that iGCL takes
advantage of the dimensionality of the representations, equip-
ping the representations to discriminate semantically dissimilar
nodes, as shown in Fig. 3-c.

In addition, the architecture of iGCL has the ability to resist
a trivial solution. iGCL employs tricks such as asymmetric
structures and an additional projector. Both Eq. 3 and the
architecture guarantee that the representations have the ability
to discriminate semantically dissimilar nodes.

D. Invariant-discriminative loss

Based on the above analysis, we introduce the loss function
of iGCL, invariant-discriminative loss (ID loss). To reduce the
computational complexity, we use the Lagrange multiplier to
relax the invariant loss with the orthonormal constraint into an
unconstrained objective function, as shown in Eq. (4), where
λ is the balance coefficient. We refer to Eq. 4 as ID loss.

Lθ,ξ =
∥∥Z̄θ − H̄ξ

∥∥2

F︸ ︷︷ ︸
invariance term

+

λ(
∥∥Z̄θTZ̄θ − I∥∥2

F
+
∥∥H̄ξTH̄ξ − I

∥∥2

F
)︸ ︷︷ ︸

discrimination term

(4)

ID loss consists of an invariance term and a discrimination
term. The invariance term forces iGCL to learn the invariant
signal of datasets. The discrimination term forces different
dimensions of the representations to be linearly independent
of each other, which guarantees the discriminability of repre-
sentations.

We further modify the ID loss to fit the positive sample
construction strategy. The final loss is the mean ID loss of the
K parts of P , formulating as Eq. 5, where Z̄θ[P] indicates
Z̄θ arranged by the index of Pk. For j /∈ Pk(i) , we skip
the representations of the corresponding rows in Z̄θ, H̄ξ. For
conciseness, we do not mark the case in Eq. 5.
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Lθ,ξ =
1

K

K∑
k=1

∥∥Z̄θ [Pk]− H̄ξ
∥∥2

F
+

λ(
∥∥∥Z̄θ [Pk]

T
Z̄θ [Pk]− I

∥∥∥2

F
+
∥∥H̄ξTH̄ξ − I

∥∥2

F
)

(5)

E. Theoretical analysis of ID loss

Different from instance-level mutual information estima-
tion, ID loss is feature-level, which is particularly evident
at the discrimination term. Mutual information estimation is
generally achieved by pushing away negative samples, while
ID loss is achieved by forcing the different dimensions of
the representations to be linearly independent of each other.
Naturally, iGCL does not require negative samples. We further
show that ID loss is theoretically connected with the redun-
dancy reduction criterion, canonical correlation analysis, and
information bottleneck principle. For the sake of analysis, we
do not consider the multiple positive samples generated by the
positive sample sampling strategy.

1) Connection with redundancy reduction criterion: Neu-
roscientist H. Barlow proposed the redundancy reduction cri-
terion [26], which argues that the goal of sensory processing
is to recode highly redundant sensory input into a factorial
code (each of its parts is statistically independent). Zbontar
et al. [27] applied the redundancy reduction criterion to self-
supervised learning in computer vision, which trains models by
a loss function based on the cross-correlation matrix between
the representations of two views. The loss function is shown
in Eq. 6, where C = Z̄θT H̄ξ is a covariance matrix.

L =
∑
i

(1− Cii)2

︸ ︷︷ ︸
invariance term

+ λ
∑
i

∑
j 6=i

C2
ij︸ ︷︷ ︸

redundancy reduction term

(6)

The purpose of this loss function is to make representations
in the same dimension of two views linearly correlated in order
to learn invariant signals and to let representations in different
dimensions be linearly uncorrelated to avoid representations
collapsing to a subspace or point. Following the redundancy
reduction criterion, ID loss tries to linearly correlate the same
dimension and linearly uncorrelated different dimensions of
Z̄θ, H̄ξ, respectively. ID loss uses the MSE instead of the
invariance term of Eq. 4.

2) Connection with canonical correlation analysis: Canon-
ical correlation analysis (CCA) is applied to measure the
correlation of multivariate variables. The goal is to find two
vectors a ∈ Rm, b ∈ Rn to reduce the dimensionality
of two multivariate variables X ∈ Rm, Y ∈ Rn into a
univariate variable, and maximize the correlation coefficient
ρ = corr

(
aTX, bTY

)
= aTΣXY b√

aTΣXXa
√
bTΣY Y b

, where
∑
XY =

Cov(X,Y ) is a covariance matrix. CCA is equivalent to Eq.
7.

max
a,b

aTΣXY b, s.t. aTΣXXa = 1, bTΣY Y b = 1 (7)

Eq. 7 clearly illustrates that CCA attempts to maximize
the correlation of two multivariate variables with the linear

transformation while making the different variables indepen-
dent of each other. [28], [29] introduced CCA to multi-
view deep learning by replacing the linear transformation
with neural networks. Soft CCA [30] further removes the
hard decorrelation constraint by Lagrange multiplier, which
saves a lot of computational resources. The final soft CCA
is Eq. 8, where Pθ1 , Pθ2 are two neural networks, X1, X2

are two views of a sample, Ldist measure the correlation
of Pθ1(X1), Pθ2(X2), LSDL (stochastic decorrelation loss)
computes the distance between Pθi(Xi)

TPθi(Xi) and the
identity matrix I , for i = 1, 2.

min
θ1,θ2

Ldist (Pθ1 (X1) , Pθ2 (X2)) +

λ(LSDL (Pθ1 (X1)) + LSDL (Pθ2 (X2)))
(8)

Z̄θ, H̄ξ ∈ RN×F can be viewed as N samples by ran-
domly sampling from two multivariate variables X,Y ∈ RF ,
respectively. When Ldist,LSDL is the MSE, Eq. 8 is the loss
function of CCA-SSG, which is equivalent to ID loss. The
insight of CCA-SSG is derived from CCA, while the insight
of iGCL is derived from the analysis of the invariance and
discriminability of the representations.

3) Connection with information bottleneck principle: iGCL
is an instance of the Information Bottleneck (IB) principle
under self-supervised learning setting. We further clarify the
connection between ID loss and IB. The self-supervised IB is
developed from the supervised IB. The supervised IB can be
formulated as Eq. 9, where X indicates the random variable
of input data, Y indicates the labels of downstream tasks, ZX
indicates the representations of X , I()̇ indicates the mutual
information.

IBsup = I (Y,ZX)− βI (X,ZX) , where β > 0 (9)

IB tries to maximize the mutual information between ZX
and Y , while minimize the mutual information between ZX
and Y . The aim of IB is that ZX only preserve the useful
information for predicting Y . Some works [31], [32] develop
supervised IB to self-supervised IB. self-supervised IB is
formulated as Eq. 10, where S indicates self-supervised signals
(the augmented views of X), ZS indicates the representation
of S.

IBssl = I (X,ZS)− βI (S,ZS) , where β > 0 (10)

Naturally, IBssl tries to maximize to the mutual information
between ZS and S and to expect ZS is the maximally
compressed representation of X . Zhang et al. [6] prove that
minimizing ID loss is equivalent to maximize IBssl under
0 < β < 1, i.e., minLID Loss ⇒ max IBssl. It suggests that
iGCL can be viewed as an instance of IB under self-supervised
learning setting. Assuming that data augmentation does not
change label-related information, it means that all the task-
relevant information is preserved in augmentation invariant
features. Minimizing ID loss can maximally preserving the
task-relevant information while reducing the task-irrelevant
information [6].
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We show that ID loss is deeply connected to the redundancy
reduction criterion and CCA, which explains the significance
of ID loss from different perspectives. With the help of [6], we
are aware that minimizing ID loss is equivalent to maximizing
the self-supervision IB under a specific condition. Moreover,
ID loss ensures that the learned representations are expected
to retain minimal but sufficient information about downstream
tasks, which explains why the representations generated by
iGCL can perform well on downstream tasks.

IV. EXPERIMENTS AND RESULTS

A. Datasets

TABLE I
STATISTICAL DETAILS OF NODE CLASSIFICATION BENCHMARK DATASETS

Nodes Edges Features Classes Directed Avg Degree
CS 18333 10027 6805 15 False 8.93
Physics 34493 282455 8415 5 False 14.38
Computers 13381 259159 757 10 False 35.76
Photo 7487 126530 745 8 False 31.13
WikiCS 11701 216123 300 10 True 36.94

To evaluate the performance of iGCL, we conduct extensive
experiments on five node classification benchmark datasets:
Coauther CS (CS), Coauthor Physics (Physics), Amazon Com-
puters (Computers), Amazon Photo (Photo), and WikiCS. CS,
Physics, Computers, and Photo are undirected graphs, while
WikiCS is a directed graph. The statistical information of the
datasets is listed in Table I. Details of the datasets are as
follows.
• CS and Physics are academic networks cut from the

Microsoft Academic Graph [33], which contains coau-
thorship relationships. In these two graphs, nodes denote
authors, edges denote collaborations, labels denote au-
thors’ research fields, and node features denote a bag-of-
words representation of the paper keywords.

• Computers and Photos are subgraphs in the Amazon
copurchase relationship graph [34], where nodes rep-
resent items, edges represent two items that are often
simultaneously purchased, and node features represent
word vectors of item reviews.

• WikiCS [35] is a web network formed by computer
science-themed pages on Wikipedia with nodes represent-
ing pages, edges representing link relationships between
pages, node features being word vectors extracted from
paper titles and abstracts, and labels representing the
disciplines of computer science.

As in [24], we randomly divide the dataset into training
sets, validation sets, and test sets in a ratio of 1:1:8. We
repeated the random partitioning 20 times for each dataset.
Since WikiCS provides 20 accepted divisions of the training
and validation sets, we directly utilize its given divisions. We
use the mean classification accuracy and standard deviation
under the 20 different divisions as the main metric to evaluate
the performance of the models.

B. Baselines
To comprehensively and fairly evaluate the performance of

iGCL, we selected three categories of methods as baselines:

unsupervised learning, supervised learning, and contrastive
learning.

Unsupervised learning baselines include Raw Feats and
Node2Vec [16]. Raw Feats indicates classifying nodes using
the logistic regression classifier with raw node features as
input. Node2vec indicates classifying nodes using the logistic
regression classifier with the representations generated by
Node2vec as input.

Supervised learning baselines include GCN [36], GAT [37],
and GraphSAGE [38]. GCN dramatically reduces the com-
putational complexity of graph convolution through simpli-
fication operations and renormalization trick and iteratively
extracts informative representations in a layer-stacked manner.
GAT introduces the self-attention mechanism to GNNs to
adaptively assign weights to neighboring nodes during ag-
gregation in a data-driven manner. GraphSAGE proposes a
sampling approach that allows GNNs to adapt to large-scale
graphs.

Contrastive learning baselines include DGI [11], MVGRL
[7], GRACE [5], GCA [22], BGRL [23], CCA-SSG [6], and
AFGRL [24]. DGI and MVGRL train models by contrasting
node-level representations with graph-level representations.
Following the idea of SimCLR, GRACE and GCA learn node
representations by pulling the representations of the same
nodes in two augmented graphs closer and pushing them away
from each other. Inspired by BYOL, neither BGRL nor AF-
GRL need negative samples to avoid a trivial solution. CCA-
SSG proposes a loss function based on canonical correlation
analysis to avoid a parameterized mutual information estima-
tor, additional projector, asymmetric structures, and negative
samples.

C. Experimental Protocol

We evaluate the performance of iGCL on the node classifi-
cation task. As in [11], we train the iGCL in an unsupervised
manner. Then, we use the learned node representations and
available labels to train a logistic regression classifier and use
this model to predict the node classes on the test set. We use
the test results when the model performs best on the validation
sets.

The encoders of the iGCL can be an arbitrary GNN. To
compare fairly with the baselines, we use the GCN as the
encoder of the iGCL, such as fθ and fξ. Formally, the encoder
architecture of iGCL is defined as Eq. 11, where H l indicates
the node represenstations of the l layer, H0 = H indicates the
raw node features, Â = A + I indicates the adjacent matrix
adding self-loop, D̂ii =

∑
j Âij is the node degree matrix,

W l indicates the learnable parameters of the l layer, and σ(·)
is the activate function, such as ReLU.

H l = GCN l(H(l−1), A)

= σ(D̂−1/2ÂD̂−1/2H(l−1)W l)
(11)

We use the Adam SGD optimizer with a learning rate of
0.005 and L2 regularization of 0.0001 to train the models and
initialize the learnable parameters with Glorot initialization.
To obtain the optimal classification accuracy, we use grid
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search to select the appropriate hyperparameter configuration,
such as the number of layers of GCN L, dimension of the
representations D,Dq , number of positive samples K, and
coefficients of the discrimination term λ. The optimal hyper-
parameter configuration of the iGCL on the five benchmark
datasets is shown in Table II.

TABLE II
HYPERPARAMETER SETTINGS OF IGCL ON THE DATASETS.

L D Dq K λ Epochs
CS 1 1024 2048 1 0.001 1000
Physics 1 1024 2048 3 0.0001 3000
Computers 1 4096 8192 4 0.001 5000
Photo 1 1024 2048 4 0.0005 1000
WikiCS 2 1024 2048 6 0.005 1000

D. Comparison with Peer Methods

We perform a fair evaluation of the performance of iGCL
by comparing it with the baselines on the 5 node classification
benchmark datasets. Table III provides statistical results in
terms of the mean test set classification accuracies (in per-
cent) and standard deviation. iGCL outperforms all types of
baselines on the benchmark datasets, powerfully illustrating
the superior performance of iGCL. Raw feed Node2vec always
obtains the worst classification accuracies, which indicates that
proper association of node features and structure is critical to
improving the performance of models on graph analysis tasks.
Although GNNs can utilize both node features and structure,
supervised learning makes GNNs fit manual labels instead of
learning the dataset’s invariant representations. iGCL signif-
icantly outperforms supervised learning GNNs in terms of
classification accuracies on all five benchmark datasets. In
particular, iGCL improves on WikiCS by 2 percentage points.
With recent advances in GCL, a range of GCLs outperform
supervised learning GNNs. Compared with GCL baselines,
iGCL still achieves the best classification accuracies on all of
the datasets. The experimental results show that the iGCL can
learn invariant and discriminative representations.

E. Effects of label magnitude

We further evaluate the generalizability of the iGCL under
different label ratios. In this subsection, we divide the datasets
into training sets and test sets. The training set is divided
into proportions 0.5%, 1%, 2%, 5%, 10%, 20%, and the
corresponding proportions for the test set are 99.5%, 99%,
98%, 95%, 90%, 80%. Each proportion was randomly divided
20 times. Label proportions of 0.5% and 1% represent cases
where labels are difficult to produce in the real world, while
label proportions of 20% represent cases where labels are
easy to obtain. The classification accuracies of the iGCL and
baselines in different label proportions are shown in Table IV.
Except for the comparable classification accuracy on WikiCS
at a 0.5% label ratio, iGCL achieves the optimal classification
accuracies for any label ratio. We find that the classification
accuracies of DGI are significantly weaker than those of
supervised GNNs such as GCN and GAT in the absence of
labels. As the labels are gradually enriched, the classification

accuracy gap between DGI and GNNs is gradually reduced.
When the label ratio is 20%, the classification accuracy of
DGI is basically comparable to that of GNNs. This indicates
that DGI can achieve excellent performance only when the
labels are sufficient. Compared with DGI, iGCL has better
generalizability to adapt different proportions of labels. The
classification accuracies of iGCL always exceed those of
GNNs regardless of label sufficiency or scarcity. The experi-
mental results show that iGCL has excellent generalization.

F. Robustness analysis

We evaluate the robustness of iGCL by the classification
accuracies on the attacked datasets. We choose Nettack [39] as
the graph attack method. Nettack can attack structure or node
features. Following the experimental protocol, we choose the
first division of CS and WikiCS as the division for the sub-
section. We utilize only the training and test sets and discard
the validation sets. Since Nettack cannot compute in parallel
and requires considerable time, we attack one-tenth of the
nodes in the test sets. We train models in the poison way, i.e.,
we train models with the attacked datasets from scratch. The
performance of the iGCL and baselines under different types
of attacks is shown in Table V. The classification accuracies
of all models degrade after the attacks, which indicates that
Nettack can indeed degrade the performance. Under any type
of attack, the classification accuracies of iGCL stably exceed
those of the baselines. In particular, on the WikiCS dataset,
the classification accuracy of iGCL is significantly higher than
those of the baselines. The experimental results show that
iGCL has excellent robustness and has the ability to resist
graph attack algorithms.

G. Visualization of representations

We visualize the raw features and node representations
learned by AFGRL and iGCL by t-SNE, thus providing an
intuitive understanding of the learned representations. The
visualization of node representations is shown in Fig. 4. Each
point represents a node, and the node color represents the
class of the node. We select the silhouette coefficient to
evaluate the overall clustering results. The larger the silhouette
coefficient, the better the results. The silhouette coefficients of
the raw features, AFGRL, and iGCL are -0.0944, -0.0516, and
-0.0322, respectively. The silhouette coefficients of AFGRL
and iGCL are larger than that of raw feats, which indicates
that both AFGRL and iGCL can effectively improve the ability
to cluster the same classes of nodes and separate different
classes of nodes. Furthermore, iGCL has a stronger ability
than AFGRL. For example, iGCL aggregates the light green
nodes and purple nodes into the same regions, while AFGCL
aggregates these nodes into different regions, as shown in
the oval region in Fig. 4. This indicates that the iGCL can
effectively aggregate similar nodes and discriminate dissimilar
nodes.

H. Hyperparameter sensitivity analysis

We analyze the impact of four key hyperparameters in
detail: balance coefficient λ, dimension of representations D,
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TABLE III
SUMMARY OF STATISTICAL RESULTS IN TERMS OF MEAN TEST SET CLASSIFICATION ACCURACIES (IN PERCENT) AND STANDARD DEVIATION ON 5 NODE

CLASSIFICATION BENCHMARK DATASETS. BOLD NUMBERS INDICATE BEST RESULTS.

CS Physics Computers Photo WikiCS

GCN 92.55Â±0.17 95.51Â±0.11 88.38Â±0.44 92.85Â±0.38 76.78Â±0.46
GAT 92.65Â±0.51 94.35Â±0.40 88.31Â±0.64 92.36Â±0.59 76.64Â±0.51

GraphSAGE 92.90Â±0.18 95.67Â±0.13 88.56Â±0.49 92.80Â±0.36 76.74Â±0.45
Raw Feats. 92.01Â±0.16 93.62Â±0.13 78.76Â±0.75 86.23Â±0.54 72.41Â±0.58
Node2Vec 88.55Â±0.26 91.85Â±0.14 84.63Â±0.41 89.68Â±0.41 71.89Â±0.65

DGI 92.28Â±0.16 94.51Â±0.52 87.45Â±0.46 91.65Â±0.32 74.12Â±0.40
MVGRL 92.11Â±0.12 95.33Â±0.03 87.52Â±0.11 91.74Â±0.07 77.52Â±0.14
GRACE 92.53Â±0.11 95.26Â±0.02 86.65Â±0.25 92.45Â±0.24 77.97Â±0.63

GCA 92.84Â±0.14 95.38Â±0.05 87.85Â±0.31 92.49Â±0.33 77.84Â±0.67
BGRL 92.59Â±0.14 95.48Â±0.08 89.69Â±0.37 92.82Â±0.38 76.86Â±0.74

CCA-SSG 93.01Â±0.20 95.42Â±0.09 88.76Â±0.36 92.89Â±0.28 75.67Â±0.73
AFGRL 93.21Â±0.14 95.69Â±0.11 89.82Â±0.40 92.93Â±0.26 77.57Â±0.45

iGCL 93.35Â±0.14 95.85Â±0.10 90.06Â±0.41 93.10Â±0.26 78.22Â±0.69

TABLE IV
SUMMARY OF STATISTICAL RESULTS IN TERMS OF MEAN ACCURACIES
AND STANDARD DEVIATION UNDER DIFFERENT LABEL RATIOS. BOLD

NUMBERS INDICATE BEST RESULTS.

0.5% 1% 2% 5% 10% 20%

GCN.C 77.85Â±2.2 81.87Â±2.0 85.08Â±0.8 87.03Â±0.6 87.70Â±0.4 88.11Â±0.3
GAT.C 76.41Â±3.0 79.88Â±2.5 83.22Â±1.5 85.37Â±1.1 86.13Â±0.8 86.38Â±0.9
DGI.C 72.33Â±1.9 74.89Â±1.3 78.57Â±1.0 84.50Â±0.5 87.48Â±0.4 88.43Â±0.3

iGCL.C 78.20Â±1.7 83.01Â±1.5 86.20Â±0.7 88.51Â±0.6 89.79Â±0.3 90.52Â±0.2
GCN.W 62.22Â±3.7 68.06Â±2.9 72.08Â±1.6 75.60Â±0.9 76.65Â±0.6 77.63Â±0.3
GAT.W 62.33Â±3.8 67.57Â±2.2 71.20Â±1.6 74.35Â±1.1 75.90Â±0.6 76.61Â±0.5
DGI.W 54.65Â±3.2 61.04Â±2.4 66.59Â±1.7 71.15Â±0.9 75.14Â±0.4 77.32Â±0.4

iGCL.W 61.85Â±3.2 70.04Â±1.8 74.48Â±1.3 77.32Â±0.6 79.66Â±0.4 81.18Â±0.4

TABLE V
SUMMARY OF STATISTICAL RESULTS IN TERMS OF MEAN ACCURACIES
AND STANDARD DEVIATION UNDER DIFFERENT LABEL RATIOS. BOLD

NUMBERS INDICATE BEST RESULTS.

None Struc. Feats. Struc. & Feats.

GCN.C 92.55Â±0.1 83.61Â±0.1 91.98Â±0.0 83.58Â±0.1
GAT.C 92.40Â±0.1 82.13Â±0.1 90.95Â±0.2 82.16Â±0.1
DGI.C 92.38Â±0.2 84.22Â±0.1 92.19Â±0.1 84.21Â±0.1

iGCL.C 93.01Â±0.1 84.48Â±0.0 92.27Â±0.0 84.50Â±0.0
GCN.W 76.83Â±0.2 36.88Â±0.3 39.62Â±0.4 33.99Â±0.5
GAT.W 76.55Â±0.3 35.82Â±1.2 32.28Â±1.9 30.76Â±2.1
DGI.W 74.22Â±0.4 34.44Â±0.0 35.97Â±0.1 33.14Â±0.1

iGCL.W 78.09Â±0.6 41.91Â±0.1 42.15Â±0.1 40.86Â±0.5

number of graph neural layers L, and number of positive
samples K.

The effect of the balance coefficient λ. We theoretically
prove that the ID loss and the loss of CCA-SSG are equivalent.
For different λ, the classification accuracies of iGCL and
CCA-SSG on Photo and Computers are shown in Fig. 5.
When λ = 0, i.e., the discrimination term is removed, the
classification accuracies of both iGCL and CCA-SSG decrease
compared to the optimal classification accuracies. This in-
dicates that the discrimination term can effectively improve
the quality of the representations. Note that the performance
of iGCL is only weakly degraded, while the performance of
CCA-SSG is significantly degraded. In particular, the classi-

Fig. 4. Visualization of node representations of WikiCS by t-SNE.

Fig. 5. Effects of balance coefficient λ for iGCL and CCA-SSG.

fication accuracy of CCA-SSG for Computers is only 53.7%,
which implies a trivial solution. Regardless of whether λ is
small or large, the magnitude of the performance variation of
iGCL is always tiny, while CCA-SSG requires a suitable λ to
ensure the performance. This indicates that iGCL is much less
sensitive to λ than CCA-SSG.

We analyze the effects of D on the Photo and Computers, as
shown in Fig. 6. When D = 1024, iGCL achieves satisfactory
classification accuracies on most datasets. This is different
from unsupervised graph representation learning methods such
as node2vec, which usually set D to 128. Moreover, D = 1024
is also higher than those of GCL methods such as DGI and
CCA-SSG, which are usually 512. Note that the simple logistic
regression classifier can correctly classify the representations
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Fig. 6. Effects of the dimension of representations D for iGCL.

even if D is as high as 1024. Moreover, the performance
of iGCL on Photo and Computers does not show significant
degradation when D is further increased. In particular, for
Computers, iGCL achieves the best classification accuracy
when D is 4096. This indicates that the high-dimensional
representations generated by the iGCL can enhance its dis-
criminative power and that the curse of dimensionality does
not occur. Since increasing D increases the computational
memory, we suggest setting the default D to 1024.

Fig. 7. The effects of the number of graph neural layers L for iGCL.

We explore the effect of L on the performance of iGCL. The
classification accuracies of iGCL and GCN in WikiCS with
different L are shown in Fig. 7. We find that the classification
accuracy of iGCL is highest when L is 2. This indicates
that iGCL prefers shallow networks. Then, the classification
accuracies of iGCL decrease with an increasing L. The ex-
perimental results show that the oversmoothing of GNNs also
exists in iGCL. We notice that the classification accuracies of
GCN decrease significantly when L is 3 or 4. This indicates
that the oversmoothing of GCN is very serious. For iGCL, the
classification accuracy shows a significant decline only when L
reaches 8, and the decline is also lower than that of GCN. This
indicates that iGCL can alleviate the oversmoothing problem.

We analyze the effect of K on the performance of iGCL.
K = 1 means that only Hξ

i of the target node i is chosen as

Fig. 8. Effects of the number of positive samples K for iGCL.

the positive sample. We measure the classification accuracies
of iGCL on Photo and WikiCS when K takes different values,
as shown in Fig. 8. Compared with K = 1, there are always
gains when using neighboring nodes as positive samples. In
particular, the classification accuracy at K = 6 improves
by 1.5% over that at K = 1 on WikiCS. The experimental
results indicate that the positive sample construction strategy
is effective and makes full use of the proximity. We also
notice a small decrease in the classification accuracies when
K is too large, such as K = 16. The reason is that some
nodes with different classes dilute the useful and invariant
information. AFGRL requires k-nn and k-means clustering
algorithms for all nodes to filter positive samples, which re-
quires tremendous computational resources and time. Because
the k-nn and k-means algorithms require all representations,
AFGRL is unsuitable for large-scale datasets. In contrast,
iGCL can naturally be applied to large-scale datasets. DGCL
only requires the neighboring nodes of target nodes and can
be trained in a minibatch manner with the help of neighbor
sampling techniques [38].

V. CONCLUSION

In this paper, we proposed an efficient and effective
augmentation-free GCL method called invariant-discriminative
graph contrastive learning (iGCL). To avoid empirical data
augmentation, iGCL generates an augmented view of the
entire graph through Siamese networks. Then, the positive
sample construction strategy can effectively select nodes with
similar semantic information to the target node from neigh-
boring nodes of the augmented view as positive samples. This
enriches the diversity of positive samples and improves the
performance of iGCL. Different from instance-level mutual
information estimation, the ID loss is at the feature level. ID
loss selects the MSE as the invariance term, which forces
the positive samples to be as similar as possible to the
target sample in the representation space. ID loss uses the
orthonormal constraint as the discrimination term to force the
representations in different dimensions to be independent of
each other and to guarantee the discriminability of represen-
tations.

Extensive experimental results showed that iGCL out-
performs all baselines on 5 node classification benchmark
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datasets. Using the representations generated by iGCL as in-
put, the simple logistic regression can outperform the complex
GNNs. iGCL also shows superior performance for different
label ratios and is capable of resisting graph attacks, which
indicates that iGCL has excellent generalization and robust-
ness. A visualization experiment illustrated the ability of iGCL
to aggregate nodes of the same kind and separate nodes of
different classes without relying on manual labeling. Parameter
sensitivity experiments illustrated that the performance of the
iGCL is insensitive to the values of coefficient and number
of positive samples. Although iGCL is suitable for shallow
GCNs, it shows better resistance to oversmoothing than GCNs.
Intriguingly, iGCL benefits from very high-dimensional repre-
sentations, similar to the findings of [27]. Since iGCL is based
on BYOL, it employs tricks such as an asymmetric structure
and additional projector to avoid trivial solutions. Improving
the network architecture of iGCL deserves further exploration.
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Hjelm, “Deep graph infomax.” ICLR (Poster), vol. 2, no. 3, p. 4, 2019.

[12] T. Wang and P. Isola, “Understanding contrastive representation learning
through alignment and uniformity on the hypersphere,” in International
Conference on Machine Learning. PMLR, 2020, pp. 9929–9939.

[13] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
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[32] M. Federici, A. Dutta, P. Forré, N. Kushman, and Z. Akata, “Learning
robust representations via multi-view information bottleneck,” arXiv
preprint arXiv:2002.07017, 2020.

[33] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. Hsu, and K. Wang,
“An overview of microsoft academic service (mas) and applications,” in
Proceedings of the 24th international conference on world wide web,
2015, pp. 243–246.

[34] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, “Image-based
recommendations on styles and substitutes,” in Proceedings of the 38th
international ACM SIGIR conference on research and development in
information retrieval, 2015, pp. 43–52.

[35] P. Mernyei and C. Cangea, “Wiki-cs: A wikipedia-based benchmark for
graph neural networks,” arXiv preprint arXiv:2007.02901, 2020.

[36] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.
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