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RFGAN: RF-Based Human Synthesis
Cong Yu, Zhi Wu, Dongheng Zhang, Zhi Lu, Yang Hu,
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Abstract—This paper demonstrates human synthesis based
on the Radio Frequency (RF) signals, which leverages the fact
that RF signals can record human movements with the signal
reflections off the human body. Different from existing RF sensing
works that can only perceive humans roughly, this paper aims
to generate fine-grained optical human images by introducing
a novel cross-modal RFGAN model. Specifically, we first build
a radio system equipped with horizontal and vertical antenna
arrays to transceive RF signals. Since the reflected RF signals are
processed as obscure signal projection heatmaps on the horizontal
and vertical planes, we design a RF-Extractor with RNN in
RFGAN for RF heatmap encoding and combining to obtain
the human activity information. Then we inject the information
extracted by the RF-Extractor and RNN as the condition into
GAN using the proposed RF-based adaptive normalizations.
Finally, we train the whole model in an end-to-end manner. To
evaluate our proposed model, we create two cross-modal datasets
(RF-Walk & RF-Activity) that contain thousands of optical human
activity frames and corresponding RF signals. Experimental
results show that the RFGAN can generate target human activity
frames using RF signals. To the best of our knowledge, this is
the first work to generate optical images based on RF signals.

Index Terms—RF Sensing, Human Synthesis, GAN.

I. INTRODUCTION

VARIOUS recent works have built Radio Frequency (RF)
sensing systems to perceive and understand the activities

of humans. Compared with alternative sensing methods, RF
sensing has improved usability due to the characteristics of
RF signals, for example, the RF signals can work in all-day
and all-weather scenarios, the sensing is contactless etc.. Ex-
isting RF-based human sensing works mainly include human
position tracking [1]–[9], human speed estimation [10]–[12],
human keypoint prediction [13]–[16], and gesture recogni-
tion [17]. However, these works can only perceive humans
roughly and the sensing results usually lack fine details and
are not as intuitive as optical sensing results.

In recent years, Generative Adversarial Networks
(GAN) [18] have achieved promising results in modeling
complex multimodal data and synthesizing realistic images.
Furthermore, to generate meaningful images that meet
actual requirements, many conditional GAN models have
been proposed to control the generated results. Researchers
have explored various kinds of conditions, e.g., category
labels [19], text descriptions [20]–[22], and images [23]–[31].
From technology perspective, most existing GAN models
require the conditions to be able to guide the GAN model
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Fig. 1. With a source frame as reference, the RFGAN model can synthesize
the target human activities based on the RF signals.

explicitly [19], [23], [25], [26], [31] or can be transformed to
conditional variables for GAN using an existing pre-trained
model [20]–[22].

In this paper, we propose a solution to overcome the
limitation of existing RF-based human activity sensing by
making the results more visually intuitive, which is valuable in
practice. We leverage the power of GAN models to generate
photo-realistic sensing results from RF signals. Specifically,
a photograph of the people in the scene is provided so that
the GAN model has sufficient information about the visual
appearance of the people and the environment of the scene.
We use millimeter wave (mmWave) radars to build our radio
system, which is equipped with two antenna arrays, horizontal
and vertical ones, to obtain the RF signals that reflect off
the human body. We process the horizontal and vertical RF
signal reflections to horizontal and vertical RF heatmaps,
which record the activity information of the human. The RF
signal is a new kind of conditional data for GAN models.
Due to the characteristics of RF signals, the resolution of the
horizontal and the vertical RF heatmaps are relatively low.
Besides, their spatial structures are quite different from optical
images. Therefore, to utilize the RF signals as the conditional
data to guide the GAN model, some challenges need to be
addressed: firstly, we need to train the RF conditioning encod-
ing network without supervision labels to obtain the desirable
human activity information; secondly, the information from
the horizontal and vertical RF heatmaps need to be fused
to characterize the overall human activity; thirdly, the fused
information needs to be injected into the GAN model properly.

To tackle the above challenges, we design dual RF-
Extractors and RNNs in the RFGAN model, one in the
generative part and the other in the discriminative part, and
we train them by adversarial learning. Two CNN encoders
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in the RF-Extractor are used to extract features from the
horizontal and vertical RF heatmaps, respectively. Then a
novel fusion operation is designed to fuse the information by
building relationships between the extracted features. To inject
the fused information into the GAN model, inspired by [26],
[32], [33], we propose to modify the distributions of the latent
features in GAN by using a RF-based adaptive normalization.
Furthermore, we create two cross-modal datasets (RF-Walk &
RF-Activity) that consist of optical human activity frames and
corresponding RF signals to train and test our proposed RF-
GAN model. The experimental results show that the RFGAN
can generate better human results than alternative methods.

Since the RF signals do not rely on visible lights and
can traverse occlusions, our proposed RFGAN model can
also work when lights dim or the human is occluded by
barriers. For example, when the environment is favorable, we
capture a human frame as the source. Our radio system can
record the RF signal reflections when the illumination becomes
bad or the human is in occlusions. The proposed RFGAN
model can synthesize human activities based on these collected
multimodal data.

Therefore, the main contributions of this paper can be
summarized as follows:

1. We propose a novel RFGAN model to enable RF-based
human synthesis. To the best of our knowledge, this is the
first work to generate human images from the mmWave
radar signals. There are many potential applications that
can be derived from this task, e.g., fine-grained human
perception and all-day monitoring systems in the smart
home.

2. Technically, for the new kind of conditional data, i.e.,
the RF signals, we propose to train the RF conditioning
encoding network, i.e., the RF-Extractor and RNN, by
adversarial learning. Then we design a novel fusion op-
eration to fuse the horizontal and vertical RF information,
which is an effective approach for overall human activity
sensing from the two-dimensional RF heatmaps. Due
to the spatial structure difference, we propose to use
the RF-based adaptive normalizations to inject the fused
information into the GAN model.

3. We create two cross-modal datasets, i.e., RF-Walk and
RF-Activity, which contain thousands of optical hu-
man activity frames and corresponding RF signals. The
datasets will be released to public.

II. RELATED WORK

Conditional GAN Many research works have shown that
GAN [18] has the capability of generating realistic images
based on the given conditional data. For example, [19] uti-
lize category labels to generate target digit images. Some
works [23]–[31] introduce the GAN-based image-to-image
translation frameworks. For some more complex conditional
data, e.g., text data, [20]–[22] use existing pre-trained models
to transform the text into conditioning variables for GAN. To
employ these conditions in the networks, some works [26],
[32], [33] find that utilizing the conditional normalization in
the hidden layers can contribute to generating target images.

RF-Extractor RF-Extractor RF-Extractor

…

…
RNN RNN RNN

Generator Generator Generator…

Hor Ver Hor Ver Hor Ver
RF 

Heatmaps 

Source Frame 

Loss LG
<latexit sha1_base64="Ln+b6+rmwt7K2i/R0XQqScTUsTk=">AAAB+HicbVDLSsNAFL3xWeujVZduBovgqiRV0GXRhS5cVLAPaEOYTCft0MkkzEyEGvIlblwo4tZPceffOGmz0NYDA4dz7uWeOX7MmdK2/W2trK6tb2yWtsrbO7t7ler+QUdFiSS0TSIeyZ6PFeVM0LZmmtNeLCkOfU67/uQ697uPVCoWiQc9jakb4pFgASNYG8mrVgYh1mOCeXqXeelN5lVrdt2eAS0TpyA1KNDyql+DYUSSkApNOFaq79ixdlMsNSOcZuVBomiMyQSPaN9QgUOq3HQWPEMnRhmiIJLmCY1m6u+NFIdKTUPfTOYx1aKXi/95/UQHl27KRJxoKsj8UJBwpCOUt4CGTFKi+dQQTCQzWREZY4mJNl2VTQnO4peXSadRd87qjfvzWvOqqKMER3AMp+DABTThFlrQBgIJPMMrvFlP1ov1bn3MR1esYucQ/sD6/AEV6pNd</latexit>

LD
<latexit sha1_base64="VyEfCCytGclcwaiYCUMV00vPzPA=">AAAB+HicbVDLSsNAFL3xWeujVZduBovgqiRV0GVRFy5cVLAPaEOYTCft0MkkzEyEGvIlblwo4tZPceffOGmz0NYDA4dz7uWeOX7MmdK2/W2trK6tb2yWtsrbO7t7ler+QUdFiSS0TSIeyZ6PFeVM0LZmmtNeLCkOfU67/uQ697uPVCoWiQc9jakb4pFgASNYG8mrVgYh1mOCeXqXeelN5lVrdt2eAS0TpyA1KNDyql+DYUSSkApNOFaq79ixdlMsNSOcZuVBomiMyQSPaN9QgUOq3HQWPEMnRhmiIJLmCY1m6u+NFIdKTUPfTOYx1aKXi/95/UQHl27KRJxoKsj8UJBwpCOUt4CGTFKi+dQQTCQzWREZY4mJNl2VTQnO4peXSadRd87qjfvzWvOqqKMER3AMp+DABTThFlrQBgIJPMMrvFlP1ov1bn3MR1esYucQ/sD6/AERW5Na</latexit>

Adversarial Training

Fig. 2. The architecture of the RFGAN model for generating sequential human
activity frames.

In our case, we take RF signals as the condition to guide the
image synthesis, which is a new cross-modal conditional data
that has obscure guidance for GAN and has no existing pre-
trained model for conditioning encoding.

RF-Based Human Perception Recent years have witnessed
much interest in using RF signals to enable various human
perception tasks [34], including indoor localization and track-
ing [1]–[5], [7]–[9], human speed estimation or human move-
ment detection [10]–[12], [17], human identification [35]–[37],
and human vital signs inference [38]–[42]. Besides the above
signal-processing-based methods, approaches based on deep
learning are also utilized to handle radio human perception.
For example, [43] combines convolutional and recurrent neural
networks to learn sleep stages from radio signals. [13], [14]
propose to predict the 2D/3D human keypoints based on RF
signals by building a teacher-student network model. In this
paper, we propose to use RF signals for human image synthesis
by combining conditional GAN models.

Sequence Modeling Recurrent neural networks, such as
vanilla RNN, GRU and LSTM, have been widely used for
processing sequential data, such as text and speech. They
have also been successfully applied to model the temporal
dependencies in videos for various vision problems, such as
video classification [44], action recognition [45]–[49], object
segmentation [50], video prediction [51], etc. In this work,
considering that the RF signals are sequential data and the
RF heatmaps are the samples at different moments, we utilize
recurrent neural networks as the backbone of our model to
perceive human activities from RF signals and synthesize
corresponding optical images.



3

Generator

Generated Frame

Ground-truth Frame

Activity-
Discriminator

RF-Extractor

RNN

Hor Ver

RF-Extractor

RNN

Hor Ver

Real
Fake

Adversarial Training

Appearance-
Discriminator

Source Frame Real
Fake

Generative Part

Discriminative Part

RF Fused 
Representation

RF Fused 
Representation

RF Heatmaps 

Fig. 3. The training framework of RFGAN at one moment. It consists of a generative part and a discriminative part. The whole model is trained by adversarial
learning in an end-to-end manner.

III. PRELIMINARY

Our method relies on transmitting RF signals and receiving
the reflections. We adopt Frequency Modulated Continuous
Wave (FMCW) and linear antenna arrays for signal transceiv-
ing. Inspired by [13], our radio system is equipped with two
antenna arrays: horizontal and vertical ones, which are utilized
to acquire the signal projections on the plane parallel to the
ground and the plane perpendicular to the ground, respectively.
Hence, the RF data is composed of both horizontal and vertical
heatmaps.

Compared with camera-based visual data, RF signals have
some different characteristics. Firstly, RF signals have much
lower resolution. The resolution is determined by the band-
width of the signal and the aperture of the antenna array [52].
In our system, the depth resolution is about 7.5cm, and
the angular resolution is about 1.3 degrees. Secondly, the
RF signals suffer from severe multi-path propagation in an
indoor environment [8], which introduces severe interference
in the received signals. Thirdly, the RF signals have different
representations of the scene compared with the camera, i.e.,
horizontal and vertical projections.

IV. RFGAN
The RFGAN model aims to generate sequential human

activity frames using a sequence of RF heatmaps (horizontal
& vertical) and a source frame. To extract and combine the
human activity information from the horizontal and vertical
RF heatmaps, we design a RF-Extractor, which is built with a
sequence model, i.e., the Recurrent Neural Network (RNN), to
process the RF sequence. To generate optical human activity

frames, we utilize the Generative Adversarial Network (GAN)
as the main technological approach in our model, where the
source frame is fed as the input layer and the information
extracted from RF heatmaps is the condition of GAN.

The architecture of RFGAN model is shown in Figure 2.
The RNN is the backbone of the model, which is designed for
sequence data processing and generation. The RF-Extractor
and the Generator are plugged into both sides of the RNN
to process RF heatmaps and generate human frames. In the
following subsections, we first introduce the training frame-
work of the model and then discuss the network structures of
the RF-Extractor, the RNN, and the RF-based Generator and
Discriminators in detail. Finally, we describe the loss functions
used to train the whole model.

A. Training Framework

The proposed human synthesis model aims to generate
sequential human frames from a source frame and the cor-
responding sequential RF heatmaps. Figure 3 shows the ad-
versarial training framework of the human synthesis model
at one moment, which consists of a generative part and
a discriminative part. The generative part contains a RF-
Extractor, a RNN, and a Generator. The RF-Extractor and
RNN extract the human position and posture information from
the corresponding RF heatmaps and represent it as a RF fused
representation. For the Generator, the source frame is fed as
the input layer, and the extracted RF fused representation
controls the network through normalization at the convolution
layers. The output is the generated human frame. There are
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Fig. 4. The structure of RF-Extractor. It consists of two CNN encoders, a
fusion operation, and a RNN.

two Discriminators in the discriminative part. The Activity-
Discriminator is designed to ensure that the human position
and posture in the generated frame are consistent with the
RF signal. It takes the generated frame as the input layer.
The RF fused representation extracted by the RF-Extractor
and RNN in the discriminative part is used as condition of
this Discriminator. The Appearance-Discriminator ensures that
the generated frame maintains the same visual information,
such as human appearance, with the source frame, thus the
generated frame is concatenated with the source frame at the
input layer.

Note that the RF-Extractors and RNNs in the generative part
and the discriminative part have the same network structures
and RF inputs, but they do not share the network parameters.
In the previous GAN literature, the conditional variables that
fed into the Generator and the Discriminator are obtained
by the same network model, mainly due to the existence
of the pre-trained model to enable the desirable conditioning
encoding. However, in our task, there is no existing pre-trained
model for RF encoding. Thus, we propose dual RF-Extractors
and RNNs under an adversarial training framework to learn to
transform the RF heatmaps, one for the generation task and the
other for the discrimination task. Specifically, the RF-Extractor
and RNN in the generative part update with the Generator,
whereas the RF-Extractor and RNN in the discriminative part
update with the Activity-Discriminator. The update process is
adversarial training and the whole model is trained in an end-
to-end manner.

B. RF-Extractor & RNN

The horizontal RF heatmaps and the vertical RF heatmaps
record human activities from different viewpoints and each of
them only contains partial human activity information, i.e., the
horizontal RF heatmap is a projection of the signal reflections

Encode

RF Heatmap Feature Maps

Fig. 5. The RF heatmap and the corresponding feature maps.

on a plane parallel to the ground, which leads to the loss of the
human height information, whereas the vertical heatmap is a
projection of the reflected signals on a plane perpendicular to
the ground and the human width information is missed. Thus,
it is a challenge that how to extract and combine the horizontal
and vertical RF information to get the whole human activity
information.

In our proposed network structure, as shown in Figure 4,
we first use two standard CNN encoders to transform the
horizontal and vertical RF heatmaps into feature maps, respec-
tively. The original RF heatmaps record the reflected signals
throughout the whole room. After the differential operation
along the time, only the signals introduced by the moving
human are retained. As shown in left part of Figure 5, we can
find the signal reflections from the moving human (bright area)
only occupy a very small area of the RF heatmap. Therefore,
we use an encoder that consists of several convolution layers
to reduce the RF heatmap size and focus on the bright area.
Since the values of signal reflections from no human areas
(dark areas) are very small and close to 0, the convolution
results, which are denoted as feature maps (shown in right
part of Figure 5), can capture the human posture information
from the bright area and the human position information from
the location of the bright area.
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Human Activity

Fig. 6. The horizontal and vertical feature maps contain the human activ-
ity information on the horizontal and vertical plane, respectively. The red
cuboids are the related-feature-vectors, which contain the activity information
introduced by the same human body part.

After encoding RF heatmaps, a fusion operation (RF-
Fusion) is proposed to combine the horizontal and vertical
feature maps into a fused representation. As shown in Fig-
ure 6, the horizontal feature maps can be represented as a
Hhor ×Whor × N tensor, which uses Hhor ×Whor feature
vectors on a horizontal plane to record the human activity
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RF Fused RepresentationHor Feature Maps Ver Feature Maps

Fig. 7. The RF-Fusion operation.

information, and each feature vector is N dimensional. For the
vertical feature maps, Hver ×Wver feature vectors are used
on a vertical plane to record the human activity information,
and each feature vector is also N dimensional. We refer to the
feature vectors in the horizontal and vertical feature maps as
related-feature-vectors if they record the activity information
introduced by the same human body part (see Figure 6).
Combining these related-feature-vectors can help characterize
the overall human activity. However, it is difficult to find the
one-to-one correspondence between them directly.

To address this problem and bridge these related-feature-
vectors, we define RF-Fusion as follows: for each feature
vector in the horizontal feature maps, the dot product is applied
with every feature vector in the vertical feature maps, and
the results are denoted as a RF fused representation. For
example, as shown in Figure 7, the dot products between the
first horizontal feature vector and every vertical feature vector
generate Hver ×Wver values, which are the first row of the
RF fused representation. In such a way, we can obtain the RF
fused representation as follows:

R(i, j) =
H(i)V (j)T√

N
,

i ∈ [0, Hhor ×Whor), j ∈ [0, Hver ×Wver),

(1)

where R(i, j) is the value at the point (i, j) in the RF fused
representation, H(i) and V (j) refer to the feature vector in the
horizontal feature maps and the feature vector in the vertical
feature maps. The denominator

√
N is to scale the values.

Why does RF-Fusion work? The traditional feature map
fusion approach is to concatenate feature maps along the
channel directly, which is effective when feature maps have
the same spatial structure, i.e., the feature vectors in the
different feature maps are aligned and can be combined by
concatenating. However, in the RF fusion step, for a given
feature vector in the horizontal feature maps, we do not know
which feature vector in the vertical feature maps is related to
it. Thus our proposed RF-Fusion builds relationships between
every feature vector in the horizontal feature maps and every
feature vector in the vertical feature maps. For the learned
RF-Extractor, the related-feature-vectors in the horizontal and
vertical feature maps are supposed to be highly correlated and
lead to generating large values in the RF fused representation,
which are shown as bright points. Therefore, the distribution
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Fig. 8. The structure of Generator.

and values of these bright points can characterize the overall
human activity.

Finally, the RF fused representations are fed into the RNN
to get adjustments. We propose this procedure based on the
following fact: human activities, such as arm swing, leg
raising, etc., are generally continuous, thus the RF fused
representation that contains the human position and posture
information at a certain moment is interrelated with several
preceding and subsequent RF fused representations. The RNN
model can adjust the current representation by considering its
neighbors, and the adjusted results would contain more smooth
and more accurate human activity information. In our model,
we use a three-layer BiLSTM as the proposed RNN, and the
hidden states in the last layer are adopted as the adjusted RF
fused representations.

C. RF-Based Generator & Discriminators

The Generator in our model consists of an encoder, several
residual blocks, and a decoder (see Figure 8). The encoder
and the decoder contain the same numbers of convolutional
and deconvolutional layers. The residual blocks are divided
into several groups and each group has the same numbers
of blocks. The feature extracted from the source frame is
concatenated with several feature maps in the residual blocks
to maintain the appearance information. For the Activity-
Discriminator and the Appearance-Discriminator, we use the
network structures inspired by PatchGAN [23]. They both
consist of convolutional layers, where the first layer does not
use the normalization and the last layer is only a convolution
to produce a 1-dimensional output.

Specifically, to enable the RF-based condition setting in RF-
GAN, we propose a RF-based adaptive instance normalization
(RF-InNorm) in the hidden layers of Generator and Activity-
Discriminator, which injects the RF fused representation by
modifying the feature distribution. The RF-InNorm is defined
as

RF-InNorm(fn) = Fnγ (h) · f
n − µn
σn

+ Fnβ (h), (2)

where fn is the feature map of the n-th layer in the Generator
or Activity-Discriminator, µn and σn are the mean and
standard deviation of the feature map. h refers to the RF fused
representation, Fnγ (·) and Fnβ (·) are the learned nonlinear
functions, which specialize h to RF-based modulation param-
eters. Therefore, the feature map fn is first normalized and
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then scaled and biased by Fnγ (h) and Fnβ (h) to incorporate
the RF fused representation condition.

For the Appearance-Discriminator, the source frame condi-
tion is concatenated with the input and fed into the network.

D. Loss Functions

The training process of the RFGAN is a two-player minimax
game between the generative part and the discriminative part.
For the discriminative part, we set the loss for the Activity-
Discriminator and the RF-Extractor and RNN as:

Lact = LactLSD + λLactGP , (3)

where LactLSD is the adversarial loss inspired by LSGAN [53],
LactGP is the gradient regularization term that penalizes the
discriminator gradients only on the true data to stabilize the
training process [54], which can be calculated by

LactLSD =Exr∼P
[
(Dact(xr|Edis(rh, rv))− 1)2

]
+

Exf∼Q
[
(Dact(xf |Edis(rh, rv))− 0)2

]
,

(4)

and

LactGP = Exr∼P[‖∇Dact(xr|Edis(rh, rv))‖22], (5)

where Dact is the Activity-Discriminator, Edis is the RF-
Extractor and RNN in the discriminative part, xr and xf are
the ground-truth and the generated human frame, respectively,
rh and rv refer to the horizontal RF heatmap and the vertical
RF heatmap, respectively.

For the Appearance-Discriminator, the loss function is sim-
ilar to the loss for the Activity-Discriminator and the RF-
Extractor and RNN:

Lapp = LappLSD + λLappGP , (6)

the LappLSD and LappGP are calculated by

LappLSD =Exr∼P
[
(Dapp(xr|xs)− 1)2

]
+

Exf∼Q
[
(Dapp(xf |xs)− 0)2

]
,

(7)

and

LappGP = Exr∼P[‖∇Dapp(xr|xs)‖22], (8)

where xs is the source frame.
Therefore, the final loss function of the discriminative part

is

LD = Lact + Lapp. (9)

For the generative part, the loss function is

LG = LLSG + αLIMG + βLFEA, (10)

where LLSG is the corresponding adversarial loss, LIMG and
LFEA are designed for synthesizing images with better visual
quality, which push the generated images towards the ground-
truth images in the image space and the feature space. They
are calculated by:

LLSG =Exf∼Q
[
(Dact(xf |Egen(rh, rv))− 1)2

]
+

Exf∼Q
[
(Dapp(xf |xs)− 1)2

]
,

(11)

Algorithm 1 Training algorithm for RFGAN.
Set: The batch size m is 2, the hyperparameters
λ = α = β = 10.0, the learning rate η is 0.0002.
Initialize: Initial ΦEgen

for the RF-Extractor and RNN in
generative part, initial ΦEdis

for the RF-Extractor and RNN
in discriminative part, initial ΦG for the Generator, initial
ΦDact

for the Activity-Discriminator, and initial ΦDapp
for

the Appearance-Discriminator.

1: while ΦEgen
,ΦG has not converged do

2: Sample a batch of {rh, rv,xs,xr} from the dataset
3: Update ΦEdis

,ΦDact ,ΦDapp using Adam with:
4: ΦEdis

← ΦEdis
− η 1

m∇ΦEdis

∑m
i=1 Lact

5: ΦDact
← ΦDact

− η 1
m∇ΦDact

∑m
i=1 Lact

6: ΦDapp ← ΦDapp − η 1
m∇ΦDapp

∑m
i=1 Lapp

7: Update ΦEgen ,ΦG using Adam with:
8: ΦEgen

← ΦEgen
− η 1

m∇ΦEgen

∑m
i=1 LG

9: ΦG ← ΦG − η 1
m∇ΦG

∑m
i=1 LG

10: end while

and

LIMG = Exf∼Q,xr∼P ‖xf − xr‖1 , (12)

LFEA =

K∑
i

Exf∼Q,xr∼P

∥∥∥f i,actxf
− f i,actxr

∥∥∥
1

+

K∑
i

Exf∼Q,xr∼P

∥∥∥f i,appxf
− f i,appxr

∥∥∥
1
,

(13)

where Egen is the RF-Extractor and RNN in the generative
part, f i,actx refers to the feature map of x at layer i in the
Activity-Discriminator, f i,appx refers to the feature map of x
at layer i in the Appearance-Discriminator, and K is the total
number of layers.

The whole training procedure is described in Algorithm 1.

V. EXPERIMENTS

A. Implementation

Data We collected the RF signal reflections at 20Hz from our
mmWave radar system, i.e., the horizontal and vertical antenna
arrays generate 20 pairs of heatmaps per second. To obtain
the optical human images, we attach an RGB camera with the
mmWave radar system to record videos at 10 FPS. In order to
reduce the coupling between the human and the environment,
we collected the data under 9 indoor scenes. There were 6
volunteers involved in the data collection and each volunteer
wears multiple dresses.

In total, we create two types of RF-Vision datasets, i.e., RF-
Walk and RF-Activity. For RF-Walk, it contains 67,860 human
random walking frames and 135,720 pairs of corresponding
RF heatmaps. We use 54,525 frames of human walking images
and 109,050 pairs of RF heatmaps for training and the rest
for testing. For RF-Activity, it contains 68,680 human daily
activity (e.g., stand, walk, squat, sit, etc.) frames and 137,360
pairs of corresponding RF heatmaps. We use 55,225 frames of
human activity images and 110,450 pairs of RF heatmaps for
training and the rest for testing. Each human activity frame is
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Source

Hor Ver

Ground Truth

Img&RF

RFGAN

RF-Concat

Fig. 9. Qualitative comparison of different methods. The 1st row shows the source frames. The 2nd row shows the horizontal and vertical RF heatmaps.
The 3rd row shows the ground-truth human activity frames captured by the optical camera. The 4th to the 6th rows show the generated results by Img&RF,
RF-Concat, and RFGAN.

RF-Walk RF-Activity

Methods FID ↓ SSIM ↑ User study ↑ FID ↓ SSIM ↑ User study ↑

Img&RF 27.84 0.9622 42.11% 22.03 0.9643 35.89%

RF-Concat 21.08 0.9689 69.23% 19.19 0.9707 68.42%

RFGAN 15.75 0.9695 80.76% 15.05 0.9708 78.12%

TABLE I
QUANTITATIVE COMPARISON OF DIFFERENT METHODS.

resized to 320 × 180, and the shape of each RF heatmap is
201× 160.
Training details The proposed model is trained using Adam
solver. The learning rate is set to 0.0002 for both the generative
part and the discriminative part. The number of epochs is 80
and the batch size is 2. The hyperparameters λ, α, and β
are equal and set to 10.0. We implement our method using
PyTorch and all experiments can be run on a commodity
workstation with a single GTX-1080 graphics card.

B. Evaluation Metric

We evaluate our proposed model from the following aspects:
- Image Quality (FID): We use the most popular metric
FID [55] to evaluate the quality of the generated images.

It computes the Fréchet Inception Distance between the sets
of generated images and the real images. The smaller the
distance, the better the quality.

- Image Similarity (SSIM): For each test sample, we calculate
the visual structural similarity (SSIM) [56] to measure the
similarity between the generated and the ground-truth human
frames. A higher value means that the model can generate a
human frame more similar to the ground truth.

- User Study: We conduct user surveys to evaluate whether
our model can synthesize human frames with correct positions
and postures. We first show our subjects some generated hu-
man frames and the corresponding ground-truth human frames,
then each subject is asked to assess (yes/no) the generated
results based on human positions and postures. There are 10
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Hor Ver

Ground Truth

RFGAN-w/o-RFExtD

RFGAN (full)

RFGAN-w/o-RNN

Fig. 10. Qualitative comparison of the ablation study. The 1st row shows the horizontal and vertical RF heatmaps. The 2nd row shows the ground-truth human
activity frames captured by the optical camera. The 3rd to 5th rows show the generated results by RFGAN-w/o-RFExtD, RFGAN-w/o-RNN, and RFGAN
(full).

subjects involoved in the study.

C. Baselines

To our knowledge, this work is the first attempt that utilizes
the RF signals to generate realistic human activity frames
and there is no existing and suitable baseline method to be
compared with. Therefore, we modify our model with some
classic approaches that are widely used in GANs or related
works, and the modified models are set as the baselines:
- Img&RF: To enable the RF-based condition setting, we
propose a RF-Extractor with RNN to encode RF heatmaps and
use RF-InNorm to inject the extracted information. Another
alternative approach is to concatenate the RF condition with
the input image directly, which is effective when the conditions
have explicit guidance for GAN, e.g., pose-guided human
synthesis [25]. However, the RF conditions are obscure data
and have totally different spatial structures with optical images.
- RF-Concat: In our model, we propose a novel RF-Fusion
operation to combine the horizontal and the vertical RF
information, whereas the state-of-the-art approach for fusing
RF information is to concatenate the features from RF signals
along the channel directly, as in [13], [57]. We can find
most existing learning-based RF sensing works just follow the
common approach in computer vision literature to combine the
two-dimensional RF information. In this paper, we design a
specialized operation for RF signal data.
- Ground Truth: Another baseline is the ground-truth human
activity frames captured by the optical camera.

The qualitative and quantitative comparisons are shown in
Figure 9 and Table I. From the visual results, we can see
that our proposed RFGAN model can capture the human
position and posture information from RF signals and gen-
erate desirable activity frames. Although the baselines, i.e.,
RF-Concat and Img&RF, can capture the human position
information, people in the generated frames are quite blurred.
The user survey results also confirm the higher position and
posture accuracy of the generated human activity frames by
RFGAN. According to the FID and SSIM measurements, we
find that the human activity frames generated by the proposed
RFGAN have better quality and are more similar to the ground
truth. The experimental results demonstrate the effectiveness
of our proposed RF-Fusion and the RF conditioning encoding
network.

D. Ablation Study

In this subsection, we conduct ablation studies to evaluate
some important components in our proposed RFGAN model:
- RFGAN-w/o-RFExtD: In our full RFGAN model, there are
two RF-Extractors and RNNs, one in the generative part and
the other in the discriminative part. In RFGAN-w/o-RFExtD,
We remove the RF-Extractor and RNN in the discriminative
part and use the RF fused representation extracted in the
generative part as the condition for Activity-Discriminator.
- RFGAN-w/o-RNN: We remove the RNN module from our
full RFGAN model in this setting, which means the RFGAN-
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RF-Walk RF-Activity

Methods FID ↓ SSIM ↑ User study ↑ FID ↓ SSIM ↑ User study ↑

RFGAN-w/o-RFExtD 58.36 0.9618 0.00% 45.71 0.9630 0.00%

RFGAN-w/o-RNN 16.41 0.9691 71.79% 18.11 0.9705 72.00%

RFGAN (full) 15.75 0.9695 80.76% 15.05 0.9708 78.12%

TABLE II
QUANTITATIVE COMPARISON FOR THE ABLATION STUDY.

w/o-RNN generates human activity frames only based on
current RF signal inputs.

The qualitative and quantitative results are shown in Fig-
ure 10 and Table II. We find that the dual RF-Extractors
and RNNs setting under the adversarial learning framework,
i.e., RFGAN (full), can synthesize the target human activity
frames, which is mainly due to the fact that the RF-Extractors
and RNNs in the generative and the discriminative parts
have different focuses. The RF-Extractor and RNN in the
generative part pay more attention to guide the Generator
for better synthesis, whereas the RF-Extractor and RNN in
the discriminative part aim to help the Activity-Discriminator
to distinguish different human poses. They are trained by
adversarial learning. For RFGAN-w/o-RFExtD, only one RF-
Extractor and RNN are used for RF conditioning encoding.
Due to the lack of supervision labels for training guidance
or another RF-Extractor and RNN for adversarial learning,
one RF-Extractor and RNN cannot get the desirable human
activity information from the RF signals and lead to ignoring
the human object in the generated frames (see 3rd row in Fig-
ure 10). For RFGAN-w/o-RNN, due to the lack of information
from the RF input neighbors, which can be used to adjust the
current RF fused representation, it performs worse than the
full RFGAN model. From the visual results, we can see the
people in the generated frames by RFGAN-w/o-RNN are full
of artifacts (4th row in Figure 10).

E. Deployment in New Scene

To deploy our model in a new scene, we do not need to
retrain the whole model from the start. We can fine-tune the
pre-trained RFGAN using very little data (about 40s data) to
get similar results (see Table III). Specifically, the learning rate
during the fine-tuning process is 0.0002 for both the generative
part and the discriminative part. The epochs and batch size
are set to 40 and 2, respectively. The loss functions and
hyperparameters are the same with the training stage. From
the quantitative results, we find that the pre-trained RFGAN
model can generate desirable human activity frames in the new
scene after fine-tuning with only a little data, which means our
proposed model has the potential for being widely used.

FID ↓ SSIM ↑ User study ↑

New Scene 20.64 0.9739 73.33%

TABLE III
QUANTITATIVE RESULTS IN THE NEW SCENE.

RFGANSource Hor Ver Occlusions

Bad Lighting

Fig. 11. Performance under occlusions and bad lighting.

F. Occlusions and Bad Lighting

RF signals can traverse occlusions and do not rely on lights,
thus our model can work in the occluded or bad lighting
environments (see Figure 11).

VI. LIMITATIONS

Since our method relies on the natural characteristics of RF
signals, the solution that we present in this paper has some
limitations. Firstly, in our mmWave radar system, the depth
resolution of the RF signals is about 7.5cm, and the angular
resolution is about 1.3 degrees. Thus, some micro-motion
behaviors that are smaller than the resolution thresholds may
be missed by our model. Secondly, the operating distance
of our radar system depends on the transmission power,
which works up to 20m. Finally, the datasets we use in this
paper mainly contain the data of human daily activities under
indoor scenes. Exploring more RF-based sensing models and
synthesizing people in the wild is left for future work.

VII. CONCLUSION

In this paper, we aim to use RF signals to guide human syn-
thesis. To tackle the challenge of using this new kind of driving
signal, we propose a novel RFGAN model, which introduces
a RF-Extractor with RNN to obtain the human activity in-
formation from the horizontal and vertical RF heatmaps and
utilize the RF-InNorm to inject the information into the GAN
networks. Furthermore, we propose to train the RF-Extractor
and RNN under an adversarial learning framework to enable
the encoding of the new kind of conditional data. To evaluate
our proposed model, we create two cross-modal datasets and
the experimental results show that the RFGAN can achieve
a promising performance. We believe this work opens up a
research opportunity to use a new form of conditional data,
i.e., RF signals, to guide the GAN model, and the performance
of the RFGAN confirms that RF signals have great potential
in the imaging applications.
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