1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 April 05.

-, HHS Public Access
«

Published in final edited form as:
IEEE Trans Med Imaging. 2019 April ; 38(4): 909-918. doi:10.1109/TMI.2018.2874964.

Infant Brain Development Prediction with Latent Partial Multi-
View Representation Learning

Changqing Zhang,

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina,
USA and College of Intelligence and Computing, Tianjin University, Tianjin, China,
(zhangchangging@tju.edu.cn).

Ehsan Adeli,
Department of Psychiatry and Behavioral Sciences, Stanford University, California, USA,
(eadeli@stanford.edu).

Zhengwang Wu,
Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina,
USA, (wuzhengwang1984@gmail.com).

Gang Li,
Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina,
USA, (gang_li@med.unc.edu).

Weili Lin, and
Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina,
USA, (weilLlin@med.unc.edu).

Dinggang Shen

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina,
USA, and also with Department of Brain and Cognitive Engineering, Korea University, Seoul
02841, Republic of Korea, (dgshen@med.unc.edu).

Abstract

The early postnatal period witnesses rapid and dynamic brain development. However, the
relationship between brain anatomical structure and cognitive ability is still unknown. Currently,
there is no explicit model to characterize this relationship in the literature. In this paper, we
explore this relationship by investigating the mapping between morphological features of the
cerebral cortex and cognitive scores. To this end, we introduce a multi-view multi-task learning
approach to intuitively explore complementary information from different time-points and handle
the missing data issue in longitudinal studies simultaneously. Accordingly, we establish a novel
model, Latent Partial Multi-View Representation Learning. Our approach regards data from
different time-points as different views and constructs a latent representation to capture the
complementary information from incomplete time-points. The latent representation explores the
complementarity across different time-points and improves the accuracy of prediction. The
minimization problem is solved by the Alternating Direction Method of Multipliers (ADMM).
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Experimental results on both synthetic and real data validate the effectiveness of our proposed
algorithm.
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l. INTRODUCTION

RESEARCH on infant brain development [1], [2], [3], [4], [5], [6], [71, [8], [°], [10] has
received significant attention recently. To better understand early brain development,
exploring quantitative relationship between cognitive ability and structural or functional
development of infant cerebral cortex is of immense importance, as it may lead to improved
health and well-being of children. However research in this area is scarce. With the
advancement of magnetic resonance imaging (MRI) and image processing techniques, we
now can quantitatively measure the morphology of cerebral cortex during early brain
development, a characteristic that is highly correlated with human cognitive ability [11].

In this work, we propose a novel method to predict several scores related to the cognitive
development of infant brains in a longitudinal study. To this end, we use longitudinal data
from a cohort of infants, scanned at birth, every 3 months in the first year, every 6 months in
the second year, and once a year after the second year. In this dataset, cognitive development
scores were measured for each subject at the age of four years (48 months of age).
Specifically, the cognitive ability of each infant was estimated using the Mullen Scales of
Early Learning (MSEL) [12], including the visual reception scale (VRS), fine motor scale
(FMS), receptive language scale (RLS), expressive language scale (ELS), and early learning
composite scale (ELC). To build the prediction model from longitudinal MR images to the
cognitive scores, we extract several types of morphological features from MR images for
characterizing the structure of cerebral cortex (similar to [13], [14], [15]). Then, we build a
quantitative mapping between the longitudinal morphological features of cerebral cortex and
the five cognitive scores.

Given the limited amount of data that can be gathered for such a study together with the
longevity and duration of data gathering, there are several challenges associated with this
study: (1) samples are often very limited and building predictive machine learning models
can be tricky due to the Small-Sample-Size (SSS) problem [16], [4]; (2) missing data at
certain time-points are unavoidable in longitudinal studies due to various reasons (e.g., no
show-up or dropouts) [16]; (3) unlike the single output regression, our problem comprises
multiple outputs (scores) that are naturally interrelated [12]. To address all these challenges,
we propose a method based on convex optimization techniques to recover a latent
representation for each subject and simultaneously predict multiple cognitive scores given
this latent representation. Our proposed method can effectively learn the subject-specific
representation, regardless of the existence of missing data in any time-points.

To address the missing data problem, different approaches have been used in the literature.
One straightforward approach is to learn one model based on the available data at each time-
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point and then integrate the outputs of these models, as shown in Fig. 1(a). Although this
strategy is simple, the complementary information of different time-points is not well
exploited. To exploit multiple data sources, some other methods (such as [17], [18])
manually group samples according to the availability of data sources, and then learn one
model for each group, as shown in Fig. 1(b). However, both of the aforementioned types of
approaches make the SSS problem even more serious. This is because the number of
samples available at one single time-point or the number of samples in one group may be
much smaller than the set of all samples. As an alternative approach, data imputation
methods like matrix completion [19], [20] usually recover missing values with a low-rank
constraint, and then learn a model based on the completed data, as shown in Fig. 1(c). To be
able to utilize the low-rank assumption, these approaches assume that the data are uniformly
and randomly missing, which is not the case for our application, since the data are usually
missing in blocks instead of missing uniformly [16]. Accordingly, we uncover a latent
representation for each subject and learn a unified model based on all subjects, as shown in
Fig. 1(d). Our approach does not assume any uniformity or other constraints on the missing
data and only leverages the time-points available from each subject to build the latent
representation.

The longitudinal MRI data comprises multiple data sources from multiple time-points that
describe subjects from multiple views. Note that, for each time-point, the data corresponding
to a subset of subjects are missing, as shown in Fig. 2. To build the relationship between the
incomplete multi-view data and multiple cognitive scores, we propose a novel partial multi-
view multi-task regression method, termed as Latent Partial Multi-view Representation
Learning. Our model seeks a comprehensive and compact latent representation for each
subject from the observed data at multiple time-points. Accordingly, a prediction model is
learned based on the inferred latent representation, as shown in Fig. 3. The proposed model
has two primary advantages: 1) Unlike most existing multi-view methods (e.g., [21], [22])
that learn models directly on the original noisy features, our model exploits the
complementarity among different time-points and effectively improves the prediction
accuracy. 2) Our regression model is learned based on all subjects, while existing methods
[17], [18] learn multiple regression models based on different subsets of subjects and thus
are not applicable for the small-sample-size problems.

Il. RELATED WORK

Longitudinal Analysis of Infant Brain.

There has been intensive research conducted on infant brain development. The first line of
research mainly focuses on studying the longitudinal development of cortical features [6] or
the growth model [7] of the infant brain. The research in [6] studies the longitudinal
development of regional cortical thickness (CT) and surface area (SA) in healthy infants
from term birth to 2 years of age, revealing heterogeneous growth patterns of CT and SA.
The work in [7] proposes a computational growth model for simulating the dynamic
development of the cerebral cortex for term infants. In this model, the cerebral cortex is
modeled as a deformable elastoplasticity surface driven via a growth model. The second line
of research aims to predict the longitudinal postnatal development of cortical features (e.g.,

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 April 05.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zhang et al.

Page 4

cortical thickness maps) [8], [9] or white matter fibers after term birth [23]. On the one hand,
all the above mentioned models focus on modeling the longitudinal dynamic development of
infant brain MR images after term birth, rather than relating the infant brain development
scores (e.g., these five cognitive scores mentioned above) and the longitudinal neuroimages.
On the other hand, Smyser et al. [3] and Kersbergen et al. [5] focus on the analysis of
preterm infant development. Specifically, the work in [3] aims to identify the earliest forms
of cerebral functional connectivity and characterize their development based on functional
MRI instead of using structural MRI. Kersbergen et al. [5] investigate third-trimester
extrauterine brain growth and correlate this with clinical risk factors in the neonatal period.
Although longitudinal data are involved in the studies conducted by [3] and [5], in contrast
to ours, they do not leverage such longitudinal data for prediction.

Multi-view Learning.

Many real-world applications usually involve multi-view learning, since data usually can be
obtained from multiple sources or represented with multiple types of features. Due to the
effectiveness of exploring the complementarity among multiple views, multi-view learning
has attracted close attention recently. Some methods try to minimize the disagreement
between different views under the co-training framework [24], [25], [26]. Furthermore, the
work in [27] provides theoretical analyses to support the success and appropriateness of co-
training-based methods. Multiple kernel learning (MKL) [28] uses a predefined set of
kernels from multiple views and learns the optimized weights for kernels to integrate these
views. Recently, some methods advocate for the learning of a latent common subspace
across different views, typically, based on canonical correlation analysis (CCA) [25], [29].
Although promising performance has been achieved by these methods, most of them are not
applicable for data with incomplete views. Several previous methaods (e.g., [30], [31], [32],
[17]) also take advantage of multi-modal imaging data for disease diagnosis. For instance,
Gray et al. [30] integrate the similarities from multiple neuroimaging and biological
measures to generate an embedding, based on which the classifier is learned. Singanamalli et
al. [31] extend the canonical correlation analysis (CCA) as supervised multiview canonical
correlation analysis (SMVCCA), to find a common representation for multi-modal data.
Recently, Liu et al. [32] extract the common features of multiple image modalities under the
framework of deep de-noising autoencoder. Similar to our method, Yuan et al. [17] also
propose a technique to handle the data with missing modalities. They divide samples
according to the availability of data sources, and then classifiers are learned based on each
group of samples. Unlike our approach, this strategy cannot scale well for problems where
the number of data sources is large, or the number of samples is small.

Multi-task learning.

Our problem belongs to the category of multi-task learning (MTL) problems, since we aim
to predict multiple scores simultaneously. Naively, multitask learning problems can be
reduced to multiple singletask learning (STL) problems, in which each task is solved
independently. However, with this setting, the correlations among different tasks cannot be
properly explored. Plenty of empirical studies have proven that exploiting the relationship
among multiple related tasks (in the context of MTL) can generally provide superior
predictive performance compared to the case of learning each task independently [33], [34],
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[35]. Furthermore, there are some works providing theoretical foundations for the success of
multi-task learning [36], [37], especially for the small-sample-size issue in each task.

lll. Material and Preprocessing

Material.

In our study, T1-weighted and T2-weighted MR images from 23 infant subjects were
collected and each infant was scheduled to have longitudinal scans at 9 different time-points
(ie., 1,3,6,9, 12, 18, 24, 36 and 48 months). As can be inferred from Fig. 2, most subjects
did not show up for all scheduled time-points, thus causing the missing data issue. This is
typical in longitudinal studies. Five Mullen cognitive scores [12], i.e., Visual Reception
Scale (VRS), Fine Motor Scale (FMS), Receptive Language Scale (RLS), Expressive
Language Scale (ELS), and Early Learning Composite (ELC), are measured for each subject
at the 487 month. The 5% score (i.e., ELC) can be interpreted as the composite of the other
four scores. Therefore, the 57 cognitive score correlates with the other four [12], [38].

Image Processing.

All infant MR images are preprocessed by an established infant-specific computational
pipeline [39]. Briefly, the pipeline includes intensity inhomogeneity correction, skull
stripping, cerebellum removal, tissue segmentation, separation of left/right hemispheres,
topology correction, inner and outer surface reconstruction. Then, for each vertex on the
inner or outer cortical surface, 7 types of morphological features are computed, i.e., cortical
thickness, local gyrification index, mean curvature, vertex area, sulcal depth measured in
Euclidean distance, sulcal depth measured in string distance, and vertex volume [6], [13],
[40], [41], [42]. Interested readers can refer to [43], [39] for the details of different types of
morphological features. These morphological features jointly measure brain anatomical
structure and are shown to be highly correlated with the cognitive abilities [44]. However,
using the morphological features of each vertex to predict cognitive scores is redundant and
computationally expensive. Therefore, the Region-Of-Interest (ROI) based analysis is
adopted. To obtain a meaningful ROI definition, we warp the well-accepted FreeSurfer
parcellation [45] onto each individual cortical surface. For each ROI, we can compute its
representative morphological features by either averaging or summing up the corresponding
features over all vertices belonging to that ROI. Notably, for the vertex area and vertex
volume, we use their sum over the entire ROI vertices as the area and volume of each ROI,
respectively. For the other 5 types of features, the mean value of each feature in each ROl is
calculated as the morphological feature.

For the entire cerebral cortex, the FreeSurfer parcellation includes a total of 70 anatomically
meaningful ROIs [43], and for each ROI, we obtain 7 types of morphological features.
Accordingly, a 490-dimensional feature vector can be obtained for each subject at each time-
point. Then, we learn a regression model between the 490-dimensional vectors and the 5
cognitive scores.
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IV. INFANT BRAIN DEVELOPMENT PREDICTION WITH LATENT PARTIAL
MULTI-VIEW REPRESENTATION LEARNING

In this section, we introduce a novel multi-view multitask learning method, which does not
hold the limitations of discarding or completing incomplete data in advance, and thus can
fully take advantage of all the observed data based on a latent multi-view representation for
each subject.

A. Formulation
We denote the data at multiple time-points as {X3,..., X7; Y}, where X, € RP XN is the data

matrix at the £ time-point and Y e RE*N is the score matrix, where Dis the
dimensionality of the original feature space, Cis the dimensionality of output, and N is the
number of samples. In our model, we formulate the learning task as a multi-task (C scores)
multi-view learning problem with each view comprising data from one of the 7 time-points.
We aim to uncover a multi-view latent representation which holds the reconstruction ability
for the data at different time-points. Specifically, the reconstruction ability indicates the
degree of the information from different time-points encoded into the latent representation.
Accordingly, the formulation is

T
min Y 7(FMH).X), (1)
r=1

where 77( -, -) measures the reconstruction loss and & ( - ) indicates the underlying mapping

from the latent representation H to the observations at the 1 time-point, i.e., X
vVt e {1,...,T}. (-, -)is defined as

7(F,H).X)) = ”(gt(H) - Xt)”z,l’ 2)

where Il - Il 1 is the #, |-norm of the residual encouraging some rows of the matrix to be

zero. The underlying assumption is that the noises are feature-specific, i.e., a few features
are noisy, hence we do not need to consider their reconstruction loss. This loss leads to a
level of robustness against feature noise. For the mapping & ( - ), we employ a linear

projection in our model, which is a simple but effective technique especially for the high-
dimensional data. Accordingly, we have

7(FM.X) = [PH-X][, . ©

Based on the learned latent representation H from multiple views, we can define the
following multi-task regression term to predict the five cognitive scores as
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minZ(W,H,Y) = [WH - Y||;. (4)
w

This #,-norm constrained loss function leads to a robust loss [46]. Note that, the learned

model W is learned based on all the A/samples regardless of the missing status.

Since the early learning composite scale (ELC) is correlated with other scales, for the
learned model W we introduce the well-known low-rank regularization

AW) = [[W]., (5

where IIlIx is the matrix nuclear-norm. Putting these terms in a unified optimization problem,
our objective function is induced as

T
min”WH - Y||1 + a z a)tr
Q =1

prediction error

+ SIWI. (8

\-—_V‘"
2,1 task correlation

‘@O t(PtH - Xz)

reconstruction error

For convenience, we denote Q = [W, H, {Pz},T_ v {“’z},T_ 1] as the variable set to be

optimized, and @ = (wy, ..., w7) is the weight vector for multiple time-points. 7> 1 for wyis
used to avoid a trivial solution that only considers one of the 7time-points and adjusts the

complementarity of multiple time-points [47]. The constraint PtTPt = T is introduced, since

without this constraint P;can be pushed arbitrarily close to zero only by re-scaling P/sand

H s (s> 0) while preserving the same loss. Moreover, our model can be efficiently solved

with the constraint (see Psubproblem in optimization part). 2, (-) is a filter function to
t

handle the incomplete data for the " time-point. Let of be an indicator variable showing the

existence of data for subject sat time-point £ i.e., of = 1 if the data is available, and a very

small scalar € > 0 otherwise. o;will then be defined as the indicator vector from all indicator
variables of training samples. Accordingly, we can define a diagonal matrix O;= diag(o,),

] ; h 1i i _
denoted as the filter matrix of the A" time-point, and hence @OI(PIH -X)=(PH-X)O,

Note that e > 0 is a small value to optimize H-subproblem in next subsection.

Model properties.—To summarize, we highlight that the proposed latent partial multi-
view representation enjoys the following merits: (1) Our regression model W is learned by
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simultaneously utilizing all the subjects and time-points, which is especially important for
the small-sample-size case. (2) The latent multi-view representation could depict data
themselves more comprehensively than each single view individually, which makes the
prediction model more accurate and robust. (3) The inter-task correlations, feature-specific
corruption, and output (score) noise are explicitly encoded in our model to jointly guarantee
the robustness of the model.

B. Optimization

Our objective function in Eq. (6) simultaneously seeks a latent representation from multiple

views and learns a multitask prediction model with respect to the latent representation. Since
the objective function is not jointly convex with respect to all the variables P, H and W, we

employ Augmented Lagrange Multiplier (ALM) with Alternating Direction Method (ADM)

strategy [48], [49]. To adopt ADM strategy to our problem, we need to make our objective

function separable. Therefore, we introduce auxiliary variables J, {Et}tT_ . and E, and then

we have the following equivalent problem

ngnllElll + azwillg’ot(E,)llz,] + Bl )
T
s.t. Zwt= l,a)t > 0 PtTPt =L J=W,
t=1

Po(PH -X) =%y (E);, WH=Y +E.
t

t

The augmented Lagrangian function of Eq. (7) is given as

Q) = ”E” +a) of
1

930 t(Ez)

L

EY

T
F OG0 = W)+ Y O[5, 7 (PH - X, - B)| + 0(%,,WH - Y - E)
t

t=1

T
s.1. Z“’z = Lo, > 0; PtTP; =Lt=1,-.T.
F=1

. . L . 2
where Q is the set of all variables to be optimized and we define ®(¢,Z) = %“ZHF + <?, Z>
for simplicity, with (-, -) being the matrix inner product. {?t}tT_ . Gyand gpare

Lagrangian multipliers along with the constraints, and & >0 is a penalty hyperparameter.

Below, we provide the optimization for each sub-problem:

H-subproblem.—For solving this sub-problem, by fixing other variables except H, we
should solve the following problem:

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 April 05.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zhang et al.

Page 9
ming 3, 0(, Fo(PH - X, - E)|+ ®F WH-Y - E). ()

Taking the derivative with respect to H and setting it to zero, we have

AH+HB =C (10)
withA =W'W.B= Y's,

C= )Y (PXS, +PES, -P/50/u)+ W(Y' +E - %,/y).

The above equation is a Sylvester equation [50]. We set of as a very small number e for

missing time-points, instead of zero, to ensure the unique solution of the Sylvester Equation
of (10). Specifically, in this way, the matrix B in the equation (10) will be positive-definite,
which makes Proposition 4.1 provable. If we set o; to zero, there is no guarantee for a unique

solution, and the numerical instability will also rise [51].
Proposition 4.1: The Sylvester equation (10) has a unique solution.

Proof 4.1: The Sylvester equation AH + HB = C has a unique solution for H exactly when
there are no common eigenvalues of A and -B [50]. Since S, = o;fot is strictly positive-

definite due to the introduced ¢, B is a positive-definite matrix, and all of its eigenvalues are
positive: B;> 0. Since A is a positive semi-definite matrix, all of its eigenvalues are
nonnegative: a;= 0. Hence, for any eigenvalues of A and B, a;+ ;> 0. Accordingly, the
Sylvester equation (10) has a unique solution.

P:-subproblem.—By fixing other variables except P, we should solve the following
problem:

. T
mlnPt(D(?t, Fo (PH - X, - E)| s PP =1 (1

The optimization with orthogonality constraints can be efficiently solved with the way of
constraint-preserving update formula and corresponding curvilinear search algorithms [52].

W-subproblem.—By fixing other variables except W, we should solve the following
problem:

ming®(GpJ — W) + ®(¢,,WH - Y - E), (12)

which has the following closed-form solution
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W= (I+HH) (J + 95/u + (Y + E - 9, /wH). (13)

J-subproblem.—BY fixing other variables except J, we should solve the following
problem:

mingy||[J|,. + ©(Ep. I = W). (14)

The above problem can be efficiently solved by the singular value thresholding operator:

J — D (A)withA = W — Gy/u, (15)

where = = y/uis the thresholds of the spectral soft-threshold operation
2,(A) = Umax(S -, oyv! with A = USV Tbeing the Singular Value Decomposition

(SVD) of A and the max operation being taken element-wise.

Ei-subproblem.—By fixing other variables except E; we should solve the following
problem:

,
. . AW, 1
ming 00| (E)l, | + ®(%, P (PH = X, = E)| = min—L17 (E)ll, | + 3

170 (B, = (PH = X, + Z/u))l;-
(16)

This subproblem can be efficiently solved by Lemma 3.2 in [53].

E-subproblem.—For solving this sub-problem, by fixing other variables except E, we
should solve the following problem:

. 1 1
ming|[Ell, + ®(¥,, WH - Y — E) = minz||E — (WH - Y + g )l + SIEl

17)

This step involves minimization of the #,-norm of a matrix, which can be optimally obtained

using soft thresholding operator or the proximal operator for the #,-norm [54].
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For the weight vector w, by using a Lagrange multiplier it can be updated by the following
rule:

r—1 ~
w[<—(1/||E,||1’2) ’ )/t;(l/”Et”m)l/r L)

since IIE4l1,» > 0 in practice, w;> 0 is guaranteed. Additionally, for the multipliers, we have
the following update rule:

G, — G, + ﬂ(@OI(PIH - X, - Et)), t=1,T (19)

G, — G+ pWH-Y —E), Ty — Ty + uJ — W).

The penalty parameter g is updated as < min (4o, 106). These subproblems are iteratively
solved to update the variables involved.

In optimization, we initialize the weights of different time-points @by w = ...w7= 1T,
and all the other variables are set to zeros.

Testing phase: To obtain the regression scores for any novel test subject x, a 2-step
procedure is conducted as follows:

T T
step 1.min ) o/|Ph - x|%s, + 2 Y. [[Ph — P,_ h|> (20)
h /=7 =2

step2.y = Wh,

where in the first step our model aims to uncover the latent representation according to the
observed data and constrained with the temporal smooth term for the new coming subject,
and then projects it onto the output space in the second step.

C. Complexity and Convergence

Our method is composed of multiple sub-problems. For updating H, the classical algorithm
for the Sylvester equation is the Bartels Stewart algorithm [50], whose complexity is O(AB),
where Nis the number of samples. The complexity of updating J (the nuclear norm
proximal operator) and W are O(AB) and O(K®), where K is the dimension of latent
representation. For updating E, the main complexity is the matrix multiplication, which is
O(DKN), where Dis the dimension of the original feature space. Overall, the total
complexity is O(K® + NB + DKN) for each iteration. Under the condition K<< Dand K <
N, the total complexity is basically O(AB + DN). It is difficult to generally prove the
convergence for our algorithm. Fortunately, empirical evidence on both the synthetic data
the real data suggests that the proposed algorithm has very strong and stable convergence.
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D. Discussion

One of the challenges for the proposed formulation is that a low-dimensional latent
representation may not be enough to reconstruct an entire morphological map. It is
important to note that here, our method operates on the ROI-based features (i.e., a relatively
small-sized feature vector), rather than maps. Hence, there is no need to reconstruct an entire
map from the latent representation. Furthermore, we only intend to encode the intrinsic
information for the prediction task (and not to actually reconstruct the maps). Therefore, a
low-dimensional latent representation usually suffices, which is empirically validated by our
experiments. In addition, we formulate the problem in a linear setting, i.e., PH — X, which
is a special case for a mapping in our general model of Eq. (1). This mapping can be
extended in the future by addressing nonlinear relationships with kernel methods or neural
networks.

V. Experiments

We conduct experiments on both the synthetic and real infant brain data to evaluate our
method. The performance is measured with Root Mean Squared Error (RMSE). All the
hyperparameters are tuned from the set {1073,1072,0.1,1,10,102,103} through a nested leave-
one-out cross-validation. The number of dimensions for latent representation is set as K= 10
for the infant brain data and K= 30 for the synthetic data.

A. Experiments on Synthetic Data

On the synthetic data, we evaluate the effectiveness of our model from the following aspects:
(1) the ability to explore multiple views; (2) the robustness against missing data; (3) the
convergence property in practice. The latent representation matrix H, model W and

projections {Pt}tT_ L are randomly generated with each element independently sampled from

a uniform distribution on the [0, 1] interval. To simulate the correlation among multiple
1
c -1

the prediction of the five cognitive scores of the infant brain data. Then, the output matrix Y
is obtained by Y = WH + E, and the observations are generated with X ;= P;H+E; The
noise matrices, i.e., E and E are generated by randomly corrupting 10% samples,
respectively. The dimension of the output space is C= 5, which is similar to our real
application. We have N/ = 23 samples, which is equal to the size of real dataset. The setting is
mainly used to validate the effectiveness of our approach for small-sample-size problem.
There are 10 views generated to investigate effect of using a varying numbers of views.

outputs, we process W by w, = Ej 4 l./ljwj( ie,i=5andi; = ) which is similar to

As shown in Fig. 4(a), with the help of more views, the performance is sensibly improved. In
Fig. 4(b), we investigate the effect of missing data rate with different numbers of views. It is
observed that the degradation is mild with the rise of missing rate especially when the
missing rate is not larger than 0.25 or with more views. The convergence conditions are all
reached within less than 60 iterations as shown in Fig. 4(c).
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B. Infant Brain Development Prediction

Performance with Different Numbers of Time-Points.—We first run our method
with the data from different numbers of time-points. According to the Table I, our model can
well leverage the data of different time-points for promising performance. We conduct the
paired ttest between the results before using data at the 1877 month (i.e., only using the data
from the 0% to the 12 month) versus the results by including the data at the 187” month
(i.e., using the data from the 07 to the 18" month). The p-value is generally large (i.e.,
0.664) which indicates that the improvement after including scans acquired at the 1877 month
is not significant. Similar cases are also observed for the results before and after including
data at the 2477 and the 3677 months. One possible reason is that data at these later time-
points are much more severely incomplete. The second possible reason is from the law of
diminishing marginal returns, which is also consistent with the experimental results on the
synthetic data as shown in Fig. 4(a).

Generally, it is unreasonable to conduct training and testing with each single time-point in
our task, considering the small-sample-size problem will be much more severe under the
missing data condition. For example, there are only 10 subjects available at the 36" month.
Indeed, this is the motivation of our method (i.e., simultaneously utilizing data at all time-
points to address the missing data issue). Nevertheless, we also conduct experiments on the
other direction, i.e., adding data from the last time-point as shown in Fig. 5. The following
observations can be drawn from the mentioned experiments: (1) With more time-points
added, the performance becomes generally better. (2) The data at late time-points more
strongly correlate with the cognitive scores than early ones. For example, the performance
with the data at the 977 time-point is better than that at the 077 time-point. (3) We also note
that the data at the 877 time-point do not improve the prediction performance. The
performance becomes worse when using both the 877 and 9 time-points, compared with the
case of using only the data at the 977 time-point. However, it is difficult to conclude that
information at the 877 time-point is not correlated with cognitive scores, since the missing
data issue at this time-point is rather serious. Further investigations could be conducted with
more data involved.

Performance Comparison.—Since existing methods are not applicable for our data, we
adopt two strategies to process the data to make them suitable for the existing multi-task
methods. Specifically, the first way is to complete the missing values simply with zero, and
the second way is to fill the missing values with the averaged values of the observed ones.
We compare our model with the following methods: 1) NN (nearest neighbour); 2) MtJFS
(Multi-Task Learning with Joint Feature Selection) [55]; 3) RMTL (Robust Multi-Task
Feature Learning) [34]; 4) TrMTL (Trace-Norm Regularized Multi-Task Learning) [56].
From Table I, it is observed that simply filling the missing values with zero is not
reasonable since the performance tends to be relatively poor. Our method outperforms both
TrMTL and RMTL that also constrain the prediction model to be low-rank, which validates
the effectiveness of learning the regression model based on latent representation. The
performance of MtJFS, which aims to jointly select a subset of features for all tasks, is also
poor. The possible reasons are 1) its limitation of handling missing data, and 2) impropriety
of sharing a common subset of features for the five cognitive scores.
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In addition, we also conduct experiments by setting equal weights for all different time-
points. Using all 9 time-points with equal weights leads to an average RMSE (Root Mean
Squared Error) of 0.163, which is worse than the proposed weighting scheme (i.e., average
RMSE = 0.158). The proposed weighting scheme leads to a relative improvement of about
3.8% in terms of RMSE. As shown in Fig. 6, we present the estimated weight vector and
find that the weight corresponding to the 187 month is relatively high. This indicates small
reconstruction error and thus the information at the 1877 month is sufficiently encoded into
the learned latent representation. However, since the number of samples at the 187" month is
relatively small, this may lead to over-fitting for the learned model.

C. Model Analysis

VI.

Parameter tuning.—We conduct experiments to investigate the impact of the number of
dimensions for H. As shown in Fig. 7, it is observed that the prediction performance is
relatively robust with respect to different numbers of dimensions for H within a broad range.
Specifically, for the synthetic data, when the dimensionality K'is larger than 32 (i.e., K=
32), the best performance is obtained; whereas, for the real data, when 32 > K= 8, the
performance is generally reasonable and the best performance is obtained in this range. As
shown in the right subfigure of Fig. 7(a), a large dimensional H yields a model with unstable
prediction performance and the results show that this model is prone to over-fitting. We also
conduct experiments for evaluating the hyperparameter a in Fig. 8. On the real data, it can
be observed that the best performance is obtained by setting a in the range [0.1 10].
However, for much larger a values (e.g., a >100), the prediction performance would suffer,
due to overemphasis on the reconstruction loss. For the synthetic data, the performance is
relatively stable with a large value for a.

CONCLUSION AND DISCUSSION

In this work, we propose to explore the relationship between cognitive scores and
morphological features of the cerebral cortex, and develop a novel multi-task multi-view
regression model for this challenging problem. Based on the latent representation, our model
effectively addresses the challenge of learning with incomplete longitudinal data. We also
introduce an optimization algorithm for the proposed method and validated the effectiveness
on both the synthetic and real data.

Our model is able to predict the cognitive scores even at the presence of missing longitudinal
data, as we introduce the latent representation. However, there are several issues that require
further clarifications and possible future investigations. First, it is difficult to analyze the
correspondence between ROIs and cognitive scores after mapping the original features to the
latent representation. Hence, preserving brain structural information in the latent
representation may be helpful for analyzing which region(s) are critical in predicting specific
score(s). Second, due to the cost and difficulty associated with longitudinal data collection,
there are only 23 subjects with cognitive scores available, which is a relatively small dataset.
More data should be acquired for better performance, and semi-supervised techniques could
be utilized to leverage subjects without cognitive scores and enhance the generalization
ability of our proposed method. Third, we linearly model the correlations, i.e., the
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correlation between the latent representation and the cognitive scores as well as the
correlation between different views. With more data involved in the future, non-linearity
(e.g., deep networks) can be introduced to address more complex correlations. Finally, we
use the FreeSurfer parcellation scheme to parcellate the cerebral cortex into different ROIs
according to the gyral and sulcal patterns [45]. The rationality of using this scheme for
infant brain parcellation lies in the fact that all major gyral and sulcal folds are established at
term birth and are stable during postnatal brain development [57]. For example, this
parcellation scheme has been successfully adopted in infant studies [23], [58]. However,
leveraging infant-specific parcellation schemes could potentially further improve the
performance.
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Fig. 1:

St?ategies for handling the missing data: (a) learning one model for each data-point, (b)
learning one model for each combination of multiple data-points, (c) learning a unified
model based on the completed data, and (d) learning a unified model based on the latent
representation for all data.
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Fig. 2:

III?Jstration of our dataset. White blocks indicate the availability of imaging data for subjects
at specific time-points, while black blocks indicate the missing data. For instance, the white
block highlighted in blue represents the availability of MRI data for the 8/ subject at its 487
month (e.g., the brain attribute maps underneath it), while the black block highlighted in
green indicates a missing MRI scan (the question mark). We have 23 subjects with measured
development scores, indicated by the red rectangle. The missing rates from the 15 time-point
to last time-point are 21.7%, 21.7%, 26.1%, 26.1%, 39.1%, 30.4%, 47.8%, 56.5%, and
26.1%, respectively.
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Illﬂstration of Latent Partial Multi-view Representation Learning. Our model uncovers the
comprehensive and discriminative latent representation (termed as latent atlas from medical
image field) jointly from incomplete observations, based on which the multi-task (C scores)
multi-view (7 time-points) prediction model is learned.
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Fig. 4:
Experiments on synthetic data. The solid lines in (a) and (b) are plotted by averaging five
different runs shown as the dash lines.
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