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Abstract

Diffusion MRI offers the unique opportunity of assessing the structural connections of human 

brains in vivo. With the advance of diffusion MRI technology, multi-shell imaging methods are 

becoming increasingly practical for large scale studies and clinical application. In this work, we 

propose a novel method for the analysis of multi-shell diffusion imaging data by incorporating 

compartment models into a spherical deconvolution framework for fiber orientation distribution 

(FOD) reconstruction. For numerical implementation, we develop an adaptively constrained 

energy minimization approach to efficiently compute the solution. On simulated and real data 

from Human Connectome Project (HCP), we show that our method not only reconstructs sharp 

and clean FODs for the modeling of fiber crossings, but also generates reliable estimation of 

compartment parameters with great potential for clinical research of neurological diseases. In 

comparisons with publicly available DSI-Studio and BEDPOSTX of FSL, we demonstrate that our 

method reconstructs sharper FODs with more precise estimation of fiber directions. By applying 

probabilistic tractography to the FODs computed by our method, we show that more complete 

reconstruction of the corpus callosum bundle can be achieved. On a clinical, two-shell diffusion 

imaging data, we also demonstrate the feasibility of our method in analyzing white matter lesions.

Index Terms

Multi-shell diffusion imaging; fiber orientation distribution; compartment models; white matter 
lesion

I. Introduction

With diffusion MRI, researchers can study the development and disruption of brain 

connectivity in vivo. One milestone in diffusion MRI is the development of diffusion tensor 

imaging (DTI) [1], which leads to highly popular measures such as fractional anisotropy 
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(FA) and enables streamline tractography for studying brain connectivity [2]–[7]. The tensor 

model, however, does not consider fiber crossings that are widely present in the brain [8], 

[9]. To overcome this limitation, various techniques were proposed to compute more 

detailed models of fiber orientations using high angular resolution diffusion imaging 

(HARDI) [10]–[21], which typically acquires data from a large set of gradient directions 

with a single b-value. With advances in MR imaging technologies [22], [23], in particular 

multiband acceleration [24]–[26], multi-shell diffusion MRI is becoming increasingly 

popular. Compared with conventional HARDI, multi-shell diffusion MRI acquires data with 

multiple b-values. As demonstrated by the public release of high resolution, multi-shell 

HARDI data from the Human Connectome Project (HCP) [27], [28], it is now practical to 

acquire multi-shell imaging data for large scale brain imaging studies and clinical research.

Multi-shell diffusion imaging can be viewed as an simplification of the diffusion spectrum 

imaging (DSI) [29]. Compared with the tensor model, DSI makes no assumption about the 

underlying microstructure and acquires data on a Cartesian grid in the q-space to fully 

recover the diffusion propagator at various locations of the brain, but its application in 

practical imaging studies is limited due to the need of long scanning time. To overcome this 

limitation, various multi-shell methods were developed to calculate the diffusion propagator 

from a much smaller set of gradient directions on several different b-values [30]–[33]. With 

the reconstructed diffusion propagator, more reliable estimation of the angular structure of 

diffusion profiles can be computed for brain connectivity analysis [34].

On the other hand, multi-shell imaging has also been used to study the brain microstructure 

with compartment modeling. With parametric representation of the diffusion imaging 

signals, compartment modeling has the potential of providing detailed characterization of 

brain microstructures with a much smaller dataset than DSI. The need of multiple 

compartments in analyzing diffusion MRI was first motivated by the observation of the non-

monoexponential distribution of the diffusion imaging signal at high b-values [35], [36]. 

One important parameter of interest in the compartment model has been the axon diameter. 

For its estimation, highly demanding multi-shell imaging methods were proposed to study 

postmortem tissue samples [37]–[39] or anesthetized animals [40]. More practical 

acquisition schemes were developed recently to provide estimation of axon diameters and 

neurite distributions in human brain in vivo [41]–[44], but their applications are limited to 

brain regions with no fiber crossings. For the handling of more complicated fiber 

configurations, the ball-stick model was developed [45], [46], which uses the stick model for 

axonal diffusion and an isotropic diffusion compartment for extra-axonal diffusion. To 

better fit the multi-shell imaging data, the ball-stick model was extended with a gamma 

distribution of diffusivity [47], but it assumes the intra- and extra-axonal compartments have 

the same diffusivity. A comprehensive analysis of 47 possible combinations of compartment 

models were conducted recently [48], [49] and suggested three compartments were needed 

to accurately characterize signals from multi-shell imaging: intra-axonal compartment, 

extra-axonal compartment, and trapped water. While this study used only voxels with single 

fiber directions, its conclusion is valuable for studying brain regions with crossing fibers 

since we at least need the same number of compartments.

Tran and Shi Page 2

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this work, we develop a novel method for the analysis of multi-shell diffusion imaging 

data via the incorporation of compartment models into the spherical deconvolution 

framework in HARDI analysis. Spherical deconvolution is one of the most successful 

methods to resolve fiber crossings by computing the fiber orientation distribution (FOD) 

from diffusion imaging data. It has been applied to compute the FOD directly from the 

diffusion data [16] or the sharpening of the orientation distribution function (ODF) obtained 

from Q-ball imaging [19], [50]. For multi-shell imaging, spherical deconvolution was 

applied to process the ODF of generalized Q-ball imaging and obtain sharpened FOD, which 

is publicly available in the DSI-Studio software [50], [51]. For FODs represented with 

spherical harmonics, the extension of the spherical deconvolution approach to multi-shell 

data was proposed recently [52]–[54]. The focus of the work in [52], [53] were on enforcing 

the positivity of the FOD. In [54], the constrained spherical deconvolution (CSD) proposed 

in [16] was extended to multi-shell data with different diffusion kernels for white matter 

(WM), gray matter (GM), and cerebrospinal fluid (CSF) tissue, where the focus of 

introducing different kernels for the three tissue types is to provide more reliable FOD 

estimation on tissue boundaries. In contrast, the novel method we develop in this paper 

models the diffusion signal at the more detailed compartment level. For example, there 

should only be one WM component at voxels belonging to deep WM for the method in [54], 

but our method will estimate three compartments. The modeling approach between our 

method and [54] are also different. Similar to [16], the method in [54] used a data-driven 

approach and estimated all the kernels directly from the multi-shell imaging data. Once 

estimated, these kernels were fixed for the entire volume. On the other hand, our method is 

parametric and allows adaptive estimation of compartment parameters together with the 

FOD at each voxel. In addition, our method adaptively incorporates sparsity regularization 

and non-negativity constraints to avoid overly constraining the solution. By incorporating 

compartment models into the spherical deconvolution framework, our goal is to develop a 

more accurate characterization of multi-shell diffusion imaging signals from high b-values 

while retaining the capability of reliably representing crossing fibers.

Motivated by previous works on compartmental modeling of signals from multi-shell 

imaging [48], [49], we assume three compartments in our method to associate brain 

microstructure to the diffusion signal. For the signal from intra-axonal compartment, we 

model it as the spherical convolution of a stick kernel and the FOD. For the extra-axonal 

compartment, we model it as isotropic diffusion with an unknown diffusivity that we 

estimate as part of the solution. The third compartment represents the fraction of trapped 

water molecules with essentially negligible diffusion. While the full tensor model was also 

used in previous studies for modeling the extra-axonal compartment [48], [49], it could lead 

to underestimation of the intra-axonal compartment. This was shown to be a difficulty for 

some of the top ranked models studied in [49]. Because both the tensor (extra-axonal) and 

stick (intra-axonal) model are capable of explaining the anisotropy in the diffusion imaging 

signal, it is numerically challenging to accurately separate their contributions to the signal. 

Conventional ball-stick model does not have the third compartment and assumes the same 

diffusivity for the intra- and extra-axonal compartment, which has limited its performance in 

fitting the multi-shell data. Instead, our method decouples the diffusivity of the extra-axonal 

compartment from the stick kernel and allows it to be estimated adaptively. By using an 
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isotropic extra-axonal compartment that can change adaptively, we aim to achieve a balance 

between the complexity of the model and obtaining excellent fitting of the diffusion imaging 

signal. For the estimation of the FOD, the diffusivity of the extra-axonal compartment, and 

the fractions of each compartment, we develop a coordinate descent algorithm that solves a 

quadratic programming problem and a gradient descent step iteratively. Using HCP data, we 

show that our method can estimate FODs with ultra-sharpness. Besides the FOD, the 

diffusivity of the extra-axonal compartment represents another exciting result from our 

method because it provides excellent contrast between different tissue types. In comparisons 

with DSI-Studio and BEDPOSTX of FSL [47], we show that our method can generate more 

precise estimation of fiber directions in simulation studies, and cleaner and sharper FODs on 

real HCP data. With probabilistic tractography, we show that a more complete 

representation of the corpus callosum bundle can be reconstructed using FODs computed by 

our method. We also demonstrate the application of our method to clinical white matter 

(WM) lesion study using a two-shell, 45-direction data collected on a patient with multiple 

sclerosis.

A preliminary version of this work was published in a conference paper [52], where the 

focus was a novel way of introducing positivity constraints for FODs. Here we dramatically 

improve this work by incorporating compartment models into spherical deconvolution and 

develop an efficient numerical algorithm to solve for the FOD and compartment parameters. 

This new model provides a more faithful characterization of the diffusion signal and leads to 

sharp and clean FOD reconstruction. The rest of the paper is organized as follows. In section 

II, we develop the novel framework for FOD reconstruction with compartment modeling. 

An energy minimization method with adaptively selected constraints is then developed in 

section III to compute the FOD and compartment parameters. In section IV, experimental 

results from both simulated and real data will be presented to demonstrate the effectiveness 

of our method in the analysis of multi-shell diffusion imaging data. Finally, discussions and 

conclusions are made in section V.

II. FOD Estimation with Compartment Models

For the accurate reconstruction of brain connections from diffusion imaging data, we not 

only need to model fiber crossings with FODs, but also should properly model the different 

types of water diffusion in brain tissues and their contribution to the diffusion imaging 

signal. One important feature of our method is that we integrate the spherical deconvolution 

framework for FOD estimation with compartment models of water diffusion based on the 

underlying microstructure of brain tissues.

There are three compartments in our model to represent different types of water diffusion: 

intra-axonal diffusion, extra-axonal diffusion, and trapped water with negligible diffusion. 

The intra-axonal compartment accounts for water diffusion along the axons of WM fibers. 

Because the diameter of the axons are much smaller than the average water diffusion 

distance along the axon during the imaging process, the contribution of the radial diffusion 

is negligible [41], so we model the diffusion signal from the intra-axonal compartment with 

the stick model [43], [46], [48]:
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(1)

where b is the b-value, u is the gradient direction, w is the fiber orientation, and λ|| is the 

diffusion coefficient along the axons. Following previous literature [43], we select this 

parameter as 0.0017 mm2/s. In our experiments, we will show that reconstruction results 

from our method are robust to perturbations to this parameter. Let denote the unit sphere 

and f : → ℝ+ denote the FOD. The contribution of the intra-axonal compartment to the 

diffusion signal is:

(2)

where *  denotes the spherical convolution of the FOD f and the stick kernel k.

The extra-axonal compartment takes into account the random water diffusion in the cellular 

environment outside the axon, including interstitial fluid, and we model it as isotropic 

diffusion with an unknown diffusivity. Let α be the fraction of the extra-axonal 

compartment. The contribution from this compartment to the diffusion signal is:

(3)

where λiso is the diffusion coefficient. Unlike the intra-axonal compartment, the cellular 

environment of the extra-axonal compartment could depend upon fiber configurations, we 

thus model λiso as an unknown parameter to be estimated from the data. This also helps 

account for the different isotropic diffusions in the cerebrospinal fluid (CSF) and the extra-

axonal compartment of the gray matter (GM) and WM regions.

The third compartment models water molecules trapped inside cell bodies surrounding 

axons with negligible diffusion [48]. We represent its contribution to the diffusion signal as 

a constant γ.

Let s(b, u) denote the diffusion signal at the b-value b and the unit direction u at a voxel. By 

combining the contributions from the three compartments, the diffusion signal can be 

expressed as:

(4)

where n denotes the noise in the signal. The sum of all compartment fractions satisfies the 

normalization condition:

(5)

The overall goal is to reconstruct the FOD f and the compartment parameters α, λiso, γ from 

diffusion imaging data at each voxel.

For efficient computation, we represent the FOD with the spherical harmonics (SPHARMs) 

up to the order L:
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(6)

where  is the m-th real SPHARM basis at the order l = 0, 2, ···, L, and  is the 

coefficient for the basis . Note that only even order SPHARMs are used because the 

FOD is symmetric on the sphere. For simplicity, we denote  and  by Yj and xj, 

respectively, with . Using the Funk-Hecke theorem, we can express the signal 

from the intra-axonal compartment as follows:

(7)

where Gl(b, λ||) is defined as:

(8)

Here Pl is the Legendre polynomial of degree l.

Let s denote the vector of diffusion signals s(bi, ui) sampled at the b-values bi and the unit 

directions ui, (i = 1, ···, N), where N is the number of measured signals. Given the maximum 

order L of the SPHARMs used, the total number of basis functions is J = (L + 1)(L + 2)/2. 

Let x = [x1, ···, xj, ···, xJ ]T be the vector of coefficients for the FOD, we can write (4) in the 

matrix form as:

(9)

where the matrix A = Y · G is the entry-wise product of two matrices Y and G defined as 

follows:

(10)

(11)

In the i-th row of the matrix G, the matrix element Gl(bi) = Gl(bi, λ||), with l from 0 to L, is 

repeated 2l+1 times. In (9), α is the unknown fraction of the extra-axonal compartment, the 

product of α and  is the signal from this 
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compartment. The signal from the trapped water compartment is written as the product of 

the unknown fraction γ and the vector . Finally n denotes the vector of 

noise.

III. Adaptively Constrained Energy Minimization

For the reconstruction of FOD and compartment parameters, we develop in this section a 

constrained energy minimization approach. Among the constraints, the non-negativity of 

FOD is the most challenging to satisfy under the SPHARM representation because 

practically we can only afford to use a finite set of SPHARM basis. To overcome this 

difficulty, we develop an adaptive strategy to limit the negative components to the minimal 

extent while ensuring major fiber directions are captured accurately. After that, we 

formulate the constrained energy minimization framework and develop an iterative 

algorithm to obtain the solution for the FOD and compartment parameters.

Our strategy is to constrain the FOD to be non-negative on a minimal set of uniformly 

distributed points on the sphere. The key idea is the adaptive selection of the set of 

constraints for every voxel to avoid overly constraining the solution and affecting 

reconstruction accuracy. With a remeshing algorithm [55], we build a collection of 

constraint sets  = {V1, V2, ···,} with varying number of points on the sphere, where each 

member  is a set of M uniformly distributed points on the 

hemisphere of the unit sphere. Under the SPHARM representation, the requirement that the 

FOD f should be non-negative on VM can be expressed as:

(12)

where CM is a matrix of size M × J defined as

With the FOD being non-negative on a set of uniformly distributed points, we ensure that 

large negative components will not occur and most of the energy of the FOD are contributed 

by physically meaningful, i.e., positive, components.

In our constrained minimization framework, we define an energy function that consists of a 

data fidelity term and a regularization term for the sparsity of the FOD:
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The first part of the energy is the data fidelity term. Following (9), the matrix A+ is defined 

as

(13)

Note that if we only have data from one b-value, the first and last two columns of the matrix 

are co-linear, so there is ambiguity to distinguish the constant component of FOD and the 

compartment parameters. This shows mathematically the importance of using multi-shell 

imaging for accurately resolving fiber orientation and compartment parameters. The second 

term penalizes the L1 energy of the FOD to encourage its sparsity. Because the integral of all 

SPHARM basis of order greater or equal to one is zero, we have the matrix representation of 

the L1 term with the matrix .

Given the constraint set and regularization parameter ξ, we have a constrained energy 

minimization framework for FOD reconstruction and compartment parameter estimation:

(14)

The first normalization constraint represents that WM and non- WM tissue fractions need to 

sum to unity. The second, third, and fourth constraints are for non-negativity of the FOD and 

compartmental parameters.

To solve this problem, we develop a coordinate descent algorithm that cycles through a 

quadratic programming step and a gradient descent step. In the first step, we compute the 

FOD, i.e., x, and the compartment parameters α and γ via the solution of a constrained 

quadratic programming problem given the parameter λiso:

(15)
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For the numerical implementation of this step, we use the software package QPC [56] to 

obtain the solution.

In the second step, we fix the parameters x, α, γ, and update λiso in the gradient descent 

direction. The gradient of the energy with respect to λiso is defined as follows:

(16)

where

(17)

We calculate the energy in (14) at each iteration and determine convergence is reached if the 

energy stops decreasing. By cycling these two steps until convergence, we obtain the FOD 

reconstruction and compartment parameters.

To obtain satisfactory reconstruction results, it is critical to develop an intuitive mechanism 

for the proper selection of the two important parameters in our method: the non-negative 

constraint set and the regularization parameter. Because the complexities of fiber crossings 

are spatially varying across the brain, the number of active constraints in (12) could be 

different as a result. Thus we adaptively search through the constraint collection  at every 

voxel to find the smallest M such that the FOD solution satisfies:

(18)

where the parameter δP is straightforward to pick. This condition measures how successful 

the reconstructed FOD is able to focus its energy on positive components. For example, if 

we pick δP = 25, we ensure more than 95% of the L1 energy of the FOD are from positive 

components. As a demonstration, we show in Fig. 1 the FOD reconstruction results of two 

fibers using simulated diffusion data according to the three-shell, 270-direction scheme of 

HCP. For the results in Fig. 1 (a) and (b), the maximum order of SPHARM used here is L = 

8. The result in Fig. 1 (a) is obtained from adaptively determined constraints, where M = 69, 

and the result in Fig. 1 (b) is obtained by fixing M = 100. We can see that it is much harder 

to recover the true fiber directions from the overly constrained solution. From a tractography 

point of view, the overly constrained solution will lead to more false positives in 

probabilistic tractography. The number of constraints also depends on the maximum 

SPHARM order used in the reconstruction. With the use of higher order SPHARMs, we can 

reconstruct sharper FODs given data from a sufficient number of gradient directions, but this 

requires a larger number of constraints to ensure the non-negativity condition is satisfied. In 

Fig. 1(c), we show the reconstruction result with L = 16, where the adaptively determined 

number of constraints is 216. We can see a much sharper FOD is computed. For practical 

implementation, there is no need to start the search from M = 1. Given a maximum order L, 
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we can pick a constraint set from experience and start the search there. For L = 8, we 

typically start the search at Minit = 60. For L = 16, we can start the search at Minit = 200.

For the selection of the regularization parameter ξ, we use an explicit measure of FOD 

sparsity. Let KMAX denote the maximum number of fiber crossings allowed in each voxel, 

which we typically choose as KMAX = 4. At each voxel we denote P = {p1, p2, ···, pK} as the 

set of maximal peaks of the FOD such that f(p1) ≥ f(p2) ≥ ··· ≥ f(pK). With the SPHARM 

representation, the FOD is a smooth function defined on a triangular mesh representation of 

the sphere. We detect each maximal peak of the FOD as a vertex with its FOD value greater 

than that of its one-ring neighbors. Let δF denote the threshold for fiber sparsity. We define 

the fiber sparsity condition:

(19)

The parameter δF determines the lower bound of the ratio between the l2 energy of the first 

K*largest peaks and the total l2 energy of all peaks. This is an intuitive measure that can be 

picked easily. In our experiments, we fix δF = 0.99. By checking the fiber sparsity condition, 

we can determine if the parameter ξ is large enough. If there are too many spurious peaks 

that fails the condition in (19), we increase ξ and this will push down the constant term of 

the FOD, i.e., Ix. As a result, the FOD solution has to change to meet non-negativity 

constraints and more energy will be pushed toward the other two compartments due to the 

normalization condition.

In summary, we have listed the overall reconstruction algorithm in Table I. At the start of 

the algorithm, we set ξ and M as the initial values ξinit and Minit that depend on the 

SPHARM order used and number of gradient directions. We first set an initial value λiso = 

0.001 mm2/s and solve (15) repeatedly with increasing M to meet the non-negativity 

condition in (18). After that, we run the coordinate descent steps of quadratic programming 

in (15) and gradient descent update of λiso in (16). If convergence is reached, we check if the 

sparsity condition in (19) is satisfied. If so, we stop the algorithm; otherwise, we increase the 

regularization parameter ξ with a step size δξ and repeat the above steps.

IV. Experimental Results

In this section, we present experimental results to demonstrate our reconstruction algorithm. 

In our experiments, we mainly focus on the application of our method to diffusion imaging 

data from the HCP since they are publicly available and there are wide interests in analyzing 

these data. The diffusion MRI data from HCP were acquired from 270 gradient directions on 

three shells with b-values: 1000s/mm2, 2000s/mm2, and 3000s/mm2. We will first compare 

our method with DSI-Studio and the BEDPOSTX tool of FSL, which implements the multi-

shell extension of the ball-stick model [47], on simulated data to quantify angular accuracy 

in the reconstructed FODs and test the reliability of our method in estimating compartment 

parameters. After that, we will apply all three methods to a real HCP dataset and compare 

the reconstructed FODs. Using FODs computed by our method from the HCP data, we 

present results on automated fiber bundle extraction in the third experiment. Finally, we will 
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present FOD reconstruction results using data from a two-shell, 45-direction clinical scan we 

collected on a 3T GE scanner. In particular, we will illustrate the potential of our method in 

studying WM lesions in neurological diseases.

A. Simulation results

In the first experiment, we test our method on simulated data using the same gradient table 

of HCP imaging protocol. The fiber configurations used in the simulation are shown in Fig. 

2, where five types of fiber configurations are simulated: single fiber, two fibers crossing at 

90º, 60º, 45º, and three fibers crossing at 60º. The simulated intra-axonal, extraaxonal, and 

trapped water fractions are: 0.35, 0.5, 0.15. The mean diffusivity of GM regions calculated 

by tensor-based analysis of HCP data is typically around 0.0007 mm2/s. Assuming there are 

less obstruction for water diffusion in the extra-axonal compartment of the WM regions than 

the GM regions that consist of highly packed cell bodies, we pick the diffusivity of the 

extra-axonal compartment in our simulation as 0.0012 mm2/s, which is the mean value of the 

GM diffusivity and the diffusivity of our stick kernel for the intra-axonal compartment. This 

value is also comparable to the diffusivity of WM regions estimated by the ball-stick model 

of FSL with HCP data. As noted in section II, we fix the parameter λ|| = 0.0017 mm2/s in our 

reconstruction process. To test the robustness of our method to this parameter, we randomly 

sample it in the range (0.0015, 0.0019) mm2/s in the simulation for each voxel. Given the 

fiber configurations and compartment parameters, we generate the simulated signal 

according to (4). We will show in the next experiment that it produces synthesized signals 

fitting excellently with real data. At each voxel, two different levels of Rician noise were 

added to each signal from the 270 gradient directions to generate two sets of signals with 

SNR=10 and SNR=5. Let sclean ∈ ℝN denote a set of clean signals from N gradient 

directions and |sclean| denote the mean magnitude of the clean signals. Given an SNR level, 

we added Rician noise to generate the noisy signal s as follows:

where n ∈ ℝN is a vector of zero mean Gaussian noise with standard deviation σ defined as 

.

For comparisons, we applied our method, DSI-Studio [50], [51] and BEDPOSTX of FSL 

[47] to the simulated data. DSI-Studio is publicly available and can efficiently compute 

sharpened FODs from arbitrary acquisition schemes. In our method, we discretized the unit 

sphere with a mesh of 2562 vertices and choose the SPHARM order L = 16. The step size in 

updating the sparsity regularization was chosen as δξ = 0.1. For DSI-Studio, we choose the 

16 fold discretization level to obtain the same number of vertices in discretizing the sphere. 

BEDPOSTX solves the ball-stick model with multi-shell diffusion imaging data by 

incorporating a gamma distribution of diffusivity. Instead of computing a continuous FOD, 

BEDPOSTX generates a set of sampled fiber directions as the solution that can be used for 

fiber tractography. For all three methods, we selected the maximum allowed number of fiber 

directions in each voxel as 4. On a PC with a 2.7GHz Intel CPU, it took our method around 

60 seconds and DSI-Studio around 90 seconds to compute the 121 FODs of the simulate 
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image. For BEDPOSTX, it took around 300 seconds to compute the solution for the 121 

voxels.

For the voxels enclosed by the red dashed lines in Fig. 2, we plotted the FOD reconstruction 

results by our method in Fig. 3(a) and (d) from the two sets of signals at SNR=10 and 5. For 

the same set of voxels, the FODs reconstructed by DSI-Studio are plotted in Fig. 3 (b) and 

(e). To visualize the results from BEDPOSTX in a similar way, we plotted each sampled 

fiber direction as a line segment with the same color coding scheme used for plotting the 

FODs. The length of each line segment is in proportion to its corresponding volume fraction 

generated by BEDPOSTX. The results for SNR=10 and 5 were plotted in Fig. 3 (c) and (f). 

Compared with DSI-Studio, we can see that our method can produce sharper FODs with 

much better ability of resolving fiber crossings, especially in the cases of the two fibers 

crossing at 45º and the three fiber crossing at 60º. While BEDPOSTX can also generate very 

sharp fiber direction distributions, we can see that it tends to generate more false positives 

than our method. The false positives that can be seen most easily are those line segments 

plotted in red in Fig. 3 (c) and (f). They do not exist in the true fiber directions or our results. 

At SNR = 5, the difference between our method and BEDPOSTX are more evident. As 

shown in Fig. 3 (d) and (f), we can see the results from BEDPOSTX are more dispersed as 

compared to the FODs computed by our method.

For a more quantitative evaluation, we calculated the average angular error (AAE) for all 

the 121 voxels in Fig. 2. For our method and DSI-Studio, we compute the AAE as follows. 

At each voxel, we first calculate the angular error of each vertex on the unit sphere, where 

the FOD is defined, with respect to the nearest true fiber direction shown in Fig. 3 (a). The 

AAE of the FOD at this voxel is then defined as the weighted average of the angular error at 

each vertex, where the weight is the FOD value at each vertex. The AAE for results from 

BEDPOSTX were computed similarly. For each sampled fiber direction, we computed its 

angular error with respect to the nearest true fiber direction. The AAE at each voxel is then 

the weighted average of the angular error of all sampled fiber directions with the weight 

defined as their corresponding volume fractions generated by BEDPOSTX. Note that this 

definition of angular error characterizes the actual errors in probabilistic tractography. The 

mean and standard deviation of the AAE from our method, DSI-Studio and BEDPOSTX are 

listed in Table II. For all three methods, smaller AAE was achieved with higher SNR in the 

signal. This is important for reducing false positives in FOD-based tractography and 

improving the accuracy in modeling brain connectivity. Overall a comparison of the results 

from the three methods confirms that our FOD reconstruction method achieves better 

performance in accurately modeling fiber orientations.

Besides the angular errors, we also calculated the mean and standard deviations of the errors 

in the compartment parameters estimated by our method. The results are listed in Table III. 

Similar to the AAE results, we see higher SNR leads to more accurate estimation of the 

compartment parameters. At SNR=10, we can see the mean of the errors are almost two 

orders of magnitude smaller than the true value of the compartment parameter, and the 

standard deviation of the errors at SNR=10 are at least an order of magnitude smaller than 

the true value of the corresponding parameter. The results at SNR=5 are only slightly worse 

as can be seen from their larger standard deviations than the results at SNR=10. Overall we 
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can see that our method produces very accurate estimation of compartment parameters, 

which can be valuable for the early detection and characterization of brain tissue pathology 

in various neurological disorders. One such example will be presented in section IV-D to 

illustrate the application of our method in studying white matter lesions.

In summary, the results from the simulation show that our method not only accurately 

reconstructed the FODs, but also reliably estimated the compartment parameters.

B. HCP data results

In the second experiment, we present reconstruction results from the multi-shell diffusion 

imaging data of one HCP subject. For this real data, we use the same set of parameters as in 

the simulation experiment for both our method and DSI-Studio.

To demonstrate that our three-compartment model provides an accurate characterization of 

the diffusion imaging signal, we used the reconstructed FODs and compartment parameters 

to calculate the synthesized signal with (4) for all the 270 gradient directions on three shells 

with b-values: 1000 s/mm2, 2000 s/mm2 and 3000 s/mm2, and compare them with the real 

signal. For two representative voxels with two and three crossing fiber directions, we 

overlaid the synthesized signals over the real signal from each b-value in Fig. 4 (a) and (b). 

Note that the x-axis in the figures represent the index of the gradient directions that we 

ordered according to the magnitude of the synthesized signal for each b-value. The excellent 

match shows that our model provides a nice fitting of the multi-shell diffusion imaging 

signals. For a more detailed demonstration of how well our compartment modeling matches 

diffusion signals, we calculated the residue between the real signal and the signal 

synthesized from the reconstruction results according to our model. The ratio between the 

norm of the residue and the real signal is plotted on an axial slice in Fig. 4(c), which shows 

that the brain regions have an overall ratio of around or below 0.1 except ventricles or other 

regions containing CSF. This corresponds to a signal to residue ratio (SRR) of 10 that 

matches the SNR of the HCP data very well, which is also around 10 [23]. The low SRR in 

the CSF is expected because the signals in these regions are highly attenuated due to the free 

diffusion of the water.

For three ROIs shown in Fig. 5 that are representative of different types of brain regions, we 

plotted in Fig. 6 the FODs reconstructed by our method and DSI-Studio, and fiber directions 

computed by BEDPOSTX of FSL to compare their performance. ROI I shown in Fig. 5(a) is 

in the WM region where the corpus callosum and the corticospinal tract meet. ROI II shown 

in Fig. 5(b) is in the thalamus which consists of a mix of GM, dendrites and myelinated 

axons. ROI III shown in Fig. 5 (b) is on the boundary of GM and WM. For all three ROIs, 

we can see that our method computes sharper and cleaner FODs than DSI-Studio. The fiber 

direction distribution computed by BEDPOSTX were plotted in the same way as in Fig. 3. 

As shown in Fig. 6(c), BEDPOSTX is able to compute a very sharp distribution of fiber 

directions in many voxels, but it also generates very dispersed results for voxels on the top 

left corners and the middle of the fourth and fifth rows as compared to our results shown in 

Fig. 6 (a). This is consistent with its tendency of generating false positives that we observed 

in the simulation experiment. This trend is even more obvious for ROI II in the thalamus. By 

comparing the results in Fig. 6 (d) and (f), we can see our method is able to produce sharper 
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distributions of fiber directions than BEDPOSXT in this challenging region. ROI III 

represents the transition from WM into GM regions when we go from its left to the right 

side. As shown in Fig. 6 (g), (h), (i), we can see the FODs reconstructed by all three methods 

become “fatter” for voxels closer to the GM, which represents more dispersed fiber 

directions as axons project to the cortex. On the other hand, we can see our method still 

produces much cleaner fiber direction distributions than BEDPOSTX. Voxels on the lower 

right corner of the ROI III belong to the CSF region. We can see that our method computes 

FODs with almost negligible magnitude while DSI-Studio and BEDPOSTX produces results 

with magnitudes that are not consistent with the underlying anatomy.

For the HCP subject, the compartmental fractions and the diffusivity of the extra-axonal 

compartment are plotted in Fig. 7 on an axial and coronal slice. In WM regions with only 

one fiber direction such as the corpus callosum and corticospinal tract, we can see they have 

higher intra-axonal fractions. Lower intra-axonal fractions are observed in areas with fiber 

crossings such as locations where the corpus callosum and the corticospinal tract meet. In 

the thalamus we also see a lower intra-axonal fraction than whiter matter regions. Most 

interestingly, we see the diffusivity of the extra-axonal compartment shown in Fig. 7 (d) has 

the power of differentiating tissue types in the brain. The CSF region has the highest 

diffusivity. The cortical and sub-cortical GM regions both have lower diffusivity than the 

WM region, possibly due to the more tightly packed cell bodies in these regions. There is 

also large variability across different WM regions. For the extra-axonal compartment, we 

observe higher diffusivity in regions with mostly a single-fiber configuration and lower 

diffusivity in regions with complicated fiber crossings, possibly due to more obstruction for 

water diffusion in these regions.

C. Fiber bundle from HCP data

For all the multi-shell data of 215 subjects released in the first three quarters by HCP, we 

have successfully applied our method to reconstruct FODs with the maximum SPHARM 

order at 16. Using probabilistic tractography, these whole brain FODs allow the construction 

of high quality fiber bundles with unprecedented details. As a demonstration, we present 

results on the automated extraction of the corpus callosum (CC) bundle in the third 

experiment.

As shown in Fig. 8(a), the ROIs used in our CC bundle reconstruction include the following 

regions computed from the T1-weighted structural MR image: the CC region in the middle 

sagittal slices, the precentral gyrus of the left and right hemisphere. Using the algorithm in 

[57], [58], we first automatically reconstructed the cortical surfaces from the T1- weighted 

MR image and parcellated them into gyral labels defined in the LPBA40 atlas [59]. The 

gyral labels were then extended to voxels within 4mm of the surface using the fast marching 

algorithm [60]. To identify the CC region in middle sagittal slices, we found voxels that 

satisfied the following conditions: distances to left and right hemisphere surfaces are both 

below 3 voxels; the maximum magnitude of its FOD is greater than 0.5; the fiber direction 

that achieves the maximum FOD magnitude best aligns with the x-axis instead of the y-and 

z-axis. For all the voxels satisfying these conditions, we used the largest connected 

component as the CC region.
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To find the CC bundle that connects the left and right motor cortex, we used the three ROIs 

as seed regions and ran FOD-based probabilistic tractography with the MRTrix software [7]. 

Only tracts that passed through all three regions were kept in the reconstructed bundle. In 

Fig. 8, we plotted the bundles from 5 HCP subjects to illustrate the performance of our 

method. Compared with CC bundles shown in previous literature that usually exhibit a U-

shape [61], [62], our results provide a much more complete reconstruction of the projection 

of the CC bundle to the lateral cortices. To demonstrate that improved CC bundle 

reconstruction is indeed due to FOD-based analysis, we calculated the number of fiber 

directions at each voxel that the fiber bundle passes through using the peaks of the 

reconstructed FOD. For rigorousness, only major peaks with a magnitude above 0.1 are 

considered here. Because FODs are symmetric with respect to the origin of the unit sphere, 

we divide the number of peaks by two to obtain the number of fiber directions at each voxel 

and denote the result as the peak image. For the fiber bundle in Fig. 8 (b), we plotted the 

overlay of the bundle and its peak image in Fig. 9 (a) and (b). Note that the plots show only 

the intersection of one coronal slice of the peak image with the 3D fiber bundle, but they 

clearly show the need of FOD-based analysis in order to capture the lateral projection of the 

CC bundle. Quantitatively more than 60% of the voxels that the reconstructed CC bundle 

passes through contain crossing fibers. For all five subjects, the statistics about their peak 

images are listed in Tabel IV. We can see the results are highly consistent across subjects 

and demonstrates the need of FOD-based tractography for the improved analysis of human 

brain connections.

D. Clinically feasible multi-shell imaging

The multi-shell, 270-direction data from HCP provides us a great opportunity to study brain 

connectivity, but it requires several hours of scanning time on regular 3T MR scanners that 

are not practical for clinical uses. In this experiment, we demonstrate the application of 

FOD-based analysis for clinically feasible, multi-shell diffusion imaging. The MR images 

used in this experiment was acquired from a patient with multiple sclerosis (MS) on a 3T 

GE scanner. The data used in this experiment include the T2-FLAIR image, and diffusion 

MRI acquired from 45 gradient directions on two different shells. The b-value of the first 

shell is 1000s/mm2 and it has 25 gradient directions. The b-value of the second shell is 

2000s/mm2 and it has 20 gradient directions.

For the detection of WM lesions, T2-FLAIR is a popular choice in clinical practice. As 

shown in Fig. 10 (a), we highlighted one lesion inside the red box on an axial slice of the 

T2-FLAIR image. For the two-shell diffusion imaging data on this MS patient, we applied 

our method to reconstruct the FODs at the SPHARM order 12. For the highlighted ROI, the 

FODs were overlaid with the T2-FLAIR image in Fig. 10(b). From the results we can see 

that our method is able to reconstruct sharp and clean FODs with consistent orientations 

among neighboring voxels. With the inclusion of compartment models, our method 

successfully characterizes the WM lesion with much reduced magnitude of the FODs over 

these voxels. This is further illustrated in Fig. 10(c) where we plotted the fraction of the 

intra-axonal compartment computed by our method. These results suggest that there is an 

increase of extra-axonal water content in the WM lesion regions. Using FOD-based 

tractography, we can also perform connectivity analysis to investigate possible disruption of 
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brain functions due to the WM lesion. In summary, this experiment demonstrates the 

potential of our method for clinically feasible connectivity research based on multi-shell 

diffusion imaging.

V. Discussions and Conclusions

In this paper, we developed a novel approach for the analysis of multi-shell diffusion 

imaging data. The main novelty of our method is the incorporation of compartment models 

into FOD reconstruction to fully utilize the rich information in the multi-shell data. The 

numerical optimization in our method is easy to implement that consists of the iterative 

application of a quadratic programming step and a gradient descent step. In our experiments, 

we compared with DSI-Studio and BEDPOSTX of FSL on simulated and HCP data and 

demonstrated that our method achieved better performance in FOD reconstruction. Using 

both HCP and clinical data, we also demonstrated in our experiments that our method not 

only produces sharp FODs but also generates compartment parameters that have great 

potentials in the clinical study of WM lesions.

With multi-shell HARDI data, we demonstrated in this work the incorporation of parametric 

compartment models into the FOD reconstruction process. This allows the whole brain 

analysis of fiber crossings and compartment parameters. Our work is closely related to the 

ball-stick model that was widely used as part of the FSL software. The main limitation of the 

ball-stick model, however, is the assumption that the intra-and extra-axonal compartments 

have the same diffusivity. Our model estimates the FOD and allows the diffusivity of the 

extra-axonal compartment to be calculated adaptively independent of the diffusivity of the 

intra-axonal model. We also include a third compartment that takes into account trapped 

water with no diffusion. Overall our method demonstrated better performance than the ball-

stick model in reconstructing fiber direction distributions in the presence of crossing fibers.

There is also much room for further improving our method by incorporating more 

sophisticated compartment models, especially for the extra-axonal compartment. In a recent 

study by Ferizi et al. [49], various combinations of compartment models were evaluated at 

the corpus callosum. Because the fiber directions were assumed known a priori and used to 

select the voxels of interest, the focus of this study was on ranking the models in terms of 

how well they fit the diffusion signals from 32 shells. While our goal is to resolve fiber 

crossings in whole brain study, the conclusion of this study are very informative. The 

reassuring thing is that the top ranked model has three compartments including the stick and 

dot compartment that are also part of our model. On the other hand, the tensor model 

performed best for the extra-axonal compartment. Recent work by Xu et al. [63] on 

postmortem rat spinal cord also suggested the need of anisotropic models for the extra-

axonal compartment. There are, however, computational challenges to disentangle the 

contributions from the intra-axonal compartment and the anisotropic, extra-axonal 

compartment. This is exemplified by the much lower than expected volume fractions of the 

intra-axonal compartment for top-ranked models in [49]. It will be even more challenging 

for voxels with complicated fiber configurations. In our current method, we use the stick 

kernel and FOD to absorb contributions to the signal from anisotropic diffusion and let the 

other two compartments represent the rest of the signal. We showed that our model can 
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provide high quality fitting to the diffusional imaging signals in the presence of fiber 

crossings and applied it to whole brain study for the reconstruction of fiber bundles. To 

incorporate the full tensor model into the extra-axonal compartment, it is important to 

carefully consider its interference with FOD estimation because both models with try to 

explain the anisotropy in water diffusion. One critical direction is thus to investigate the 

optimal image acquisition protocols that can resolve this ambiguity. For the study of Ferizi 

et al. [49], 250 runs of a numerical algorithm were used to obtain the best fit. There is thus 

clearly also a need of more tractable computational algorithms for the reliable estimation of 

FODs and parameters from more sophisticated compartment models.

For future work, we will also perform more extensive validations on both the HCP data and 

multi-shell imaging data of brain diseases. We will perform more comprehensive fiber 

bundle extractions with the FODs computed from HCP data and construct high quality 

atlases for the analysis of clinical imaging data. We will also investigate the application of 

the compartment parameters in the early detection of WM changes before they appear in 

conventional T2-FLAIR images.
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Fig. 1. 
Impact of non-negative constraints on FOD reconstruction. True fiber directions are plotted 

as red lines. (a) SPHARM order L = 8; num of constraints M = 69. (b) SPHARM order L = 

8; num of constraints M = 100. (c) SPHARM order L = 16; num of constraints M = 216.
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Fig. 2. 
Simulated fiber directions.
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Fig. 3. 
A comparison of our method with DSI-Studio and BEDPOSTX of FSL using simulated 

diffusion imaging signal.
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Fig. 4. 
A comparison of the real signal and the synthesized signal with our three-compartment 

model using the reconstructed FOD and compartment parameters. The excellent match 

demonstrates the validity of our model. (a)(b) Synthesized vs real signal at two voxels. (c) 

Ratio between the norm of the residue and signal on an axial slice.
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Fig. 5. 
Representative ROIs used for comparisons of FOD reconstruction. (a) ROI I (red) on the 

coronal slice is in the WM region. (b) ROI II and III are on the axial slice with ROI II (red) 

in the thalamus and ROI III (green) on the GM and WM boundary.
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Fig. 6. 
A comparison of the FODs reconstructed by our method and DSI-Studio, and the fiber 

directions by BEDPOSTX of FSL in the three ROIs shown in Fig. 5.
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Fig. 7. 
The compartment models estimated by our new method are plotted on an axial and coronal 

slice. (a) Intra-axonal fraction: integral of the FOD. (b) Extra-axonal fraction: α. (c) Trapped 

water fraction: γ. (d) Diffusivity of the extra-axonal compartment: λiso. Note the separation 

of white and gray matter by the diffusivity of the extra-axonal compartment in (d).
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Fig. 8. 
Corpus callosum bundle that connects the precentral gyrus of left and right hemispheres. (a) 

Seed regions for corpus callosum bundle reconstruction: left precentral gyrus (red); right 

precentral gyrus (green); middle sagittal slices of CC (brown). (b)-(f) Examples of corpus 

callosum bundle overlaid with the right hemispherical cortical surface from five subjects.
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Fig. 9. 
An illustration of the regions with crossing fibers that the CC bundle passes through. The 

background is plotted in blue. (a) Overlay of the CC bundle and one coronal slice of the 

peak image. (b) The corresponding coronal slice of the peak image.
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Fig. 10. 
An illustration of FOD-based analysis of WM lesions. (a) WM lesions on an axial slice of a 

T2-FLAIR image. The ROI is highlighted with the red box. (b) FODs are overlaid on top of 

the T2-FLAIR image in the ROI. (c) Intra-axonal fraction of the ROI computed by our 

method.
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TABLE I

Reconstruction Algorithm

Set ξ = ξinit, and M = Minit.

1 Iteratively increase M and solve (15) until (18) is satisfied.

2 Repeat the following steps until convergence.

2.1 Update λiso in the gradient descent direction according to (16).

2.2 Iteratively increase M and solve (15) until (18) is satisfied.

3 If FOD sparsity is satisfied, stop the iteration. Otherwise, set ξ = ξ + δξ and go back to Step 1.
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TABLE II

Average angular errors (mean±std).

Our Method DSI-Studio FSL

SNR=10 9.3º ± 0.40º 25.01º ± 3.78º 16.89º ± 4.05º

SNR=5 9.8º ± 0.76º 26.32º ± 4.02º 17.08º ± 4.17º
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TABLE III

Compartment parameter estimation errors. (mean±std).

∫ f α γ λiso

SNR=10 0.0053 ± 0.02 0.0036 ± 0.012 0.0031 ± 0.0095 −0.072 × 10−4 ± 0.39 × 10−4

SNR=5 0.015 ± 0.028 −0.003 ± 0.0175 −0.0002 ± 0.0175 −0.042 × 10−4 ± 0.65 × 10−4
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TABLE IV

Statistics about the peak image of CC bundles: percentile of voxels containing different numbers of fiber 

directions (K = 1, 2,≥ 3). Only voxels that CC bundles passing through are considered.

K = 1 K = 2 K ≥ 3

Subject 1 38.1% 33.4% 28.5%

Subject 2 33.6% 32.5% 33.9%

Subject 3 37.2% 32.9% 29.9%

Subject 4 40.2% 29.2% 30.6%

Subject 5 40.0% 31.5% 28.5%
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