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Abstract— Self-supervised learning (SSL) has emerged
as a powerful technique for improving the efficiency and
effectiveness of deep learning models. Contrastive meth-
ods are a prominent family of SSL that extract similar
representations of two augmented views of an image while
pushing away others in the representation space as neg-
atives. However, the state-of-the-art contrastive methods
require large batch sizes and augmentations designed for
natural images that are impractical for 3D medical images.
To address these limitations, we propose a new longitudinal
SSL method, 3DTINC, based on non-contrastive learning. It
is designed to learn perturbation-invariant features for 3D
optical coherence tomography (OCT) volumes, using aug-
mentations specifically designed for OCT. We introduce a
new non-contrastive similarity loss term that learns tempo-
ral information implicitly from intra-patient scans acquired
at different times. Our experiments show that this temporal
information is crucial for predicting progression of retinal
diseases, such as age-related macular degeneration (AMD).
After pretraining with 3DTINC, we evaluated the learned
representations and the prognostic models on two large-
scale longitudinal datasets of retinal OCTs where we pre-
dict the conversion to wet-AMD within a six-month interval.
Our results demonstrate that each component of our con-
tributions is crucial for learning meaningful representations
useful in predicting disease progression from longitudinal
volumetric scans.
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Manuscript submitted May, 06, 2023. This work was supported
in part by Wellcome Trust Collaborative Award (PINNACLE) Ref.
210572/Z/18/Z, and Austrian Science Fund (FWF) [10.55776/FG9]. For
the purpose of open access, the author has applied a CC-BY public
copyright licence to any author accepted manuscript version arising from
this submission.

Taha Emre, Arunava Chakravarty, Antoine Rivail, Dmitrii Lachinov,
Oliver Leingang, Sophie Riedl, Julia Mai, Ursula Schmidt-Erfurth, and
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I. INTRODUCTION

Age-related macular degeneration (AMD) is the leading
cause of deterioration and complete loss of central vision in the
elderly population [1]. AMD progresses to either geographic
atrophy (GA, also called dry-AMD), or neovascular AMD
(nAMD, also called wet-AMD). Wet-AMD is characterized
by the formation of new vessels in the choroid, which leak
fluid into the tissue, causing scarring and degradation of the
vision [2]. The activity of wet-AMD can be mitigated by a
frequent, e.g. bimonthly, intravitreal injection of anti-VEGF
agents, most effective if applied soon after the conversion
event [3]. However, the conversion from intermediate to wet-
AMD can appear suddenly, and its clinical indicators are
still not well-understood (Fig. 1). Thus, due to a lack of
knowledge on wet-AMD conversion biomarkers, it is currently
difficult for ophthalmologists to accurately determine the risk
of conversion. This is especially relevant for the fellow-eye of
an already treated eye to prevent vision loss in both eyes.

Retinal diseases including AMD are commonly diagnosed
using non-invasive optical coherence tomography (OCT)
scans. They provide a dense 3D volume consisting of a series
of 2D cross-sectional slices (B-scans) with a resolution of a
few micrometers. OCT scans are especially valuable to guide
the treatment of patients with wet-AMD, where scans of both
eyes are typically acquired across multiple visits, creating a
time series depicting the progression of AMD in the fellow
eyes, which are often still in the intermediate stage. Such
longitudinal imaging datasets are an invaluable repository for
developing deep learning models that can be trained to detect
imaging patterns of imminent disease conversion.

The volumetric and longitudinal nature of OCT datasets
presents a special challenge for developing deep learning
models, as they require large annotated volumetric datasets and
large computational resources, e.g. GPU memory. Moreover,
it has been shown that, when trained from randomly initialized
weights, the benefit of rich 3D information is canceled out by
the difficulty of training a 3D model with volumetric scans [4].
This calls for new deep learning approaches that allow exploit-
ing such large sets of unlabeled data, can utilize temporal and
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Fig. 1: An example of wet-AMD conversion. For the first
two OCT scans, the eye is in the intermediate stage and only
small changes are visible over the visits. On the last OCT
scan, conversion to wet-AMD has already occurred, and there
are drastic changes in the retinal structure.

3D volumetric information, and are additionally memory effi-
cient. Such pretrained models are expected to learn temporally-
informed representations and to be efficiently fine-tuned for
downstream prognostic tasks. Current contrastive methods are
based on samples with the assumption of independence and
identical distribution (i.i.d). However, in temporal datasets, this
is often not the case, as there is a high degree of correlation
between the OCT scans of the same patient acquired across
multiple visits at varying time intervals, which should be
reflected in the learned representational space. Furthermore,
disease progression prediction is inherently a temporal task.
Therefore, OCT scan representations should capture potential
future evolutions to achieve good prediction performance.
One way of doing this is by aligning the representations
of a patient’s scan with respect to a common trajectory.
This alignment process requires a signal; in a supervised
setting, this could be the change in fluid volume or other
trackable biomarkers that progress over time. However, in an
unsupervised setting, the only available and consistent option
is the time difference, assuming that disease severity can only
stagnate or progress, and cannot reverse. In summary, the
goal is to learn a smooth trajectory from longitudinal scans
implicitly. An ideal representation for prognosis should be
sensitive to changes in OCT volumes due to the progression of
time. In other words, the representations should be equivariant
in time such that the change in representation space should
be proportional to the time component in the OCT volume
domain.

In this paper, we present a deep learning method, 3D
Temporally Informed Non-Contrastive Learning (3DTINC),
that improves performance on limited downstream datasets
by utilizing unlabeled longitudinal data in a self-supervised
manner. We first set up an augmentation scheme for non-
contrastive training suitable for 3D OCT volumes. Then, our
novel non-contrastive loss term based on VICReg [5], forces
the convolutional neural network (CNN) to produce represen-
tations which implicitly encode the temporal information from
longitudinal data. Finally, we test our method on a prediction
task of wet-AMD conversion, using fellow-eye retinal OCTs
coming from multiple clinical datasets. Results demonstrate
that the embedded temporal knowledge is crucial for time-
relevant tasks such as AMD conversion prediction. To the best

of our knowledge, this is the first work on 3D non-contrastive
learning for OCT scans. It extends and advances on our prior
work on 2D non-contrastive learning for AMD conversion
prediction [6]. In summary, our contributions on top of our
previous method [6] are:

• We process dense 3D OCT volumes with an efficient
video CNN model

• We propose a novel augmentation scheme for non-
contrastive pretraining specific to the 3D OCT volumes

• We analyze our novel loss function to show how it favours
learning time-equivariant representations and also verify
this property experimentally

• We test the extracted representations on an external
dataset acquired with a different OCT scanner and show
that our 3DTINC produces representations more robust
to domain-shift

II. BACKGROUND AND RELATED WORK

Self-supervised learning (SSL) is a pretraining strategy for
learning meaningful representations of data in an unsupervised
manner. SSL aims to learn data representations that capture
important features specific to the input imaging modality.
Initializing networks with the SSL-pretrained weights can
improve their performance on the downstream task while
reducing training data and time. It has been a common
approach when the labels are scarce or noisy to stabilize the
optimization by preventing over-fitting for the downstream
task [7]. Usually, SSL pretraining involves solving a pretext
task that does not require manual labeling. A model should
learn useful representations for the downstream task by solving
the pretext task successfully. Predicting relative image patch
positions [8], jigsaw-puzzle solving [9] and image rotation
degree prediction [10] are some of the most common pretext
tasks. But these methods often learn representations specific to
the heuristic pretext task and do not generalize well to different
downstream tasks [11].

Contrastive learning emerged as a pretraining SSL step
for extracting representations without relying on a pretext
task. The core idea of contrastive methods is to learn image
representations that are invariant to certain transformations,
representative of irrelevant data variations. First, an image is
augmented twice with the transformations, resulting in two
views. Then, the network produces two representations. Fi-
nally, a contrastive loss, typically InfoNCE loss [12] is used to
bring the two representations of the same image together in the
embedding space, while it treats other image representations as
negatives and pushes them apart. Contrastive methods can be
interpreted as instance discrimination methods [13]. Ideally,
the network should not produce the same representation for
all the inputs while outputting very similar representations for
the transformed versions of images. Sometimes, the network
learns a shortcut for minimizing the distance by outputting the
same representations for all samples: a trivial solution named
representational collapse, which leads to severe degradation
of the downstream task performance. Avoiding the collapse
of representations requires the success of pulling and pushing
operation, but it demands very large batches, with thousands
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of samples [11] and strong image transformations to prevent
the network from learning shortcuts. Alternatively, another
memory-intensive approach is to keep a dictionary of all
representations and use it for dissimilar examples [14].

Non-contrastive methods [15], unlike contrastive ones [11],
do not require large batch sizes, which is crucial for already
memory-heavy 3D models. Additionally, they do not define
different pairs within a batch as hard negatives, which is a de-
sired property for medical imaging since different samples can
share similar semantic information, such as similar anatomy
or disease stage. Still, non-contrastive methods need to be able
to distinguish different samples in the representational space.
Therefore, instead of pushing different negative samples apart
and pulling positive pairs together, non-contrastive methods
learn to produce distinct and meaningful representations in
several ways, e.g., by stopping gradients in one of the network
branches to create discrepancy [15], predicting the output
of the other branch [16], or prototype clustering [17]. In
general, non-contrastive methods can be grouped into two
categories. The first group like [15]–[17] creates a discrepancy
between branches to avoid representational collapse. Another
group of non-contrastive methods like VICReg [5] and Bar-
low Twins [18] employs redundancy reduction by defining
appropriate loss functions that aim to increase correlation
between the input pairs and to decorrelate the rest. They can
be interpreted as maximizing the information in an embed-
ding [19]. In this aspect, they prevent a second type of collapse
called informational collapse [20], where the majority of the
variables in a representation vector (embedding) does not
contain information about the input. All the aforementioned
strategies allow to learn meaningful representations without
the need for hard negatives and prevent informational and
representational collapse.

Most medical imaging datasets suffer from label scarcity,
imbalance and noisiness. However, a large amount of unla-
beled patient data is available and can be used for pretraining
to improve the downstream task trained on these limited la-
beled datasets. For longitudinal datasets, in [21] they proposed
predicting the time difference between inputs from the two
branches of a Siamese network as a pretext SSL method, the
weights are then transferred for AMD progression modeling
using 2D retinal OCT B-scans. Other popular pretext-based
medical SSL methods exploit anatomies [22] or disease related
biomarkers [4]. Later on, following the success of contrastive
pretraining methods, in [23], they showed that when creating
a positive pair for contrastive learning in a medical imaging
setting, it was beneficial to use two different images from the
same patient. Based on this idea, in [24], they proposed to
generate pairs by sampling different frames from an ultrasound
video, then the contrastive loss was used as a regularization
term. In OCT domain, [6] used two images of a patient
acquired at different dates for pretraining with a novel non-
contrastive loss. Similarly, feeding two different images was
used in stereo depth estimation for surgery videos [25]. Addi-
tionally, contrastive learning was applied to the unsupervised
multimodal MRI registration task as a representation learning
approach [26].

Several works have attempted predicting the AMD progres-

sion from retinal OCT. In [27], an LSTM-based model was
trained to predict the conversion to dry-AMD within a speci-
fied time frame using a set of quantitative OCT biomarkers and
demographic features. In [28], they boosted the performance of
predicting the conversion to wet-AMD by exploiting the tissue
segmentation maps and available disease diagnosis as auxiliary
loss terms with 3D OCT volumes. In [29], they addressed
predicting wet-AMD progression and obtained volume-level
prediction by pooling the 2D B-scan-level predictions. [30]
trained a CNN model using color fundus images and genotypes
to predict late-stage AMD conversion over the long term (more
than 2 years). The above works were largely trained from
scratch, or from ImageNet-pretrained models, and suffered
from the limited amount of labeled conversions available.
Moreover, they rely on additional information such as patient
demographics, supplementary disease diagnosis or generated
segmentation maps, which are not always available or are
extremely costly to obtain. In this regard, there is a need for
exploiting large amount of unlabeled longitudinal OCT data
available and find an effective self-supervised pretraining for
the downstream predictive task.

Existing contrastive methods focus only on learning invari-
ances to undesired image perturbations specific to 2D natural
images. 3DTINC extends the invariances to 3D OCT volumes,
and more importantly exploits the acquisition time information
available in the temporal OCT datasets to learn representations
that capture the longitudinal disease progression. After pre-
training, 3DTINC performed better than baseline contrastive
methods in the disease conversion prediction task.

III. METHODS

Our approach consists of representation learning with the
proposed 3DTINC, a non-contrastive pretraining on the lon-
gitudinal OCT volumetric data, followed by fine-tuning for
predicting the conversion to wet-AMD (Fig. 2) within a six-
month timeframe. The backbone for these steps is a compact
and memory-efficient CNN designed for processing slice-
based volumetric data.

A. Model Backbone
The standard technique to expand a CNN from 2D to 3D is

to inflate the 2D convolutional layers given that the input data
is an isotropic 3D image of voxels. In an OCT volume, the
resolution across the B-scan dimension is substantially lower
than across the other ones. Thus, it is more meaningful to
consider an OCT volume as a stack of slices (B-scans) similar
to video frames, and use CNNs with smaller 3D kernels in the
B-scan dimension to obtain a more efficient model [31], [32].

We chose Channel-Separated Convolutional Network
(CSN) [32] as our backbone. CSN is more efficient compared
to fully 3D CNNs or to common 3D video models in terms
of number of parameters and flops. Its efficiency comes from
combining 1 × 1 × 1 3D convolutions to process channel-
wise information with k × k × k depth-wise separable con-
volutions [33]. A 50-layer version of the CSN model is used
for both non-contrastive pretraining and training the predictive
model for the downstream task.
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Fig. 2: Workflow of the proposed method. In the pretraining stage, two different visits from two time points (t1, t2) of a
patient, are randomly sampled. They are then transformed using 2 randomly sampled transformations (a1, a2) to be fed to
an encoder f for extracting representations. The final non-contrastive loss TINC is calculated on the projections (embeddings
of the representations). Finally, the weights of the pretrained encoder f are transferred for learning the downstream task of
wet-AMD conversion prediction, where binary cross-entropy loss is used for fine-tuning or linear evaluation.

B. Proposed Non-Contrastive Pretraining

The proposed non-contrastive pre-training for disease pro-
gression has two novel aspects. First, the transformations used
to create two views of the same scan for non-contrastive
learning is specifically adapted for the retinal OCT modality
and extended to operate on 3D Volumes. Secondly, we propose
a novel time-aware similarity term in the non-contrastive loss
which forces the network to learn similar representations for
two 3D OCT scans of the same eye from two different time
points, depending on the time interval between them. The
OCT representations are extracted with two weight-sharing
encoders (Fig. 2.B). Then, non-contrastive loss is calculated
on the projections of the representations (Fig. 2.C)

1) Proposed Volume Transformations: Currently, image
transformations for non-contrastive methods [5], [18] are
based on the setting in [16], and are specific to the natural
images. These transformations aim to capture the expected
variability and perturbations in the images and the non-
contrastive training aims to learn image representations which
are invariant to them. Horizontal flip, color jittering, random
cropping and blurring are some examples of the transforma-
tions (Table I). The contrastive learning creates two inputs
(views) from an image by applying two transformations a1 and
a2 sampled from a list of random augmentations A (Fig. 2.B).
One of the most important transformations in contrastive
learning is the aggressive randomly resized crop [17]. In [5],
[16], [18], the images are cropped between 8-100% of their

areas. Although natural images could include some clues and
information in very small crops, this is not the case with OCT
images. The standardized view and the noisy nature of the
OCT could result in an uninformative and extremely noisy
crops. In this respect, medical OCT volumes require a distinct
set of transformations, which the representations should be
invariant to. Thus, we selected the cropping ratio to be between
40-80% of B-scans. We decreased the upper bound to 80% in
order to mitigate the reduced augmentation strength by the
higher lower bound [6]. In addition, we changed solarization
threshold to 0.42 to calibrate with respect to the intensity
distribution of OCT volumes (Table I).

Inspired by [23], instead of creating two views from a
single OCT, the input views are created from two OCTs of
a patient acquired at different times acting as an additional
transformation. This assumes that within a certain acquisition
time interval, the change in anatomy is minimal, and the
learned representations should encapsulate the patient-specific
information. Finally, in order to learn representations invariant
to spatial misalignment between the acquired intra-patient
OCT volumes, we proposed shifting B-scan positions within
an OCT volume as an additional transformation.

2) Proposed Non-Contrastive Learning Similarity Loss: Our
non-contrastive pretraining approach is based on VICReg [5].
In comparison to other contrastive and non-contrastive meth-
ods, VICReg has some additional features that make it partic-
ularly well-suited for SSL on longitudinal volumetric data:

• There is no discrepancy between the branches of the
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neural network. The weights of both encoders are updated
simultaneously. This makes it easy to feed two different
images to each branch.

• The loss terms are explicit and can be adapted easily.
This is in contrast to methods like SimSiam [15], and
BYOL [16], which do not have explicit loss terms or do
not update the weights of both encoders simultaneously.

• Unlike Barlow Twins [18], the main similarity term does
not require calculation of the cross-correlation matrix,
which makes VICReg more robust to small batch sizes.

The loss is calculated using pair of projections z, and z′.
The pretraining pipeline starts with transforming a volume V
twice via random transformations a1 and a2 to create two
views as inputs to the Siamese network. Then the inputs
are encoded by an encoder f with learnable parameters θ
(Fig. 2.B). Finally, the representations are expanded using
projector [16] g with parameters ϕ resulting in un-normalized
projections z = gϕ(fθ(x)) and z′ = gϕ(fθ(x

′)) which the
loss is calculated on (Fig. 2.C). Their batch versions are
Z = [z1, . . . , zn] and Z ′ = [z′1, . . . , z

′
n] where n is the

batch size. A non-linear projector is helpful for preventing
dimensional collapse [20], [34] and improving the downstream
task.

VICReg uses three different loss terms. The invariance
term S(Z,Z ′) in (1) brings representations of two views of
an image closer by decreasing the L2 distance between Z ′

and Z. The variance term V (Z) in (2) ensures that there
is a variation among the representations within a batch. It
plays a similar role of pushing the negative samples away
as in contrastive learning. The term itself is the sole factor
preventing representational collapse, where the network learns
to minimize the invariance loss by producing the same repre-
sentation for all the inputs. In VICReg, it is implemented as a
standard deviation instead of a direct calculation of variance
to have more stable gradients [5]. In (2), γ is the desired
standard deviation (std) between all samples in a batch at
each dimension of the projections, such that each projection
in a batch, is different than the others to at least a degree
of std, and similar to [5] the γ is selected as 1. In (2),
std(zj , ϵ) is the standard deviation of jth dimension of the
embeddings along a batch, a small ϵ is used for numerical
stability. d is the embedding space length. Lastly, inspired by
the in-diagonal loss in [18], the covariance term C ensures
that each element of the embeddings are as informative as
possible. The covariance matrix Cov(Z) (3) is constructed by
calculating the variance between each pair of projection vector
elements. The loss term tries to bring off-diagonals of the
Cov(Z) close to zero so that each element in the vector is as
informative as possible. The normalization could interfere with
the decorrelation of the feature dimensions, (the covariance
term) [34], hence the projections are un-normalized. In [5],
they showed that l2 norm leads to degraded performance for
VICReg.

S(Z,Z ′) =
1

n

∑
i

∥zi − z′i∥22, (1)

V (Z) =
1

d

d∑
j=1

max(0, γ − std(zj , ϵ)), (2)

C(Z) =
1

d

∑
i ̸=j

[Cov(Z)]2i,j , (3)

where Cov(Z) =
1

n− 1

n∑
i=1

(zi − z̄)(zi − z̄)T

Temporally informed non-contrastive (TINC) loss: In
Section III-B.1, we proposed creating two views not from
a single image but with scans from two visits of a patient.
Given two different visits at time points t1 and t2, ∆t is
defined as the time interval |t1 − t2| normalized to the range
of [0, 1]. We hypothesize that as the time difference ∆t
increases, the distance between z and z′ should be within a
margin proportional to ∆t. In the longitudinal OCT data, the
increase in anatomical changes over time should be expected
due to disease progression. Since the VICReg invariance term
S(Z,Z ′) in (1) does not capture this change, we propose to
replace it with a novel margin-based invariance (i.e. similarity)
term, ℓTINC [6] defined as:

ℓTINC(Z,Z
′) =

1

n

n∑
i

max(0, ∥zi − z′i∥22 −∆ti) (4)

ℓTINC is a generalization of the VICReg invariance loss term
designed to make the learned representations sensitive to time
by using an adaptive margin. The margin is determined by
the ∆t, and dynamically changed for each visit pair. It brings
z and z′ close only if the distance between them is greater
than ∆t. As the margin approaches 0, ℓTINC becomes the
invariance term of VICReg.

ℓTINC is similar to the ϵ-insensitive loss [35] used in support
vector regression (SVR) with some key differences. ℓTINC

uses an adaptive margin dependent on ∆t instead of a constant
margin ϵ in SVR. Additionally, our margin is between 0 and
∆t, not −∆t and ∆t, because the distance metric cannot
provide negative values.

For the contrastive training, we kept variance and covariance
terms as they are in VICReg, and the final loss function is the
weighted sum of these three terms:

Lcontr(Z,Z
′) = λ · ℓTINC(Z,Z

′) + µ · (V (Z) + V (Z ′))
(5)

+ ν · (C(Z) + C(Z ′))

Although the variance term in (2) acts to increase the
standard deviation in each feature dimension across scans of
different eyes in a mini-batch, it also encourages a larger
vector norm, which in turn increases the distance between
z and z′ implicitly. The trade-off between the ℓTINC and
the variance term plays a crucial role in learning meaningful
representations. Ideally, when the distance between z and z′ is
above the margin, the ℓTINC term should decrease the distance
to bring it closer to the margin. However, in a scenario when
the initial distance is below the margin during training, the
ℓTINC does not contribute to the overall loss and the variance
term implicitly moves z and z′ by the encouraging them to
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TABLE I: Contrastive Learning Transformations

Augmentation Original Setting [16] Proposed Setting

Random Crop & Resize (percentage) 0.08 - 1.0 0.4 - 0.8
Random Horizontal Flip (probability) 0.5 0.5
Random Color Jittering (probability) 0.8 0.8
Random Gaussian Blur (kernel size) 21 21
Random Solarize (threshold) 0.5 0.42
Random Slice Shift (frame) - ±5
Input Time Difference (days) - 90-540
∗Random grayscale transformation is removed for all cases, since the B-scans
are already in grayscale.

have high vector norms. Thus, at the convergence point, the
loss function encourages the distance between z and z′ to
be close to ∆t for a given input pair. During training, two
different visits of a patient are randomly selected in each epoch
to form the input image pairs. This ensures a wide variation in
the ∆t for the training samples corresponding to each patient
in every epoch. It is crucial that a patient contributes only
a single pair to a mini-batch in order to prevent treating the
different scans from a patient as implicit negatives.

3) Temporal equivariance property: The goal of contrastive
learning is to have representations that are invariant to the
expected irrelevant image distortions. However, disease-related
changes in the anatomy over time should have a proportional
effect on the representational space. Thus, it is desirable to
have equivariant representations across sufficient time dif-
ference. Formally, suppose the distance between the repre-
sentations of two intra-patient OCTs, xt and xt+∆t encoded
by encoder f , with time difference of ∆t. Now, if t + ∆t
is increased by ∆t, Euclidean distance between f(xt+∆t)
and f(xt+2∆t) should be similar to the distance between
f(xt) and f(xt+∆t). If ∆t is small (one month), the change
in distance between xt and xt+∆t can be represented by a
small transformation h. This assumes that with small ∆t, the
transformation between two consecutive scans does not cause
label-related semantic changes. Thus, if f is producing time-
equivariant representations, following the formulation in [36]
this property can be given as:

f(xt+2∆t) ≈ hf(xt+∆t) ≈ h ◦ hf(xt). (6)

If ∆t induces a small temporal neighborhood, h can be
approximated using its first-order Taylor series as:

f(xt+∆t) ≈ f(xt) + ∆tc(t), f(xt+2∆t) ≈ f(xt) + 2∆tc(t)
(7)

Additionally if the set of possible values for t is bounded by
a relatively close upper and lower bounds, the derivative with
respect to time can be approximated by a constant function,
which is c(t). If we take the l2 distance between two time
points:

∥f(xt+∆t)− f(xt)∥2 ≈ ∥f(xt) + ∆tc(t)− f(xt)∥2 (8)
≈ ∥∆tc(t)∥2

Similarly ∥f(xt+2∆t) − f(xt)∥2 will be 2∥∆tc(t)∥2 and
∥f(xt+2∆t)− f(xt+∆t)∥2 will be ∥∆tc(t)∥2. In other words,
the distance between two time-equivariant features is a func-
tion of the scalar ∆t. ℓTINC tries to achieve a similar result;

the distance between two representations of the time points
should be 0 except for the normalized time difference. It is
important to note that we formulated ∆tc(t) as ∆t normalized
between 0-1 depending on the maximum and minimum values
of t. Instead of enforcing Eq. (7) as in [36], ℓTINC addresses
the time equivariance implicitly. Additionally, in the case of
ℓTINC, if the other loss terms are ignored during training, the
trivial solution would still produce the representations specific
to each time difference ∆t, unlike in [5], [18], where the trivial
solution produces the same representation for all inputs.

C. Downstream Progression Task Formulation
We formulated the intermediate AMD to wet-AMD stage

progression task as a binary classification of predicting the
conversion event within a fixed time period from a given
patient visit. Clinically, it is desirable to predict the conversion
to late stage wet-AMD within a short time interval to start
the treatment with anti-VEGF drugs in a timely manner.
Furthermore, it is important to be able to make the prediction
from a single visit (i.e., a single OCT scan), so that the
patient’s condition can also be assessed from the first, baseline
visit, and not all the datasets have regular visit intervals and
complete scans. Similarly to the other deep learning works
addressing the same task [21], [27]–[30], we chose the time
period as 6 months to be considered clinically relevant. The
pretrained model is fine-tuned end-to-end for this downstream
prediction task.

The binary conversion labels are hence assigned to each
scan. A scan, sampled from a longitudinal study of T months,
is considered a member of a positive class if there is a
detected wet-AMD conversion point within the next 6 months;
otherwise, it is assigned to the negative class. Following this
reasoning, there is no possible label assignment for scans
of the already converted eyes; therefore, those scans were
excluded from the dataset. For a 3D OCT volume Vc, where
c is the first visit date of wet-AMD diagnosis in months for
a patient P , the label yt associated with volume Vt at visit
month t is generated as:

t ∈ {x ∈ Z | T ≥ x ≥ 0}, yt =


0 if c− t > 6

1 if 0 ≤ c− t ≤ 6

No label if c− t < 0

(9)

IV. EXPERIMENTAL SETUP

All experiments and models are implemented using PyTorch
with mixed precision floating point and MONAI [37], includ-
ing the linear evaluation step. The pretraining, fine-tuning and
linear evaluation steps were performed on a single 80 GB,
NVIDIA A100 GPU.

A. Datasets
The HARBOR clinical trial dataset 1 is utilized to train and

evaluate the proposed method. The trial examined the efficacy
of anti-VEGF treatment on wet AMD eyes over a 24-month

1NCT00891735. https://clinicaltrials.gov/ct2/show/NCT00891735
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TABLE II: Details of Self-Supervised Learning and Down-
stream Supervised Learning Tasks.

Self-
Supervised

Supervised Supervised
(External)

Dataset HARBOR HARBOR PINNACLE
OCT scanner CIRRUS CIRRUS TOPCON
#Patients 540 463 334
Mean Scan Interval
[Days]

30 30 126

#Scans 12506 10108 2813
#Converter eyes n/a 117 127
#Converter scans (within
six months)

n/a 547 536

period. It consists of monthly visits where both eyes of each
subject were imaged with Cirrus OCT (Zeiss Medictec, US)
with 128 B-scans, each with a size of 1024×512 px, covering
2mm × 6mm. From this dataset, we extracted the OCTs of
the fellow eyes, which were at the intermediate AMD stage at
baseline. We identified 463 such fellow eyes that were labeled
by two retinal experts [38], out of which 117 converted to
wet-AMD during the trial duration, and 346 remained in the
intermediate stage. In total, there are 12506 OCT scans for the
SSL and 10108 for the downstream task (Table II).

In order to evaluate the cross-domain adaptability of the rep-
resentations extracted by the models pretrained on HARBOR
dataset, we used an additional dataset from the PINNACLE
consortium [39]. It consists of 2813 OCT scans from 127
converter and 207 non-converter eyes (Table II). Patient visits
were irregular with a mean interval of 126 days between
2 consecutive acquisitions. The eyes were scanned with the
Topcon scanner, which produces OCT volumes with 128 B-
scans with a size of 885 × 512 px, covering 2mm × 6mm.
We note that a difference in OCT scanners between the two
datasets introduces an image domain-shift.

B. Preprocessing
We used the central 32 B-scans covering 2 × 3 × 6 mm3

(axial×B−scans×A−scans) volume of the retinal tissue
around the macula as input to our 3D network during both
the pretraining and the supervised training steps. The B-scans
in this region contain the most relevant clinical information
for AMD and also reduce the GPU memory requirement. The
curvature of the retinal tissue was flattened with respect to the
Bruch’s Membrane which was automatically segmented using
the method in [40]. Flattening is commonly employed in deep
learning applications to have a standardized retinal shape and
reduce misalignments between the B-scans of an OCT volume.
Next, the axial extent of each B-scan was cropped by removing
the dark background regions above and below the retinal tissue
to obtain a 0.78×3×6 mm3 region of interest which is resized
to 32×224×224 voxels. The voxel intensities are normalized
between 0-1 using the min-max scaling. The preprocessing
steps are the same for both datasets.

C. Experiments
1) Pretraining: In order to create input pairs from two

different time points, the method should not require any

discrepancy between the branches of the contrastive model. We
hence chose VICReg and Barlow Twins as baselines because
from all the current non-contrastive methods, they are the only
ones that do not rely on asymmetry between the encoders.
To establish a fair comparison, we first trained the original
VICReg and Barlow Twins. Second, we applied our proposed
3D OCT transformations (Section III-B.1) on VICReg and
Barlow Twins to obtain their improved versions. Thus, the
original VICReg and the improved VICReg serve as ablation
studies to our proposed 3DTINC. We also pretrained a com-
mon contrastive method BYOL [16] and tested it in our down-
stream datasets. Additionally, we compared 3DTINC against
another equivariant contrastive learning called EquiMod [41].
Equimod has two distinct projections of the representation
space. One projection is dedicated to addressing the invariance
task, while the second one is designed for the equivariance
task. Within the equivariance branch, a specialized module
is trained to predict the transformed representation, using the
untransformed representation and the image transformation
parameter (time difference).

In order to show the benefits of pretraining, for comparison,
we initialized a CSN model with random weights, and com-
pleted a fully supervised training on it. Additionally, we fine-
tuned a common video prediction architecture SlowFast [31]
with pretrained weights learned from Kinetics dataset [42]
to demonstrate the importance of pretraining using the same
medical imaging modality as the downstream task.

2) Downstream Task: We evaluated the learned represen-
tations on the downstream task using linear evaluation and
fine-tuning. We split our supervised data for the downstream
prognostic task into a development set (80%) and a hold-out
test set (20%). The development set was used for a four-fold
patient-wise cross-validation to train four models and to tune
the hyperparameters. The folds were stratified by the binary
conversion label. The four models were then evaluated on the
holdout test set, where their mean and standard deviation of
the performance were evaluated.

D. Implementation Details

1) Pretraining: When pretraining, only a small batch size of
32 could be used for pretraining the Barlow Twins and VICReg
models, which makes them very sensitive to hyperparameters.
We pretrained CSN using vanilla Barlow Twins with a learning
rate of 0.005 with a cosine decay and a weight decay of
0.001. In Barlow Twins training, the weight of the off-diagonal
loss term is changed to 0.01. For vanilla VICReg training,
we change the learning rate to 0.0001 and the weight decay
to 1e-6. Weight decay is removed for biases and BatchNorm
statistics. We kept the loss terms weights the same as described
in [5]. For all pretraining experiments, we employed AdamW
optimizer [43]. In improved versions of Barlow Twins and VI-
CReg, the learning rates are set to 5e-5 and 5e-4 respectively.
In the 3DTINC experiments, learning rate of 5e-4 and weight
decay of 1e-4 are used. The weights of the 3DTINC loss terms
are set as λ=15, µ=25 and ν=5 based on the convergence
rate of the individual loss terms. We pretrained all models for
400 epochs (10 warm-ups). All models are pretrained with
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the same number of optimization steps. In vanilla settings, an
epoch length is (#images / Batchsize), while in 3DTINC it
is (#patients / Batchsize). In order to make the total number
of pretraining steps equal, during 3DTINC pretraining, we
resampled multiple time-dependent OCT pairs per patients.
For the improved Barlow Twins, VICReg and 3DTINC, in
order to ensure that the anatomical changes are present but
still representational similarity between two time steps can be
established, we bounded it between 90 and 540 days. The
rationale for the upper and lower bounds is to have a better
time-equivariance property, as explained in Section III-B.3. It
is important to note that we made sure that there is only one
pair per patient in a batch, in order to prevent contrastive effect
stemming from the loss terms.

During pretraining, feature representations from the encoder
are first projected onto a high-dimensional space using the
projection head gϕ as described in Section III-A. The non-
contrastive loss is calculated on the projections. gϕ is imple-
mented as a multi-layer perceptron (MLP) with two hidden
layers, each having the dimension of 4096 with BatchNorm
and ReLU activation. Finally, the CSN and projector gϕ have
∼ 11M trainable parameters.

2) Downstream Task: For linear evaluation, we discarded
the MLP projector and added a single linear layer after the
representations calculated by fθ(x) [11]. The linear layer is
trained for 50 epochs on the conversion task using Adam
optimizer [44] with a constant learning rate 10−4. When fine-
tuning, a fully connected layer is attached after the represen-
tations to get the logits. During fine-tuning, the model with
pretrained weights is updated end-to-end with a learning rate
10−4 using the Adam optimizer for 100 epochs. When training
the model from randomly initialized weights, the model is
trained for 300 epochs using AdamW with an initial learning
rate of 5 × 10−4 decayed by a cosine scheduler and weight
decay of 10−6. The best epoch with the highest ROCAUC
score is chosen on the validation set during fine-tuning and
training from random weights. The classification loss (binary
cross-entropy loss) in all the downstream experiments was
weighted 5 : 1 in favor of the positive class to mitigate the
heavy class imbalance. In all downstream task settings, we
applied random translation, small random rotation (15 degrees)
and random horizontal flip as augmentations.

3) Metrics: Because the scan labels are heavily imbalanced
towards the negative class (≈ 1 : 20), we reported the
results in terms of the area under the receiver operating
characteristic (ROCAUC), the area under the precision-recall
curve (PRAUC), and the balanced accuracy (BACC) calculated
as the average recall of the classes. In the HARBOR dataset,
the baseline PRAUC value is 0.054, while in the PINNACLE
dataset, the PRAUC baseline is 0.097. The low baseline
values of PRAUC are due to the large imbalance within the
datasets. ROCAUC is chosen as the primary metric to compare
performance between models. The reason is that we are more
interested in the correct ranking of classes and we are not
applying a detailed fine-tuning scheme in the downstream task
for better prediction probabilities, which can lead to many
False Positives.

V. RESULTS

A. Linear Evaluation of Learned Representations

The quantitative results of the linear evaluation on the
two datasets are shown in Table III. We first tested models
pretrained with Barlow Twins & VICReg by extending the
network architecture and the original augmentations to 3D.
The increase in the sizes of the model and the input affected
the maximum batch size that fits into the memory. Compared
to [6], Barlow Twins performed worse than VICReg, achieving
only 0.618 ROCAUC. It is due to the limited batch size
causing numerical instabilities during the calculation of cross-
covariance matrix for Barlow Twins loss. Then, in order to in-
vestigate the proposed OCT specific transformations (Table I),
we pretrained Barlow Twins and VICReg with them. Both
Barlow Twins and VICReg had higher prediction scores once
the pretrainings were reinforced with the novel augmentations
and the input scheme. This demonstrates the importance of
having an OCT specific transformation for contrastive pre-
training. When we replaced the similarity loss with ℓTINC

in (4), 3DTINC pretraining achieved the highest score with
0.792 ROCAUC compared to the other pretraining settings.
We provide a sample of saliency maps from the 3DTINC
linear evaluation in Fig. 3. Additionally, EquiMod achieved
a comparatively high ROCAUC score of 0.785, demonstrating
the importance of the temporal equivariance property. In terms
of ablation studies, OCT-specific augmentations and the two-
time-point input improved the original VICReg.

Fig. 3: Examples of Grad-CAM saliency maps from the linear
evaluation predictions.

B. Robustness to Image Domain Shift

OCT scanners from different vendors use different ap-
proaches and protocols during image acquisition. These in-
herent differences are sufficient to cause image domain shift
between different scanners [45]. We compared the multiplica-
tive speckle noise characteristics of the PINNACLE and the
HARBOR datasets with the Gray Level Co-occurrence Matrix
(GLCM) contrast value. We obtained an average contrast
value of 182.4 for the HARBOR dataset and 138.5 for the
PINNACLE dataset, indicating a strong difference in noise
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TABLE III: Linear Evaluation Results for Wet-AMD Conversion Prediction within 6 Months.

Method HARBOR External Data: PINNACLE

ROCAUC ↑ PRAUC ↑ BAcc ↑ ROCAUC ↑ PRAUC ↑ BAcc ↑

BYOL (expanded to 3D) 0.709± 0.016 0.176± 0.020 0.612± 0.029 0.575± 0.020 0.122± 0.010 0.549± 0.021
Barlow Twins (expanded to 3D) 0.618± 0.007 0.155± 0.005 0.564± 0.011 0.593± 0.019 0.121± 0.007 0.556± 0.034
Barlow Twins (improved) 0.771± 0.007 0.156± 0.014 0.708± 0.008 0.607± 0.013 0.125± 0.010 0.564± 0.023
VICReg (expanded to 3D)∗ 0.724± 0.024 0.136± 0.009 0.616± 0.019 0.601± 0.011 0.152± 0.016 0.557± 0.027
VICReg (improved)∗ 0.757± 0.017 0.144± 0.014 0.612± 0.017 0.613± 0.014 0.172± 0.015 0.546± 0.021
EquiMod 0.785± 0.016 0.157± 0.009 0.621± 0.007 0.610± 0.014 0.126± 0.004 0.574± 0.039
3DTINC 0.792± 0.018 0.159± 0.010 0.708± 0.007 0.675± 0.010 0.229± 0.008 0.603± 0.028
∗ denotes the ablation studies.

(a) (b)

Fig. 4: Population level (random 200 patients) analysis of the time-equivariance property. (a) Concordance index on the ranking
of distances. (b) Average representational distance between a given month and the initial month for a patient.

TABLE IV: End-to-end Fine-tuning Results for Wet-AMD
Conversion Prediction within 6 Months.

Method HARBOR

ROCAUC ↑ PRAUC ↑

CSN trained from scratch 0.722± 0.026 0.150± 0.032
SlowFast pretrained on Kinetics 0.753± 0.005 0.194± 0.007
BYOL (expanded to 3D) 0.751± 0.020 0.162± 0.015
Barlow Twins (expanded to 3D) 0.649± 0.022 0.141± 0.013
Barlow Twins (improved) 0.772± 0.007 0.148± 0.015
VICReg (expanded to 3D)∗ 0.763± 0.011 0.140± 0.018
VICReg (improved)∗ 0.775± 0.013 0.170± 0.013
EquiMod 0.730± 0.044 0.154± 0.027
3DTINC 0.781± 0.002 0.162± 0.004
∗ denotes the ablation studies.

(Fig. 5). In order to show the robustness of the extracted OCT
representations, we compared different pretrained models on
an external dataset acquired with a different OCT scanner
(Table II). The linear evaluation results showed that 3DTINC
is able to produce more linearly separable representation even
under domain shift by achieving 0.675 ROCAUC. On the
other hand, the other models, including improved versions
of VICReg and Barlow Twins, performed close to random
(0.5 ROCAUC score) or slightly above it (Table III). Although

we did not enforce domain invariance during pretraining, the
results showed that better pretraining on the source data could
lead to more domain-invariant representations compared to
the other pretraining approaches. However, the high ROCAUC
score of 3DTINC (Table III) underscores its ability to learn
better features compared to other methods, which would be
advantageous even under domain shift. Even though 3DTINC
results in better performance under the domain shift, it is
clear that there is a big gap for achieving domain-invariance
between different OCT scanners. We leave it as a future work
to optimize for the domain invariance in the pretraining step.

C. Fine-Tuning on the Downstream Task
When the pretrained models were fine-tuned in an end-to-

end fashion, 3DTINC outperformed the other models with
more confidence (standard deviation of 0.002 for ROCAUC
Table IV). All other pretraining models achieved higher RO-
CAUC scores against the baselines, except 3D Barlow Twins
with the original setting due to the batch size related problems.
Additionally, when the 3D models were compared with their
2D counterparts in [6], it showed that 3D information allowed
the network to capture more details for the downstream task.
Also, a fine-tuned SlowFast achieved better performance than
original VICReg and Barlow Twins, but performed worse
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once they were improved. Finally, we observed very quick
overfitting in fine-tuning even with hyperparameter tuning
on the validation set. The overfitting resulted in a degraded
performance for fine-tuning compared to linear evaluation.

Fig. 5: An example of 2 B-Scans from the HARBOR and the
PINNACLE datasets to demonstrate the difference in the noise
characteristics.

D. Time-Equivariance Analysis
One of the important properties of the proposed method is

that the loss function converges to provide time-equivariant
features (Section III-B.3). We hypothesised that in order to
extract time-equivariant representations, the network should
be aware of anatomical biomarkers that change over time,
which in turn facilitates learning the downstream progression
detection task. Unlike the other equivariance methods where
the transformation parameters are estimated directly [10], [21],
the TINC loss (4) enforces it with the margin in the loss
function as a soft constraint. To demonstrate the equivariance
property, we sampled 200 patients randomly, and calculated
the l2 distance between each visit and the patient’s initial visit
in the representational space (Fig. 4b). We compared 3DTINC
against improved VICReg where both networks have inputs
from two different visits. We observed that there is a clear
increasing trend in distance as the time progresses from the
initial visit. Although the model only exposed to the time dif-
ference between 3-18 months, the graph clearly demonstrates
that the network is clearly aware of time regardless of the
time difference from the initial scan. In contrast to 3DTINC,
the representations obtained from improved VICReg, do not
show a clear increase in distance with respect to time, even
though the model improved with inputs from different time
steps. In order to show that the difference of the slopes in
Fig 4b is not due to the scale, we calculated the concordance
index (CI) averaged over 200 patients to measure whether

the distances rank with respect to time or not (Fig 4a). A
higher CI value of 3DTINC shows that the distances with
respect to the initial scan increase as time progresses. The
mean CI is close to 0.5 for the improved VICReg indicating
an almost random ranking. In summary, we believe that the
time-equivariance property is crucial for settings where the
prediction is performed from a single scan. This is because
if the network is able to produce time-equivariant representa-
tions, then future OCT scan representations can be predicted
from the current visit’s representation and the desired future
time intervals without seeing the actual future scans.

VI. CONCLUSION

Predicting the future risk of conversion from the intermedi-
ate stage of AMD to its advanced wet stage with prognostic
deep learning models can play a critical role in individualized
patient management by enabling frequent monitoring and
timely treatment for patients with a faster rate of disease
progression. Such prognostic models require labeled longi-
tudinal imaging datasets, which are costly to obtain and
feature high class imbalance. To exploit large amounts of
unlabeled longitudinal volumetric data available in eye clinics,
we adapted non-contrastive SSL methods as a pretraining step,
which have the memory efficiency required for learning from
3D OCT volumes. Importantly, our novel similarity loss term
for longitudinal pretraining enables the network to account
for temporal changes in the retinal anatomy by encouraging
the learned representations to be time equivariant. The results
of our large-scale internal and external evaluation showed that
such pretrained models are more successful on the downstream
task of predicting conversion from intermediate to wet-AMD.
The fine-tuned model provides a prognosis from a single OCT
volume without requiring multiple past visits, thereby allowing
risk assessment from the patient’s first visit itself.

Although to a lesser extent than contrastive learning, non-
contrastive learning methods still employ some loss terms
which are sensitive to the training batch size. Thus, even
though we demonstrated that non-contrastive SSL pretraining
improved downstream performance, there remains room for
improvement by pretraining with larger batch sizes, which is
currently restricted by the large GPU memory requirements of
3D CNN architectures. Thus, exploration of more efficient 3D
deep learning models, e.g., through neural architecture search,
could be a direction for future work. Another promising
avenue for future work is to design prognostic models that
consider multiple visits from the patient’s history to predict
the risk of conversion instead of a single baseline visit.
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