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Abstract

We introduce a probabilistic computer vision technique to track monotonically advancing 

boundaries of objects within image sequences. Our method incorporates a novel technique for 

including statistical prior shape information into graph-cut based segmentation, with the aid of a 

majorization-minimization algorithm. Extension of segmentation from single images to image 

sequences then follows naturally using sequential Bayesian estimation. Our methodology is 

applied to two unrelated sets of real biomedical imaging data, and a set of synthetic images. Our 

results are shown to be superior to manual segmentation.
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I. Introduction

BOUNDARY tracking is a common problem in many imaging applications, particularly in 

biomedical imaging where the dynamics of a wavefront or the boundary of a region of 

interest provide insights into the underlying physiological processes. Many processes are 

characterized by monotonic boundary movement, where a boundary crosses each point at 

most once. In biology and medicine, examples of such moving boundaries include cardiac 

impulse waves [1], tumors [2], extent of cerebral infarct [3], glial cell signal waves [4], and 

spreading depression waves [5].

The motion of monotonically advancing boundaries is described by the eikonal equation [6, 

7]
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where  is the speed of the interface along its normal when it crosses a point 

, and  is the time when the boundary first reaches s. For collapsing 

boundaries, V(s) is strictly negative, and . Computationally, several 

algorithms for approximating solutions to the eikonal equation exist, notably the fast 

marching method [6], a quick  solver. This method has an interpretation as a 

special boundary value case of the more general initial value level set method [7] for 

describing boundary motion.

The level set method, as proposed by Osher and Sethian [8], is another approach to 

computing boundary motion. It describes the evolution in time t of a closed hyper-surface 

Γ(t) of dimension d − 1 that bounds an evolving region . Instead of directly 

tracking the hyper-surface Γ(t), one embeds Γ(t) in an object of higher dimension known as 

a level set. The interface is embedded as the zero-level set of a function , 

which for every  is the signed Euclidean distance from s to the boundary of 

 is by convention negative if , and positive if . The level set 

equation

(2)

then describes the interface undergoing movement with speed V(s) along its normal vectors. 

Computationally, one typically discretizes the level set function (Fig 1) and solves Eq 2 

using finite differences. The main advantages of this approach are its freedom from 

parameters, and its ease of handling topological changes, especially in comparison to 

Lagrangian methods of curve evolution.

Both fast marching and level set methods have been useful for computationally describing 

moving interfaces in a variety of physical applications; the speed of the interface encodes the 

interesting physics of the observed process, and can be a function of any number of observed 

or unobserved covariates. For example, a curvature-dependent speed has been used to model 

flame propagation [8]. In biomedical applications, Malladi et al. [9] and others [2, 10, 11] 

have used level sets to model tumor growth. Sermesant et al. [12] used level sets to model 

cardiac electrophysiology. Recently, Wolgemuth and Zajac [13] used level sets to model cell 

motility.

Here, we develop a theory for the segmentation and tracking of boundaries that move 

according to the eikonal equation. We regularize our tracking by recursively estimating the 

position of the boundary, using a statistical model for the boundary speed based upon its 

observed history. The recursive estimation is weighted against evidence of the boundary in 

the image sequence within a Bayesian filtering framework.

We provide three applications of our method. First, we identify a boundary in a synthetic 

image sequence, validating our method against a “ground truth.” Second, we track cortical 

spreading depression waves in in-vivo image sequences. Cortical spreading depression 
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(CSD) arises in many pathologies such as stroke, brain trauma, epilepsy, and migraine. It is 

characterized by a slow-moving, concentric, traveling wave of runaway excitation 

propagating through contiguous regions of brain gray-matter. Lastly, we demonstrate the 

ability of our method to detect the boundary of a collapsing unhealed wound region. Here, a 

“wound” is scratched into a monolayer of cultured cells and the closing wound edge formed 

by the leading cells is tracked.

A. Related prior work in literature

There has been much work in tracking boundary motion in image sequences, using a variety 

of methods. One method is the use of level set-based active contours on the gradient field of 

image sequences [14, 15, 16]. In these methods, the minimum of a phenomenologically 

defined energy defines the contour positions. Other successful methods have utilized 

statistical models in order to define energies. Mansouri [17] developed a Bayesian tracking 

method where motion information is not computed. Many other authors have developed 

variants of Kalman filtering [18, 19, 20], and more generally, Bayesian filtering [21, 22, 23, 

23].

Bayesian filtering is a sequential technique for estimating an unknown probability density as 

it evolves in time [24]. When the underlying state space is first-order Markovian, Bayesian 

filtering amounts to recursively predicting the next state given the observations up to the 

current state, and updating the prediction of the next state as the next observation comes in. 

The prediction of the next state acts as a prior. This prediction step entails propagating the 

probability distribution for the current state through the system dynamics (generally 

nonlinearly) to generate a predictive distribution for the next state. A popular variant of 

Bayesian filtering is the particle filter [25]. In the particle filter, one draws a weighted 

sample of states from the current state posterior, and then propagates each sample state 

according to the system dynamics to construct the prediction distribution.

We now take a moment to provide some background about image segmentation, the labeling 

of regions in images. Bayesian filtering for boundary detection can be thought of as 

recursive segmentation regularized by a motion model. To segment a closed subset of a 

region into a foreground set, Mumford and Shah [26] proposed an optimization problem. 

Suppose that an image  contains pixels that represent two regions, foreground 

(Ω), and background (Δ = S \ Ω), separated by a closed boundary Γ = ∂Ω. The optimal 

segmentation is the construction of a piecewise-smooth image I0 that is found by minimizing 

an energy functional involving pixel-mismatches and a boundary-length penalty. Motivated 

by the idea of minimizing this functional, a class of methods known loosely as active 

contour methods were born [27]. Within this class of methods, level set approaches have 

achieved possibly the most success. Chan and Vese [28] were among the first to employ the 

level set method to minimize a Mumford-Shah like energy, where they used level sets to 

describe a gradient descent minimization. These methods, however, are plagued by slow 

convergence, and by reliance on the placement of an initial labeling.

Recently, computer vision researchers have employed graph-cuts based optimization to solve 

the segmentation problem. In this method, a segmentation corresponds to a two-coloring of a 

graph, where pixels constitute nodes with coloring representing membership to either the 
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foreground or background sets. This coloring is typically found in low order polynomial 

time using a maximum-flow/minimum-cut algorithm [29]. However, graph cut methods can 

be applied only on a restricted class of energies [30, 31]. Despite much work in the field, it is 

challenging to incorporate prior knowledge about shapes into an energy that is minimizable 

within the graphcuts framework. For static image segmentation of general shapes, popular 

priors in use are the star-shaped prior [32], elliptical shape prior [33], and the compact shape 

prior [34]. For more application-specific segmentation, where the shape is known, 

researchers have expressed shapes in kernel principal component space [35, 36], where 

parameterized shapes are reduced to their eigenspace, as indicator functions [37], or 

implicitly embedded in levelsets [38, 39, 40].

Shape priors are useful for tracking applications since they can represent models for the 

motion of objects in an image sequence. Dynamical and statistical shape priors are 

particularly useful since they can account for uncertainty of an object’s motion. There are 

many strategies for modeling this motion and generating associated shape priors. One 

approach does not seek to model the motion of the object, but instead relies on propagation 

of contours by gradient flow [14, 15]. Such methods however are incapable of detecting 

large changes in a boundary that correspond to shape changes, and are computationally 

expensive due to the reliance on solving a PDE.

Another common approach is to identify features of an object to track from a set of training 

images. For example, PCA-based methods [41] model deformation of features learned from 

a set of training templates. Other studies directly parameterize a particular target object [19], 

or contour [21, 22]. All of the aforementioned tracking methods have had success in many 

tracking applications, but they are not suitable for use in our desired applications without 

major modifications. These methods are restrictive in that they are intended to track objects 

that are expected to retain their overall structure in an image sequence.

B. Motivation for our method

In identifying the motion of a boundary evolving according to the eikonal equation, we seek 

to solve a subtly different tracking problem. As a boundary evolves, the region enclosed by 

the boundary need not retain any particular shape (Fig 3). Furthermore, it is not sufficient to 

only know the approximate location of the object, we seek precise discrimination of the 

object’s boundaries. Finally, we are also motivated by the goal of online estimation, where 

we do not wish to rely on relatively slow techniques such as PDE-based energy 

minimization.

To solve these problems, our method introduces the concept of using recursive statistical 

shape priors in graph cuts segmentation. With the aid of a majorization-minimization step, 

we show how one can iteratively use graph cuts to arrive at a segmentation that takes into 

consideration an ensemble of predicted interface positions. This ensemble is constructed by 

modeling the speed of the interface using its observed history. The predicted ensemble is 

weighted against evidence of the interface position in the image, providing regularization 

that makes our method robust to real-world noise encountered in biomedical imaging.
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II. Mathematical Approach

Our overall approach is to develop a recursive Bayesian filter to regularize segmentation of 

the evolving boundary. Our filter stochastically samples the possible motion of the boundary 

by evolving it against speeds sampled from a stochastic autoregressive model, whose 

parameters we recursively infer. The boundary is embedded implicitly as level sets in the 

arrival time function of Eq 1, and is propagated by the fast marching method. For the motion 

of the interface, we make only the loose assumption that its speed is locally correlated in 

space.

Given a set of interface positions , measured at times , we calculate the past 

speed of the interface by bilinearly interpolating its past arrival times over the discrete image 

lattice, and then solving the eikonal equation (Eq 1) using second order upwind finite 

differences [42]. Denoting a vector containing these past speeds V0, we predict future speeds 

V using our stochastic model. Propagation of the interface against stochastic samples of V 
provides us with estimates of the future position of the interface.

In this section we will restrict our discussion to strictly positive speeds (advancing fronts). 

The same method applies for strictly negative speeds (collapsing fronts).

A. Motion prediction by Gaussian Process modeling

We use a Gaussian Markov Random Field (GMRF) to model the speed. With it, we can 

represent the spatial correlation of the speed of the boundary, where we expect speeds of the 

interface at neighboring locations to be close. In essence, we use a GMRF to penalize large 

spatial variations in our predicted speeds.

A GMRF is a stochastic field that follows a multivariate Gaussian distribution, and is 

Markovian with respect to a graph. The random variates of a GMRF constitute the nodes of 

a graph , with covariance matrix Σ such that an entry in the precision matrix Q = Σ−1 is 

nonzero if and only if there is an edge connecting the two corresponding random variates. A 

GMRF has a sparse precision matrix in that its corresponding graph is not complete – we 

assume that we can predict the speed at a position given only the speeds at nearby locations. 

GMRFs have been shown to approximate arbitrary covariance structures well in practice [43, 

44], even when the correlation range is much larger than the size of the Markovian 

neighborhoods. We say that the speed  of the interface as it crosses over 

is

where  is a GMRF. Of perhaps most interest, X(s) is a 1 × p vector of any known 
linear predictors whose influence is unknown. We determine the influence of these 

predictors by inferring the p × 1 vector of coefficients β. For example, if one has an 

anatomical labeling distinguishing two different tissue types in an imaging field, X1(s) could 

be an indicator of one of the tissue types. The speed of the interface is then V (s) = β0 + 

X1(s)β1+ η (s), so that the expected speed of the interface is β0 + β1 inside the region, and 
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outside. Under this construct, it is possible to infer the coefficient β1 and ascertain if it is 

distinct from zero, thereby statistically testing whether the interface travels through the two 

regions at different speeds. It is worthy to note that the predictors Xi are also allowed to be 

nonlinear functions of any auxiliary variables. It is convenient to infer the GMRF using data 

from all locations simultaneously, so we define a matrix X to be an n × p matrix, where each 

of the n rows corresponds to an observation point (in our case, speed at a particular 

location), and each row has p entries, corresponding to known predictor variables. Such a 

matrix is commonly known as a covariate matrix. X(s) refers to the row in X corresponding 

to point s.

It may be illuminating to write the model in the following hierarchical form

(3)

(4)

(5)

 represents a Gaussian distribution on random variable x with mean μ and 

precision τ2. G(y; a, b) represents a statistician’s gamma distribution on random variable y 
with shape a and rate b. For convenience, throughout this paper we parametrize Gaussian 

distributions with precisions  rather than the more commonly encountered 

variances.  Eq 3 states that the speed is a linear composition of the covariates and their 

associated coefficients, plus a normally distributed spatial noise term with distribution given 

in Eq 4. Q has entries Qsu that are a function of the distance between two points s, and u, 

hence it is an n × n matrix. We set , where R encodes spatial correlation between 

locations, and  is a scalar parameter independent of η. For simplicity we will assume we 

know R; we use the 5 × 5 Markovian Gaussian process given by Rue and Tjelmeland [43], 

to yield a sparse banded R.

In Eq 5, we place the normal-gamma conjugate prior distribution on the parameters β, and 

. The hyperparameters aη and bη are set small (0.001) to be weakly informative [45]. P 

represents the precision of the prior knowledge of β, scaled by . This model bears more 

than superficial resemblance to common spatial interpolation methods used in geostatistics. 

In particular, this model can be considered a Bayesian variant of universal kriging [46]. 

Inference on this model can be performed exactly and analytically as a generalized least 

squares problem [47]. It is important to note that we desire positive values for speeds V(s). 

In this model we do not explicitly enforce positivity of V; however, if μ is large enough, as 

in the applications we discuss, fields with negative values of V have negligible measure. We 
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simply discard any samples of V that have negative values. In this section, we provide the 

maximum a-posterior estimates for β, and V. Please see the supplementary document for 

details of the derivations.

Suppose one has a n × 1 vector V0 of observed speeds, at locations with associated n × n 
spatial correlation encoding matrix R0, and n × p covariate matrix X0. Then one may 

perform maximum-a-posterior inference to predict speeds at unobserved locations. The 

model given in Eqs 3–5 yields a posterior t-distribution on β with location

(6)

and scale

(7)

Let V be a vector of unknown speeds that we would like to estimate at m new locations. 

Suppose that these locations are associated with the known m × p covariate matrix X. 

Denoting the m × m spatial correlation encoding matrix for these new points R, and a m × n 
matrix that encodes correlation between these points and the original n points as U, one finds 

that the posterior V is t-distributed with location

(8)

and scale

(9)

One sees from Eq 8 that the mean predicted speed is a sum of a mean term and a spatially 

correlated term that appears as a convolution. Entries in the convolution term correspond to 

values of η(s) in Eq 3.

We sample from the posterior speed field by using the normal approximation to the t-

distribution. Such an approximation is justified since the degrees of freedom in the model is 

quite large. To sample the m desired speeds we first calculate the Cholesky decomposition A 
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= LLT [48]. Then we sample a m × 1 vector of independent standard normal values Z. 

Finally, the vector  constitutes a sample from the desired distribution.

Finally, we sample predictions of future interface positions at tk+1 by solving the eikonal 

equation with Dirichlet boundary condition , by fast marching the interface 

with the sampled speed fields for times .

B. Generative model for static image segmentation

With the ability to predict the future position of an interface from its past history, we now 

turn our attention to extracting information about the interface position from images. At the 

core of this exercise is a generative computer vision model. We model an image 

probabilistically with normal distributions of intensity values conditional on region:

(10)

Additionally, we incorporate information about Ω as a prior distribution p(Ω), and perform 

inference on the joint posterior , where U (Ω,θ) 

is an energy, and  is a vector of the Gaussian image intensity parameters.

In this formulation, p(θ|Ω) represents the prior knowledge of the regional image intensities, 

and p(Ω) represents the prior knowledge of the underlying foreground shape and location. 

For p(θ|Ω), we use the normal-gamma conjugate prior distribution

(11)

with gamma hyper-prior [45] over the image-intensity precisions. The parameters  are 

the prior regional mean image intensities, and aΩ, bΩ, aΔ, bΔ are hyperparameters which are 

set to be weakly informative (all equal to 0.001) unless otherwise stated.

To represent shape-knowledge, we use a kernel density estimate of the distribution of 

possible shapes embedded as discrete level sets. Let us denote χΩ the characteristic function 

for a region Ω,

(12)

Then, for two shapes Ω and Λ, embedded as discrete signed distance functions ϕΩ and ϕΛ we 

introduce an asymmetric shape divergence
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(13)

where the parameter α represents how severely we penalize shape mismatch. The parameter 

wsu is one divided by the length of the edge (Euclidean distance between s and u), and N 
denotes the set of neighboring grid points. We take the grid points s to lie in the center of 

each grid cell, and use the eight neighbor system detailed in El Zehiry et al. [49], and 

represented pictorially in Fig 2. The term  refers to the signed distance between 

the midpoint of the s – u segment and the boundary of Λ. This expression penalizes 

mismatches between the two shapes, and particularly penalizes protrusions in Ω not 

represented in Λ. Given this distance measure, we can define a Gaussian kernel of the form

(14)

Now, using some available reference shapes  and carefully-chosen weighting 

coefficients wj, we can represent a distribution over shapes, pS(Ω) as follows:

This representation of the prior is the kernel density estimate (KDE) of the distribution of 

shapes. Like in Cremers [41] and Cremers et al. [50], we empirically set τ2 to the following 

value:

(15)

To impose smoothness on the boundary of Ω, we additionally assume a prior on the 

boundary length, , where  is the Hausdorff measure or length of 

the curve. We use the discrete approximation of this measure found in El Zehiry et al. [49]. 

Finally, we can write our complete prior over Ω as follows:
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We wish to infer the segmentation Ω by maximizing the posterior probability relative to Ω. 

To this end, we will maximize the logarithm of the posterior, or equivalently, minimize the 

following energy:

(16)

We take an iterative two-step approach to minimizing this energy. Given Ω, we minimize the 

energy with respect to θ directly by setting the gradient of the energy with respect to θ to 

zero, and solving for θ (see O’Hagan et al. [45]). Then, given θ, we find the optimal Ω using 

the majorization- minimization algorithm described in the following section. We repeat this 

two-step procedure until a stable energy is reached.

C. Majorization-minimization (MM) algorithm

The shape contribution  can make minimization of the energy difficult, 

since its formulation involves a sum within a logarithm. To separate the contributions from 

the reference shapes Ωj, we will derive a surrogate function with separated terms. A function 

f (x|xk) is said to majorize a function g(x) at xk if g(x) ≤ f (x|xk), ∀x, and if f (xk) = g(xk|xk) 

[51]. We perform inference by iteratively computing Ω(n−1) = arg minΩ Q(Ω|Ω(n)), where 

Q(Ω|Ω(n)) majorizes Eq 16. Noting that −log(·) is convex, we will use a definition for 

convexity , to show that for any segmentation Ω (n), the following 

holds:
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substituting Eq 14

(17)

Since Eq 17 majorizes the log-kernel density, we can minimize our original energy by 

iteratively minimizing

(18)

Since the distance function can be written as a sum over the vertices, so can Eq 18. As a 

result, it is possible to minimize Eq 18 within the graph cuts framework described in the next 

section.

D. Graph cuts for segmentation

Here, we describe minimization of the surrogate energy in Eq 18 using graph cuts, which 

quickly finds a global minimum of a restricted set of energies. Graph cut methods have their 

grounding in combinatorial optimization theory, and are concerned with finding the 

minimum cut in an undirected graph. A cut is a partition of a connected graph into two 

disconnected sets. The cost of a cut is the sum of the edge weights along a cut, and a max-
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flow min-cut algorithm finds the cut with the lowest cost. To use graph cuts for image 

segmentation, we must express our energy function in terms of edge-weights on a graph. We 

will describe an image as a connected graph, where each pixel represents a node, and edges 

exist between neighboring nodes (Fig 2). Note that edges in this context refer to connections 

between nodes in a graph, and not to edges in an image. We want to infer an unknown two-

coloring on the nodes of the graph that represents inclusion of a node s into either the 

foreground set Ω, or the background set Δ. Following El Zehiry et al. [49], we begin by 

expressing the energy given in Eq 18 as a function of the vertices V and edges  of a graph 

From equation Eq 18 we find that

(19)

and

(20)

In Eq 20, wl (s, u) is an edge weighting that approximates the Hausdorff measure of the 

boundary [49]. In the eight-neighbor system we use, it takes values of wsuπ/8. Weighting of 

edges in this manner helps enforce homogeneity of labeling between neighboring spatial 

points. It is of note that the energy depends upon the distance functions for the kernel 

density reference shapes, and not the evolving segmentation. If it were to depend on the 

signed distance function of the segmentation, it would not be possible to write the energy in 

a form minimizable in a graph cuts framework, thus necessitating the use of an asymmetric 

shape distance like the one in Eq 13.

To minimize the energy, we augment our pixel lattice graph with two special nodes. In the 

language of graph cuts, these nodes are known as the source and sink. For our purposes, the 

labeling of source and sink are arbitrary since we are dealing with an undirected graph. We 

will call one of these vertices vΩ, and the other one vΔ. The existence of an edge between a 
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pixel s and vΩ will represent the segmentation of s into Ω. We then connect each pixel node 

directly to both vΩ and vΔ, and weight these new edges as follows:

(21)

(22)

The cutting of the edge from an s to vΩ implies that s ∈ Δ, so it adds to the cost of the cut by 

the contribution of s into the total energy as if s ∈ Δ. In other words, these weights can be 

interpreted as a pixel’s strength of belonging to each region. If s is in a particular region, 

then neighbors of s are more likely to be in the same region. This fact is represented by edge 

weights between neighboring pixels. Those weights are

(23)

where u is a grid-neighbor of s. Our surrogate energy is now minimized by finding the 

minimum cut of the graph. For details on how to perform this optimization, we refer the 

reader to Boykov and Kolmogorov [52]. To minimize the original energy function, one 

iteratively computes the graph-cut minimum within the MM algorithm described in section 

II-C. It is of note that θ does not significantly change if the segmentation labels do not 

significantly change. Therefore, it is computationally beneficial to recompute θ after each of 

the first few MM iterations, and only recompute it if the labels undergo further large 

changes.

E. Bayesian filtering

We now have all the pieces needed to perform sequential Bayesian estimation of the 

interface positions. In section II-A, we described our model for predicting the speed and 

hence position of the interface. In section II-B, we showed how one can use a kernel density 

estimate of the position of the boundary in an image to craft an energy functional that when 

minimized yields the position of the boundary. In sections II-C and II-D, we provided an 

iterative method of minimizing the energy functional. We now describe how to combine 

these components together into a Bayesian filter. Let Ωk|k−1 be the random variable Ωk 

conditional on all images up to and including time tk-1. Then for each frame Ik in an image 
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sequence, after initialization, our Bayesian filter iterates between two steps, predict and 

update.

Initialization—To initialize our segmentation method, one needs an initial segmentation at 

the first image frame. Possessing prior shape knowledge, one may initialize the 

segmentation with a set of prior shape templates [41], and then minimize Eq 16 directly. In 

the absence of shape information, one may create a non-informational shape prior by 

defining a single arbitrary reference shape, and setting τ2→0. This procedure reduces the 

energy function to pure intensity-based graph cuts.

Predict—We draw samples of segmentations Ωk|k from its posterior, and infer the GMRF 

speed field associated with each segmentation. Then for each segmentation sample, 

propagate the associated interface through samples from its speed field to generate an 

ensemble of predictive positions for Ωk+1|k.

The posterior of Ωk|k is defined by an energy

(24)

for some known weighting coefficients Wj and reference shapes .

We sample segmentations from the posterior by using importance sampling [53]. Importance 

sampling obtains samples from a difficult target distribution f (x) by sampling from an easier 

importance distribution g (x). With samples Xi ~ g (x), one approximates expectations of a 

function h(x) under the distribution f (x) by first calculating the weights Wi = f (Xi)/g(Xi), 

and then approximating the expectation by E[h(x)] = Σ Wih(Xi)/Σ Wi. To approximate the 

target distribution itself, one can combine kernel density estimation and importance 

sampling to deduce an approximating distribution of the form 

, where K(·,·) is a kernel function.

We sample a set of current interface positions . as the conditional maximum-a-

posterior segmentations under modified length penalties v(j), where each v(j) follows an 

exponential distribution with rate parameter 1/v. With each v(j), we modify the length 

penalty in Eq 24 by setting v → v(j) and minimize the resulting energy to obtain a sample 

interface position  with associated image intensity parameters . Conditional on each 

, we infer the associated stochastic speed field , which follows a multivariate t-
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distribution with scale matrix . To infer this field we first linearly interpolate arrival 

times of the interface from the set of wave positions. Then we calculate the past speeds 

according to the eikonal equation using second-order upwind finite differences [42], giving 

us a vector of known speeds V0. Finally, we input the resulting speeds into the GMRF model 

of section II-A, where Eqs 6, 7, 8, and 9 provide us with the parameters of the resulting 

multivariate t-distribution. Then, from each GMRF, we draw a fixed number of samples (we 

used 16). Thus, for each sampled interface position , we have a collection of samples of 

the interface speed .

With our states  at tk, and the eikonal equation, we may now predict 

the location of the boundary at tk+1 by propagation of each pair of interface and speed field 

through Eq 1 to calculate . This procedure is accomplished by using the fast marching 

method [6], starting with an initial position  at tk, and solving with speeds  until t = 

tk+1. The result is a set of predictive samples  of the interface location at 

time tk +1, given the information up to time tk.

The weights in Eq 24 are then given by the importance sampling weights

(25)

normalized to sum to 1. Here, U is the energy function given in Eq 24 with the original 

shape penalty v. In Eq 16, we took the prior on Ω to be the kernel density estimate of 

reference shapes. We can compute this representation of the prior by setting 

. With our prior constructed, we now have all 

the components necessary to specify the posterior distribution for time tk+1.

Update—When the new observation at time tk+1 comes in, one updates his prediction of the 

state at tk+1 by minimizing the posterior energy . This update is as simple 

as relaxing the energy (Eq 24 with k incremented by one) by the MM procedure described in 

section II-C, iterated with estimation of the image intensity statistics. We initialize the MM 

algorithm to start at the state obtained by propagating the maximum-a-posterior Ωk|k 

according to its maximum-a- posterior speed field (Eq 8), and initially inferring the image 

intensity statistics conditional on this state.

III. Application to Biomedical Images

We implemented the segmentation and speed interpolation method given in previous 

sections as a Java-based plug-in for ImageJ, the image manipulation and analysis package 
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from the NIH [54]. We chose UJMP [55], a LGPL licensed fast matrix library, to perform all 

matrix operations. For graphcuts optimization, we modified Fiji’s [56] implementation of 

the max-flow min-cut algorithm by Boykov and Kolmogorov [52] for our needs. In these 

examples, the shape mismatch penalty was set to α = 2, and the length penalty was set to v = 

20, unless otherwise stated. Convergence to a minimum energy typically occurred within 

five to nine MM iterations. It is worthy to note that one need not recompute the image 

intensity statistics θ at each step if only a small number of labels have changed. We only 

recalculated the image intensity statistics in the first three iterations, where convergence was 

most rapid. All segmentations were performed on sequences of 320 × 240 images.

A. Synthetic image sequence

To test the ability of our method to recover a known interface from images, we applied our 

method to a sequence of synthetic images (Fig 4). We defined a “ground truth” speed field 

within a 320 × 240 pixel spatial field using the UCLA logo (Fig 5, left), with speeds of 10 

pixels/frame and 6 pixels/frame inside and outside of the letters, respectively. Then, we 

advected a boundary traveling from the lower right of the field until it crossed the entire field 

(total of 90 frames). From this set of interface positions, we generated a series of images, 

with mean intensities of 3 inside the region traversed by the boundary, and 0 outside, with a 

variance of 9 (Fig 4). We used weakly informative image intensity and uninformative initial 

shape priors to segment the resulting images. To estimate the speed, we used a weakly 

informational prior speed centered at 8 pixels/frame (weakly informative implies that all 

Gamma hyperparameters are set to 0.001).

The boundary that we found is in good accord with the ground truth. Our regularization is 

strong enough to provide robustness to noise, yet, not so strong that relatively large 

deformations are not detected. The ground truth image undergoes robust changes in 

topology that are faithfully reproduced in our segmentation results. Fig 5 shows our 

reconstruction of the ground truth interface speed, performed using second-order upwind 

finite differences. The original UCLA logo is clearly visible in the reconstructed speed 

(right). There is noisiness in the reconstruction due to the indeterminacy of the inversion of 

the eikonal equation (Eq 1), however we obtain an accurate reconstruction. The mean 

reconstructed speed is 9.8 ± 1.5 pixels per frame within the UCLA lettering, and 6.0 ± 0.7 

pixels per frame outside of the UCLA lettering; these values are within 5% of the original 

speed field.

In Fig 6, we show that even large deformations far from the predicted mean shape are 

detected, typically in very few iterations. Here, protrusions in the front are developing such 

that the shape of the front is significantly different from the mean predicted shape. After a 

single MM iteration, the algorithm snaps to the protrusion. This behavior is a result of the 

smoothness and large support of the shape divergence measure (Eq 13). Even protrusions 

that are improbable under the motion model can be stabilized by the likelihood.

B. Cortical Spreading Depression (CSD)

Optical intrinsic signal (OIS) imaging is a simple method of visualizing physiological 

processes without the use of dyes or tracers. Instead, OIS captures changes in the sample’s 
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intrinsic optical reflectance. Because of its simplicity and versatility, OIS is used for in vivo 

imaging applications in neuroscience. During CSD, there are large hemodynamic or blood-

related, changes in cortical tissue [57, 58]. Conveniently, in cortical brain tissue under 

visible light, changes in blood volume and blood oxygen saturation constitute the majority 

of the OIS signal. The CSD wave appears as a low contrast brightening of the tissue, visible 

in inter-frame difference images, though due to the diffuse signal, is time-consuming for 

even a trained practitioner to trace.

Using the notation of section II-B, we treated the spatial extents of the CSD wave as 

foreground regions Ωk in an image sequence . We modeled each inter-frame 

difference Ik = Ok+1 − Ok image as a conditional Gaussian mixture like in section II-B. As 

prior information, the wavefront is known to travel at approximately 1 – 5 millimeters per 

minute. We incorporated this information by setting a prior mean wave speed of 3 

millimeters per minute, with variance of 1 millimeters2 per minute2 (we set aη = bη = 1). As 

in the synthetic image sequence application, we used uninformative initial shape priors.

We tested our method on a real set of CSD images acquired from two separate experiments 

on separate C57Bl/6J mice. The mice were approved for experiments in accordance with 

University of California, Los Angeles Animal Research Committee Guidelines. The mice 

had their skulls exposed under anesthesia, and a rectangular section of the parietal bone (1 

mm from the sagittal suture, temporal ridge, lambdoidal suture and coronal suture) was 

thinned to transparency. Burrholes were drilled proximal to the imaging field to allow for 

placement of stimulating electrodes. After allowing the animal to rest, the experimenter 

induced CSD by passing electric current through the stimulating electrodes. VGA-resolution 

(640 × 480) images were collected at a frequency of 1Hz, in 8-bit greyscale, under white 

light. The imaging field was approximately 3.2mm × 2.4mm, with each pixel representing 

approximately a 5μm × 5μm square. Before analysis, to save computation time, we rescaled 

each image to a quarter of its original size by bilinear interpolation (to 320 × 240).

CSD segmentation results are shown in Fig 7. For comparison, we also provide the results of 

segmentation done with graph cuts in the absence of shape prior [49]. Our tracking method 

is able to regularize against the noise and random heterogeneity that is typical of these in-

vivo experiments. In the absence of a prior, the interface location is not as well defined, and 

graph cuts fails to select the entire CSD region.

In Fig 8, we examine the results of our model under non-ideal conditions. In this experiment, 

biological movement has caused the presence of a vascular distraction in the difference 

images. The images in the top row show frame-byframe segmentation in the absence of 

shape priors, where the vascular system is causing formidable interference. Using our 

method, we achieve increasingly better segmentations when increasing the shape mismatch 

penalty α, though α = 2 still works reasonably well. Increasing α increases the weight of the 

speed-based regularization relative to the likelihood. This parameter offers flexibility for 

tuning the method for data sets with increasing random heterogeneity.
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C. Wound healing assays

Another application we explore is the tracking of a collapsing boundary. One specific 

example of this type of system arises in in vitro assays of wound healing. In the typical 

wound healing assay, a layer of cells is grown to confluency on a substrate. A portion of the 

cell layer is then removed, either by scratching, lifting off a localized region of cells, or 

removing a constraint confining the monolayer [59]. The dynamics of how the cells refill the 

bare substrate is then studied typically with bright or dark-field light microscopy under a 

variety of physical and chemical conditions. While the biological process is complex, 

involving chemical signaling pathways, mediated by mechanical interactions with the elastic 

substrate and neighboring cells [60], the main observable is the moving wound edge.

Both cell migration and cell proliferation can occur, [61], and as more quantitative studies of 

these types of assays emerge [62], tracking the spatio-temporal dynamics of cells and their 

proliferation will become critical. In response to a wound or free space in which to migrate, 

the cells near the edge increase their motility to attempt to cover the wound. The motion of 

the wound boundary appears to be largely monotonic. However, without additional 

experimental imaging modalities such as fluorescent labeling of membranes, accurate 

tracking of the wound edge can be difficult due to low contrast, boundaries with other cells, 

and extraneous material (such as floating dead cells) in the image field.

Our statistical approach for tracking the moving boundary of a cell monolayer was tested on 

an in vitro wound healing assay. Fig 9 shows segmentations on a series of sobel filtered [54] 

images of a shrinking circular wound that was induced in a monolayer of epithelial cells. 

Pre-wounding, the epithelial cells were grown to confluency on extracellular matrix 

substrate. Bright-field images were then taken of the epithelial cells migrating to fill the 

circular wound region. In these images, the wound region and the healed region are 

distinguished by the lack and presence of cells. Cells in the field appear dark at their 

boundaries, and bright in their bodies. In this application, we treat the wounded region as Ω. 

As the wound heals, it undergoes robust changes in shape. Our segmentation method 

accurately tracked the boundary of the wound. For these segmentations, where we knew the 

location of the initial wound circle, we used an informative shape prior with the known 

reference shape, and set τ2 = 1. We used a weakly informative prior mean speed centered at 

−4 pixels/frame. In this application, the speed of the front V is strictly negative.

D. Validation

We evaluated the accuracy of our segmentation method by comparing results from our 

method against the results of human-assisted segmentations for the synthetic image 

sequence (Fig 4) and the CSD image sequence (Fig 7). In both cases, we compute the 

mismatch between two segmentations

(26)

The resulting quantity has an interpretation as the average thickness in pixels of the 

mismatched region.
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For the synthetic image sequence, where the ground truth is available, we compared the 

error of segmentations made using our method to error from human-assisted segmentations. 

Fig 10 depicts the mismatch from ground truth for segmentations on the synthetic image 

sequence of Fig 4. For this data set, it is clear that our segmentation method outperforms 

human segmentation, by approximately a factor of two.

For the cortical spreading depression images of Fig 7, where the ground truth is not 

available, we compared human segmentation to our automated segmentations (Fig 11). Our 

results are in good agreement with manually-segmented results, good to within 1.7 ± 0.5 

pixels. By comparison, the humans segmentations disagreed with each other by 1.4 ± 0.4 

pixels. These data demonstrate the ability of our method to perform as-well-as or better than 

manual segmentation.

IV. Discussion

We have demonstrated a framework for simultaneous segmentation and inference of the 

dynamics of monotonically traveling boundaries in image sequences. Our method is simple, 

generalizable, and easily extended to a wide variety of applications. The novelty of our 

method is in bringing level-set based interface modeling into a statistical estimation 

framework, where inference can occur using graph cuts. In the process, we have developed a 

theory for including shape priors into the graph cuts method using an MM algorithm.We 

have demonstrated the efficacy of our method in solving the boundary tracking problem for 

two unrelated biomedical applications, and is able to recover a ground truth speed pattern for 

a synthetically generated image sequence.

Since we developed our method from the ground up with statistical theory in mind, it can be 

easily extended or modified to suit a wide range of applications. Being modular in design, it 

is easy to alter particular components of our method while leaving others unchanged. For 

instance, one may choose to modify the shape distance we introduce in Eq 13, to suit a 

particular application. There is much prior work on shape distances in the level set literature, 

and the graph cut segmentation community would greatly benefit from more research on 

how to incorporate shape knowledge.

Since our method is model-based, it is fairly easy to predict when performance suffers. In 

particular, when the image pixel intensities are poorly described by the likelihood model of 

section II-B, or when the speed of the interface is poorly modeled as the smooth Gaussian 

process of section II-A. In many cases, success of the method depends on the choice of 

shape penalty exponent a. In some sense, α controls the degree of regularization done by the 

recursive shape priors. If a is set too large, the segmenter will tend to favor the predicted 

interface positions over the data, ignoring real deformations in the interface. conversely, if α 
is set too small, the regularization may not be sufficient, and the segmenter is more likely to 

pick up noise in the image. For example, in Fig 8, increasing the shape penalty parameter to 

α = 4 improved the tracking of the interface in the presence of distractors. In general, α = 2 

worked well for our examples.
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Perhaps the aspect of our method that would benefit the most from future research would be 

the spatial interpolation method we use to sample fluctuations in interface speed. The 

Gaussian process model, while theoretically clean, is computationally complex. Yet, the 

Bayesian nature of this method allows for the application of natural Bayesian model 

evaluation and inference methods. In particular, future development will focus on Bayesian 

model selection of competing speed models. Finally, we would like to note that extension of 

our method to non-monotonic movement is theoretically straightforward. One need only 

implement the time-dependent Gaussian process interpolation of Sahu et al. [46] to predict 

speeds, and use the level-set equation rather than the eikonal equation to describe the 

motion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Level-set embedding of shapes
Embedding of a region Ω into a signed distance function ϕΩ defined on a discrete lattice. ϕΩ 
takes values according to the signed Euclidean distance from the boundary ∂Ω, with negative 

values inside Ω. The boundary ∂Ω is implicitly embedded as the zero-level set of ϕΩ. Shown 

is a 2-d lattice, however, level set method works for  with any arbitrary d.
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Fig. 2. Embedding of an image into a graph
In the graph cuts framework, pixels are nodes in a graph. Connections between neighboring 

pixels are made, as well as connections between each pixel and two special nodes called the 

source (foreground) and sink (background). Depicted is an eight-neighbor system, where s 
and u are neighbors. These connections are weighted according to the strength of the 

association between two nodes to the same class (either foreground or background). A 

segmentation is found by cutting the graph into two parts separating the source and sink 

such that the edge weights along the cut are minimal. The segmented foreground then 

consists of the pixels that have intact edges with the source (depicted as solid black lines).
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Fig. 3. Examples of monotonic boundary movement
Shown are stills from three image sequences depicting monotonic boundary motion. Top two 

rows are cortical spreading depression hemodynamical waves. Bottom row is a wound 

undergoing healing. The noise characteristics in these images, and the shapes that develop, 

differ markedly.
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Fig. 4. Segmentation of a synthetic image sequence
(top) Mask of ground truth wave sequence, with a growing interior region shown in black. 
The spatial field is of size 320 × 240 pixels. The speed of the front varies between 6 and 10 

pixels/frame (shown in fig 5), producing topological changes in the interface. (bottom) 
Segmentation of images where noise has been added to the ground truth. The image 

intensity was 0 ± 3 in the exterior and 3 ± 3 in the interior. δt = 7 frames.
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Fig. 5. Recovery of interface speed
(left) Ground truth speed field. (right) Reconstructed speed field. Reconstruction of synthetic 

wave speed using the segmentations shown in figure 4, and second-order upwind finite 

differences. The ground-truth speed of the interface is 10 pixels/frame as it passes through 

the UCLA letters, and 6 pixels/frame outside of the letters. The reconstructed speed field has 

an estimated speed of 9.8 ± 1.5 pixels/frame inside the letters, and 6.0 ± 0.7 pixels/frame 

outside. Velocity scale shown at right in pixels/frame.
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Fig. 6. Updating predictions with new data
(left) Past (yellow), current (green), and predicted future (red) interface positions drawn over 

mean predicted speed field. Predictions of future interface positions, which act as shape 

priors, are made using samples from our stochastic speed model. To the left of the green 

boundary are speeds interpolated from the collection of past interface positions. To the right 

are interface positions found by propagating the green contour with speeds sampled from the 

GMRF model. Speed scale shown at left is pixels/frame. (middle) When a new noisy image 

is acquired, the MM algorithm is initialized at the position obtained by propagating the 

previous interface position according to its estimated mean speed field. The true boundary 

deviates from the mean predicted boundary because of developing protrusions. The mean 

predicted boundary is calculated by propagating the green boundary against the mean speeds 

given in Eq 8. (right) After a single MM iteration, the protrusions are found. Due to the 

continuous nature of the kernel density shape prior, our method is able to account for large 

deformations.
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Fig. 7. Segmentation of real in-vivo CSD data
(Left→ Right) CSD shown propagating, δt = 7s. Top: Original unsegmented inter-frame 

differences showing CSD-related changes in blood signal. Second row: Results from our 

segmentation method, where we track the moving front probabilistically. Third row: 
Segmentation of the spreading region done without shape priors.
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Fig. 8. Adjusting regularization by adjusting the shape penalty parameter
(Left→Right) and (Top→ Bottom) Biological movement during imaging causes artifacts in 

the difference image. Failure to adjust for the movement results in less than ideal data. 

Increasing α, the shape mismatch penalty, can compensate for poorly acquired image data. 

Our method is able to track the moving front even as it is partially occluded. Top: 
segmentation without shape prior. Second row α = 2. Third row: α = 3. Fourth row: α = 4. 

δt = 2s.
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Fig. 9. Segmentation of wound healing assays featuring robust shape changes
(Left→Right) and (Top→ Bottom) Wound-healing time stills. Segmentation performed on 

the sobel filter (shown) of the original image sequence, which is well-modeled by the 

Gaussian mixture of section II-B. In this application, the boundary is moving inward, while 

the shape of the inner region is undergoing large changes. The segmentation method works 

well even for non-convex shapes. δt = 30 min. We are grateful to Prof. C.-L. Guo, Caltech 

Bioengineering for these images. Resolution: 320 × 240.
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Fig. 10. Comparison of results against laborious manual human segmentation of synthetic 
images
The accuracy of our method’s segmentation of the synthetic image sequence (for the six 

frames shown in Fig 4) compared to the accuracy of three humans. The error plotted in the 

y-axis is the average number of misclassified pixels per boundary-length, where boundary-

length is the average of the lengths of the ground truth and segmented boundary. Our method 

differed from the ground truth by 0.30 ± 0.10 pixels. The humans performed significantly 

worse with error of 0.61 ± 0.14 pixels.
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Fig. 11. Comparison of results against laborious manual human segmentation of in-vivo CSD 
images
Deviation of human segmentations from the results of our automated approach for the image 

sequence shown in Fig 7. The results from our segmentation method agreed with the results 

from the manual segmentations to within 1.7 ± 0.6 pixels.
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