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Abstract

Accurate extraction of physical and biochemical parameters from optoacoustic images is often 

impeded due to the use of unrigorous inversion schemes, incomplete tomographic detection 

coverage or other experimental factors that cannot be readily accounted for during the image 

acquisition and reconstruction process. For instance, inaccurate assumptions in the physical 

forward model may lead to negative optical absorption values in the reconstructed images. Any 

artifacts present in the single wavelength optoacoustic images can be significantly aggravated 

when performing a two-step reconstruction consisting in acoustic inversion and spectral unmixing 

aimed at rendering the distributions of spectrally-distinct absorbers. We investigate a number of 

algorithmic strategies with non-negativity constraints imposed at the different phases of the 

reconstruction process. Performance is evaluated in cross-sectional multispectral optoacoustic 

tomography (MSOT) recordings from tissue-mimicking phantoms and in vivo mice embedded 

with varying concentrations of contrast agents. Additional in vivo validation is subsequently 
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performed with molecular imaging data involving subcutaneous tumors labeled with genetically-

expressed iRFP proteins and organ perfusion by optical contrast agents. It is shown that 

constrained reconstruction is essential for reducing the critical image artifacts associated with 

inaccurate modeling assumptions. Furthermore, imposing the non-negativity constraint directly on 

the unmixed distribution of the probe of interest was found to maintain the most robust and 

accurate reconstruction performance in all experiments.

Index Terms

optoacoustic/photoacoustic tomography; multispectral imaging; spectral unmixing; non-negative 
constraint

I. Introduction

Multispectral optoacoustic tomography (MSOT) is a hybrid light- and ultrasound-based 

imaging modality that can resolve the distribution of tissue chromophores and optical 

contrast agents deep inside highly scattering living organisms [1]–[5]. The basic operational 

principle consists in identification of absorption spectrum variations in a sequence of 

optoacoustic images acquired at multiple excitation wavelengths [6]–[8]. The large 

versatility of optical absorption contrast empowers MSOT with diverse functional and 

molecular imaging capabilities, often unique among the bio-imaging modalities [9]–[15].

MSOT images representing the distribution of spectrally-distinct chromophores are 

generally obtained with a two-step procedure. In a first step, optoacoustic tomographic 

images are reconstructed from the pressure signals generated by absorption of short laser 

pulses. The signals are recorded at several locations around the imaged object while various 

inverse algorithms based on back-projection [16], time-reversal [17] or model-based [18]–

[21] can be employed for the reconstruction, each offering different trade-offs between the 

image reconstruction accuracy and computational cost [22]. In the second step, spectral 

unmixing algorithms are imposed on the images acquired at different excitation wavelengths 

in order to map the distribution of different absorbing substances present in the tissue. 

Several spectral processing algorithms based on spectral fitting [6] or blind unmixing [23] 

have been reported with performance greatly varying among the different approaches. The 

order of these two steps can be interchanged, i.e., the distribution of a specific substance can 

alternatively be rendered by multispectral unmixing of the acquired signals and subsequent 

image reconstruction.

Model-based inversion methods represent arguably the most accurate and versatile approach 

for both the image reconstruction and unmixing steps in MSOT. They can be adapted to 

account for the frequency response and geometrical shape of ultrasound sensors [24]–[26] as 

well as for acoustic mismatch and attenuation [27], [28] and hence significantly enhance 

image quality. However, applicability of the model-based approach is often limited by lack 

of exact knowledge of the underlying physical properties of the tissue as well as the 

illumination and detection geometry, which may lead to inaccurate reconstructions and 

image artifacts such as negative values with no physical meaning.
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For instance, a non-linear spectral model incorporating wavelength-dependent light 

attenuation effects has been suggested to reduce cross-talk artifacts appearing in the 

unmixed images obtained with standard linear unmixing [29]. Yet, accurate modeling of 

light propagation requires prior knowledge of background optical properties, which is very 

challenging to measure in highly heterogeneous living tissues [30]. Other factors leading to 

image artifacts are limited detection bandwidth of transducers, limited number of detectors 

and tomographic coverage, inaccurate modeling assumptions when reducing the problem 

into two dimensions, inability to accurately account for the spatial light distribution and 

spectral coloring effect.

To reduce the influence of modeling imperfections, the inversion procedure can be 

optimized by incorporating constraints or regularization terms, e.g. a non-negative 

constrained inversion has been shown to render images free of negative ab- sorption values 

[31]. We have also recently demonstrated that non-negative constrained inversion of a linear 

two-dimensional optoacoustic tomographic model can further enhance quantitative 

performance by yielding reconstructed values proportional to the actual absorption 

coefficient [32].

In this work, we investigate on the impact of non-negative constrained inversion in both the 

reconstruction and unmixing steps of the MSOT. Linear inverse problems corresponding to 

reconstruction, unmixing and a combination of both are defined. Performance of the 

different approaches is subsequently evaluated based on the ability to accurately reconstruct 

contrast agent distribution in experimental data acquired from tissue-mimicking phantoms 

and living mice.

II. Theory

In this section, we describe the theoretical basis of MSOT and the simplifications introduced 

to derive the forward models for the reconstruction and unmixing steps. Based on these 

forward models, inverse problems where non-negative constraints can be incorporated are 

defined.

A. Model-based Reconstruction

Time-domain model-based reconstruction algorithms are based on a discrete linear model of 

the propagation of pressure waves generated by a laser pulse. Assuming thermal and stress 

confinement conditions and approximating the short-pulsed laser illumination by a Diracs 

delta in time, the optoacoustic wave equation for a homogeneous acoustic medium can be 

expressed as [33]

(1)

where Γ is the dimensionless Grüneisen parameter, c is the speed of sound in the medium 

and H(r) is the amount of energy absorbed in the tissue per unit volume. The solution of (1) 

is given by the Poisson-type integral via [33]

Ding et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(2)

Integration is performed along a spherical surface S′(t) for which |r − r′| = ct. A cross-

sectional acquisition geometry is often assumed with the optoacoustic sources lying in a 

plane [21], in which case (2) is simplified to

(3)

where L′(t) is a circumference with radius of ct.

A discretization procedure of (2) or (3) leads to a linear forward model expressed as [21]

(4)

where p is a vector representing pressure signals at all transducer positions, A is the model 

matrix with columns representing the time-resolved impulse response from each pixel of the 

reconstruction region of interest (ROI) to different transducer locations, and h is a vector 

containing the absorption at all pixel locations. In model-based reconstruction, the 

absorption vector is reconstructed from the measured pressure signals pm by solving the 

following least squares problem

(5)

A regularization term is sometimes incorporated into (5). However, regularization-free 

results are satisfactory in most cross-sectional optoacoustic tomography reconstructions, 

given that sufficient angular tomographic coverage is provided by the ultrasound transducers 

[34].

B. Linear Unmixing

In MSOT, multispectral unmixing is performed to distinguish absorbing substances based on 

their differential spectral absorption profiles. Assuming a homogeneous Grüneisen 

parameter in light absorbing regions (mainly vascular structures), the optical absorption h 
for a certain location r and a given wavelength λi can be expressed in arbitrary units as
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(6)

where Φ(λi, r) is the wavelength dependent local light fluence for wavelength i, S is the total 

number of absorbing substances, εj(λi) is the molar extinction coefficient of the j-th 

substance at wavelength λi and cj(r) is its concentration at location r. The light fluence at 

different locations in living biological tissues is generally very difficult to measure or 

estimate without accurate knowledge of the distribution of absorption and scattering 

coefficients in the entire imaged region. Thereby, a common simplification consists in 

assuming that the spectral variations of Φ(λ) are negligible with respect to those of εj(λ), 

i.e., Φ(λ1, r) = Φ(λ2, r) = ··· = Φ(λW, r) = Φ̄(r). Let Φ̄ be the vector containing the light 

fluence at all pixel locations, H = [h(λ1) h(λ2) ··· h(λW)] the wavelength-dependent optical 

absorption, C = [c1 ⊙ Φ̄ c2 ⊙ Φ̄ ··· cS ⊙ Φ̄] having each column being the Hadamard 

product of the concentration of an absorbing substance and the local light fluence at all 

pixels, and E = [ε1 ε2 ··· εS]⊤ representing the molar extinction coefficient of all the 

absorbing substances. Then, (6) can be expressed in the following simplified matrix relation

(7)

Spectral unmixing of different absorbing substances is performed by solving the following 

least-square problem [29]

(8)

with the solution

(9)

where Ĥ is the reconstructed optical absorption at all wavelengths and E+ is the 

pseudoinverse of E. Both the reconstruction and unmixing are linear problems that can be 

interchanged without affecting the final result. In particular, since Ĥ = A+Pm, where Pm = 

[pm(λ1) pm(λ2) ··· pm(λw)], one obtains

(10)
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Thereby, the unmixed pressure signals

(11)

can be calculated first, while the images of the different absorbers

(12)

only reconstructed at the second step. Note that, since E is a wide matrix with a relatively 

small number of entries, a lower computational complexity is achieved by first unmixing the 

signals and subsequently reconstructing the images. Since (10) corresponds to a combined 

(reconstruction + unmixing) least squares problem expressed as

(13)

solving the linear reconstruction and multispectral unmixing problems in a separate or in a 

combined manner would in principle yield equivalent results. However, performance is 

expected to significantly differ in the case of the non-negative constrained inversion, which 

introduces non-linearities in the reconstruction process, as described in the following 

section.

C. Non-negative Constrained Approaches

Non-negative constraints are applicable in any of the inversion problems defined in the 

previous sections. The constrained least squares problem for tomographic reconstruction is 

formulated as

(14)

and the subsequent non-negative constrained unmixing problem is defined as

(15)

On the other hand, the combined reconstruction and unmixing inversion procedure can also 

be formulated as a non-negative constrained inversion problem via
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(16)

Note that the constraint C ≥ 0 also implies that H = CE ≥ 0 since the coefficients in E are 

non-negative. Note that the non-negative constraint is not applicable for the purpose of 

signal unmixing prior to reconstructions since the raw recorded optoacoustic signals may 

generally have physically meaningful negative values. Indeed, the optoacoustic pressure 

signals are bipolar. For example, the pressure response generated by a spherical object has a 

characteristic “N” shape with positive and negative pressure values [35]. On the other hand, 

non-negative constraints can be imposed solely on certain columns of C corresponding to the 

optical absorbers of interest for the inverse problems in (15) and (16).

As mentioned above, image reconstruction performed with (14) followed by the unmixing 

step defined in (15) does not generally lead to the same final result as the combined 

optimization problem in (16).

III. Methods

As discussed in the previous section, non-negativity constraints can be added to the 

reconstruction and/or unmixing steps. One may also change the order of the reconstruction 

and unmixing steps or calculate the desired concentrations in a combined manner. Herein, 

we investigate on the performance of all relevant combinations in terms of quantitativeness 

and cross-talk artifacts present in the unmixed images. Specifically, the following methods 

are considered:

• Constrained reconstruction followed by constrained unmixing (CR-CM)

• Constrained reconstruction followed by unconstrained unmixing (CR-UM)

• Unconstrained reconstruction followed by constrained unmixing (UR-CM)

• Unconstrained reconstruction followed by unconstrained unmixing (UR-UM)

• Unconstrained unmixing followed by constrained reconstruction (UM-CR)

• Combined and constrained reconstruction and unmixing (CB1)

• Combined reconstruction and unmixing with a non-negative constraint only 

imposed on the contrast agent of interest (CB2)

The unconstrained reconstruction problems (UR) defined in (5) were solved with the 

iterative method LSQR [36], while the unconstrained unmixing problems (UM) defined in 

(8) were solved directly with the pseudoinverse of E, which can be easily calculated due to 

its small size. The constrained reconstruction (CR) and the constrained combined problems 

(CB1 and CB2) were solved using an efficient iterative non-negative least squares method 

introduced in [32]. On the other hand, the constrained unmixing problems (CM) defined in 

(15) were solved with the FNNLS method [37], which, due to the small dimensionality of 

this problem, is more efficient.
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Reconstruction performance of all methods was experimentally validated by unmixing the 

distribution of various chromophores and contrast agents whose extinction (absorption) 

spectra are depicted in Fig. 1. The absorption spectra for AF750, gold-nanorods (GNR), 

iRFP [38] and IRDye800CW from spectrophotometer measurements are shown in solid 

lines and the spectra from MSOT measurements are shown in dashed lines. The MSOT 

spectra were obtained by imaging phantoms containing the isolated contrast agents at 

multiple wavelengths and averaging pixel values in the reconstructed optoacoustic images. 

The measured absorption values were further normalized by the wavelength-dependent 

energy of the laser source. The MSOT spectra of iRFP and GNR are almost identical to their 

spectrophotometer spectra while the MSOT spectra of IRDye800CW and AF750 are slightly 

shifted to the left and the MSOT spectra for AF750 is broadened. The corresponding peak 

molar extinction coefficients and molecular weight are further listed in TABLE I.

All imaging experiments were done with a commercial small animal multi-spectral 

optoacoustic tomography scanner (Model: MSOT256-TF, iThera Medical GmbH, Munich, 

Germany). The scanning system contains a wavelength-tunable (680–950nm) short-pulsed 

(≤10ns) laser. The laser beam is guided through 10 fiber bundles onto the surface of the 

imaged sample to form a ring-shaped illumination on its surface. The generated optoacoustic 

responses are captured by a 256-element cylindrically-focused transducer array covering an 

angle of 270° around the imaged cross-section [39]. During all experiments, the temperature 

was stabilised at approximately 34°C.

A. Phantom Experiment

In the first experiment, a cylindrical 19 mm diameter agar phantom was imaged containing 

India ink and Intralipid for mimicking tissue background absorption (μa = 0.2 cm−1 at 

700nm) and scattering properties ( ) [30]. The acoustic properties of agar are 

very similar to water. Two 1 mm diameter polyethylene tubings were inserted into the 

phantom at different depths. AlexaFluor 750 (InvitrogenTM) fluorescent dye at 6 different 

concentrations (optical densities 0.3, 0.5, 1.1, 1.5, 2.0 and 2.5 as measured with a 

spectrophotometer) was flushed into and out of the same tubings. Optoacoustic images were 

recorded with 20 averages at 9 vertical positions of the phantom and at 11 different 

wavelengths ranging from 700 to 800 nm with 10 nm steps.

B. iRFP-expressing Tumor Cells

To facilitate the mouse tumor studies, we developed a lentiviral vector expressing the 

phytochrome-based near-infrared fluorescent protein, iRFP [40]. The iRFP [40] 

complementary DNA was PCR amplified and cloned into the pENTR/D-TOPO plasmid to 

create the pENTR-iRFP vector via a standard Topo-cloning methodology, as we have 

described [41]. Once sequence verified, the iRFP was transferred into a Gateway-modified 

pLVX-IRES-puro vector, as described [42], [43] by TOPO cloning, to generate pLVX-iRFP-

IRES-puro. Positive clones were selected and plasmids were extracted with the QIAprep 

Spin Miniprep Kit (Qiagen). Lentiviral particles were generated by co-transfection of 4 

plasmids (The iRFP expression vector pLVX-iRFP-IRES-puro together with pMD2.g 

(VSVG), pVSV-REV and pMDLg/pRRE) into 293-FT cells using TransIT-X2® Dynamic 

Delivery System (Mirus Bio LLC). The breast cancer cell line MDA-MB-231 (a generous 
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gift from Dr. Julie Eiseman, University of Pittsburgh) was cultured in RPMI 1640 media 

supplemented with heat-inactivated FBS (10%) and Gentamycin (10μg/ml) at 37°C in 

humidified chambers with 5% CO2 and 20% O2. The MDA-MB-231/iRFP expressing cells 

were established by overnight transduction of the MDA-MB-231cells with lentivirus 

expressing iRFP (pLVX-iRFP-IRES-puro). Transduced cells were then selected for 7–10 

days in media supplemented with puromycin (1.5μg/ml). The collection and isolation of 

lentiviral particles and transduction of cells was performed as described previously [44].

C. In Vivo Mouse Experiments

In order to assess the accuracy and sensitivity of the different methods under realistic 

conditions (including conditions resembling typical molecular imaging studies), data from 

additional three in vivo mouse experiments was further analyzed. All procedures involving 

animal care and experimentation were conducted according to the guidelines of the 

Helmholtz Center Munich and the government of Upper Bavaria and complied with German 

federal and international laws and regulations. All in vivo mouse experiments were terminal.

In the first in vivo experiment, a polyethylene tubing was inserted into the rectum of a 

mouse (mouse 1). Ultrasound gel was used as lubricant and for acoustic coupling. Different 

concentrations of AlexaFluor 750 (optical densities 0.2, 0.5, 1.0, 1.9 and 3.9) as well as 

GNR (Nanopartz D12-10-780, optical densities 0.3, 0.6, 1.5 and 1.9) were injected into the 

tubing. For each concentration of the contrast agents, cross-sectional images of the mouse 

were taken at 10 different positions, from the intestinal region to the legs. At each position, 

multi-spectral data was recorded with 10 averages at 22 different wavelengths ranging from 

690 to 900 nm with 10 nm steps.

For unmixing, the known absorption spectra of oxygenated and deoxygenated hemoglobin 

were used whereas the spectra of AF750 and GNR were adopted from the results obtained 

with a blind unmixing procedure [45] in order to compensate for the spectral coloring effects 

at deep tissue locations [29]. In this scenario, accuracy of the retrieved spectra is ensured due 

to the local confinement of the imaging agents.

In the second experiment, an 8-week-old female Hsd:Athymic Nude-Foxn1nu/nu mouse was 

inoculated with 1 million of iRFP-expressing (MDA-MB-231-iRFP) tumor cells in the 

abdomen region (mouse 2). The tumor was allowed to grow over 10 days reaching an 

approximate size of 5 mm. No toxicity effects were observed due to the presence of iRFP. 

Cross-sectional MSOT images were acquired with 10 averages at 680, 690, 700, 715, 730, 

760, 800 and 850 nm wavelengths.

In the third in vivo experiment, a healthy nude mouse was injected with 20 nmol of 

IRdye800CW optical contrast agent (LI-COR Biosciences, Lincoln, Nebraska USA) in 100 

μl saline through its tail vein (mouse 3). MSOT images at 715, 730, 760, 780, 800 and 850 

nm wavelengths were subsequently taken without averaging approximately 4 min post 

injection at the kidney region, where the probe accumulates during renal clearance [46].
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IV. Results

Results from the phantom experiment are summarized in Fig. 2. Fig. 2a) shows the non-

negative constrained reconstruction of the phantom imaged at 740 nm, corresponding to the 

peak absorption of AF750 in the blindly unmixed spectra. Figs. 2b) and c) display the 

unmixed distributions of India ink and AF750 for the CR-CM method, i.e., non-negative 

constrained reconstructions followed by non-negative constrained unmixing.

Clearly, the unmixed distribution of AF750 is confined within the tubings, whilst the 

amplitude of the deeper insertion is lower due to light fluence attenuation effects. On the 

other hand, ink is unmixed throughout the phantom as a background component, yet cross-

talk artefacts appear inside the tubings. In order to evaluate the accuracy of the AF750 

unmixing, the averaged pixel values inside the two tubings (unmixed concentration) 

obtained with the different methods are plotted in Figs. 2d) and e) as a function of the 

measured optical density values, which are proportional to the actual concentration. Ideally, 

the method employed for reconstruction and unmixing should yield unmixed values 

proportional to the actual concentration of the probe. It can be observed in Figs. 2d) and e) 

that all methods yield similar results except for UR-CM, for which the relationship between 

unmixed values and optical density is strongly non-linear for low concentrations of the 

probe. The data points in Figs. 2d) and e) were fitted to linear functions for each method. 

Quality of the linear fit is further shown in Fig. 2f). For this particular experiment, no 

significant differences were observed among the different approaches except for UR-CM, 

yet the CB2 method exhibits the best linearity.

Results of the in vivo mouse experiment (mouse 1) are shown in Fig. 3. Two representative 

examples for the unmixing of AF750 and GNR are displayed in Figs. 3a)–b) superimposed 

onto the single wavelength optoacoustic images taken at 800 nm. In particular, Fig. 3a) 

displays the distribution of AF750 (1.9 OD) in the intestinal region of the mouse unmixed by 

the CR-CM method while Fig. 3b) shows the distribution of GNR (1.5 OD) for the 

intestinal/leg area unmixed by the CR-CM method. For the particular slices shown, the 

probe concentrations inside the tubing obtained with the different methods are further 

plotted in Figs. 3c) (AF750) and d) (GNR) as a function of the measured optical density of 

the probes. Much like in the phantom experiments, all methods exhibited a similar 

performance. In this particular example, the relatively shallow depth of the tubing allows to 

distinguish relatively low concentrations of the contrast agents, which was not possible for 

other cross-sections. For a more comprehensive comparison, Figs. 3e)–f) depict the results 

of a statistical analysis considering 10 different cross-sections of the mouse. Figs. 3e) shows 

the mean R2 values for all cross-sections in blue for AF750 and green for GNR and Figs. 3f) 

shows the standard deviation of the calculated R2 values for the different methods. It can be 

seen that most methods again yield similar performance except for UR-CM, which results in 

a lower R2 value and high variability of the unmixing performance.

Figs. 4 and 5 show the results of the cross-talk effects evaluation, for which the signal to 

cross-talk ratio (SCR) was defined as the ratio between the averaged pixel value within the 

tubings and standard deviation of the background (everywhere else except the tubings). 

Positive concentrations of AF750 and GNR are illustrated in green and gold respectively 
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while negative values of both probes are illustrated in the color gray. It can be seen in Fig. 

4a) that the images of the unmixed AF750 distribution, which were obtained with the 

unconstrained methods (CR-UM and UR-UM), contain negative cross-talk artifacts. Fig. 4b) 

shows the blind spectrum of AF750 used for unmixing. Note that the shape is wider 

compared to the measured spectrum in Fig. 1 and the peak is slightly shifted to the left. Fig. 

4c) shows the respective SCR as a function of the measured optical density of AF750 

averaged over the 10 imaged cross-sections. As expected, the SCR is approximately linear 

with the optical density of the probe. In this particular experiment, the CB2 method yields 

the best cross-talk performance whereas the UM-CR and UR-UM methods render the 

strongest cross-talk artifacts. Fig. 5a) displays the unmixed GNR images in the intestinal/leg 

region rendered using the different methods. Negative cross-talk artifacts are again obtained 

using the CR-UM and UR-UM methods. Fig. 5b) shows the blind spectrum of GNR. The 

spectrum is very similar to the measured spectrum in Fig. 1. Fig. 5c) shows the result of the 

SCR analysis. UR-CM yields the best cross-talk performance while CB1, UM-CR and UR-

UM render noisier images of the GNR distribution.

Fig. 6 presents the spectral unmixing results to render the iRFP distribution in mouse 2. Fig. 

6a) shows the reconstructed optoacoustic image corresponding to 690 nm (absorption peak 

of iRFP). Fig. 6b) shows the unmixed iRFP images obtained using the different methods. 

Here positive concentrations of iRFP are displayed in brown and negative concentrations in 

green. The tumor can be clearly distinguished in both the single-wavelength and the 

unmixed images. Note however that the unconstrained methods, namely CR-UM and UR-

UM, yield large areas with negative values. Fig. 6c) displays the cross-talk ratios of the 

unmixed images, calculated as the mean value of the unmixed image inside a region marked 

in red divided by the standard deviation outside this region. Segmentation of the marked 

region was done on the single wavelength image using an active contour method [47], [48]. 

It is readily observed that in this particular experiment the UR-CM method yields the lowest 

background while the UM-CR and UR-UM methods have the worst cross-talk performance.

Fig. 7 presents the unmixed images of the IRDye800CW dye distribution in the mouse 3 

experiment. Here the unmixing results significantly differ among the different methods. 

Negative artifacts obtained with the CR-UM and UR-UM methods were set to zero for a 

more convenient representation. From the physiological perspective, the IRDye800CW is 

expected to clear through kidneys hence mostly accumulate in this area. However, part of the 

probe remains in the blood circulation, making it difficult to conclude which method renders 

the most accurate unmixing performance. It is yet clear that the unmixed images rendered 

with the UM-CR and UR-UM methods contain strong cross-talk artifacts present both inside 

and outside the mouse, which is consistent with the poor cross-talk performance rendered 

with these methods in the previous experiments. TABLE II shows the computation time of 

each method for this data set. Clearly, constrained image reconstruction increases the 

complexity. The combined methods (CB1 and CB2) are the most time consuming methods 

while UM-CR is the most efficient method.
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V. Discussion and Conclusions

The accuracy of tomographic inversion and spectral unmixing in multispectral optoacoustic 

tomography (MSOT) depends on a number of experimental and theoretical factors, such as 

the number, shape and size of the detectors employed, forward modeling imperfections, and 

discrete sampling issues. This often results in ambiguous reconstructions and appearance of 

negative values in the images, which have no physical meaning since optical absorption can 

only be higher or equal than zero. Any artifacts present in the single wavelength 

optoacoustic images can be significantly aggravated when performing a two-step 

reconstruction consisting in acoustic inversion and spectral unmixing aimed at rendering the 

distributions of spectrally-distinct absorbers. In this work, performance of non-negative 

constrained inversion approaches in multispectral optoacoustic tomography (MSOT) has 

been evaluated by introducing the constraints at the different image reconstruction and/or 

probe unmixing steps.

It has been generally established that the constrained inversion is essential for reducing the 

critical image artifacts associated with inaccurate forward modeling assumptions. Yet, 

algorithmic sequence has a significant impact on the reconstruction and unmixing 

performance. Since the combined least squares problem defined in (16) is a convex 

optimization problem, its solution is the global minimum. Therefore, if we are looking for a 

solution satisfying Ĉ ≥ 0, the combined problem yields the lowest possible least-squares 

residual of all approaches. The combined approach is then expected to outperform the other 

methods if the forward model is accurate. However, modeling imperfections present in 

practical imaging set-ups may have significant impact on the results, so that the lowest least 

squares residual may not necessarily guarantee the highest accuracy of the reconstructed 

images.

Indeed, in practice, imposing the non-negativity constraint directly on the unmixed 

distribution of the probe of interest (CB2) was found to have the most robust and accurate 

reconstruction performance in all experiments. Even though the method based on 

unconstrained reconstruction and subsequent non-negative constrained unmixing (UR-CM) 

has attained the best SCR in the iRFP experiment, this particular approach is generally not 

recommendable since it consistently showed an inferior quantitative performance exhibiting 

a prominent nonlinear dependence between the pixel values in the unmixed image and the 

actual probe concentration, both in phantom and in vivo mouse experiments. On the other 

hand, more significant crosstalk artifacts were observed for all mouse experiments in the 

images rendered with the standard unconstrained method (UR-UM) and the method based 

on unconstrained unmixing followed by constrained reconstruction (UM-CR), which 

suggests that these approaches provide a lower sensitivity in detecting optical probes.

In view of both phantom and in vivo imaging results, the combined non-negative constrained 

method has arguably achieved the best results in terms of artifact-free spectral unmixing, 

also yielding the lowest least-squares residual during the inversion and unmixing process. 

The combined approach is further expected to provide an efficient platform for further 

improving the forward model accuracy by e.g. incorporating the wavelength-dependent light 

fluence distribution into the model. Estimation of light fluence variations is very challenging 
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since the exact optical properties of heterogeneous living tissues cannot be easily estimated 

or measured [49]. Nevertheless, methods based on e.g. extraction of low spatial frequency 

components from the images [50], analyzing signal variations by means of photoswitchable 

probes [51] or multi-modal imaging approaches [52] have shown promise in delivering 

reasonably good estimates on the light fluence distribution. Note that the current work was 

aimed at unmixing the distribution of spatially-confined contrast agents, in which case the 

agent’s contribution to the optical attenuation and spectral coloring is assumed to be 

insignificant. As a result, the utilized blind unmixing approach can effectively account for 

the spectral coloring effects when the unmixed chromophore is assumed to be sparsely 

distributed in the sample. Yet, accurately accounting for the wavelength-dependent light 

fluence distribution may turn important when instead aiming at mapping the blood oxygen 

saturation levels. The absorption spectra of hemoglobin are distorted (colored) at deeper 

locations, resulting in errors in the estimated oxygen saturation if the theoretical spectra are 

considered for unmixing. In this regard, the proposed non-negative constrained framework 

can be potentially extended by incorporating more sophisticated methods accounting for the 

wavelength dependence attenuation in the light fluence model [53]. It is important to note 

that the results showcased in this work correspond to a crosssectional acquisition geometry, 

for which a two-dimensional optoacoustic model was assumed. While being a practical 

imaging configuration widely employed in small-animal optoacoustic imaging studies, 

three-dimensional acquisition geometries are generally expected to provide more accurate 

estimates on the actual volumetric (three-dimensional) distribution of probes [5], [54]. In 

this case, a three-dimensional model-based reconstruction algorithm is required [20], [31], 

which can further be optimized by accounting for the exact three-dimensional shape of the 

individual ultrasound detectors [26]. A study on the influence of non-negative constraints in 

three-dimensional model-based reconstructions accounting for the actual shape of the 

sensors is aimed at in our future investigations.

In conclusion, the impact of non-negative constraints in inversion problems corresponding to 

reconstruction and unmixing in MSOT was investigated. The newly proposed combined 

reconstruction and unmixing method with a non-negative constraint imposed directly on the 

distribution of the probe (CB2) of interest appears to be an efficient approach with robust 

performance in all phantom and mouse experiments. The proposed method further 

establishes a convenient framework to account for a variety of additional factors affecting 

the final images.
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Fig. 1. 
Normalized extinction (absorption) spectra of the different intrinsic tissue chromophores and 

optical contrast agents considered in this study.
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Fig. 2. 
Unmixing results for the phantom with background ink absorption and two insertions (tubes) 

containing AF750 dye. a) Optoacoustic image acquired at 740 nm with 2.5 OD of AF750 

insertion. b) Unmixed image corresponding to the ink component obtained with the CR-CM 

method. c) Unmixed image corresponding to the AF750 component obtained with the CR-

CM method. d)–e) Normalized unmixed concentration (pixel values of the unmixed image) 

within the tubes as a function of the optical density of AF750. f) The R2 values, representing 

quality of the linear fit in d) and e).
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Fig. 3. 
Unmixing results for the in vivo (mouse 1) experiment. a) Unmixed distribution of AF750 

obtained with the CR-CM method. b) Unmixed distribution of GNR obtained with the CR-

CM method. c)–d) Unmixed optoacoustic signal within the tubes as a function of the optical 

density of AF750 and GNR, respectively, normalized to the maximum value for the 

corresponding slices. e)–f) Statistical analysis of the linear fit of the curves in c)–d). All 10 

imaged cross-sections were taken into account.
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Fig. 4. 
Cross-talk artifacts evaluation for the AF750 probe unmixing in mouse 1. a) Unmixed 

distribution of AF750 (1.9 OD) for an intestinal region slice using the different 

reconstruction and unmixing methods. b) Blind spectrum of AF750 used for unmixing. c) 

Signal to cross-talk ratios as a function of the optical density of AF750 averaged over all 10 

imaged cross-sections.
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Fig. 5. 
Cross-talk artifacts evaluation for the GNR unmixing in mouse 1. a) Unmixed distribution of 

GNR (1.5 OD) for an intestinal/leg region. b) Blind spectrum of GNR used for unmixing. c) 

Signal to cross-talk ratios as a function of the optical density of GNR averaged over all 10 

imaged cross-sections.
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Fig. 6. 
Results of the in vivo iRFP unmixing experiment in mouse 2. a) Single wavelength 

optoacoustic image (gray scale) acquired at 690 nm. b) Unmixed distributions of iRFP 

obtained using different methods (brown-green scale). c) Cross-talk performance of different 

methods - the unmixed iRFP signal is assumed to be confined within the red region marked 

in a).
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Fig. 7. 
Unmixed distributions of IRDye800CW obtained using the different non-negative 

constraints. The probe distribution (represented on a purple scale) is superimposed onto the 

single wavelength optoacoustic images acquired at 850 nm showing accumulation in the 

renal medulla while clearing through kidneys.
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TABLE I

Peak Molar Extinction Coefficient and Molecular Weight of the Intrinsic Tissue Chromophores and Optical 

Contrast Agents.

Peak Molar Ext. (M−1cm−1) Wavelength (nm) Molecular Weight (g/mole)

oxyHb 1198 900 64500

deoxyHb 2407.92 680 64500

AF750 2.9 · 105 749 ~ 1300

GNR 8.92 · 108 760 ~ 3.1 · 107

iRFP 8.5 · 104 692 35000

IRDye800CW 2.4 · 105 774 1091.11
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TABLE II

Computation Time of Different Methods for the in vivo IRDye800CW experiment.

Method Computation time

CB1 77s

CB2 120s

CR-CM 42s + 4.6s

CR-UM 42s + 0.005s

UM-CR 0.01s + 22.5s

UR-CM 13.2s + 2.4s

UR-UM 13.2s + 0.005s
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