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Fast Local Trust Region Technique for Diffusion
Tensor Registration Using Exact Reorientation

and Regularization
Junning Li, Yonggang Shi, Giang Tran, Ivo Dinov, Danny J. J. Wang, and Arthur Toga*

Abstract—Diffusion tensor imaging is widely used in brain
connectivity research. As more and more studies recruit large
numbers of subjects, it is important to design registration methods
which are not only theoretically rigorous, but also computation-
ally efficient. However, the requirement of reorienting diffusion
tensors complicates and considerably slows down registration
procedures, due to the correlated impacts of registration forces
at adjacent voxel locations. Based on the diffeomorphic Demons
algorithm (Vercauteren et al., 2009), we propose a fast local trust
region algorithm for handling inseparable registration forces for
quadratic energy functions. The method guarantees that, at any
time and at any voxel location, the velocity is always within its local
trust region. This local regularization allows efficient calculation
of the transformation update with numeric integration instead
of completely solving a large linear system at every iteration. It
is able to incorporate exact reorientation and regularization into
the velocity optimization, and preserve the linear complexity of
the diffeomorphic Demons algorithm. In an experiment with 84
diffusion tensor images involving both pair-wise and group-wise
registrations, the proposed algorithm achieves better registration
in comparison with other methods solving large linear systems
(Yeo et al., 2009). At the same time, this algorithm reduces the
computation time and memory demand tenfold.

Index Terms—Diffeomorphisms, diffusion tensor imaging,
image registration, partial differential equations, tensor reorien-
tation, trust region methods.

I. INTRODUCTION

W ATER molecules in biological tissue tend to diffuse
faster along obstacle structures than across them. Dif-

fusion weighted imaging (DWI) noninvasively measures the
water diffusivity along different directions, capturing orienta-
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tion information on obstacles such as neural fibers. Depending
on the angular resolution employed, the anisotropy of water
diffusion can be approximated as second-order tensors with
diffusion tensor imaging (DTI), or as a sphere domain function
with high angular resolution diffusion imaging (HARDI) [3].
Different from the T1/T2 imaging modalities, which assess
local intensity information, diffusion imaging essentially cap-
tures direction information in topological structures. Advanced
technologies are necessary to process, analyze and interpret
diffusion imaging data. A number of initiatives to acquire and
model large amounts of DTI data, for example, the Human
Connnectome Project, require nonlinear normalization of
DTI images with theoretically rigorous and computationally
efficient tools.
Registration of DTI images is more complicated than that of

univariate (scalar) images, because diffusion tensors must be re-
orientated to keep them aligned with the transformed space, as
shown in Section IV-A. The tensor value at a point in the warped
image is first taken from the original image by the composition
operation involving interpolation, and is then reorientated ac-
cording to the Jacobian matrix of the transformation field. The
finite strain (FS) [4] and the preservation of principal direction
(PPD) [4] are two widely used tensor-reorientation strategies.
No matter the strategy employed, spatially displacing a voxel to
a new location not only changes its own tensor value, but also
reorientates its neighboring tensors. As a result, the impacts of
deformation forces at adjacent voxels correlate, and such inter-
action largely complicates the registration of DTI images.
Because exact handling of tensor reorientation can sig-

nificantly complicate the computation, methods based on
rotation-invariant features have been developed [5]–[7]. In gen-
eral, these methods first extract scalar-valued or multi-channel
features from diffusion tensors or voxel neighborhoods, for
instance, the fractional anisotropy (FA), mean diffusivity (MD),
etc., and then spatially normalize DTI images by aligning these
rotation-invariant features with registration methods for scalar
or multi-channel images.
To achieve better accuracy, methods which directly work on

tensors have been developed with similarity metrics defined on
tensors, and indirect or direct involvement of reorientation into
the registration procedure. Alexander and Gee [8] calculated
the deformation force without the reorientation effect, but when
transforming the image at every registration iteration, they ap-
plied the PPD reorientation. Ruiz-Alzola et al. [9] generalized

1Available online: http://www.humanconnectomeproject.org/
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the correlation coefficient to tensor images, and used it for land-
mark-based registration, yet ignored reorientation in the local-
patch matching procedure. Zhang et al. [10] took the FS reorien-
tation into exact account for affine registration. To achieve non-
linear registration, they applied piece-wise affine registration to
image sub-blocks and fused these transformations together by
smoothing. The optimal affine transformation is estimated for
each sub-blocks, but it is not clear how the fusion step affects
the total registration energy. Cao et al. [11] extended the large
deformation diffeomorphic metric mapping (LDDMM) frame-
work, to analytically embed the PPD reorientation [4] into the
deformation force. In 2009, Yeo et al. [2] incorporated exact
FS reorientation into the diffeomorphic Demons algorithm [1],
[12]. Different from Cao et al., Yeo et al. counted the effect of
reorientation not only into the deformation force (the steepest
descent direction), but also into the Hessian matrix for mini-
mizing the registration energy function.
Yeo’s work [2] demonstrated that modeling exact tensor re-

orientation into registration considerably improves the accu-
racy. The registration task is modeled as an alternative optimiza-
tion procedure, and iterative updates of transformation are opti-
mized by solving a large inseparable sparse linear system. Such
a strategy improves the accuracy, yet impacts computation effi-
ciency in the following ways.
First, it demands considerably more computation than the

original diffeomorphic Demons algorithm [1]. For scalar im-
ages, the diffeomorphic Demons algorithm enjoys com-
plexity, where is the number of voxels. With a large sparse
linear system embedded into every registration iteration, the
DTI version of the algorithm [2], does not preserve this linear
complexity. For DTI images of size larger than ,
the method can take over 7 h and may require more than 20 GB
of memory on a desktop with an Intel Xeon 2.80 GHz CPU.
Though some sparse linear systems can be solved efficiently
with or complexity [13]–[16], their special re-
quirements may not always be satisfied by tensor reorientation,
as discussed in Section IV-B.
Second, the solution of the inseparable linear system may vi-

olate the assumption employed by its own construction. Typi-
cally, image registration is formulated as a nonlinear optimiza-
tion problem regarding the transformation field. During the op-
timization procedure, at each iteration, around the current trans-
formation field, the nonlinear registration energy function is
approximated as a quadratic function with its first-order (Ja-
cobian) and second-order (Hessian) derivatives. This intrinsi-
cally requires the transformation update to stay within a region
where the Taylor approximation is valid. Such a region, from the
perspective of optimization, is called the “trust region” [17]: a
trust region for a function around is a neighborhood

within which can be approximated with its
second-order Taylor expansion. For a large inseparable linear
system, the solution can be a “large leap,” violating the assump-
tion behind its construction: the Taylor approximation. Yeo et al.
[2] also suggested investigating this problem.
For image registration, we may further require the transfor-

mation update at every voxel location to be small enough to
stay within its own local trust region for the following reasons.
First, the registration energy is typically a spatial integration of

local energies, and the Taylor approximation of each local en-
ergy has its own local trust region. For example, the deforma-
tion force often depends on the gradient of the input images. If
the gradient at a voxel is estimated with the central difference
method, its value is valid within its voxel neighborhood. If the
voxel is displaced out of this neighborhood, it enters a region
which cannot be approximated with the same Taylor expansion.
Second, though violating local trust regions may not consid-
erably impact the global registration energy, it can introduce
local instability and defects, as shown in Section III-D. Third,
some special circumstances also require limiting the transfor-
mation update locally. For example, to guarantee composite
invertability, transformation updates must be smaller than 0.5
voxel spacing at every location, to avoid overlap conflicts with
neighbors.
In this paper, we address the two computational problems

introduced by exact tensor reorientation. Based on Yeo’s work
[2], we propose a DTI registration method which 1) takes exact
FS tensor reorientation into account, 2) is of complexity,
and 3) guarantees that the transformation update at every voxel
location stays within its local trust region, for example, 0.5
voxel spacing. In Section II, we briefly introduce the varia-
tional framework of registration. In Section III, we provide
an interpretation on the diffeomorphic Demons algorithm
from the perspective of partial differential equations (PDE). In
Section IV, we discuss the computational challenges brought by
tensor reorientation. In Section V, we design a regularized PDE
procedure in which the velocity field, at any time and at every
voxel location, is guaranteed to stay within local trust regions.
The transformation update, as the temporal accumulation of the
velocity, is then automatically restricted within the local trust
regions given a unit time duration. Instead of solving a large
inseparable linear system at every registration iteration, we
estimate the transformation update by integrating the velocity
with numerical techniques, the Runge Kutta methods [18]. In
Section VII, we present the evaluation of the proposed method
on a real DTI data set of 84 subjects. The proposed method
achieved the same level of registration quality as Yeo’s method
[2], yet reduced the computation time and memory demand
tenfold.
In summary, our work includes the following.
1) Providing an interpretation on the Demons algorithm from
a PDE perspective.

2) Designing a PDE procedure in which the velocity field is
guaranteed to stay within local trust regions, at any time
point and at every voxel location.

3) Proposing a method for estimating the update from the
perspective of integration, using adaptive computation ac-
cording to the accuracy level, instead of solving a large in-
separable linear system.

4) Evaluating the method with a real DTI data set of 84 sub-
jects, using both pair-wise and group-wise registration.

II. PRELIMINARIES TO IMAGE REGISTRATION

Given two images in a spatial domain , the fixed image
(the target) and the moving image (the data), a registration
task is to find a spatial transformation , such that the warped
image is similar to , where the notation “ ” denotes
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the transformation operation. A typical choice to measure the
dissimilarity between two images is the sum of squared errors

where the notation
“ ” denotes the inner product.
Normally, the composition notation “ ” is used to denote

transformation, because transforming a scalar image involves
just composition. However, as shown in Section IV-A, trans-
forming a tensor image involves not only composition, but also
reorientation. Thus, we use the notation “ ” to denote the trans-
formation operation including all the necessary operations to
properly conduct a transformation.
Without restrictions on , a registration task is an ill-posed

problem so regularizations have to be imposed. The two most
widely used regularizations are diffeomorphism and smooth-
ness. Diffeomorphism requires to be invertible and both and
its inverse to be differentiable. Diffeomorphism guarantees
that the topology of the moving image is preserved. Typically,
a diffeomorphic transformation is generated from a (possibly
time-variant) velocity field , with the following partial differ-
ential equation (PDE) [19]:

(1)

If is a stationary velocity field, we define as the so-
lution of (1) at time with initialization (the iden-
tity) at . With variable substitution, we have

. If , we use for short.
The following ordinary differential equation (ODE) is more

widely used in the literature to describe the transformation-ve-
locity relationship:

(2)

where maps a point in the moving image to a point
in the fixed image. In this paper, to better reflect the warping
procedure as implemented in software, we define
to map a point in the fixed image to a point in the moving image,
and define . Equations (1) and (2) are equivalent,
as shown in Appendix A.
The smoothness requirement can be applied to either the

transformation field , as an elastic-like regularization [20],
[21], or to the velocity field , as a fluid-like regularization
[22]. When applied to the transformation field, it is typically
implemented as a regularization energy ,
where is a spatial differential operator. The same format of
regularization can be applied to the velocity field, but must be
integrated over time as where
represents the time duration and is typically 1.
In the variational framework, a registration task is typically

formulated as minimizing a combination of the similarity en-
ergy (for matching two images) and the regularization energies
(for smoothness)

(3)

subject to the diffeomorphism constraint (1) (to guarantee
diffeomorphism).
Notations frequently used in the paper are listed in Table I.

TABLE I
NOTATIONS

III. PDE INTERPRETATION ON DIFFEOMORPHIC DEMONS

In this section, we provide an interpretation on the diffeomor-
phic Demons algorithm from the perspective of partial differen-
tial equations (PDE). After a brief review of the algorithm, we
present a PDE procedure for minimizing energy functions, and
then explain the algorithm with this PDE. Such an insight into
this popular algorithm is the foundation of the local-trust-region
technique we propose in Section V.

A. The Algorithm

The diffeomorphic Demons algorithm by Vercauteren et al.
[1] is a diffeomorphic variant of the Thirion’s Demons algo-
rithm [12]. The scalar-image version of the algorithm [1] is de-
tailed in Algorithm 1, where and denote a certain value
associated with a voxel . Vercauteren et al. in [1], [19] inter-
preted the algorithm as an alternative optimization procedure of
an energy function.

B. Registration With PDE

Under the diffeomorphic perturbation along a velocity field
, the temporal derivative of is

. The most “effective” perturbation direc-
tion for minimizing is ,
which is the registration force. The registration force equal
to zero is a necessary condition for a diffeomor-
phic transformation to be a local minimum state of an energy
function.
The following theorem whose proof is in Appendix B pro-

vides a PDE procedure for minimizing an energy function with
the diffeomorphic constraint.
Theorem 1: Given a nonnegative energy function , and

a self-adjoint, positive definite and possibly time-variant op-
erator whose eigenvalues are in a constant positive range
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, the stationary state of the partial differential
equation (PDE) below

(4)

satisfies , a necessary condition for a diffeomorphic
transformation to be a local minimum state of .
It should be noted that the stationary state of the PDE can be a

local minimum or a saddle point, and that the theorem does not
require to be stationary, but the eigenvalues of to always
be in a constant positive range. Thus, there are multiple choices
for (e.g., ), and it plays a crucial role in designing the
registration algorithm.
The PDE can be solved as follows. According to (4b), for a

short time duration , the transformation at time can be
first-order approximated by that at as
where and is a dummy variable for inte-
gration. The registration force can be first order approximated as

where is the Hessian operator of
the energy function for approximating with .
is self-adjoint and usually estimated in a certain way rather

than being exact. These approximations allow us to convert the
PDE around time to an ODE regarding as

(5)

and the semi-implicit solution of the update as

(6)

Then the transformation is updated with .

C. Demons Interpreted as PDE

The Demons algorithm can be regarded as minimizing the
energy function
in the PDE framework with the semi-implicit scheme.

can be split as
and . According to Propositions 3

and 4 (in Appendices C and D), the registration forces and the
Hessian matrices of the two energy functions are

(7)

where the differences and and the gradients and
are

(8)

Steps 1 and 4 of Algorithm 1 solve (4) with time-splitting of
registration forces. In Step 1, the registration force derived from

is active, the update calculated according to (6),
excluding and , is

(9)

For scalar images, its transformation only requires composition,
so equals the gradient of the warped image

(10)

In this case, is a block diagonal matrix, whose di-
agonal blocks are , the gradient of
the warped image at each voxel location . If we choose

(where is the number of
voxels), a diagonal matrix whose diagonal blocks are s,
then the solution of (9) is , as in Step
1c of the algorithm.
In Step 4, the registration force derived from is ac-

tive, yet for simplicity the diffeomorphic constraint is neglected.
Without the diffeomorphic constraint and with being the gra-
dient operator, the regularization force is . This
force drives a diffusion process and the solution is a Gaussian
smoothing of , as discussed in Section VI.

D. Comments on Demons

Two important technical points contribute to the success of
the diffeomorphic Demons algorithm. First, its computational
complexity is linear for scalar images. Inspired by diffusion pro-
cesses, the algorithm determines the velocity at each voxel lo-
cation with only local information, and calculates it in a con-
stant time. This makes the total complexity of an iteration
where is the number of voxels, very suitable for large image
registration.
Second, the method can effectively control the update at each

voxel location within a certain region (where is a
positive real value), guaranteeing that the assumption used in
(5) is not violated. In (5), is approximated by its first-
order Taylor expansion, intrinsically requiring to stay within
a trust region when is nonlinear, as discussed in
Section IV-C. Thirion in [12] chose for Step 1c of
the algorithm to guarantee .

IV. COMPUTATIONAL CHALLENGES INTRODUCED
BY TENSOR REORIENTATION

Registration of diffusion tensor images requires reorientation
of tensors. In this section, after a summary on the FS reorienta-
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Fig. 1. (a) Vector reorientation. (b1) Tensors before transformation. (b2) Ten-
sors after transformation. This figure is by no means to be mathematically rig-
orous, but just for illustration purposes.

tion, we discuss the computational challenges of incorporating
tensor reorientation into registration procedure.

A. Tensor Reorientation

Transforming a DTI image with a transformation field
requires not only composition, but also reorientation of the ten-
sors to keep them aligned with the transformed space, as illus-
trated in Fig. 1. The tensor value at a location in the trans-
formed image is , where
is a rotation matrix derived from , the Jacobian ma-
trix of the transformation at .
The two most popular rotation strategies are the finite strain

(FS) strategy [4] and the preservation of principal direction
(PPD) strategy [4]. In our registration algorithm, we incorpo-
rate the FS strategy into the optimization procedure because it
allows us to analytically derive the gradient and Hessian matrix
for optimization. The FS strategy calculates the rotation matrix
with

(11)

As derived in [2], [10] and Appendix F, with the FS reorien-
tation, the gradient in (8) is

(12)
where “ ” is a functor on operators such that given
two linear operators and , satisfies

. The “ ” term is not
applied to , but actually to the perturbation direction.

B. Large Inseparable Linear System

Because displacing a voxel will not only change its tensor
value but also reorient those of its adjacent neighbors, the im-
pacts of the velocity at adjacent voxels correlate. As a result,
the gradient involves the differential operator , as
shown in (12), and the optimization Hessian matrix has an
inseparable sparse block structure. In such a situation, calcu-
lating the update with (9) demands cumbersome computa-
tion. Yeo’s DTI registration work [2] solves a large inseparable
linear system at every iteration, and does not preserve the linear
complexity of the diffeomorphic Demons algorithm for scalar
images.
Some special sparse linear systems can be solved efficiently,

but tensor reorientationmay notmeet their special requirements.

For example, the fast Fourier transform (FFT) [23] and the dis-
crete cosine transform (DCT) [24] can respectively solve the
problems of elastic regularization [20] and curvature regular-
ization [13] at complexity , but they require period-
ical patterns of the linear system. The additive operator split-
ting (AOS) scheme [15], in combination with the Thomas al-
gorithm [18], [25], can solve the problem of diffusion regular-
ization [14], [16] at complexity, but the Thomas algorithm
requires diagonal dominance. Because the Hessianmatrix de-
pends on input images, given the diversity of DTI images, the
special requirements of these fast algorithms cannot always be
satisfied.

C. Violation of Local Approximation

It is nontrivial to design a regularizer such that the solution
of (9) satisfies the local trust region condition . Lim-
iting at each voxel location is crucial to the robustness of
the algorithm, for the following reasons.
1) In (5), is approximated by its first-order Taylor ex-
pansion, and the approximation takes place at each voxel
location, which intrinsically requires each to stay in a
small region to make the approximation valid. The Hessian
matrix typically depends on the gradient of the input im-
ages. If the gradient is calculated with the central difference
method, then the gradient value at a voxel location is valid
within a cube whose radius is the voxel spacing. Outside
this cube, the gradient may take different values and the
approximation is invalid.

2) Violating the approximation locally at a certain voxel may
not considerably impact the energy function, but will lead
to undesirable local inaccuracy. Fig. 3 shows the effect of
lifting up the local trust region constraint.

3) If the composition rule , instead
of the diffeomorphic rule , is used
to update the transformation, limiting to be smaller
than 0.5 voxel spacing avoids overlapped displacements
and guarantees invertability.

In general, it is very difficult to predict the solution of a large
inseparable linear system without actually solving it. Although
given we can choose to achieve

, this does not guarantee , as
illustrated in Fig. 2.

V. VELOCITY REGULARIZED IN LOCAL TRUST REGIONS

As responses to the computational challenges introduced by
tensor reorientation, in this section, we propose a method for
DTI image registration which 1) takes the FS tensor reorienta-
tion into exact account, 2) is of complexity, and 3) guar-
antees the update to satisfy at every voxel location.
Themethod is based on a regularized partial differential equa-

tion (PDE) procedure whose velocity field is guaranteed to
stay within local trust regions at any time and at
every voxel location. With such a regularization, “particles” in
the transformation model cannot move at a speed faster than ,
so given a fixed time duration (where typically is
1), any particle cannot move further than . In this way, the
transformation update is rigorously restricted within the local
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Fig. 2. Vector image registration. (a) Fixed image. (b) Moving Image. (c) Update field calculated with the semi-implicit method, Eq.(9), where the regularizer
is set to ( is the number of voxels), to guarantee that the mean squared local update is not greater than 1,

according to Proposition 2. As shown in the figure, the largest local update is greater than 2. This example shows that due to local velocity interactions,
regularization on does not necessarily locally control .

Fig. 3. Impacts of regularizing transformation update within local trust regions,
demonstrated with the diffeomorphic Demons algorithm [1] with a fluid-like
regularization. A moving image (b) is registered to a fixed image (a) with the
algorithm, with the width of the update smoothing kernel set to 1.5 voxel units.
By default, the scalar version of the diffeomorphic Demons algorithm automati-
cally regularizes to be smaller than 0.5 voxel spacing. Its result (c), though
imperfect, does not show strong defects. With the same registration parameters,
but with the local trust region constraint turned off, the result (d) shows obvious
defects.

trust regions . At each iteration, the method does not
solve a large sparse linear system. Rather, it employs numer-
ical techniques to calculate by integrating the velocity over
the time duration. We first discuss the intuitions behind this de-
sign, and then present the method and analyze its computational
complexity.

A. Intuition 1

Shorter Time Steps Should Require Less Computation: As
shown in (6), the update derived from PDE (4) with the semi-
implicit scheme is

If we aggressively set , then the solution is ,
the same as the Newton’s method. In this case, we need to solve
the linear system , which in general is computationally
very expensive. If we choose and conservatively set
, then the solution is , the same as the gradient descent
method. In this case, we just need to calculate the registration
force , which usually is not very difficult. The smaller is,
the closer is to , so by intuition we expect that shorter time
steps require less computation. If we restrict to avoid
violating the Taylor expansion used behind (6), we expect to
be small.

B. Intuition 2

The Transformation is a Diffeomorphic Integration of Ve-
locity : Equation (4a) specifies the velocity, and (4b) specifies
the integration rule. The exponential is the transforma-
tion increment contributed by the time interval . At each
iteration, the PDE (4) is approximated as an ODE (5) where the
update is the integration of the velocity. The
update can be calculated with numerical integration. In gen-
eral, the longer the time step we use, the more computation is
required because the integration is over a longer time duration.
If approaches 0, is the first-order approximation of
the integration.

C. Intuition 3

Regularizing the Velocity at Different Voxel Locations Dif-
ferently can Achieve Better Computational Efficiency Than
Treating Them Uniformly: The exact solution of ODE (5) is

and the eigenvalues of
determine the convergence rate of the Taylor approximation of
. If is a block-diagonal matrix and
equals , then the diagonal blocks of determine the
convergence rate. If s are not uniform, different voxel loca-
tions will need different orders of Taylor expansion to achieve
the same level of decimal accuracy. If treats different voxel
locations adaptively according to so that is similar
to a uniform block-diagonal matrix, for example ,
then the Taylor expansion converges roughly at the same speed
at all voxel locations.
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D. Possible Solutions

Based on the aforementioned intuitions, the norm of and
the computational complexity are determined by and , so we
have the following options to restrict the update within local
trust regions.
1) gradually increase in small increments to find the best
time duration that satisfies the local trust region condi-
tion, or

2) solve with a predefined time duration and then scale it
into local trust regions if it is too large, which is a popular
method, or

3) design a velocity regularizer to keep the velocity within
local trust regions, that is , and integrate the
velocity over a constant given time duration, for example

.
We choose the third method for the following reasons.
1) With the first method, the time duration may need to
be adjusted with an unpredictable number of trials, so the
computational cost may be unpredictable.

2) With the second method, a considerable amount of unnec-
essary computation may be introduced. For example, with
the Newton’s method we first calculate , and
then scale it into local trust regions. This is equivalent to
first integrating over the time duration , and
then scaling to be small enough.

3) With the third method, given a predefined time duration ,
the update always automatically satisfies . This
ensures that the computation cost for calculating is fully
determined by the desired accuracy order.

E. Adaptive Velocity Regularizer

The key point for regularizing the velocity within local trust
regions at any time and at any voxel location is designing the
regularizer . As long as the registration force and the Hessian
matrix are in the form of and , we can design
a block diagonal matrix with Algorithm 2 to satisfy
the local trust region requirement according to the following
proposition.
Proposition 2: Let be an matrix, a column vector

of dimension . Let be , an square
matrix, then satisfies .
The proof of Proposition 2 is included in Appendix E. The

regularizer designed in Algorithm 2 is a block diagonal matrix,
and the local velocity regularized by is

(14)

and according to Proposition 2, we have .
This design of is inspired by Thirion’s Demons algorithm:

the “demon” at each voxel location does its best to minimize
the energy function. For an energy function

, according to Propositions 3 and
4 in the Appendix, we have , and

. (the columns of associated with velocity
) is the impact of on . (the column vector derived from
by masking it with nonzero rows of ) is the contribution of
to related to . If is optimized separately, it shall mini-
mize , and consequently we have , or equiv-

alently . To regularize within its local
trust region and to handle the possible singularity of
, is added to . Therefore, we have

.
As shown in Theorem 1, the velocity regularizer does not

have to be stationary and can adaptively change. As long as
its eigenvalues stay in a constant positive range, the stationary
point of the PDE (4) satisfies , a necessary condition
for to be a local minimum of .
We do not choose , which corresponds to the steepest

descent direction , for the following reason. Because
equals , image regions with large tend to

also have large . As a result, in these
regions will be much larger than those in other regions, sup-
pressing the displacement of voxels in other regions. Though
this suppressing effect in theory will gradually disappear as
approaches zero, with calculated on a discrete grid it may
never be achieved, and the suppressing effect will constantly
prevent the displacement of voxels in other regions. We ob-
served this phenomenon when choosing .

F. Integration Instead of Inversion

For energy functions whose registration force has the form
of and whose Hessian matrix has the form of

, (5) becomes . By applying the
local-trust-region velocity regularizer designed in Algorithm 2
to it, we have the following ODE about the update

(15)

We can estimate the value of at time with the Runge Kutta
methods [18]. The th-order Runge Kutta method evaluates
equation (15a) times and offers th-order accuracy regarding
. We call this method the fast local trust region (fLTR) method.
Algorithm 3 illustrates the fLTR method with the second-order
Runge Kutta (RK2) integration.
We choose the Runge Kutta methods instead of the semi-

implicit Euler method for the following reason. First, though
the semi-implicit method may provide more stability than the
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Runge Kutta methods, because we have rigorously limited
in local trust regions, we can expect Algorithm 3 to be robust.
Second, the semi-implicit method solves a large linear system
and demands much more computation.
Yeo et al. in [2] solved with the semi-implicit method and

an empirical choice of . In Section VII, we compare the pro-
posed local trust region method with the semi-implicit method
in [2].

G. Computational Complexity

The computational complexity of the algorithm is
within one registration iteration, where is the number of
voxels and is the order of the Runge Kutta method. For the
th-order Runge Kutta method, equation (15a) is evaluated

times. For each evaluation, function (14) is evaluated for every
voxel. For a particular voxel, its transformation only impacts
the warped voxel values of itself and those in its neighborhood,
as well as the regularization energy at itself and those in its
neighborhood. Consequently, the number of nonzero entries in

is a constant number independent of . Therefore, each
evaluation of (14) can be finished in a constant time depending
only on . Therefore, the computational complexity for an
iteration is .

VI. REGULARIZATION

The diffeomorphic Demons algorithm (Algorithm 1) sepa-
rates the regularization as an individual smoothing procedure
applied to the transformation, which is very elegant for soft-
ware development, and very efficient in computation. This im-
plementation is theoretically rigorous for the additive transfor-
mation update rule, yet not consistent with the diffeomorphic
framework.
With the additive update rule , the registra-

tion force derived from transformation energy
is where is the Laplace op-

erator. Because this force drives a homogeneous and isotropic
diffusion process, its contribution can be implemented as
smoothing the transformation with its Green’s function, the
Gaussian smoothing kernel, as shown in [14] by Fisher and
Modersitzki, and in [26] by Cahill et al.
However, with the diffeomorphic update rule

, the registration force for

is which cannot be implemented
as a separated Gaussian smoothing procedure. If this force
is included in the calculation of velocity, its Hessian matrix

is an inseparable sparse linear system,
which in general cannot satisfy the special requirements of
the fast algorithms discussed in Section IV-B. Ashburner in
[27] incorporated the regularization on transformation into
the calculation of velocity, but assumed a stationary rather
than time-variant velocity field, which is not suitable for large
deformation.
Vercauteren et al. in [1] noticed this incompatibility, but kept

it due to its elegance for software implementation and efficiency
in computation, though it may prevent the algorithm from gen-
erating the inverse transformation in one registration. In [28],
the authors proposed a symmetric version of the Demons algo-
rithm which is able to generate the inverse,but they assumed a
stationary velocity field.
The fast local trust region (fLTR) algorithm is able to embed

the regularization term directly into the calculation
of the update, because its registration force and Hes-
sian matrix are respectively in the format of and

, consistent with the requirement of Algorithms 2 and 3. We
implemented a second-order regularization which we call the
“affinity” regularization.
The second derivative of an affine transformation is zero. If

we punish the second derivative of a transformation, we have the
regularization energy defined in (16), which we call the affinity
regularization, where is the Hessian matrix of
the th component of at location , and denotes the
Frobenius norm of a matrix

(16)

Its discrete format, as illustrated with a 2-D unit grid, is (17),
where

(17)

If a differentiable transformation satisfies , then
it is an affine transformation.
Our energy function involving has the format

, where the weight param-
eter adjusts the importance of relative to

.

VII. EXPERIMENTS

A. Data Acquisition and Preprocessing

Diffusion weighted images (DWI) of 84 pediatric subjects,
7–17 years old, were collected with 30-direction isotropic DTI
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sequences ( , ,
). During the adolescence period,

white matter volume or FA increases significantly throughout
multiple regions of the central neural system [29]–[32], so the
registration of this age group is very challenging. The FSL
brain extraction tool (BET) was applied to the B0 images
to mask brain regions, with the “-R” option turned on and
the fractional intensity threshold (the “-f” option) set to 0.3.
Diffusion tensor images (DTI) were reconstructed with the
“DiffusionTensor3DReconstructionImageFilter” implemented
in the “Insight Segmentation and Registration Toolkit” (ITK).
The diffusivity unit used is . With this unit, the
mean diffusivity for cerebral spinal fluid is roughly 3. Negative
eigenvalues of the reconstructed tensors were rectified to their
absolute values. Before deformation registration, all the images
were linearly aligned to the International Consortium for Brain
Mapping (ICBM) fractional anisotropy (FA) template based
on their FA images. Tensors were linearly interpolated and
reorientated with the preservation-of-principal-direction (PPD)
method [4] when the affine transformations were applied.

B. Evaluated Methods

The proposed local trust region method was compared with
a semi-implicit method, which does not enforce the local trust
region constraint directly into its velocity regularization [2].
In [2], the authors proposed a DTI registration method which
directly incorporates FS tensor reorientation into its velocity
calculation. In each iteration, the update is calculated with
the semi-implicit method as , where

is an empirically specified diagonal matrix. As shown in
Section IV-A, in such a situation the Hessian matrix is an
inseparable large sparse matrix. The algorithm regularizes the
velocity field by smoothing it, as in Step (2) of Algorithm 1,
to achieve a fluid-like regularization. Because this method in-
volves matrix inversion and applies a fluid-like regularization,
we refer to it as the “MatInv-fluid” method. It should be noted
that even with the designed according to (13), the solution
of is not guaranteed to be within local trust
regions because it involves the inversion of an inseparable
linear system whose result is very difficult to predict. A C++
implementation of the algorithm is provided by the authors in
the tensor toolkit (TTK) available online.
The proposed local trust region method was implemented in

a similar way to the MatInv-fluid method, except the following
differences. The velocity regularizer is designed according to
Algorithm 2 to guarantee that at any time point and for any
voxel location , the amplitude of local velocity is smaller
than a predefined constant . The update is calculated by inte-
grating the ODE defined in (15) over a predefined time duration
, with the Runge Kutta methods [33]. As shown in Section V,
such a strategy automatically enforces the amplitude of to
be smaller than at every voxel location at any time point. A
fluid-like regularization on velocity is implemented in the same
way as the “MatInv-fluid” method. As the proposed local trust

2Available online: http://www.itk.org/
3Available online: http://www.loni.ucla.edu/atlases
4Available online: https://gforge.inria.fr/projects/ttk

region method is able to incorporate the regularization on trans-
formation directly into the calculation of velocity, we also im-
plemented the affinity regularization proposed in Section VI. In
the following section, we abbreviate the fast Local Trust Region
method with the fluid-like regularization as the “fLTR-fluid”
method and that with the affinity regularization on transforma-
tion as the “fLTR-affinity” method. An implementation of the
fLTR methods is available online.

C. Evaluation Strategy

The “MatInv-fluid,” the “fLTR-fluid,” and the “fLTR-
affinity” methods were evaluated with two registration strate-
gies: pair-wise registration and group registration. In the
pair-wise registration, smoothness parameters were tuned over
a range for each method to explore the smoothness-similarity
relationship. For the MatInv-fluid and the fLTR-fluid method,
their smoothness parameters are the width of the smoothing
kernel applied to the update . For the fLTR-affinity method, its
smoothing parameter is the weight of the affinity regularization
in the energy function.
In the group registration, unbiased templates were iteratively

constructed with the framework proposed by Joshi et al. in [34],
and the cross-subject variance/consistence was evaluated. Each
of the methods was used as the pair-wise registration module in
the template construction procedure.
All the registration tasks were conducted with three-level

multi-resolution procedures. Coarse levels were generated by
smoothing and downsampling, and their registration results
were forwarded to finer levels as the initial transformations. At
each multi-resolution level, iterations were repeated until the
metric decrement was smaller than 1%. The local trust region
was defined as voxel spacing. After transformation
fields were calculated, they were applied with either the PPD or
the FS reorientation [4] for evaluation. Because the results with
the two reorientation methods are very similar, due to page
limit we present in the paper only the PPD results.

D. Pair-Wise Registration: Configuration

100 pairs of images were randomly sampled from the pool of
84 DTI images to evaluate the three registration methods: the
MatInv-fluid, the fLTR-fluid and the fLTR-affinity. We tuned
the smoothness parameters for each of the methods to let their
smoothness, as evaluated with the curvature harmonic energy
[13], span roughly the same range. For theMatInv-fluid method,
we increased the width of the velocity smoothing kernel from
0.7 to 2.0 voxel units, with an incremental step of 0.1. The
smallest smoothing kernel width available in the TTK imple-
mentation of the MatInv-fluid method is 0.5. With the kernel
width equal to or smaller than 0.6, we experienced numerical
instability, so the smallest kernel width we used for the MatInv-
fluid method is 0.7. For the fLTR-fluid method, we increased the
width of the velocity smoothing kernel from 1.0 to 2.5 voxel
units, with an incremental step of 0.1. For the fLTR-affinity
method, we used the following values for the regularization
weight parameter : 0.005, 0.025, 0.05, 0.10, 0.15, 0.2,
0.3, 0.4, 0.5, 0.6, 0.9, 1.2, 1.6, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0.

5Available online: http://ucla.in/SPFgVS
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E. Pair-wise Registration: Evaluation Metrics

Two categories of metrics, similarity and smoothness, are
used to evaluate the goodness of registration. For pair-wise reg-
istration, the similarity is measured between the warped image
and the fixed image by directly comparing their tensors, or by
comparing scalar indexes derived from the tensors.
In the case of directly comparing tensors, a difference metric

is calculated at each voxel location between the warped image
and the fixed image, and then all the metric values within the
brain region of the fixed image are averaged as

(18)

where and are the diffusion tensors at a voxel
location respectively in the warped image and the fixed image,
“Diff” is a difference metric function, “Brain” is the brain re-
gion defined on the fixed image, and is the volume of
the brain region. The difference metrics we used include the
following.
• Squared error (SQE)

(19)

The squared error is the numerical difference between two
tensors and it is a part of the energy function.

• Symmetrized Kullback–Leibler divergence (SymKLD)

(20)

The symmetrized Kullback–Leibler divergence [35],
rooted in the information theory, compares the diffusion
density distributions represented by tensors, and is able to
capture the difference between two tensors in their shapes,
sizes, and directions. The symmetrized Kullback–Leibler
divergence is not a part of the energy function.

In the case of comparing tensor-based scalar indexes, scalar
index images are derived from the warped image and the fixed
image, and then the Pearson correlation coefficient between the
two derived scalar images are calculated, as shown in (21) at the
bottom of page where is a tensor-based scalar index at voxel
. Squared errors between the derived scalar images were also
calculated, and they showed the same trend of goodness among
the three registrationmethods as the correlation coefficient does.
Due to space limit, we only present the correlation coefficient

Fig. 4. Estimated computation time of the MatInv-fluid (green) and the fLTR-
affinity method (blue). The computation time (in seconds) was estimated with
12 pairwise registration of DTI images, on an Intel Xeon
2.80-GHz CPU and single-threaded. The computation time was calculated from
the programs’ output messages.

results in the paper. The tensor-based scalar indexes we used
include the following.
• Mean diffusivity (MD)

(22)

• Fractional anisotropy (FA)

(23)
• Tensor volume (TV)

(24)

where , , and are the eigenvalues of a tensor in de-
scending order.

F. Pair-Wise Registration: Results

The computation time and memory use of the MatInv-fluid
method and the fLTR-affinity method were estimated with 12
registration cases, image of size , on an Intel
Xeon 2.80 GHz CPU, and single-threaded. For each registration
case, the MatInv-fluid method took about s (Fig. 4)
and more than 20 GB of memory. The fLTR-affinity method
took about s (Fig. 4) and about 2 GB of memory. The
computation time was calculated from the programs’ output
messages. The memory usage was manually monitored by
using the Linux “top” command when the algorithms were
working at the finest resolution of their multi-resolution regis-
tration. The fLTR-affinity method reduces the computation time
and memory demand about tenfold. Because the fLTR-fluid

(21)
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Fig. 5. Quantitative evaluation of pair-wise registration performance, showing the trade-off between the smoothness of transformation and the similarity/dissim-
ilarity between the warped images and the fixed images. In all the sub-figures, the smoothness index (x-axis) is the curvature harmonic energy of transformation
[13]. The similarity/dissimilarity index (y-axis) (defined in Section VII-E) of each sub-figure is labeled beneath it. The values of these indexes are the average
of the 100 registration pairs, with error bars showing the 95% confidence intervals. For sub-figures (a) and (b), smaller values indicate better matching between
the warped and the fixed images; for sub-figures (c)–(e), larger values indicate better matching. As presented in Section VII-B, “fLTR-affinity” stands for the
fast local trust region (fLTR) method with the affinity regularization on transformation; “fLTR-fluid” stands for the fLTR method with a fluid-like regularization;
“MatInv-fluid” stands for the “Matrix Inversion” method with a fluid-like regularization.

method does not incorporate transformation regularization into
its velocity calculation as the fLTR-affinity method does, the
fLTR-fluid method took less computation time and memory
use.
The quantitative performance comparison of the pair-wise

registration is shown in Fig. 5. In all the sub-figures, the smooth-
ness index (x-axis) is the curvature harmonic energy of transfor-
mation [13]. The similarity/dissimilarity index (y-axis) of each
sub-figure is labeled beneath it. The values of these indexes are
the average of the 100 registered pairs, with error bars showing
the 95% confidence intervals of these statistics. For the SQE
index and the SymKLD index, smaller values indicate better
matching between the warped images and the fixed images. For
tensor-based scalar indexes FA, MD, and TV, larger correla-
tion coefficients indicate better matching between the warped
images and the fixed images. Regarding the indexes shown in
Fig. 5, at the same smoothness level, the fLTRmethods achieved
better matching between the warped images and the fixed im-
ages than the MatInv-fluid method did. The 95% confidence-in-
terval bars show that the improvement is statistically significant.
The fLTR-affinity method outperformed the fLTR-fluid

method on all indexes except the FA index. The FA index cap-
tures tensor properties different from the other indexes do. The
tensor SQE and the SymKLD compare tensors’ orientation,
size and sharpness jointly; the MD and TV indexes compare
tensors’ size, respectively using the sum and the product of
eigenvalues. On the other hand, the FA compares tensors’
sharpness. Therefore it is possible that the fLTR-affinity per-

forms better with other indexes but underperforms with the FA
index. To optimize the registration performance with the FA
index, Zhang et al. [10] proposed using deviatoric tensors, as
discussed in Section VIII.
The fLTR-affinity method and fLTR-fluid method perform

very similarly in this experiment. As a second-order regular-
ization, the affinity regularization does not punish local linear
transformations and allows large displacements. On the other
hand, the fluid regularization can theoretically achieve any de-
formation given enough time. This might explain their similar
performance. In comparison, the fLTR-fluid method runs a little
bit faster because its regularization can be efficiently imple-
mented as a Gaussian smoothing procedure.
Fig. 6 shows examples of the pair-wise registration results.

The MatInv-fluid method, which potentially allows large leaps,
may introduce abrupt displacements and “break” the continuity
of fibers.

G. Group Registration: Configuration

In the group registration, we constructed three DTI templates
from the 84 subject DTI images with the unbiased template
construction framework proposed by Joshi in [34], respectively
using the MatInv-fluid method, the fLTR-fluid method, and the
fLTR-affinity method as the pair-wise registration module.
The unbiased template construction framework proposed by

Joshi in [34] builds a template in the following way. First, all
the input images are averaged to generate an initial intermediate
template image. Then all the input images are warped to the
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Fig. 6. Examples of pair-wise registration results. (a) Moving image. (b) Fixed image. (c) MatInv-fluid warped method. (d) fLTR-affinity warped image.
(e) fLTR-fluid warped image. Images were warped with the PPD reorientation. Two highlighted regions are enlarged.

intermediate template. After the warping, the warped images
are averaged to update the intermediate template, and the input
images are warped again to the updated intermediate template.
This procedure repeats iteratively. We took 30 iterations in our
template construction. The warping from an input image to the
intermediate template is a pair-wise registration task.
For the MatInv-fluid method, we set the width of the ve-

locity smoothing kernel to 0.8, because with this parameter the
SymKLD index defined in (20) became stable in the pair-wise
registration evaluation. We chose according to the SymKLD
index because it compares tensors via the diffusion probability
distribution they represent and is able to capture tensor dif-
ferences in shapes, directions and sizes. For the fLTR-fluid
method, we set the width of the velocity smoothing kernel to
1.1, and for the fLTR-affinity, method we set the weight of
the affinity regularization to 0.025, because in the pair-wise
registration evaluation, these parameters provided the most
transformation freedom without exceeding that chosen for the
Matins-fluid method.

H. Group Registration: Evaluation Metrics

In the group registration, we evaluated the registration
methods by measuring the dispersion or coherence among all
the warped images, within the brain region derived from the
template image. In general, at each voxel location we calculated
a dispersion or coherence index across all the subject warped
images with a function , where is a feature,
for instance, a diffusion tensor, at a voxel location in subject

’s warped image, and is the number of subjects. Then we
compared the statistical distribution of in the template images
generated by the three registration methods. We also calculated
summary statistics by spatially averaging within the template
brain, as

(25)

where “Brain” is the brain region in the template image and
is its volume.

The metrics we used include the following.
1) Alignment of Tensor Principal Directions: With the

second-order approximation, a diffusion probability density
function is represented by a diffusion tensor whose principal
eigenvector, in the case of anisotropy, is regarded as the most
probable direction of the neural fibers. (Readers should note
that the second-order approximation is unable to handle the
situation of crossing fibers.) We used dyadic tensors to assess
the coherence of principal eigenvectors among the warped
subject images, as used in [36].
The dyadic tensor at a voxel location is defined as

(26)

where is the principle eigenvector at voxel in subject ’s
warped image. The better the principal eigenvectors align across
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Fig. 7. Quantitative comparison of the dispersion/coherence of the warped subjects images generated for template construction by the fLTR-affinity, the fLTR-
fluid, and the MatInv-fluid methods. The coherence/dispersion index used in each sub-figure is labeled beneath it. The distributions of the coherence indexes within
the foreground of the constructed template are compared with the QQ plot. The x-axis is the percentiles of the distributions of the MatInv-fluid results. The y-axis
is the corresponding percentiles of the distributions under comparison, including the results of the fLTR-affinity, the fLTR-fluid, and the MatInv-fluid methods. The
MatInv-fluid versus MatInv-fluid comparison is a self comparison, so it is a line of 45 (green), the baseline of the comparisons. In the QQ plot, distributions with
lower values show lower shift, and those with higher values show upper shift. Lower values of the following indexes indicate better coherence among the warped
images: the SQE, the SymKLD, the STD of FA, MA, and TV. Higher values of the dyadic FA indicate better coherence among the warped images. Higher values
of the template GradMag indicate that the template preserves more details. Regarding the indexes shown in this figure, the warped subject images generated with
the fLTR-affinity and fLTR-fluid methods are more coherent than those generated with the MatInv-fluid method.

subjects, the more anisotropic the dyadic tensor is. If the prin-
cipal eigenvectors of the warped tensors align perfectly,
should be the same for all the subjects, and the dyadic tensor
should be singular and its rank should be 1. If the principal

eigenvectors are completely random, should be isotropic,
that is, the identity matrix . We used the FA defined in (23),
to estimate the anisotropy of dyadic tensors, that is, we used

(27)

2) Template-Subject Similarity: The template image, as a
representation of a group of images, is expected to be as sim-
ilar to all the subject images as possible. We measure this sim-
ilarity/dissimilarity with the symmetrized Kullback–Leibler di-
vergence and the squared error. The tensor at a voxel location
in the template image is defined as ,
where is the tensor in subject ’s warped image, and is the
number of subjects. The dispersion index function based on the
SymKLD is

(28)

The dispersion index function based on the squared error is

(29)

3) Deviation of Scalar Indexes: We use the cross-subject
deviation of tensor-based scalar indexes to estimate the simi-
larity between the warped subject images. This is based on the

assumption that misregistration of nonhomologous fiber tracts
will increase voxel-level deviation of these indexes across sub-
jects. The deviation index function we plug into (25) is

(30)

where is a scalar index derived from the tensor at a voxel
location in subject ’s warped image, including the FA, the
MD, and the TV, as defined in (23), (22), and (24), respectively.
4) Template Sharpness: In addition to the aforementioned

metrics defined among the warped subject images, the sharpness
of the constructed template is also evaluated. By intuition, mis-
matching among the warped images will result in blurry tem-
plates. Though such an idea is backed more by intuition than
theory, templates preserving more details are still preferred. We
define the sharpness of a template as its gradient magnitude. The
larger the gradient magnitude is, the more high frequency infor-
mation is in an image and the visually sharper the image is. The
gradient magnitude index is calculated with the FA images de-
rived from the template DTI images.

I. Group Registration: Results

Fig. 7 shows the quantitative comparison of the disper-
sion/coherence among the warped subject images generated
for template construction by the fLTR-affinity, the fLTR-fluid,
and the MatInv-fluid methods. The statistical distributions of
the following indexes within the foreground of the constructed
template are compared with the quantile-quantile (QQ) plot:
the SQE, the dyadic FA, the SymKLD, the standard devia-
tion (STD) of FA, MA, and TV, and the gradient magnitude
(GradMag) of the FA image derived from the template DTI
image. As shown in Fig. 8, these indexes have become stable
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Fig. 8. Coherence/dispersion indexes of the warped subject images as the template construction procedure progresses. The x-axis shows the number of iterations,
and the y-axis shows the coherence/dispersion indexes. The indexes are averaged within the foreground of the template image. Lower values of the following
indexes indicate better coherence among the warped images: the SQE, the SymKLD, the STD of FA, MA, and TV. Higher values of the dyadic FA indicate better
coherence among the warped images. Higher values of the GradMag indicate that the template preserves more details.

after 30 iterations. Fig. 7 shows the statistics of the 30th itera-
tion. In the figure, the x-axis is percentiles of the distributions
of the MatInv-fluid results. The y-axis, is the corresponding
percentiles of the distributions under comparison, including the
results of the fLTR-affinity, the fLTR-fluid, and theMatInv-fluid
methods. The MatInv-fluid versus MatInv-fluid comparison is
a self comparison, so it is a line of 45 (green), the baseline
for other comparisons. In the QQ plot, distributions with lower
values show lower shift, and those with higher values show
upper shift. Lower values of the following indexes indicate
better coherence among the warped subject images: the SQE,
the SymKLD, the STD of FA, MA, and TV. Higher values of
the dyadic FA indicate better coherence. Regarding the indexes
shown in Fig. 7, the warped subject images generated by the
fLTR-affinity and fLTR-fluid methods are more coherent than
those generated by the MatInv-fluid method.
The DTI template images constructed with the fLTR-affinity

and the fLTR-fluid methods preserve more details than that con-
structed with the MatInv-fluid method. Visually, as shown in
Fig. 9, the fLTR templates are sharper than the MatInv-fluid
template, preserving more details. Quantitatively, as shown in
Fig. 7(g), the FA images derived from the DTI templates con-
structed with the fLTRmethods have higher gradient magnitude
than that constructed with the MatInv-fluid method.

VIII. DISCUSSION AND CONCLUSION

When a spatial transformation is applied to a DTI, to keep
tensor directions aligned with the transformed space, the ten-
sors must be reoriented according to the Jacobian matrices of
the transformation. This reorientation procedure makes the reg-
istration force correlate between adjacent voxels, complicating
the optimization and raising computational challenges, as dis-
cussed in Section IV.
The diffeomorphic Demons algorithm [1], which enjoys

linear computational complexity, when adapted to DTI registra-

tion in [2] loses its linear efficiency, as discussed in Section IV.
The Demons algorithm can be interpreted as a PDE, as shown
in Section III-B. Such a perspective provides insight on how
computational efficiency can be regained even with inseparable
registration force. At each iteration, the PDE (4) regarding the
transformation field is approximated by its Taylor expansion
around a time point, and converted to an ODE (5) regarding the
update field. Consequently, the update field can be calculated
with an integration procedure. In general, the longer the inte-
gration time, the more computation is required, and the larger
the update field leaps. On the other hand, the Taylor approxi-
mation intrinsically requires the update at each voxel to stay
within its local trust region (as shown in Section III-D), which
suggests small local leaps and short time steps. Therefore, it is
possible to jointly achieve both computational efficiency and
local stability.
Directly solving a large inseparable linear system at every

registration, as conducted in [2], may not only yield an update
field which violates the assumption behind the Taylor approxi-
mation, but also introduces a considerable unnecessary amount
of computation, as discussed in Section V. It takes the same
amount of computation as integrating an ODE over an infinitely
long time duration, muchmore than the necessary for finding the
update field within local trust regions.
The proposed fast local-trust-region method provides several

advantages by adaptively regularizing the velocity within local
trust regions, as discussed in Section V. First, it increases sta-
bility of the registration procedure because it effectively limits
update leaps locally within stable ranges; for example, a half of
voxel spacing. Second, the time step length does not need to be
adjusted with an unpredictable number of trials, and a prede-
fined time length is able to keep the local-trust-region feature.
Third, the computation load for calculating the transformation
update is fully determined by the desired accuracy order. For
example, the th-order Runge Kutta method [18] can achieve
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Fig. 9. FA images of the DTI templates constructed with the fLTR-affinity, fLTR-fluid, and the MatInv-fluid methods. The templates constructed with the fLTR-
affinity and the fLTR-fluid method are visually sharper than that constructed with the MatInv-fluid method. This is consistent with the gradient magnitude index
shown in Fig. 7(g).

the th-order accuracy. Local velocity regularization achieves
both stability and computation efficiency simultaneously. It re-
duces computation time and memory demand about tenfold, and
yields better registration goodness.
Zhang et al. [10] suggested using similarity metrics defined

on deviatoric tensors to achieve better FA matching. Because
tensor image transformation followed by deviatoric transforma-

tion is the same as deviatoric transformation followed by image
transformation, the proposed method can optimize the squared
error metric of deviatoric tensors by using deviatoric tensor im-
ages as its input. Similarly, the proposed method can also use
matrix-logarithm transformed tensors as its input to take the ad-
vantage of the log-Euclidean tensor interpolation [37] proposed
by Arsigny et al.
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Though in this paper the fast local-trust-region method is ap-
plied to DTI image registration, its principle is generally appli-
cable to different diffusion models related to other acquisition
schemes, for example, the multi-tensor model [38] related to the
HARDI [3], and the nonparametric model related to the diffu-
sion spectrum imaging (DSI) [39]. As shown in Section V-E,
the local-trust-region technique only requires that the registra-
tion force and the Hessian operator have the format of (7) and
(8). As long as the term in the equations can be derived for
the diffusion models, the proposed technique is applicable. Ex-
tending the local-trust-region scheme to these diffusion models
is worth further investigation.

APPENDIX

A. Transformation-Velocity Relationship

Given a point , let denote the trajectory starting from
it. The particle is at position at time , and equals
. Given , is the velocity of the particle at time . With
the Eulerian frame of reference, we denote the velocity with

.
If we define as the mapping from the

starting point to its current position , then we have the fol-
lowing forward relationship:

To study the backward relationship, let us define as
the inverse of , that is and define

. Given , we have

which implies

B. Proof of Theorem 1

Theorem 1 can be proved without much difficulty. The out-
line is as follows. First, the transformation model, (4b), guaran-
tees that is diffeomorphic. Second, the temporal derivative of
is

which guarantees that as a function of monotonically de-
creases. Third, because is nonnegative and monotonically de-
creases as a function of , it converges to a value, rather than
diverges to the negative infinite. Fourth, because monotoni-
cally converges, its temporal derivative con-
verges to 0. Fifth, because the eigenvalues of are in a constant
positive range , the convergence of to
zero implies the convergence of to zero. Last, implies,
with a constantly bounded operator , that the registration force

converges to zero.

C. Similarity Energy Optimization

Proposition 3: For an energy function of the format
, its diffeomorphic registration force and

Hessian operator are

Proof: The diffeomorphic registration force at is

The registration force at can be approximated as

D. Regularization Energy Optimization

Proposition 4: For a regularization energy function of the
format , where is a differential oper-
ator, its diffeomorphic registration force and Hessian operator
are
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Proof: The diffeomorphic registration force at is

The registration force at can be approximated as

E. Proof of Proposition 2

Let be the singular value decomposition (SVD) of
where and are unitary matrices and is diagonal matrix.
Then equals , equals , and
equals . Because is unitary, we have

Let denote the diagonal elements of . Then
is a diagonal matrix whose diagonal ele-

ments are . The largest
possible amplitude of is

With the triangular inequality, we have
as long as .

F. Relationship Between Update Field and Warped Image

1) Approximate From :

2) Decompose :

where

and is the Jacobian matrix of .
With this decomposition, we have

3) :

4) Infinitesimal Difference of Around : The
perturbation relationship between and can be derived via

. and have the following relationship:

which implies . When ,
both and equal , and the equation is reduced to

. Thus,

On the other hand, we have

which implies

5) Putting the Results in F1, F2, F3, and F4 Together, We
Have:

where “ ” is a functor on operators such that given two linear
operators and , satisfies

.
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