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Abstract

The early postnatal period witnesses rapid and dynamic brain development. However, the 

relationship between brain anatomical structure and cognitive ability is still unknown. Currently, 

there is no explicit model to characterize this relationship in the literature. In this paper, we 

explore this relationship by investigating the mapping between morphological features of the 

cerebral cortex and cognitive scores. To this end, we introduce a multi-view multi-task learning 

approach to intuitively explore complementary information from different time-points and handle 

the missing data issue in longitudinal studies simultaneously. Accordingly, we establish a novel 

model, Latent Partial Multi-View Representation Learning. Our approach regards data from 

different time-points as different views and constructs a latent representation to capture the 

complementary information from incomplete time-points. The latent representation explores the 

complementarity across different time-points and improves the accuracy of prediction. The 

minimization problem is solved by the Alternating Direction Method of Multipliers (ADMM). 
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Experimental results on both synthetic and real data validate the effectiveness of our proposed 

algorithm.
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I. INTRODUCTION

RESEARCH on infant brain development [1], [2], [3], [4], [5], [6], [7], [8], [9], [10] has 

received significant attention recently. To better understand early brain development, 

exploring quantitative relationship between cognitive ability and structural or functional 

development of infant cerebral cortex is of immense importance, as it may lead to improved 

health and well-being of children. However research in this area is scarce. With the 

advancement of magnetic resonance imaging (MRI) and image processing techniques, we 

now can quantitatively measure the morphology of cerebral cortex during early brain 

development, a characteristic that is highly correlated with human cognitive ability [11].

In this work, we propose a novel method to predict several scores related to the cognitive 

development of infant brains in a longitudinal study. To this end, we use longitudinal data 

from a cohort of infants, scanned at birth, every 3 months in the first year, every 6 months in 

the second year, and once a year after the second year. In this dataset, cognitive development 

scores were measured for each subject at the age of four years (48 months of age). 

Specifically, the cognitive ability of each infant was estimated using the Mullen Scales of 

Early Learning (MSEL) [12], including the visual reception scale (VRS), fine motor scale 

(FMS), receptive language scale (RLS), expressive language scale (ELS), and early learning 

composite scale (ELC). To build the prediction model from longitudinal MR images to the 

cognitive scores, we extract several types of morphological features from MR images for 

characterizing the structure of cerebral cortex (similar to [13], [14], [15]). Then, we build a 

quantitative mapping between the longitudinal morphological features of cerebral cortex and 

the five cognitive scores.

Given the limited amount of data that can be gathered for such a study together with the 

longevity and duration of data gathering, there are several challenges associated with this 

study: (1) samples are often very limited and building predictive machine learning models 

can be tricky due to the Small-Sample-Size (SSS) problem [16], [4]; (2) missing data at 

certain time-points are unavoidable in longitudinal studies due to various reasons (e.g., no 

show-up or dropouts) [16]; (3) unlike the single output regression, our problem comprises 

multiple outputs (scores) that are naturally interrelated [12]. To address all these challenges, 

we propose a method based on convex optimization techniques to recover a latent 

representation for each subject and simultaneously predict multiple cognitive scores given 

this latent representation. Our proposed method can effectively learn the subject-specific 

representation, regardless of the existence of missing data in any time-points.

To address the missing data problem, different approaches have been used in the literature. 

One straightforward approach is to learn one model based on the available data at each time-
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point and then integrate the outputs of these models, as shown in Fig. 1(a). Although this 

strategy is simple, the complementary information of different time-points is not well 

exploited. To exploit multiple data sources, some other methods (such as [17], [18]) 

manually group samples according to the availability of data sources, and then learn one 

model for each group, as shown in Fig. 1(b). However, both of the aforementioned types of 

approaches make the SSS problem even more serious. This is because the number of 

samples available at one single time-point or the number of samples in one group may be 

much smaller than the set of all samples. As an alternative approach, data imputation 

methods like matrix completion [19], [20] usually recover missing values with a low-rank 

constraint, and then learn a model based on the completed data, as shown in Fig. 1(c). To be 

able to utilize the low-rank assumption, these approaches assume that the data are uniformly 

and randomly missing, which is not the case for our application, since the data are usually 

missing in blocks instead of missing uniformly [16]. Accordingly, we uncover a latent 

representation for each subject and learn a unified model based on all subjects, as shown in 

Fig. 1(d). Our approach does not assume any uniformity or other constraints on the missing 

data and only leverages the time-points available from each subject to build the latent 

representation.

The longitudinal MRI data comprises multiple data sources from multiple time-points that 

describe subjects from multiple views. Note that, for each time-point, the data corresponding 

to a subset of subjects are missing, as shown in Fig. 2. To build the relationship between the 

incomplete multi-view data and multiple cognitive scores, we propose a novel partial multi-

view multi-task regression method, termed as Latent Partial Multi-view Representation 
Learning. Our model seeks a comprehensive and compact latent representation for each 

subject from the observed data at multiple time-points. Accordingly, a prediction model is 

learned based on the inferred latent representation, as shown in Fig. 3. The proposed model 

has two primary advantages: 1) Unlike most existing multi-view methods (e.g., [21], [22]) 

that learn models directly on the original noisy features, our model exploits the 

complementarity among different time-points and effectively improves the prediction 

accuracy. 2) Our regression model is learned based on all subjects, while existing methods 

[17], [18] learn multiple regression models based on different subsets of subjects and thus 

are not applicable for the small-sample-size problems.

II. RELATED WORK

Longitudinal Analysis of Infant Brain.

There has been intensive research conducted on infant brain development. The first line of 

research mainly focuses on studying the longitudinal development of cortical features [6] or 

the growth model [7] of the infant brain. The research in [6] studies the longitudinal 

development of regional cortical thickness (CT) and surface area (SA) in healthy infants 

from term birth to 2 years of age, revealing heterogeneous growth patterns of CT and SA. 

The work in [7] proposes a computational growth model for simulating the dynamic 

development of the cerebral cortex for term infants. In this model, the cerebral cortex is 

modeled as a deformable elastoplasticity surface driven via a growth model. The second line 

of research aims to predict the longitudinal postnatal development of cortical features (e.g., 
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cortical thickness maps) [8], [9] or white matter fibers after term birth [23]. On the one hand, 

all the above mentioned models focus on modeling the longitudinal dynamic development of 

infant brain MR images after term birth, rather than relating the infant brain development 

scores (e.g., these five cognitive scores mentioned above) and the longitudinal neuroimages. 

On the other hand, Smyser et al. [3] and Kersbergen et al. [5] focus on the analysis of 

preterm infant development. Specifically, the work in [3] aims to identify the earliest forms 

of cerebral functional connectivity and characterize their development based on functional 

MRI instead of using structural MRI. Kersbergen et al. [5] investigate third-trimester 

extrauterine brain growth and correlate this with clinical risk factors in the neonatal period. 

Although longitudinal data are involved in the studies conducted by [3] and [5], in contrast 

to ours, they do not leverage such longitudinal data for prediction.

Multi-view Learning.

Many real-world applications usually involve multi-view learning, since data usually can be 

obtained from multiple sources or represented with multiple types of features. Due to the 

effectiveness of exploring the complementarity among multiple views, multi-view learning 

has attracted close attention recently. Some methods try to minimize the disagreement 

between different views under the co-training framework [24], [25], [26]. Furthermore, the 

work in [27] provides theoretical analyses to support the success and appropriateness of co-

training-based methods. Multiple kernel learning (MKL) [28] uses a predefined set of 

kernels from multiple views and learns the optimized weights for kernels to integrate these 

views. Recently, some methods advocate for the learning of a latent common subspace 

across different views, typically, based on canonical correlation analysis (CCA) [25], [29]. 

Although promising performance has been achieved by these methods, most of them are not 

applicable for data with incomplete views. Several previous methods (e.g., [30], [31], [32], 

[17]) also take advantage of multi-modal imaging data for disease diagnosis. For instance, 

Gray et al. [30] integrate the similarities from multiple neuroimaging and biological 

measures to generate an embedding, based on which the classifier is learned. Singanamalli et 

al. [31] extend the canonical correlation analysis (CCA) as supervised multiview canonical 

correlation analysis (sMVCCA), to find a common representation for multi-modal data. 

Recently, Liu et al. [32] extract the common features of multiple image modalities under the 

framework of deep de-noising autoencoder. Similar to our method, Yuan et al. [17] also 

propose a technique to handle the data with missing modalities. They divide samples 

according to the availability of data sources, and then classifiers are learned based on each 

group of samples. Unlike our approach, this strategy cannot scale well for problems where 

the number of data sources is large, or the number of samples is small.

Multi-task learning.

Our problem belongs to the category of multi-task learning (MTL) problems, since we aim 

to predict multiple scores simultaneously. Naively, multitask learning problems can be 

reduced to multiple singletask learning (STL) problems, in which each task is solved 

independently. However, with this setting, the correlations among different tasks cannot be 

properly explored. Plenty of empirical studies have proven that exploiting the relationship 

among multiple related tasks (in the context of MTL) can generally provide superior 

predictive performance compared to the case of learning each task independently [33], [34], 
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[35]. Furthermore, there are some works providing theoretical foundations for the success of 

multi-task learning [36], [37], especially for the small-sample-size issue in each task.

III. Material and Preprocessing

Material.

In our study, T1-weighted and T2-weighted MR images from 23 infant subjects were 

collected and each infant was scheduled to have longitudinal scans at 9 different time-points 

(i.e., 1, 3, 6, 9, 12, 18, 24, 36 and 48 months). As can be inferred from Fig. 2, most subjects 

did not show up for all scheduled time-points, thus causing the missing data issue. This is 

typical in longitudinal studies. Five Mullen cognitive scores [12], i.e., Visual Reception 

Scale (VRS), Fine Motor Scale (FMS), Receptive Language Scale (RLS), Expressive 

Language Scale (ELS), and Early Learning Composite (ELC), are measured for each subject 

at the 48th month. The 5th score (i.e., ELC) can be interpreted as the composite of the other 

four scores. Therefore, the 5th cognitive score correlates with the other four [12], [38].

Image Processing.

All infant MR images are preprocessed by an established infant-specific computational 

pipeline [39]. Briefly, the pipeline includes intensity inhomogeneity correction, skull 

stripping, cerebellum removal, tissue segmentation, separation of left/right hemispheres, 

topology correction, inner and outer surface reconstruction. Then, for each vertex on the 

inner or outer cortical surface, 7 types of morphological features are computed, i.e., cortical 

thickness, local gyrification index, mean curvature, vertex area, sulcal depth measured in 

Euclidean distance, sulcal depth measured in string distance, and vertex volume [6], [13], 

[40], [41], [42]. Interested readers can refer to [43], [39] for the details of different types of 

morphological features. These morphological features jointly measure brain anatomical 

structure and are shown to be highly correlated with the cognitive abilities [44]. However, 

using the morphological features of each vertex to predict cognitive scores is redundant and 

computationally expensive. Therefore, the Region-Of-Interest (ROI) based analysis is 

adopted. To obtain a meaningful ROI definition, we warp the well-accepted FreeSurfer 

parcellation [45] onto each individual cortical surface. For each ROI, we can compute its 

representative morphological features by either averaging or summing up the corresponding 

features over all vertices belonging to that ROI. Notably, for the vertex area and vertex 

volume, we use their sum over the entire ROI vertices as the area and volume of each ROI, 

respectively. For the other 5 types of features, the mean value of each feature in each ROI is 

calculated as the morphological feature.

For the entire cerebral cortex, the FreeSurfer parcellation includes a total of 70 anatomically 

meaningful ROIs [43], and for each ROI, we obtain 7 types of morphological features. 

Accordingly, a 490-dimensional feature vector can be obtained for each subject at each time-

point. Then, we learn a regression model between the 490-dimensional vectors and the 5 

cognitive scores.
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IV. INFANT BRAIN DEVELOPMENT PREDICTION WITH LATENT PARTIAL 

MULTI-VIEW REPRESENTATION LEARNING

In this section, we introduce a novel multi-view multitask learning method, which does not 

hold the limitations of discarding or completing incomplete data in advance, and thus can 

fully take advantage of all the observed data based on a latent multi-view representation for 

each subject.

A. Formulation

We denote the data at multiple time-points as {X1,…, XT; Y}, where Xt ∈ ℝD × N is the data 

matrix at the tth time-point and Y ∈ ℝC × N is the score matrix, where D is the 

dimensionality of the original feature space, C is the dimensionality of output, and N is the 

number of samples. In our model, we formulate the learning task as a multi-task (C scores) 

multi-view learning problem with each view comprising data from one of the T time-points. 

We aim to uncover a multi-view latent representation which holds the reconstruction ability 

for the data at different time-points. Specifically, the reconstruction ability indicates the 

degree of the information from different time-points encoded into the latent representation. 

Accordingly, the formulation is

min
H

∑
t = 1

T
𝒱 ℱt(H), Xt , (1)

where 𝒱( ⋅ , ⋅ ) measures the reconstruction loss and ℱt( ⋅ ) indicates the underlying mapping 

from the latent representation H to the observations at the tth time-point, i.e., Xt, 

∀t ∈ 1, …, T . 𝒱( ⋅ , ⋅ ) is defined as

𝒱 ℱt(H), Xt = ℱt(H) − Xt 2, 1, (2)

where ‖ · ‖2,1 is the 𝓁2, 1-norm of the residual encouraging some rows of the matrix to be 

zero. The underlying assumption is that the noises are feature-specific, i.e., a few features 

are noisy, hence we do not need to consider their reconstruction loss. This loss leads to a 

level of robustness against feature noise. For the mapping ℱt( ⋅ ), we employ a linear 

projection in our model, which is a simple but effective technique especially for the high-

dimensional data. Accordingly, we have

𝒱 ℱt(H), Xt = PtH − Xt 2, 1 . (3)

Based on the learned latent representation H from multiple views, we can define the 

following multi-task regression term to predict the five cognitive scores as
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min
W

ℒ(W, H, Y) = ‖WH − Y‖1 . (4)

This 𝓁1-norm constrained loss function leads to a robust loss [46]. Note that, the learned 

model W is learned based on all the N samples regardless of the missing status.

Since the early learning composite scale (ELC) is correlated with other scales, for the 

learned model W we introduce the well-known low-rank regularization

ℛ(W) = W *, (5)

where ‖·‖* is the matrix nuclear-norm. Putting these terms in a unified optimization problem, 

our objective function is induced as

min
Ω

WH − Y 1
prediction error

+ α ∑
t = 1

T
ωt

r 𝒫Ot
PtH − Xt

2, 1
reconstruction error 

+ β W *
task correlation

(6)

s . t . ∑
t = 1

T
ωt = 1 , ωt ≥ 0; Pt

⊤Pt = I, t = 1, ⋯ , T .

For convenience, we denote Ω = W, H, Pt t = 1
T , ωt t = 1

T  as the variable set to be 

optimized, and ω = (ω1, …, ωT) is the weight vector for multiple time-points. r > 1 for ωt is 

used to avoid a trivial solution that only considers one of the T time-points and adjusts the 

complementarity of multiple time-points [47]. The constraint Pt
⊤Pt = I is introduced, since 

without this constraint Pt can be pushed arbitrarily close to zero only by re-scaling Pt/s and 

Hs (s > 0) while preserving the same loss. Moreover, our model can be efficiently solved 

with the constraint (see Pt-subproblem in optimization part). 𝒫Ot
( ⋅ ) is a filter function to 

handle the incomplete data for the tth time-point. Let ot
s be an indicator variable showing the 

existence of data for subject s at time-point t, i.e., ot
s = 1 if the data is available, and a very 

small scalar ϵ > 0 otherwise. ot will then be defined as the indicator vector from all indicator 

variables of training samples. Accordingly, we can define a diagonal matrix Ot = diag(ot), 

denoted as the filter matrix of the tth time-point, and hence 𝒫Ot
PtH − Xt = PtH − Xt Ot. 

Note that ϵ > 0 is a small value to optimize H-subproblem in next subsection.

Model properties.—To summarize, we highlight that the proposed latent partial multi-

view representation enjoys the following merits: (1) Our regression model W is learned by 
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simultaneously utilizing all the subjects and time-points, which is especially important for 

the small-sample-size case. (2) The latent multi-view representation could depict data 

themselves more comprehensively than each single view individually, which makes the 

prediction model more accurate and robust. (3) The inter-task correlations, feature-specific 

corruption, and output (score) noise are explicitly encoded in our model to jointly guarantee 

the robustness of the model.

B. Optimization

Our objective function in Eq. (6) simultaneously seeks a latent representation from multiple 

views and learns a multitask prediction model with respect to the latent representation. Since 

the objective function is not jointly convex with respect to all the variables Pt, H and W, we 

employ Augmented Lagrange Multiplier (ALM) with Alternating Direction Method (ADM) 

strategy [48], [49]. To adopt ADM strategy to our problem, we need to make our objective 

function separable. Therefore, we introduce auxiliary variables J, Et t = 1
T  and E, and then 

we have the following equivalent problem

min
Ω

‖E‖1 + α∑ωt
r‖𝒫Ot

Et ‖2, 1 + β‖J‖*

s . t . ∑
t = 1

T
ωt = 1, ωt ≥ 0; Pt

⊤Pt = I; J = W;

𝒫Ot
PtH − Xt = 𝒫Ot

Et ; WH = Y + E .

(7)

The augmented Lagrangian function of Eq. (7) is given as

ℒ(Ω) = E
1

+ α∑ωt
r 𝒫Ot

Et 2, 1
+ β J

*

+ Φ 𝒢B, J − W + ∑
t = 1

T
Φ 𝒢t, 𝒫Ot

PtH − Xt − Et + Φ 𝒢A, WH − Y − E

s . t . ∑
t = 1

T
ωt = 1, ωt ≥ 0; Pt

⊤Pt = I, t = 1, ⋯ , T ,

(8)

where Ω is the set of all variables to be optimized and we define Φ(𝒢, Z) = μ
2 Z

F

2
+ 𝒢, Z

for simplicity, with 〈·, ·〉 being the matrix inner product. 𝒢t t = 1
T , 𝒢A and 𝒢B are 

Lagrangian multipliers along with the constraints, and μ > 0 is a penalty hyperparameter.

Below, we provide the optimization for each sub-problem:

H-subproblem.—For solving this sub-problem, by fixing other variables except H, we 

should solve the following problem:
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minH ∑Φ 𝒢t, 𝒫Ot
PtH − Xt − Et + Φ 𝒢A, WH − Y − E . (9)

Taking the derivative with respect to H and setting it to zero, we have

AH + HB = C
with A = W⊤W, B = ∑st,
C = ∑ Pt

⊤XtSt + Pt
⊤EtSt − Pt

⊤𝒢tOt /μ + W⊤ Y⊤ + E − 𝒢A/μ .

(10)

The above equation is a Sylvester equation [50]. We set ot
s as a very small number ϵ for 

missing time-points, instead of zero, to ensure the unique solution of the Sylvester Equation 

of (10). Specifically, in this way, the matrix B in the equation (10) will be positive-definite, 

which makes Proposition 4.1 provable. If we set ot
s to zero, there is no guarantee for a unique 

solution, and the numerical instability will also rise [51].

Proposition 4.1:  The Sylvester equation (10) has a unique solution.

Proof 4.1:  The Sylvester equation AH + HB = C has a unique solution for H exactly when 

there are no common eigenvalues of A and -B [50]. Since St = Ot
TOt is strictly positive-

definite due to the introduced ϵ, B is a positive-definite matrix, and all of its eigenvalues are 

positive: βi > 0. Since A is a positive semi-definite matrix, all of its eigenvalues are 

nonnegative: αi ≥ 0. Hence, for any eigenvalues of A and B, αi + βj > 0. Accordingly, the 

Sylvester equation (10) has a unique solution.

Pt-subproblem.—By fixing other variables except Pt, we should solve the following 

problem:

minPt
Φ 𝒢t, 𝒫Ot

PtH − Xt − Et  s . t .  Pt
⊤Pt = I . (11)

The optimization with orthogonality constraints can be efficiently solved with the way of 

constraint-preserving update formula and corresponding curvilinear search algorithms [52].

W-subproblem.—By fixing other variables except W, we should solve the following 

problem:

minWΦ 𝒢B, J − W + Φ 𝒢A, WH − Y − E , (12)

which has the following closed-form solution
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W = I + HHT −1 J + 𝒢B/μ + Y + E − 𝒢A/μ HT . (13)

J-subproblem.—By fixing other variables except J, we should solve the following 

problem:

minJγ J * + Φ 𝒢B, J − W . (14)

The above problem can be efficiently solved by the singular value thresholding operator:

J 𝒟τ(A) with A = W − 𝒢B/μ, (15)

where τ = γ/μ is the thresholds of the spectral soft-threshold operation 

𝒟τ(A) = U max(S − τ, 0)VT with A = USVT being the Singular Value Decomposition 

(SVD) of A and the max operation being taken element-wise.

Et-subproblem.—By fixing other variables except Et, we should solve the following 

problem:

minEt
αωt

r‖𝒫Ot
Et ‖2, 1 + Φ 𝒢t, 𝒫Ot

PtH − Xt − Et = min
αωt

r

μ ‖𝒫Ot
Et ‖2, 1 + 1

2

‖𝒫Ot
Et − PtH − Xt + 𝒢t /μ ‖F

2 .

(16)

This subproblem can be efficiently solved by Lemma 3.2 in [53].

E-subproblem.—For solving this sub-problem, by fixing other variables except E, we 

should solve the following problem:

minE‖E‖1 + Φ 𝒢A, WH − Y − E = min1
2‖E − WH − Y + 𝒢A/μ ‖F

2 + 1
μ‖E‖1 .

(17)

This step involves minimization of the 𝓁1-norm of a matrix, which can be optimally obtained 

using soft thresholding operator or the proximal operator for the 𝓁1-norm [54].
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For the weight vector ω, by using a Lagrange multiplier it can be updated by the following 

rule:

ωt 1/ Et 1, 2
1/r − 1

)/ ∑
t = 1

T
(1/ Et 1, 2)1/r − 1, (18)

since ‖Et‖1,2 > 0 in practice, ωt > 0 is guaranteed. Additionally, for the multipliers, we have 

the following update rule:

𝒢t 𝒢t + μ 𝒫Ot
PtH − Xt − Et , t = 1, ⋯, T;

𝒢A 𝒢A + μ(WH − Y − E), 𝒢B 𝒢B + μ(J − W) .

(19)

The penalty parameter μ is updated as μ ← min (μρ, 106). These subproblems are iteratively 

solved to update the variables involved.

In optimization, we initialize the weights of different time-points ω by ω1 = …ωT = 1/T, 

and all the other variables are set to zeros.

Testing phase: To obtain the regression scores for any novel test subject x, a 2-step 

procedure is conducted as follows:

 step 1. min
h

∑
t = 1

T
ωt

r‖Pth − xt‖
2st + λ ∑

t = 2

T
‖Pth − Pt − 1h‖2

 step 2. y = Wh,

(20)

where in the first step our model aims to uncover the latent representation according to the 

observed data and constrained with the temporal smooth term for the new coming subject, 

and then projects it onto the output space in the second step.

C. Complexity and Convergence

Our method is composed of multiple sub-problems. For updating H, the classical algorithm 

for the Sylvester equation is the Bartels Stewart algorithm [50], whose complexity is O(N3), 

where N is the number of samples. The complexity of updating J (the nuclear norm 

proximal operator) and W are O(N3) and O(K3), where K is the dimension of latent 

representation. For updating E, the main complexity is the matrix multiplication, which is 

O(DKN), where D is the dimension of the original feature space. Overall, the total 

complexity is O(K3 + N3 + DKN) for each iteration. Under the condition K ≪ D and K ≪ 
N, the total complexity is basically O(N3 + DN). It is difficult to generally prove the 

convergence for our algorithm. Fortunately, empirical evidence on both the synthetic data 

the real data suggests that the proposed algorithm has very strong and stable convergence.
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D. Discussion

One of the challenges for the proposed formulation is that a low-dimensional latent 

representation may not be enough to reconstruct an entire morphological map. It is 

important to note that here, our method operates on the ROI-based features (i.e., a relatively 

small-sized feature vector), rather than maps. Hence, there is no need to reconstruct an entire 

map from the latent representation. Furthermore, we only intend to encode the intrinsic 

information for the prediction task (and not to actually reconstruct the maps). Therefore, a 

low-dimensional latent representation usually suffices, which is empirically validated by our 

experiments. In addition, we formulate the problem in a linear setting, i.e., PtH − Xt, which 

is a special case for a mapping in our general model of Eq. (1). This mapping can be 

extended in the future by addressing nonlinear relationships with kernel methods or neural 

networks.

V. Experiments

We conduct experiments on both the synthetic and real infant brain data to evaluate our 

method. The performance is measured with Root Mean Squared Error (RMSE). All the 

hyperparameters are tuned from the set {10−3,10−2,0.1,1,10,102,103} through a nested leave-

one-out cross-validation. The number of dimensions for latent representation is set as K = 10 

for the infant brain data and K = 30 for the synthetic data.

A. Experiments on Synthetic Data

On the synthetic data, we evaluate the effectiveness of our model from the following aspects: 

(1) the ability to explore multiple views; (2) the robustness against missing data; (3) the 

convergence property in practice. The latent representation matrix H, model W and 

projections Pt t = 1
T  are randomly generated with each element independently sampled from 

a uniform distribution on the [0, 1] interval. To simulate the correlation among multiple 

outputs, we process W by wi = ∑ j ≠ i λ jw j  i.e., i = 5 and λ j = 1
C − 1 , which is similar to 

the prediction of the five cognitive scores of the infant brain data. Then, the output matrix Y 
is obtained by Y = WH + E, and the observations are generated with Xt = Pt H+Et. The 

noise matrices, i.e., E and Et, are generated by randomly corrupting 10% samples, 

respectively. The dimension of the output space is C = 5, which is similar to our real 

application. We have N = 23 samples, which is equal to the size of real dataset. The setting is 

mainly used to validate the effectiveness of our approach for small-sample-size problem. 

There are 10 views generated to investigate effect of using a varying numbers of views.

As shown in Fig. 4(a), with the help of more views, the performance is sensibly improved. In 

Fig. 4(b), we investigate the effect of missing data rate with different numbers of views. It is 

observed that the degradation is mild with the rise of missing rate especially when the 

missing rate is not larger than 0.25 or with more views. The convergence conditions are all 

reached within less than 60 iterations as shown in Fig. 4(c).
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B. Infant Brain Development Prediction

Performance with Different Numbers of Time-Points.—We first run our method 

with the data from different numbers of time-points. According to the Table I, our model can 

well leverage the data of different time-points for promising performance. We conduct the 

paired t-test between the results before using data at the 18th month (i.e., only using the data 

from the 0th to the 12th month) versus the results by including the data at the 18th month 

(i.e., using the data from the 0th to the 18th month). The p-value is generally large (i.e., 

0.664) which indicates that the improvement after including scans acquired at the 18th month 

is not significant. Similar cases are also observed for the results before and after including 

data at the 24th and the 36th months. One possible reason is that data at these later time-

points are much more severely incomplete. The second possible reason is from the law of 

diminishing marginal returns, which is also consistent with the experimental results on the 

synthetic data as shown in Fig. 4(a).

Generally, it is unreasonable to conduct training and testing with each single time-point in 

our task, considering the small-sample-size problem will be much more severe under the 

missing data condition. For example, there are only 10 subjects available at the 36th month. 

Indeed, this is the motivation of our method (i.e., simultaneously utilizing data at all time-

points to address the missing data issue). Nevertheless, we also conduct experiments on the 

other direction, i.e., adding data from the last time-point as shown in Fig. 5. The following 

observations can be drawn from the mentioned experiments: (1) With more time-points 

added, the performance becomes generally better. (2) The data at late time-points more 

strongly correlate with the cognitive scores than early ones. For example, the performance 

with the data at the 9th time-point is better than that at the 0th time-point. (3) We also note 

that the data at the 8th time-point do not improve the prediction performance. The 

performance becomes worse when using both the 8th and 9th time-points, compared with the 

case of using only the data at the 9th time-point. However, it is difficult to conclude that 

information at the 8th time-point is not correlated with cognitive scores, since the missing 

data issue at this time-point is rather serious. Further investigations could be conducted with 

more data involved.

Performance Comparison.—Since existing methods are not applicable for our data, we 

adopt two strategies to process the data to make them suitable for the existing multi-task 

methods. Specifically, the first way is to complete the missing values simply with zero, and 

the second way is to fill the missing values with the averaged values of the observed ones. 

We compare our model with the following methods: 1) NN (nearest neighbour); 2) MtJFS 

(Multi-Task Learning with Joint Feature Selection) [55]; 3) RMTL (Robust Multi-Task 

Feature Learning) [34]; 4) TrMTL (Trace-Norm Regularized Multi-Task Learning) [56]. 

From Table II, it is observed that simply filling the missing values with zero is not 

reasonable since the performance tends to be relatively poor. Our method outperforms both 

TrMTL and RMTL that also constrain the prediction model to be low-rank, which validates 

the effectiveness of learning the regression model based on latent representation. The 

performance of MtJFS, which aims to jointly select a subset of features for all tasks, is also 

poor. The possible reasons are 1) its limitation of handling missing data, and 2) impropriety 

of sharing a common subset of features for the five cognitive scores.
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In addition, we also conduct experiments by setting equal weights for all different time-

points. Using all 9 time-points with equal weights leads to an average RMSE (Root Mean 

Squared Error) of 0.163, which is worse than the proposed weighting scheme (i.e., average 

RMSE = 0.158). The proposed weighting scheme leads to a relative improvement of about 

3.8% in terms of RMSE. As shown in Fig. 6, we present the estimated weight vector and 

find that the weight corresponding to the 18th month is relatively high. This indicates small 

reconstruction error and thus the information at the 18th month is sufficiently encoded into 

the learned latent representation. However, since the number of samples at the 18th month is 

relatively small, this may lead to over-fitting for the learned model.

C. Model Analysis

Parameter tuning.—We conduct experiments to investigate the impact of the number of 

dimensions for H. As shown in Fig. 7, it is observed that the prediction performance is 

relatively robust with respect to different numbers of dimensions for H within a broad range. 

Specifically, for the synthetic data, when the dimensionality K is larger than 32 (i.e., K ≥ 

32), the best performance is obtained; whereas, for the real data, when 32 ≥ K ≥ 8, the 

performance is generally reasonable and the best performance is obtained in this range. As 

shown in the right subfigure of Fig. 7(a), a large dimensional H yields a model with unstable 

prediction performance and the results show that this model is prone to over-fitting. We also 

conduct experiments for evaluating the hyperparameter α in Fig. 8. On the real data, it can 

be observed that the best performance is obtained by setting α in the range [0.1 10]. 

However, for much larger α values (e.g., α > 100), the prediction performance would suffer, 

due to overemphasis on the reconstruction loss. For the synthetic data, the performance is 

relatively stable with a large value for α.

VI. CONCLUSION AND DISCUSSION

In this work, we propose to explore the relationship between cognitive scores and 

morphological features of the cerebral cortex, and develop a novel multi-task multi-view 

regression model for this challenging problem. Based on the latent representation, our model 

effectively addresses the challenge of learning with incomplete longitudinal data. We also 

introduce an optimization algorithm for the proposed method and validated the effectiveness 

on both the synthetic and real data.

Our model is able to predict the cognitive scores even at the presence of missing longitudinal 

data, as we introduce the latent representation. However, there are several issues that require 

further clarifications and possible future investigations. First, it is difficult to analyze the 

correspondence between ROIs and cognitive scores after mapping the original features to the 

latent representation. Hence, preserving brain structural information in the latent 

representation may be helpful for analyzing which region(s) are critical in predicting specific 

score(s). Second, due to the cost and difficulty associated with longitudinal data collection, 

there are only 23 subjects with cognitive scores available, which is a relatively small dataset. 

More data should be acquired for better performance, and semi-supervised techniques could 

be utilized to leverage subjects without cognitive scores and enhance the generalization 

ability of our proposed method. Third, we linearly model the correlations, i.e., the 
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correlation between the latent representation and the cognitive scores as well as the 

correlation between different views. With more data involved in the future, non-linearity 

(e.g., deep networks) can be introduced to address more complex correlations. Finally, we 

use the FreeSurfer parcellation scheme to parcellate the cerebral cortex into different ROIs 

according to the gyral and sulcal patterns [45]. The rationality of using this scheme for 

infant brain parcellation lies in the fact that all major gyral and sulcal folds are established at 

term birth and are stable during postnatal brain development [57]. For example, this 

parcellation scheme has been successfully adopted in infant studies [23], [58]. However, 

leveraging infant-specific parcellation schemes could potentially further improve the 

performance.
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Fig. 1: 
Strategies for handling the missing data: (a) learning one model for each data-point, (b) 

learning one model for each combination of multiple data-points, (c) learning a unified 

model based on the completed data, and (d) learning a unified model based on the latent 

representation for all data.
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Fig. 2: 
Illustration of our dataset. White blocks indicate the availability of imaging data for subjects 

at specific time-points, while black blocks indicate the missing data. For instance, the white 

block highlighted in blue represents the availability of MRI data for the 8th subject at its 48th 

month (e.g., the brain attribute maps underneath it), while the black block highlighted in 

green indicates a missing MRI scan (the question mark). We have 23 subjects with measured 

development scores, indicated by the red rectangle. The missing rates from the 1st time-point 

to last time-point are 21.7%, 21.7%, 26.1%, 26.1%, 39.1%, 30.4%, 47.8%, 56.5%, and 

26.1%, respectively.
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Fig. 3: 
Illustration of Latent Partial Multi-view Representation Learning. Our model uncovers the 

comprehensive and discriminative latent representation (termed as latent atlas from medical 

image field) jointly from incomplete observations, based on which the multi-task (C scores) 

multi-view (T time-points) prediction model is learned.
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Fig. 4: 
Experiments on synthetic data. The solid lines in (a) and (b) are plotted by averaging five 

different runs shown as the dash lines.
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Fig. 5: 
The performance trend with adding data at more time-points from two directions.
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Fig. 6: 
The estimated weights ω for multiple time-points.
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Fig. 7: 
Impact of the dimensionality for the latent representation H on the prediction performance.
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Fig. 8: 
Impact of the hyperparameter α on the prediction performance.

Zhang et al. Page 26

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 27

TA
B

L
E

 I:

R
es

ul
ts

 o
f 

us
in

g 
di

ff
er

en
t n

um
be

rs
 o

f 
tim

e-
po

in
ts

 (
in

 te
rm

s 
of

 R
M

SE
).

T
im

e-
P

oi
nt

s
V

R
S

F
M

S
R

L
S

E
L

S
E

L
C

A
ve

ra
ge

0 
M

on
th

 (
1 

tim
e-

po
in

t)
0.

16
7

0.
20

8
0.

16
0

0.
18

7
0.

16
1

0.
17

7

01
–0

3 
M

on
th

 (
2 

tim
e-

po
in

ts
)

0.
16

4
0.

20
6

0.
15

9
0.

18
3

0.
15

9
0.

17
4

01
–0

6 
M

on
th

 (
3 

tim
e-

po
in

ts
)

0.
16

2
0.

20
5

0.
15

1
0.

17
6

0.
15

5
0.

17
0

01
–0

9 
M

on
th

 (
4 

tim
e-

po
in

ts
)

0.
16

2
0.

18
9

0.
14

3
0.

16
3

0.
14

3
0.

16
0

01
–1

2 
M

on
th

 (
5 

tim
e-

po
in

ts
)

0.
15

8
0.

19
0

0.
13

7
0.

16
4

0.
13

8
0.

15
8

01
–1

8 
M

on
th

 (
6 

tim
e-

po
in

ts
)

0.
15

7
0.

19
0

0.
13

7
0.

16
4

0.
13

6
0.

15
7

01
–2

4 
M

on
th

 (
7 

tim
e-

po
in

ts
)

0.
15

9
0.

19
1

0.
13

8
0.

16
2

0.
13

7
0.

15
7

01
–3

6 
M

on
th

 (
8 

tim
e-

po
in

ts
)

0.
16

2
0.

19
4

0.
14

0
0.

16
5

0.
14

1
0.

16
0

01
–4

8 
M

on
th

 (
9 

tim
e-

po
in

ts
)

0.
16

2
0.

18
9

0.
13

9
0.

16
5

0.
13

8
0.

15
8

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 April 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 28

TA
B

L
E

 II
:

Pe
rf

or
m

an
ce

 c
om

pa
ri

so
n 

(i
n 

te
rm

s 
of

 R
M

SE
).

 F
or

 th
e 

co
m

pa
re

d 
m

et
ho

ds
, t

he
 f

ir
st

 r
ow

 d
ep

ic
ts

 th
e 

re
su

lts
 w

ith
 th

e 
m

is
si

ng
 v

al
ue

s 
su

bs
tit

ut
ed

 w
ith

 z
er

os
, 

an
d 

th
e 

se
co

nd
 r

ow
 d

ep
ic

ts
 th

e 
re

su
lts

 w
ith

 th
e 

m
is

si
ng

 v
al

ue
s 

su
bs

tit
ut

ed
 w

ith
 th

e 
av

er
ag

ed
 v

al
ue

s 
of

 th
e 

ob
se

rv
ed

 o
ne

s.

M
et

ho
d

V
R

S
F

M
S

R
L

S
E

L
S

E
L

C
A

ve
ra

ge

N
N

0.
20

0
0.

22
0

0.
25

9
0.

29
1

0.
20

9
0.

23
6

0.
21

9
0.

25
9

0.
16

5
0.

19
6

0.
18

2
0.

20
4

M
tJ

FS
0.

28
4

0.
29

6
0.

27
9

0.
27

8
0.

28
6

0.
28

5

0.
27

6
0.

27
3

0.
18

9
0.

21
4

0.
13

4
0.

21
7

R
M

T
L

0.
31

3
0.

32
1

0.
24

2
0.

22
9

0.
27

3
0.

27
6

0.
14

6
0.

20
0

0.
17

8
0.

18
8

0.
13

7
0.

17
0

T
rM

T
L

0.
34

9
0.

37
3

0.
28

0
0.

25
6

0.
31

9
0.

31
5

0.
27

9
0.

27
6

0.
19

2
0.

21
7

0.
13

6
0.

22
0

Pr
op

os
ed

0.
16

2
0.

18
9

0.
13

9
0.

16
5

0.
13

8
0.

15
8

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 April 05.


	Abstract
	INTRODUCTION
	RELATED WORK
	Longitudinal Analysis of Infant Brain.
	Multi-view Learning.
	Multi-task learning.

	Material and Preprocessing
	Material.
	Image Processing.

	INFANT BRAIN DEVELOPMENT PREDICTION WITH LATENT PARTIAL MULTI-VIEW REPRESENTATION LEARNING
	Formulation
	Model properties.

	Optimization
	H-subproblem.
	Proposition 4.1:
	Proof 4.1:

	Pt-subproblem.
	W-subproblem.
	J-subproblem.
	Et-subproblem.
	E-subproblem.
	Testing phase:

	Complexity and Convergence
	Discussion

	Experiments
	Experiments on Synthetic Data
	Infant Brain Development Prediction
	Performance with Different Numbers of Time-Points.
	Performance Comparison.

	Model Analysis
	Parameter tuning.


	CONCLUSION AND DISCUSSION
	References
	Fig. 1:
	Fig. 2:
	Fig. 3:
	Fig. 4:
	Fig. 5:
	Fig. 6:
	Fig. 7:
	Fig. 8:
	TABLE I:
	TABLE II:

