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Distributed Event Localization via Alternating
Direction Method of Multipliers

Chunlei Zhang and Yongqiang Wang

Abstract—This paper addresses the problem of distributed event localization using noisy range measurements with respect to sensors

with known positions. Event localization is fundamental in many wireless sensor network applications such as homeland security, law

enforcement, and environmental studies. However, most existing distributed algorithms require the target event to be within the convex

hull of the deployed sensors. Based on the alternating direction method of multipliers (ADMM), we propose two scalable distributed

algorithms named GS-ADMM and J-ADMM which do not require the target event to be within the convex hull of the deployed sensors.

More specifically, the two algorithms can be implemented in a scenario in which the entire sensor network is divided into several

clusters with cluster heads collecting measurements within each cluster and exchanging intermediate computation information to

achieve localization consistency (consensus) across all clusters. This scenario is important in many applications such as homeland

security and law enforcement. Simulation results confirm effectiveness of the proposed algorithms.

Index Terms—Event localization, wireless sensor network, distributed algorithm.

✦

1 INTRODUCTION

W ITH the ability to transmit/receive information and fuse

data, smart sensors enabled and greatly advanced numer-

ous applications such as environmental monitoring [1], target

tracking [2], underwater detection [3], and acoustic gunfire lo-

calization [4], [5]. Among these applications, event localization is

a significant and essential component or even the ultimate goal.

Taking the gunfire localization as an example, if some threat

sources or impulsive events (e.g., shooting or explosion) occur, it is

of imperative importance to localize these threat sources to make

prompt reactions (e.g., giving warning, providing aid). In fact,

sensor network based event localization has received significant

attentions and plenty of techniques have been proposed in the

literature, using either angle-of-arrival measurements [6], [7], [8],

time-of-arrival (ToA) (including time-difference-of-arrival, i.e.,

TDoA) measurements [9], [10], or received signal strength (RSS)

[11], [12], [13], [14], [15], [16], [17], [18]. There are also some

work that discussed the event localization problem based on noisy

range measurements directly, which can be obtained based on

ToA, TDoA, or RSS information [19], [20], [21], [22], [23].

Generally speaking, these existing methods for event localization

formulate the localization problem as a maximum likelihood

estimation problem [21] or a least squares problem [17], which is

solved by minimizing the non-convex objective function iteratively

[11] or by applying various convex relaxations [10].

From the implementation point of view, existing event local-

ization algorithms can be cast into two categories: centralized

approaches and distributed approaches. Centralized approaches al-

ways gather (noisy) measurements (e.g., range measurements) ob-

tained by all sensors to a processing center, which then estimates

the event location using a certain centralized optimization algo-

rithm. Typical centralized methods include the parallel projection

method [20], convex relaxation plus semidefinite programming
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(SDP) or second-order cone programming method [10], [15], [16],

[17], [21], [22], [23]. However, a severe shortcoming of central-

ized localization algorithms is that the computation complexity

at the processing center might be quite high which poses great

challenges for low-cost sensor nodes with limited computational

capabilities. In addition, the required communication to collect all

measurements to a single central node may be problematic due

to possible traffic bottleneck and severe constraints on communi-

cation ranges. Moreover, once the central node fails due to, e.g.,

attacks or power depletion, the entire network slips into a state

of paralysis. Therefore, techniques solving the event localization

problem in a distributed way are crucial for sensor network based

event localization.

In contrast to centralized algorithms, distributed localization

algorithms are designed to run the computation over the entire

network instead of on a processing center. In general, distributed

algorithms are often established on massive parallelism or sequen-

tial calculations and mutual collaboration [24]. So compared with

centralized algorithms, distributed designs have better scalability,

flexibility, and failure resilience. One typical distributed approach

for event localization is projection-based algorithms which solve

the event localization problem by projecting an initial estimate

onto sensing disks [11], circles [12], [13], [25], or rings [18].

However, these projection-based localization algorithms are very

sensitive to the initial values when the target event lies outside the

convex hull of sensors, as will be shown in Sec. 6.

This paper is motivated by acoustic event localization which

is crucial on battlefields [26]. In such applications, the target

event has no communication or computation capability, which

differentiates the problem from sensor localization problems in

which the locations of sensors are estimated [27]. Furthermore,

in such applications, the target events lie outside the convex

hull of deployed sensors, which renders existing projection-based

algorithms inappropriate. SDP relaxation based algorithms can

avoid the convex hull problem and are traditionally employed to

solve the event localization problem [10], [15], [16], [17], [21],

[22], [23]. However, as far as we known, existing SDP relaxation
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based algorithms for event localization are all centralized, with

a central node collecting and processing all data, which makes

them susceptible to processing center failure and traffic bottle-

neck. In this paper, we propose two distributed event localization

approaches based on a clustered architecture motivated by mobile

acoustic localization applications such as the PinPointTM system

from BioMimetics Systems Inc. The PinPointTM mobile localiza-

tion sensor network can be deployed as a mobile infrastructure

for impulsive threat event detection and localization [26], [28].

Each PinPointTM sensor is a small omnidirectional microphone

array which localizes impulsive acoustic events by correlating the

ToA measurements among its microphone cells. In fact, since each

sensor has an integrated microphone array, individual sensors are

able to identify and localize a target event without assistance or

cooperation with other sensors. However, due to close distances

between the microphone cells, the accuracy of individual sensors

is very limited and unsatisfactory, and collaboration among the

sensors is necessary to improve localization accuracy [26], [28].

The above application motivated us to assume a localization

architecture in which an entire network is divided into several

clusters. A cluster head (which can be a regular sensor) collects

and fuses measurements (e.g., noisy ranges) obtained from all

members in its cluster. Two cluster heads in different clusters

can exchange information (the local estimates of target events)

if a communication link is available between them; otherwise

they don’t have access to each other’s information. Our developed

algorithms can also be applied in some other applications where

a cluster-based architecture is employed. A typical example is the

wide-area monitoring and control in large-scale power systems

[29], [30]. To estimate the electro-mechanical oscillation modes,

a large number of phasor measurement units (PMU) have to

be deployed across a power network to conduct measurements.

The measurements from PMUs have to be fused to diagnose the

inter-area oscillation modes. However, wide-area communication

between PMUs is very expensive [31]. To fuse information across

the PMUs without imposing heavy communication overhead, a

similar structure as ours is adopted in [29], [30]. Other examples

on cluster-based architecture can be found in [32], [33], [34], [35].

The core of our distributed localization algorithms is the

alternating direction method of multipliers (ADMM), which has

been proven extremely suitable in distributed convex optimization,

especially for large-scale problems [36]. The key idea of ADMM

is to obtain a global solution through the cooperation of small

local subproblems. ADMM is easy to parallelize and implement,

and is robust to noise and computation errors [27]. Our proposed

localization approaches take full advantages of ADMM which

enables local optimizations within individual clusters as subprob-

lems. Then through cooperation of subproblems in neighboring

clusters, a global event localization could be reached. That is to

say, the estimated locations obtained by individual clusters are

made as consistent as possible. Such consistency is of crucial

importance in many applications. For example, when a sporadic

impulsive event requiring immediate responsive actions is detected

by several monitors, consistency in the estimated location across

monitors is the key for multiple monitors to coordinate cooperative

operations.

Contribution: The main contribution of this paper is two

ADMM-based distributed event localization algorithms, i.e., GS-

ADMM and J-ADMM. Compared with existing centralized SDP

relaxation based algorithms for event localization, the two al-

gorithms divide the computation on a central node to different

cluster
eventsensor

cluster head

Cluster 1

Cluster 3

Cluster 2

Cluster 4

communication
link

Fig. 1. Cluster based event localization architecture (m = 4)

clusters to avoid possible center failure and traffic bottleneck,

and in the mean time, guarantee consistency of the estimates

across all clusters among which only limited communications

are available. Furthermore, the two algorithms take advantages of

SDP relaxation to avoid the convex hull problem compared with

existing projection-based algorithms. Moreover, the algorithms are

proven to converge with a convergence rate of O(1/t) where t is

the iteration time.

Organization: The rest of this paper is organized as follows:

Section 2 states the formulation of the problem. To solve the

problem, a convex relaxation is required and the method proposed

by [27] is recapitulated in Section 3. In Section 4, two algorithms

named GS-ADMM and J-ADMM are proposed based on ADMM,

with their convergence properties analyzed in Section 5. Section

6 gives numerical simulation results. In the end, a conclusion is

made in Section 7.

2 PROBLEM STATEMENT

Motivated by mobile acoustic event localization applications such

as the PinPointTM event localization sensor network [26], [28], we

consider a localization sensor network divided into m clusters (cf.

Fig. 1 for the case m = 4). Denote the number of constituent

sensors of cluster i as Ni (i = 1, 2, . . . ,m). We consider

localization in D (D ∈ {1, 2, 3}) dimensional Euclidean space

and suppose that the position of the target event is denoted as

x ∈ R
D . Denote the position of the kth sensor in the ith cluster

as ai,k ∈ R
D. The kth sensor in the ith cluster can obtain a noisy

range measurement ri,k of its distance with respect to a target

event:

ri,k = di,k + vi,k

where di,k =‖ x−ai,k ‖ denotes the actual distance between the

event position and the kth sensor of the ith cluster, and vi,k is the

Gaussian noise term.

Then the event localization problem amounts to estimating

the unknown event location x using known sensor positions

ai,k and noisy range measurements ri,k (i = 1, 2, . . . ,m, k =
1, 2, . . . , Ni). Still motivated by acoustic event localization ap-

plications (e.g., the PinPointTM event localization sensor network

[26], [28]), we assume that a cluster head exists in each cluster



i, which can gather range measurements ri,k from all sensors

within the cluster. In addition, a cluster head can communicate

and exchange information with the cluster head of a neighboring

cluster if there is a communication link between them (cf. Fig. 1).

In this case, we also say that these two clusters can communicate.

We assume that the communication pattern forms a connected

network, i.e., there is a (multi-hop) path (composed of multiple

communication links connected in succession) between any pair of

cluster heads. For example, in Fig. 1, cluster 1 is able to exchange

information with clusters 2 and 3 (via cluster heads); cluster 2 can

exchange information with clusters 1, 3, and 4 (via cluster heads),

etc. Denote Bi as the set of all neighboring clusters of cluster i, B̂i

as the union of set Bi and cluster i itself, and |Bi| as the number

of clusters in Bi.

As in most existing results, we use the maximum

likelihood method for event localization [21], [22]. Let

pi,k(di,k(x,ai,k)|ri,k) denote the measuring probability density

function (PDF) for sensor k in cluster i and assume that it is a log-

concave function of unknown distance di,k [27], we can write this

problem using the maximum likelihood method (which is costly

but efficient [37]):

x∗
ML = argmaxx∈RD

m
∑

i=1

Ni
∑

k=1

lnpi,k(di,k(x,ai,k)|ri,k). (1)

3 CONVEX RELAXATION

Problem (1) is non-convex and it is generally infeasible to find a

global optimal solution [27]. So a convex relaxation is needed to

convert problem (1) into a convex optimization problem. Follow-

ing the idea of [27], we use an SDP based relaxation approach.

However, it is worth noting that there are inherent differences

between the problem considered here and the sensor-position

estimation problem in [27] where each sensor with unknown

position estimates its own position using embedded computation

capability. The differences are evident from the following ex-

ample. Suppose that there is only one target to localize. In the

case of [27], the target will be a sensor with unknown position

and it estimates its own position alone using a centralized SDP

based on all information gathered from adjacent sensors, including

their positions and corresponding range measurements. Whereas

in our case, the target is an event without any communication or

computation capability and the event position estimation process is

conducted cooperatively in a distributed way among the clusters.

To facilitate the relaxation, we first define the following new

variables: y = xTx, ǫi,k = d2i,k. Then we stack ǫi,k, k ∈
{1, 2, ..., Ni} into ǫi and further stack ǫi, i ∈ {1, 2, ...,m} into

ǫ , [ǫT1 , ǫ
T
2 , ..., ǫ

T
m]T . In the same way we stack di,k into di and

d , [dT
1 ,d

T
2 , ...,d

T
m]T . Then the cost function can be written as

f(d) = −
m
∑

i=1

Ni
∑

k=1

lnpi,k(di,k|ri,k).

Consider the case of white zero-mean Gaussian noise, i.e.,

vi,k ∼ N (0, σ2
i,k), then the above problem can be rewritten as

f(d) =
m
∑

i=1

Ni
∑

k=1

σ−2
i,k (d

2
i,k − 2di,kri,k + r2i,k) (2)

Without loss of generality, we can set the standard deviation

σi,k in (2) to one. Now, problem (1) can be relaxed into the

following constrained optimization problem:

min
x,ǫ,d,y

f(d)

subject to y − 2xTai,k+ ‖ ai,k ‖2= ǫi,k, y = xTx,

ǫi,k = d2i,k, di,k ≥ 0,

∀i ∈ {1, 2, ...,m}, k ∈ {1, 2, ..., Ni}.
(3)

However, in this case, the constraints of (3) still define a non-

convex set [27]. Using Schur complements [38], the following

convex relaxation can be obtained:

min
x,ǫ,d,y

f(d)

subject to y − 2xTai,k+ ‖ ai,k ‖2= ǫi,k, ǫi,k ≥ 0,
(

1 di,k
di,k ǫi,k

)

� 0, di,k ≥ 0,

∀i ∈ {1, 2, ...,m}, k ∈ {1, 2, ..., Ni},
(

ID x

xT y

)

� 0, y ≥ 0.

(4)

Problem (4) is a convex problem with inequality constraints

[36]. We can rewrite the cost function as

f(d, ǫ) =
m
∑

i=1

Ni
∑

k=1

σ−2
i,k (ǫi,k − 2di,kri,k + r2i,k) (5)

by enforcing a change of variables ǫi,k = d2i,k to further relax it

to a semidefinite programming (SDP) problem [27]. Now, we can

propose ADMM based solutions for problem (4).

4 PROPOSED DISTRIBUTED ALGORITHMS

4.1 Preliminaries: Standard ADMM

ADMM is an algorithm which is suitable to solve problems in the

following form [36]:

min
x,z

f(x) + g(z)

subject to Ax+Kz = c.
(6)

where x ∈ R
n, z ∈ R

m, A ∈ R
p×n, K ∈ R

p×m, and c ∈ R
p,

and f(x) and g(z) are convex functions. To get the optimal value

p∗ = inf{f(x) + g(z) | Ax + Kz = c} for problem (6), one

can first form an augmented Lagrangian function:

Lρ(x, z,µ) = f(x) + g(z)

+µT (Ax+Kz − c) +
ρ

2
‖ Ax+Kz − c ‖2,

where µ is the Lagrange multiplier associated with the constraint

Ax+Kz = c and ρ > 0 is a predefined penalty parameter. Then

ADMM solves problem (6) by updating x, z,µ in the following

sequence: first an x-minimization step (7), then a z-minimization

step (8), and finally a dual variable update (9):

xk+1 = argminxLρ(x, z
k,µk), (7)

zk+1 = argminzLρ(x
k+1, z,µk), (8)

µk+1 = µk + ρ(Axk+1 +Kzk+1 − c). (9)

Next, we will propose two distributed algorithms for event

localization using the framework of standard ADMM.



4.2 Problem Reformulation

In distributed algorithms, neighboring nodes have to generate and

exchange copies of local estimates to ensure a consistent global

estimation across all nodes. In our event localization architecture,

a cluster is treated as a normal node which solves a common event

localization problem based on measurements obtained by sensors

within the cluster. And neighboring clusters exchange intermediate

computational results (through cluster heads) to guarantee that all

clusters reach the same estimation value.

To better interpret our algorithms, we define a local vector

pi , (ǫTi ,d
T
i , yi,x

T
i )

T ∈ R
2Ni+D+1, i ∈ {1, 2, ...,m},

which is owned by cluster i.
We let p denote the stacked vector of pi and define a convex

set

Pi , {pi|pi verifies (4)}.
Then problem (4) can be rewritten as

min
p

f(p)

subject to pi ∈ Pi, ∀i ∈ {1, 2, ...,m},
(10)

where, in our situation, f(p) is given as follows:

f(p) = −
m
∑

i=1

Ni
∑

k=1

ln pi,k(di,k|ri,k) =
m
∑

i=1

fi(pi). (11)

4.3 ADMM based problem formulation

From the architecture in (11), it is easy to see that problem (10)

can be divided into m subproblems, which can be solved in a

distributed way using ADMM by adding some constraints on pi.

Next we present the basic idea based on a graph-based formulation

of the communication pattern.

Using graph theory [39], the communication pattern of cluster

heads can be represented by G = {V,E}, where the set V denotes

the set of cluster heads, and E denotes the set of undirected edges

(communication links) between clusters. We use ei,j ∈ E, i < j
to denote the link (if there is) between cluster heads i and j.

We use |E| to represent the total number of undirected edges. In

our problem formulation, each cluster is associated with a local

cost function fi(pi), and all clusters work together to solve the

problem in (10). Assume that the local cost function fi is only

known to cluster i, then to reach consistency (consensus) of esti-

mated position values among all clusters, we impose a constraint

xi = xj if there exists an edge ei,j ∈ E between clusters i and

j. Introduce a matrix Ji = [0D×(2Ni+1), ID] ∈ R
D×(2Ni+D+1),

where ID denotes the D dimensional identity matrix, then xi can

be represented as xi = Jipi. So the constraint xi = xj can be

represented as Jipi = Jjpj .

Now we are able to rewrite problem (10) into a distributed

ADMM form as follows:

min
pi, i∈{1,2,...,m}

m
∑

i=1

fi(pi)

subject to Jipi = Jjpj , ∀ei,j ∈ E,

pi ∈ Pi, ∀i ∈ {1, 2, ...,m},

(12)

or in a more compact way:

min
p

f(p)

subject to CJp = 0, pi ∈ Pi, ∀i ∈ {1, 2, ...,m},
(13)

where p = [pT
1 ,p

T
2 , ...,p

T
m]T , J = diag{J1, J2, . . . , Jm} ∈

R
mD×(

m∑

i=1

2Ni+D+1)
, and C is the edge-node incidence matrix of

graph G as defined in [40]. For example, in the one-dimensional

case (D = 1), C = [ci,j ] is an |E| ×m matrix whose |E| rows

correspond to the |E| edges and m columns correspond to the m
clusters such that:

ci,j =







1 if the ith edge originates at cluster j,
−1 if the ith edge terminates at cluster j,
0 otherwise.

(14)

Here we define that each edge ei,j originates at i and terminates

at j.

It can be easily verified that the incidence matrix C for Fig. 1

is

C =









1 −1 0 0
0 1 −1 0
1 0 −1 0
0 1 0 −1









. (15)

For high dimensional cases, where D ≥ 2, C ∈ R
|E|D×mD

can be obtained by replacing the value of 1 and −1 with ID and

−ID, respectively, with ID denoting the D dimensional identity

matrix. Then the C matrix for Fig. 1 becomes

C =









ID −ID 0D 0D
0D ID −ID 0D
ID 0D −ID 0D
0D ID 0D −ID









. (16)

In this formulation, after each cluster obtains its local estimate

pi, it sends the value Jipi (estimated event position xi) to

neighboring clusters. By adding the constraint Jipi = Jjpj , ∀i ∈
{1, 2, ...,m}, j ∈ Bi as shown in (12), the consistency of

individual event position Jipi (xi) estimated across the clusters is

guaranteed. Now we are in place to present our detailed algorithms

to solve (12).

Remark 1. Note that although a normal way to apply ADMM to

consensus problems is to create auxiliary local variables (cf.

[27]), we just put the constraint Jipi = Jjpj directly here.

The reason that we omit the auxiliary local variables is to save

storage space at each cluster, since auxiliary local variables

take additional storage space. Furthermore, by adding the

constraint Jipi = Jjpj , we can have both a sequential and

a parallel realization with convergence guaranteed, which will

be detailed in the following subsection. This kind of constraint

and its induced ADMM algorithm is called extended ADMM,

which is discussed and applied in many recent work, e.g., [29],

[40], [41], [42], [43].

4.4 Proposed Algorithms

Let λi,j be the Lagrange multiplier relevant to the constraint

Jipi = Jjpj . Then the regularized augmented Lagrangian func-

tion of problem (12) can be reformulated as

Lρ(p,λ) =
m
∑

i=1

fi(pi)

+
∑

ei,j∈E

(λT
i,j(Jipi − Jjpj) +

ρ

2
‖ Jipi − Jjpj ‖2),

(17)

where λi,j are stacked into λi for all j ∈ Bi and λi are stacked

into λ for all i ∈ {1, 2, ...,m}.



Applying ADMM, we can get the following two updating

recursions:

pt+1 = argminpi∈Pi
Lρ(p,λ

t), (18)

λt+1
i,j = λt

i,j + ρ(Jip
t+1
i − Jjp

t+1
j ). (19)

Here, we can update p in two different ways. One way is based

on the Gauss-Seidel update [44] in which clusters update in a

sequential order. The other way is the Jacobian scheme in which

all clusters update in parallel [45].

Gauss-Seidel update (GS-ADMM): We first consider an

algorithm based on the Gauss-Seidel update. Gauss-Seidel update

for distributed ADMM has been explored theoretically and proven

able to converge in most cases for convex objective functions (see,

e.g., [46], [47], [48]). GS-ADMM based solution for distributed

event localization can be described as follows:

Algorithm I: GS-ADMM

Each cluster initializes p0
i , λ0

i,j .

Input: pt
i , λ

t
i,j

Output: pt+1
i , λt+1

i,j

1) All clusters update their local vectors in a sequential

order and send their local vectors Jip
t+1
i to neighboring

clusters in Bi immediately, where

p
t+1
i = argmin

pi∈Pfi(pi)+
∑

j∈B̂i,j≥i

(λtT
i,j(Jipi − Jjp

t
j) +

ρ

2
‖ Jipi − Jjp

t
j ‖2)+

∑

j∈B̂i,j<i

(λtT
i,j(Jipi − Jjp

t+1

j ) +
ρ

2
‖ Jipi − Jjp

t+1

j ‖2).

(20)

Here we also consider the effect of Jip
t
i when updating

pt+1
i by adding a term

ρ
2 ‖ Jipi−Jip

t
i ‖2. Problem (20)

with fi given in (5) is an SDP problem that can be solved

by common convex toolboxes such as Yalmip [27], [49],

which is used in our simulations.

2) Each cluster computes

λt+1
i,j = λt

i,j + ρ(Jip
t+1
i − Jjp

t+1
j ). (21)

3) Set t = t+ 1, and go to 1).

In GS-ADMM, all clusters update their local estimated po-

sition values in a sequential way just as some projection-based

algorithms. Sequential update can be used in small-size networks.

For large-scale networks, a parallel method is more appropriate.

So we also propose another algorithm based on Jacobian scheme

which is amendable for parallelization.

Jacobian based ADMM (J-ADMM): Algorithm J-ADMM

is motivated by the work in [42], which proposed the Proximal

Jacobian ADMM by adding some proximal terms when updating

pi. We adopt the same idea here and prove that if the proximal

terms meet some additional requirements, convergence of this

algorithm can be guaranteed. The detailed procedure of J-ADMM

is given as follows, with the convergence analysis detailed in the

following section.

Algorithm II: J-ADMM

Each cluster initializes p0
i , λ0

i,j .

Input: pt
i , λ

t
i,j

Output: pt+1
i , λt+1

i,j

1) Each cluster updates its local vector in parallel:

pt+1
i = argminpi∈Pfi(pi)

+
∑

j∈B̂i

(λtT
i,j(Jipi − Jjp

t
j) +

ρ

2
‖ Jipi − Jjp

t
j ‖2)

+
ργi
2

‖ Jipi − Jip
t
i ‖2 .

(22)

The last term of the above equality, i.e.,
ργi

2 ‖ Jipi −
Jip

t
i ‖2, is the proximal term we added where γi ≥ 0

is a scalar. Problem (22) with fi given in (5) is an

SDP problem that can be solved by common convex

toolboxes such as Yalmip [27], [49], which is used in

our simulations.

2) Each cluster sends its local vector Jip
t+1
i to neighboring

clusters in Bi.

3) Each cluster computes

λt+1
i,j = λt

i,j + ρ(Jip
t+1
i − Jjp

t+1
j ). (23)

4) Set t = t+ 1, and go to 1).

Remark 2. A distinct difference between GS-ADMM and J-

ADMM is the way they update pi. In GS-ADMM, each cluster

updates its local estimated position value in a sequential way,

which requires a globally predefined order. Whereas in J-

ADMM, all clusters update their local estimated position val-

ues simultaneously. We remark that GS-ADMM is appropriate

for small-scale sensor networks. But for large-scale networks,

updating in a sequential way may be quite time-consuming

and parallel methods like J-ADMM are more appropriate. So

different updating methods should be chosen according to the

size of networks and other practical concerns.

In fact, if we disregard the PinPointTM motivated applica-

tion scenario, the proposed two algorithms can be completely

distributed to each sensor by allowing sensors to have access

to neighboring sensors’ positions and range measurements with

respect to the target event. However, we argue that this, in fact,

may cost more energy since each sensor has to solve an SDP

problem. In addition, the required storage overhead is larger

since each sensor has to store neighboring sensors’ positions and

range measurements. Furthermore, consider a situation where two

sensors can communicate with each other and have the same

neighbors. Then the position estimation process conducted at these

two sensors are the same, which leads to redundant processing of

the same data. While in our clustered architecture, only cluster

heads need to conduct position estimation and in fact, each

sensor in the cluster can take turns to be the cluster head, which

is helpful to average energy consumption. Compared with the

iterative schemes, e.g., projection-based algorithms, where each

sensor only has access to its own position and range measurement,

our algorithms are insensitive to the convex hull problem. And

compared with centralized SDP-based algorithms, our clustered

architecture is robust to processing center failure or traffic bottle-

neck problems. In addition, the convex relaxation methods used at

each cluster can be further improved by using recent works such

as [10], [15], [16], [17], [21], [22], [23].

5 CONVERGENCE ANALYSIS

In this section, we analyze the convergence properties of GS-

ADMM and J-ADMM. As our algorithms are applications of



distributed ADMM, the analysis benefits from many existing

results on general distributed ADMM [40], [41], [50].

5.1 Convergence Analysis of GS-ADMM

Let pk = [pkT
1 ,pkT

2 , ...,pkT
m ]T and λk = [λk

i,j]ij,ei,j∈E be

the iterates generated by algorithm GS-ADMM following (20)

and (21). Assume that the initial problem (12) admits a solu-

tion (p∗,λ∗), i.e., the Lagrangian function L(p,λ) = f(p) +
λTCJp has a saddle point (note: not the augmented Lagrangian

function), then the following theorem holds:

Theorem 1. Let p̄t+1 = 1
t+1

t
∑

k=0

pk+1 be the average of pk up

to iteration time t+ 1, then the followings hold for all t:
(1)

0 ≤ L(p̄t+1,λ∗)− L(p∗,λ∗) ≤ c0
t+ 1

, (24)

(2) The sequence (pk
1 ,p

k
2 , ...,p

k
m) deduced by GS-ADMM

converge to (p∗
1,p

∗
2, ...,p

∗
m), i.e., lim

k→∞
‖ pk − p∗ ‖= 0. In

addition, we have J1p
∗
1 = J2p

∗
2 = ... = Jmp∗

m.

Here

c0 =
1

2ρ
‖ λ0 − λ∗ ‖2

+
ρ

2
(‖ HJ(p0 − p∗) ‖2 + ‖ Jp0 − Jp∗ ‖2),

(25)

and H = min{0, C} (Hi,j = min{0, Ci,j}).

Proof: (24) can be obtained following a way similar to Theo-

rem 4.4 in [40]. A detailed proof is given in Appendix A. To prove

the second statement, recall that the objective function is

f(d) =
m
∑

i=1

Ni
∑

k=1

σ−2
i,k (d

2
i,k − 2di,kri,k + r2i,k).

Setting hi,k = σ−2
i,k (d

2
i,k − 2di,kri,k + r2i,k), we have f(d) =

m
∑

i=1

Ni
∑

k=1

hi,k. Note that hi,k is a quadratic function and is strongly

convex. Since the sum of strongly convex functions is still strongly

convex, our objective function f(d) is strongly convex. Further

note that f(p) is equal to f(d) and the set Pi is convex and closed.

Therefore, our problem satisfies the requirements of both strongly

convex objective function and convex-and-closed constraint set

in [50]. Now we proceed to prove the second statement. First,

rewriting CJP = 0 in the form of
m
∑

i=1
[C]iJipi = 0, where [C]i

denotes the columns of C associated with cluster i, we can form

a variational inequality MV I(Q,U) similar to (5)-(6) in [50]:

〈u − u∗,Q(u∗)〉 ≥ 0, ∀u ∈ U ,
where

u∗ :=













p∗
1

p∗
2

· · ·
p∗
m

λ∗













, Q(u∗) :=













ξ∗1 + JT
1 [C]T1 λ

∗

ξ∗2 + JT
2 [C]T2 λ

∗

· · ·
ξ∗m + JT

m[C]Tmλ∗

CJp













,

U :=
m
∏

i=1

Pi × R
|E|D.

Then following the proof of Lemma 4.1 in [50], we can get that

(pk+1
1 , ...,pk+1

m ,λk+1) is a solution to MV I(Q,U) if CJp = 0

and [C]iJip
k
i = [C]iJip

k+1
i hold. Secondly, following the proof

of Lemma 4.2 in [50], we can get the following inequality:

〈λ∗ − λ
k
, CJp〉 ≥

m
∑

i=1

ωi ‖ p
k+1
i − p

∗
i ‖2 +ρ ‖ CJp

k+1 ‖2

+ρ

m
∑

i=1

〈[C]iJip
k+1

i − [C]iJip
∗
i ,

m
∑

j=i+1

([C]jJjp
k
j − [C]jJjp

k+1

j )〉

−ρ

m
∑

i=1

〈[C]iJip
k+1
i − [C]iJip

∗
i ,

1

|Bi|
([C]iJip

k+1
i − [C]iJip

k
i )〉,

where fi(pi) is strongly convex with modulus ωi. Thirdly, define
an auxiliary block-diagonal matrix M :

M =











ρmJT
1 [C]T1 [C]1J1 . . . 0 0

· · ·
. . . · · · · · ·

0 . . . ρmJT
m[C]Tm[C]mJm 0

0 . . . 0 ρ−1I











.

Then by following the idea of the proof of Lemma 4.3 in [50],

the following inequality can be obtained:

‖ uk+1 − u∗ ‖2M≤‖ uk − u∗ ‖2M
−2

m
∑

i=1

ωi ‖ pk+1
i − p∗

i ‖2 −ρ ‖ CJpk+1 ‖2

+3mρ
m
∑

i=1

‖ [C]iJip
k+1
i − [C]iJip

∗
i ‖2,

where

‖ u ‖2M :=‖ λ ‖2ρ−1 +

ρm(‖ [C]1J1p1 ‖2 + ‖ [C]2J2p2 ‖2 +...+ ‖ [C]mJmpm ‖2).
Finally, when 0 < ρ < min

1≤i≤m
{ 2ωi

3m‖[C]iJi‖2 } holds, we can get

the second statement following the proof of Theorem 4.1 in [50].

�

Remark 3. Recall λk+1 = λk + ρCJpk+1, we can get

λk+1 = λk + ρCJpk+1

= λk−1 + ρCJ(pk+1 + pk) = ... = λ0 + ρCJ
k+1
∑

i=1

pi.

When k → ∞, we have λk+1 → λ∗. In other words, λ∗ =

λ0 + ρCJ
∞
∑

i=1
pi. So c0 can be represented as:

c0 =
ρ

2
‖ CJ

∞
∑

i=1

pi ‖2

+
ρ

2
(‖ HJ(p0 − p∗) ‖2 + ‖ Jp0 − Jp∗ ‖2).

It is clear that c0 will increase with an increase in ρ, so if the

iteration time t is fixed, L(p̄t+1,λ∗) − L(p∗,λ∗) will also

increase with an increase in ρ. That is to say, with ρ increasing,

the iteration time to reach convergence will increase, namely

convergence rate will be slower. Although with an increase in

ρ, the convergence rate will decrease, ρ cannot be too small.

This is because if ρ is too small, the constraint Jipi = Jjpj

is weak, which makes reaching consistency across clusters

difficult. More detailed discussions on selecting ρ can be found

in [47].

Directly following the statements in Theorem 1, we can obtain

the following result on the convergence speed:



Theorem 2. The convergence rate of GS-ADMM is O(1/t), where

t is the iteration time.

Proof: The result can be obtained directly from the proof of

Theorem 1 and is omitted. �

5.2 Convergence Analysis of J-ADMM

To analyze the convergence of J-ADMM, we first define several

terms: Let pk = [pkT
1 ,pkT

2 , ...,pkT
m ]T and λk = [λk

i,j ]ij,ei,j∈E

be the results for (22) and (23) for iteration k. Augment

the coefficients γi of proximal terms into a matrix QP =
diag{γ1ID, γ2ID, ..., γmID} and introduce a positive definite di-

agonal matrix QC = diag{|B1|ID, |B2|ID, ..., |Bm|ID}, where

|Bi| is the number of clusters in Bi. Since QC and QP are

both diagonal matrices, we can define a new diagonal matrix Q̄
according to Q̄T Q̄ = QC+I+QP where I is the identity matrix.

It can be easily verified that Q̄ has the following form:

Q̄ = diag{γ′
1ID, γ′

2ID, ..., γ′
mID}, (26)

with γ′
i > 0 for i = 1, 2, . . . ,m. Assuming that the original prob-

lem (12) admits a solution (p∗,λ∗), then we have the following

theorem:

Theorem 3. Let p̄t+1 = 1
t+1

t
∑

k=0
pk+1 be the average of pk up

to iteration time t + 1 and denote the eigenvalues of CTC as

αi. If γ′
i ≥

√
αmax is true with αmax = max{αi}, then the

following holds for all t:

0 ≤ L(p̄t+1,λ∗)− L(p∗,λ∗) ≤ c1
t+ 1

, (27)

where L(p,λ) = f(p)+λTCJp is the Lagrangian function,

and

c1 =
1

2ρ
‖ λ0 − λ∗ ‖2 +

ρ

2
(‖ Q̄J(p0 − p∗) ‖2 . (28)

Proof: See Appendix B. �

From Theorem 3, we can easily obtain the following results

on the convergence speed:

Theorem 4. The convergence rate of J-ADMM is O(1/t), where

t is the iteration time.

Proof: The result can be obtained directly from the proof of

Theorem 3 and is omitted. �

Since c0 and c1 are of the same form, Remark 3 for GS-

ADMM also applies to the J-ADMM case. Next, we use numerical

results to evaluate the performance of GS-ADMM and J-ADMM.

6 SIMULATION RESULTS

In this section, we illustrate effectiveness of the proposed ap-

proaches using comparison with existing results. A typical type of

distributed algorithms for event localization is the projection-based

algorithms. However, some projection-based algorithms, e.g., the

DAPA algorithm in [18], is found in our simulations not appro-

priate for the considered case where the target event lies outside

the convex hull of sensors. More specifically, we set the sensor

localization architecture similar as in [28], [51], which considers

a practical acoustic event localization system (see Fig. 2 for the

detailed spatial distribution of all sensor nodes). The target event

occurs at x = [−5; 200], which is far away from the nine sensors.

Simulation results suggested that DAPA did not work well in this

architecture, even if we set the initial values close to the target

cluster
eventsensor

cluster head

cluster 1 cluster 2 cluster 3

event
[-5, 200]

[0, 0]

[2.8, 2.5]

[2.8, -2.5]

[34, 8.75]

[34, -8.75]

[25, 0][-59, 0]

[-50, 8.75]

[-50,- 8.75]

communication 
link

Fig. 2. Event localization architecture used in simulations. The values in
[•] denote positions (x, y coordinates) of sensors.

event and used the range measurements without noise, although it

did work very well if the target event was set in the convex hull of

sensors. In the simulation, we used the same parameters for DAPA

as in [18], i.e., α1 = ... = α9 = 1
t+2 , β1 = ... = β9 = 1

t+1 ,

b1 = ... = b9 = 1, and ξ1 = ... = ξ9 = 3.

Then, we compared the localization performance of the pro-

posed algorithms GS-ADMM and J-ADMM with two other

projection-based algorithms: the PPM algorithm proposed in [20]

and the PONLM algorithm proposed in [12], which gave reason-

able performance in the simulations. PPM is a parallel projection

method which requires a central node to average the local event

location estimates obtained from all sensors in every iteration.

PONLM is a sequential projection-based algorithm which solves

the event localization problem by finding a point at the intersection

of sensing circles. Both localization error (differences between

estimated and actual target event positions) and localization con-

sistency (differences in estimated positions between clusters) are

compared under different noise standard deviations σi,k . The

convergence performance is evaluated by exploring the evolution

of the localization error with iteration time t.
To facilitate comparison, we first define two performance

indices:

Localization Error: we use the root mean square error (RMSE)

to quantify the error between estimated and true positions for every

cluster or sensor, which is denoted as ERRRMSE:

ERRRMSE =

√

√

√

√

√

L
∑

j=1
‖ xj − x∗ ‖2

L
,

where L is the number of Monte Carlo trials, xj is the estimated

position in the jth Monte Carlo trial in a certain cluster or sensor,

and x∗ is the true position of the target event.

Localization Inconsistency: We also use the root mean square

error (RMSE) to quantify the localization inconsistency (differ-

ence) in estimated event positions between m clusters, which is

denoted as INCRMSE:

INCRMSE =

√

√

√

√

√

L
∑

k=1

m−1
∑

i=1

m
∑

j=i+1
‖ xi,k − xj,k ‖2

L
,

where L is the number of Monte Carlo trials, xi,k is the estimated

position obtained from the ith cluster in the kth Monte Carlo trial.

m is the number of clusters.



6.1 Convergence performance

We compared the convergence performance of our sequential GS-

ADMM algorithm, parallel J-ADMM algorithm, the sequential

PONLM algorithm in [12], and the parallel PPM algorithm in [20].

For GS-ADMM and J-ADMM, we set ρ = 10−3. For PPM and

PONLM, we set the initial point at [−50; 100] (PPM and PONLM

are sensitive to initialization settings, which will be shown later).

We used the range measurements without noise in this part. The

simulation results are given in Fig. 3.

From Fig. 3, we can see that both GS-ADMM and J-ADMM

reached an accuracy of 100 after about 10 iterations, while

PONLM took 25 iterations and PPM took about 150 iterations.

Note that sensors and clusters have to exchange local estimates in

each iteration, so the required communication overhead is heavier

with an increase in iteration times. The same conclusion can

be drawn for energy consumption. It is worth noting that both

PPM and PONLM can reach very high accuracies. However, in

practical applications like gunfire localization, the accuracy of 100

is sufficient [28].

Interation
0 50 100 150 200

E
R

R
R

M
SE

10-4

10-3

10-2

10-1

100

101

102

GS-ADMM
J-ADMM
PPM
PONLM

Fig. 3. The evolution of localization error

Remark 4. In our simulations, we used the Sedumi solver in

Yalmip, whose limited precision may lead to approximate

minima when solving subproblems (20) and (22). This may

also lead to a low convergence speed or even fluctuations

after a certain number of iterations. In addition, SeDuMi

may sometimes return the message “Run into numerical prob-

lems”, which implies that it has terminated before it finds

an approximate optimal solution [52]. In this situation, we

can transform semi-definite inequality constraints into definite

inequality constraints by introducing a constant positive def-

inite term (e.g., 10−6) as indicated in [53]. However, such

a transformation may bring fluctuations to the convergence

process.

6.2 The influence of noise level on ERRRMSE

In this section, we simulated the event localization algorithms

under different levels of Guassian noise standard deviation σi,k.

For GS-ADMM and J-ADMM, we set ρ = 10−3. For PPM and

PONLM, we ran simulations under two cases: setting fixed initial

values at [−50; 100] (denote as Fix in Table 1) and setting random

initial values in the area of 10000m × 10000m (denote as Ran in

Table 1). The number of iterations is fixed to 50 for GS-ADMM,

J-ADMM, PONLM, and 200 for PPM. All simulation results are

summarized in Table 1 and Fig. 4. Each data point in Table 1 is an

average of 100 Monte Carlo trials.
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Fig. 4. The distribution of estimated event location, σ = 0.05. (a) GS-
ADMM; (b) J-ADMM; (c) PONLM; (d) PPM.

From Table 1, we can see that both PPM and PONLM reached

high localization accuracies under fixed initial values. However,

their performance deteriorated significantly when random initial

values were used. Therefore PPM and PONLM are sensitive to

initial value settings. If the target event lies outside the convex hull

of sensors, the convergent values of PPM and PONLM may be far

away from the true event position. GS-ADMM and J-ADMM can

avoid the convex hull problem, so every estimate lay close to the

true event position.

Fig. 4 visualizes the estimated event locations. Fig. 4 (a)



TABLE 1
ERRRMSE of GS-ADMM, J-ADMM, PPM, and PONLM under different measurement noise

σi,k GS-ADMM J-ADMM PPM PONLM

CL1 CL2 CL3 CL1 CL2 CL3 Fix Ran Fix Ran

0.00 0.3693 0.4848 0.5128 0.1146 0.2223 0.2964 0.2100 273.19 0.0338 304.52

0.01 0.5417 0.5443 0.5753 0.3546 0.3911 0.4385 0.2106 285.65 0.0498 269.86

0.02 0.5453 0.5862 0.5992 0.2766 0.3266 0.3779 0.2145 282.83 0.0865 307.95

0.05 0.6055 0.6723 0.7188 0.4987 0.5261 0.5724 0.2265 268.31 0.1895 278.84

0.10 1.0564 1.0942 1.1440 1.0562 1.0589 1.1017 0.2832 288.41 0.4019 243.67

and (b) show the localization results of the proposed algorithms

GS-ADMM and J-ADMM respectively from 100 Monte Carlo

trials with ρ = 10−3. Fig. 4 (c) and (d) show the results of

PPM and PONLM respectively where the initial positions are

chosen randomly. It is clear that both GS-ADMM and J-ADMM

performed better than PPM and PONLM when the initial values

are randomly chosen.

6.3 The influence of noise level on INCRMSE

Setting ρ = 10−3, we also evaluated the influence of noise

level on INCRMSE of our proposed algorithms. The results are

summarized in Fig. 5.
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Fig. 5. The influence of measurement noise on localization inconsis-
tency

Fig. 5 indicates that the proposed GS-ADMM and J-ADMM

have small localization inconsistency (INCRMSE) under different

noise strength. In other words, our proposed algorithms GS-

ADMM and J-ADMM can achieve good consistency across clus-

ters even under large noise standard deviations. As indicated

before, consistency is of crucial importance in many applications.

7 CONCLUSIONS

We proposed two ADMM based distributed event localization

algorithms GS-ADMM and J-ADMM that do not require the

target event to be within the convex hull of the deployed sensors.

Convergence properties of the algorithms are analyzed theoreti-

cally. Numerical simulations showed that the proposed algorithms

are robust to measurement noises and insensitive to convex hull

problem compared with existing projection-based algorithms.
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APPENDIX A

PROOF OF (24) IN THEOREM 1

To prove (24) in Theorem 1, we first introduce two lemmas:

Lemma 1. Let pk = [pkT
1 ,pkT

2 , ...,pkT
m ]T and λk =

[λk
i,j ]ij,ei,j∈E be the iterates generated by GS-ADMM fol-

lowing (20) and (21), then the following inequality holds for

all k:

f(p)− f(pk+1) + (p− pk+1)T JTCTλk+1+

ρ(p− pk+1)T JT (−CTH +HTH + I)J(pk+1 − pk) ≥ 0,

∀p ∈ {[pT
1 ,p

T
2 , ...,p

T
m]T |pi ∈ Pi, ∀i ∈ {1, 2, ...,m}},

(29)

where C is the edge-node incident matrix defined in (15), H =
min{0, C}, and I is the identity matrix. (In the following, we

only consider p belonging to the set {[pT
1 ,p

T
2 , ...,p

T
m]T |pi ∈

Pi, ∀i ∈ {1, 2, ...,m}}, so we leave out this constraint in the

following lemmas and proofs.)

Proof: Denote by gi the function

gki (pi) =
∑

j∈B̂i,j≥i

(λkT
i,j (Jipi − Jjp

k
j ) +

ρ

2
‖ Jipi − Jjp

k
j ‖2)

+
∑

j∈B̂i,j<i

(λkT
i,j (Jipi − Jjp

k+1
j ) +

ρ

2
‖ Jipi − Jjp

k+1
j ‖2).

(30)

From the update rule in (20), we know that pk+1
i is the

optimizer of gki + fi in the closed and convex set Pi. Since fi
and gki are convex, and gki is differentiable, following the proof of

Lemma 3.1 in [54] (which is also mentioned in Lemma 1 in [55]),

we can get

fi(pi)− fi(p
k+1
i ) + (pi − pk+1

i )T ▽ gi(p
k+1
i ) ≥ 0.

Substituting ▽gi(p
k+1
i ) with (30), we have

fi(pi)− fi(p
k+1
i ) + (pi − pk+1

i )T ·

(
∑

j∈B̂i,j≥i

(JT
i λk

i,j + ρJT
i (Jip

k+1
i − Jjp

k
j ))) + (pi − pk+1

i )T ·

(
∑

j∈B̂i,j<i

(JT
i λk

i,j + ρJT
i (Jip

k+1
i − Jjp

k+1
j ))) ≥ 0.

Noting λi,i = 0, using (21) leads to

fi(pi)− fi(p
k+1
i ) + (pi − pk+1

i )T ·

(
∑

j∈Bi

JT
i λk+1

i,j +
∑

j∈B̂i,j≥i

ρJT
i (Jjp

k+1
j − Jjp

k
j )) ≥ 0.



Noting λi,j = −λj,i, from the definition of C, we can rewrite

the above inequality as

fi(pi)− fi(p
k+1
i ) + (pi − pk+1

i )T ·

(JT
i [C]Ti λ

k+1 +
∑

j∈B̂i,j≥i

ρJT
i (Jjp

k+1
j − Jjp

k
j )) ≥ 0,

(31)

here [C]i denotes the columns of C associated with cluster i.
Summing both sides of (31) over i = 1, 2, ...,m, and noticing

that the following two equations hold [40],

m
∑

i=1

(pi − pk+1
i )T JT

i [C]Ti λ
k+1 = (Jp− Jpk+1)TCTλk+1,

m
∑

i=1

(pi − pk+1
i )T (

∑

j∈B̂i,j≥i

ρJT
i (Jjp

k+1
j − Jjp

k
j ))

= ρ(Jp− Jpk+1)T [(−C +H)TH + I](Jpk+1 − Jpk),

we can get the lemma. �

Lemma 2. Let pk = [pkT
1 ,pkT

2 , ...,pkT
m ]T and λk =

[λk
i,j ]ij,ei,j∈E be the iterates generated by GS-ADMM fol-

lowing (20) and (21), then the following equality holds for all

k:

− (Jpk+1)TCT (λk+1 − λ∗)

+ ρ(Jp∗ − Jpk+1)T (HTH − CTH + I)J(pk+1 − pk)

= − 1

2ρ
(‖ λk+1 − λ∗ ‖2 − ‖ λk − λ∗ ‖2)

− ρ

2
(‖ HJ(pk+1 − p∗) ‖2 − ‖ HJ(pk − p∗) ‖2)

− ρ

2
(‖ Jpk+1 − Jp∗ ‖2 − ‖ Jpk − Jp∗ ‖2)

− ρ

2
‖ HJ(pk+1 − pk)− CJpk+1 ‖2

− ρ

2
‖ Jpk+1 − Jpk ‖2 .

(32)

Proof: Since for a scalar a, aT = a holds, and recall λk+1 =
λk + ρCJpk+1, we can get

(pk+1)T JTCT (λk+1 − λ∗)

=
1

ρ
(λk+1 − λk)T (λk+1 − λ∗).

(33)

In addition, as (p∗,λ∗) is the saddle point of the Lagrangian

function L(p,λ) = f(p) + λTCJp, we have CJp∗ = 0.

So we can establish the following relationships using algebraic

manipulation:

(λk+1 − λk)T (λk+1 − λ∗) =
1

2
‖ λk+1 − λk ‖2

+
1

2
(‖ λk+1 − λ∗ ‖2 − ‖ λk − λ∗ ‖2),

(34)

(pk+1 − p∗)TJT IJ(pk+1 − pk) =
1

2
‖ Jpk+1 − Jpk ‖2

+
1

2
(‖ Jpk+1 − Jp∗ ‖2 − ‖ Jpk − Jp∗ ‖2),

(35)

(pk+1 − p∗)T JTHTHJ(pk+1 − pk)

=
1

2
(‖ HJ(pk+1 − p∗) ‖2 − ‖ HJ(pk − p∗) ‖2)

+
1

2
‖ HJ(pk+1 − pk) ‖2,

(36)

(pk+1 − p∗)T JTCTHJ(pk+1 − pk)

=
1

2
‖ HJ(pk+1 − pk) ‖2 + 1

2ρ2
‖ λk+1 − λk ‖2

− 1

2
‖ HJ(pk+1 − pk)− CJpk+1 ‖2 .

(37)

Then (32) can be proven by plugging equations (33) to (37)

into the left part of (32). �

Now we proceed to prove Theorem 1. Set p = p∗ in (29), and

recall CJp∗ = 0, then we have

f(p∗)− f(pk+1)− p(k+1)T JTCTλk+1+

ρ(p∗ − pk+1)T JT (−CTH +HTH + I)J(pk+1 − pk) ≥ 0.
(38)

Adding and subtracting the term λ∗TCJpk+1 from the left

side of (38), we can get

f(p∗)− f(pk+1)

− λ∗TCJpk+1 − p(k+1)T JTCT (λk+1 − λ∗)+

ρ(p∗ − pk+1)T JT (−CTH +HTH + I)J(pk+1 − pk) ≥ 0.

Now by applying (32) into the above inequality, the following

inequality can be obtained:

f(p∗)− f(pk+1)− λ∗TCJpk+1

− 1

2ρ
(‖ λk+1 − λ∗ ‖2 − ‖ λk − λ∗ ‖2)

−ρ

2
(‖ HJ(pk+1 − p∗) ‖2 − ‖ HJ(pk − p∗) ‖2)

−ρ

2
(‖ Jpk+1 − Jp∗ ‖2 − ‖ Jpk − Jp∗ ‖2)

−ρ

2
‖ HJ(pk+1 − pk)− CJpk+1 ‖2

−ρ

2
‖ Jpk+1 − Jpk ‖2≥ 0.

Summing both sides of the inequality over k = 0, 1, ..., t, we

can obtain the following result after some re-arrangement:

(t+ 1)f(p∗)−
t

∑

k=0

f(pk+1)− λ∗TCJ
t

∑

k=0

pk+1 +
ρ

2
·

(‖ HJ(p0 − p∗) ‖2 + ‖ Jp0 − Jp∗ ‖2) + 1

2ρ
‖ λ0 − λ∗ ‖2

≥
t

∑

k=0

ρ

2
(‖ HJ(pk+1 − pk)− CJpk+1 ‖2)

+
t

∑

k=0

ρ

2
(‖ Jpk+1 − Jpk ‖2) + 1

2ρ
‖ λt+1 − λ∗ ‖2

+
ρ

2
(‖ HJ(pt+1 − p∗)+ ‖ Jpt+1 − Jp∗ ‖2) ≥ 0.

In addition, as our function is convex, we have
t
∑

k=0

f(pk+1) ≥
(t+ 1)f(p̄t+1), then we can get

(t+ 1)f(p∗)− (t+ 1)f(p̄t+1)− (t+ 1)λ∗TCJ p̄t+1

+
ρ

2
(‖ HJ(p0 − p∗) ‖2 + ‖ Jp0 − Jp∗ ‖2)

+
1

2ρ
‖ λ0 − λ∗ ‖2≥ 0.



Dividing both sides by −(t+ 1) yields

f(p̄t+1) + λ∗TCJ p̄t+1 − f(p∗)

≤ ρ

2(t+ 1)
(‖ HJ(p0 − p∗) ‖2 + ‖ Jp0 − Jp∗ ‖2)

+
1

(t+ 1)2ρ
‖ λ0 − λ∗ ‖2 .

(39)

Combining the above relationship (39) with the Lagrangian

function L(p,λ) = f(p)+λTCJp, (24) in Theorem 1 is proven.

�

APPENDIX B

PROOF OF THEOREM 3

To prove Theorem 3, we first introduce two lemmas:

Lemma 3. Let pk = [pkT
1 ,pkT

2 , ...,pkT
m ]T and λk =

[λk
i,j ]ij,ei,j∈E be the iterates generated by J-ADMM following

(22) and (23), then the following inequality holds for all k:

f(p)− f(pk+1) + (p− pk+1)T JTCTλk+1

+ ρ(p− pk+1)T JT (−CTC + Q̄T Q̄)J(pk+1 − pk) ≥ 0,
(40)

where Q̄ is defined in (26).

Proof: Denote by gi the function

gki (pi) =
∑

j∈B̂i

(λkT
i,j (Jipi − Jjp

k
j )

+
ρ

2
‖ Jipi − Jjp

k
j ‖2) + ργi

2
‖ Jipi − Jip

k
i ‖2 .

(41)

Then following the proof of Lemma 1, we can get

fi(pi)− fi(p
k+1
i ) + (pi − pk+1

i )TJT
i ·

([C]Ti λ
k+1 +

∑

j∈B̂i

ρJj(p
k+1
j − pk

j ) + ργiJi(p
k+1
i − pk

i )) ≥ 0.

(42)

Summing both sides of the above relation over i = 1, 2, ...m,

and noticing that the following two equations hold,

m
∑

i=1

(pi − pk+1
i )T JT

i ρ(
∑

j∈B̂i

Jj(p
k+1
j − pk

j ) + γiJi(p
k+1
i − pk

i ))

= ρ(p− pk+1)TJT [−CTC +QC + I +QP ]J(p
k+1 − pk),

m
∑

i=1

(pi − pk+1
i )T JT

i [C]Ti λ
k+1 = (p− pk+1)TJTCTλk+1,

we can get the lemma. �

Lemma 4. Let pk = [pkT
1 ,pkT

2 , ...,pkT
m ]T and λk =

[λk
i,j ]ij,ei,j∈E be the iterates generated by J-ADMM following

(22) and (23). Then the following equality holds for all k:

− (pk+1)TJTCT (λk+1 − λ∗)

+ ρ(p∗ − pk+1)T JT (−CTC + Q̄T Q̄)J(pk+1 − pk)

= − 1

2ρ
(‖ λk+1 − λ∗ ‖2 − ‖ λk − λ∗ ‖2)

+
ρ

2
(‖ CJ(pk+1 − p∗) ‖2 − ‖ CJ(pk − p∗) ‖2)

− ρ

2
(‖ Q̄J(pk+1 − p∗) ‖2 − ‖ Q̄J(pk − p∗) ‖2)

+
ρ

2
‖ CJ(pk+1 − pk) ‖2 −ρ

2
‖ Q̄J(pk+1 − pk) ‖2

− 1

2ρ
‖ λk+1 − λk ‖2 .

(43)

Proof: The proof is similar to the proof of Lemma 2 and is

omitted. �

Then following the proof of Theorem 1 (setting p = p∗ in

(40) and applying (43)), we can obtain the following inequality:

f(p∗)− f(pk+1)− λ∗TCJpk+1

− 1

2ρ
(‖ λk+1 − λ∗ ‖2 − ‖ λk − λ∗ ‖2)

+
ρ

2
(‖ CJ(pk+1 − p∗) ‖2 − ‖ CJ(pk − p∗) ‖2)

−ρ

2
(‖ Q̄J(pk+1 − p∗) ‖2 − ‖ Q̄J(pk − p∗) ‖2)

+
ρ

2
‖ CJ(pk+1 − pk) ‖2 −ρ

2
‖ Q̄J(pk+1 − pk) ‖2

− 1

2ρ
‖ λk+1 − λk ‖2≥ 0.

Summing both sides of the above inequality over k =
0, 1, ..., t, we can get the following result after some re-

arrangement:

(t+ 1)f(p∗)−
t

∑

k=0

f(pk+1)− λ∗TCJ
t

∑

k=0

pk+1

+
ρ

2
‖ Q̄J(p0 − p∗) ‖2 +

1

2ρ
‖ λ0 − λ∗ ‖2

≥ ρ

2
‖ CJ(p0 − p∗) ‖2 + 1

2ρ
‖ λt+1 − λ∗ ‖2

+
t

∑

k=0

ρ

2
(‖ Q̄J(pk+1 − pk) ‖2 − ‖ CJ(pk+1 − pk) ‖2)

+
ρ

2
(‖ Q̄J(pt+1 − p∗) ‖2 − ‖ CJ(pt+1 − p∗) ‖2)

+
t

∑

k=0

1

2ρ
‖ λk+1 − λk ‖2

≥
t

∑

k=0

ρ

2
(‖ Q̄J(pk+1 − pk) ‖2 − ‖ C ‖2‖ Jpk+1 − Jpk ‖2)

+
ρ

2
(‖ Q̄J(pt+1 − p∗) ‖2 − ‖ C ‖2‖ Jpt+1 − Jp∗ ‖2).

Since ‖ C ‖2= αmax, Q̄ is a diagonal matrix with γ′
i ≥√

αmax, we can get that the right hand side of the above inequality

is greater than 0, which leads to

(t+ 1)f(p∗)−
t

∑

k=0

f(pk+1)− λ∗TCJ
t

∑

k=0

pk+1

+
ρ

2
‖ Q̄J(p0 − p∗) ‖2 +

1

2ρ
‖ λ0 − λ∗ ‖2≥ 0.

In addition, as our function is convex, we have
t
∑

k=0
f(pk+1) ≥

(t+ 1)f(p̄t+1) and

(t+ 1)f(p∗)− (t+ 1)f(p̄t+1)− (t+ 1)λ∗TCJ p̄t+1

+
ρ

2
‖ Q̄J(p0 − p∗) ‖2 +

1

2ρ
‖ λ0 − λ∗ ‖2≥ 0.

By dividing both sides by −(t+ 1), we can obtain

f(p̄t+1) + λ∗TCJ p̄t+1 − f(p∗)

≤ 1

t+ 1
(
1

2ρ
‖ λ0 − λ∗ ‖2 +

ρ

2
‖ Q̄J(p0 − p∗) ‖2).

Combining the above relationship with the Lagrangian func-

tion L(p,λ) = f(p) + λTCJp, we can get Theorem 3. �
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