
Optimized Data Representation for Interactive
Multiview Navigation

Rui Ma, Student Member, IEEE, Thomas Maugey, Member, IEEE, and Pascal Frossard, Senior Member, IEEE

Abstract—In contrary to traditional media streaming services
where a unique media content is delivered to different users,
interactive multiview navigation applications enable users to
choose their own viewpoints and freely navigate in a 3-D scene.
The interactivity brings new challenges in addition to the classical
rate-distortion trade-off, which considers only the compression
performance and viewing quality. On the one hand, interactivity
necessitates sufficient viewpoints for richer navigation; on the
other hand, it requires to provide low bandwidth and delay costs
for smooth navigation during view transitions. In this paper, we
formally describe the novel trade-offs posed by the navigation
interactivity and classical rate-distortion criterion. Based on an
original formulation, we look for the optimal design of the data
representation by introducing novel rate and distortion models
and practical solving algorithms. Experiments show that the
proposed data representation method outperforms the baseline
solution by providing lower resource consumptions and higher
visual quality in all navigation configurations, which certainly
confirms the potential of the proposed data representation in
practical interactive navigation systems.

Index Terms—Multiview navigation, interactivity, navigation
segment, multiview image compression

I. INTRODUCTION

W ITH the development of multiview imaging techniques,
there has been a lot of interest in interactive multi-

view navigation [1], [2]. Differently from traditional media
streaming systems where a unique media content is streamed
to all users, interactive multiview navigation systems provide
users with different media data depending on their interactions
with the server. In particular, each user watches a specific 2-D
image corresponding to his own choice of viewing position and
orientation (called a viewpoint) and is able to navigate in the
scene by freely changing this viewpoint (see Fig. 1). These
virtual views are synthesized from the content of different
cameras positioned in the 3-D scene.

In order to achieve interactive navigation, it is necessary to
consider a complete processing chain consisting of different
connected components, including data representation, coding,
transmission and view rendering (see Fig. 2). Indeed, the
consideration of every component in isolation can only lead
to suboptimal performance. In the literature, the individual
components of the navigation system have been extensively

R. Ma is with the Department of Electrical and Computer Engineering,
The Hong Kong University of Science and Technology, Hong Kong (e-mail:
rmaaa@connect.ust.hk).

T. Maugey is with Inria Rennes-Bretagne Atlantique Research Centre,
Rennes Cedex 35042, France (e-mail: thomas.maugey@inria.fr).

P. Frossard is with Signal Processing Laboratory LTS4, École Poly-
technique Fédérale de Lausanne CH-1015, Switzerland (e-mail: pas-
cal.frossard@epfl.ch).

real camera virtual view

Fig. 1. A typical multiview navigation scenario. Users are able to freely
navigate along virtual views that are synthesized from views captured at
different camera positions.

studied, e.g., 3-D scene representation [3], [4], multiview video
compression [5], [6], multiview data streaming [7], [8] and
view synthesis [9], [10]. However, there is clearly a lack of
fully integrated frameworks that incorporate these techniques
in an end-to-end system and jointly optimize them.

The end-to-end system optimization involves complex de-
sign trade-offs. As interactivity denotes the users’ flexibility to
choose arbitrary viewpoints during navigation, it first requires
a sufficiently large navigation range, i.e., a large set of achiev-
able viewpoints. Second, as users are willing to watch only
a subpart of this navigation range, the system must transmit
only what is useful due to bandwidth limitations in practice.
This original trade-off between bandwidth limitations, visual
quality and navigation flexibility has not been solved in
the literature. Indeed, the good compression performance of
traditional multiview schemes [5], [6] is obtained at a price of
possibly long coding prediction paths, which however prevent
independent view decoding (an analogue problem is posed by
random access in monoview video [11]). A careful redesign
of the whole system is thus needed, starting for example from
the representation of the multiview data itself. In that spirit,
the work in [12] has proposed to organize the achievable
viewpoints in independently decodable partitions, namely the
navigation segments. Indeed, the navigation segment can be
regarded as the spatial analogue to the temporal GOP (group
of pictures) in monoview video transmissions. This approach
has however left some important questions opened, such as
the optimal design of the navigation segments.

In this paper, we formally describe the novel trade-offs
posed by interactive schemes between bandwidth limitations,
visual quality and navigation interactivity, in the context of

1

ar
X

iv
:1

70
5.

02
94

0v
3

 [
cs

.M
M

]
 2

1
Se

p
20

17

Data

Representation

Input :

multiview images

and geometry

signals

Coding Transmission

DecodingRendering
Output:

virtual view

images

Server

Client

data request
response

Transmission

Fig. 2. System architecture for interactive multiview navigation.

the navigation segment representation. Based on this original
formulation, we propose to study the optimal design of the
navigation segments. We further take into account the delay
between user requests and actual data receiving, by introducing
the concept of navigation ball. We conduct our study in the
challenging scenario of wide navigation range like the 1-D
manifold camera arrangement depicted in Fig. 3. Experiments
on the New Tsukuba Dataset [13], [14] show that the proposed
navigation segment representation outperforms the baseline
equidistant solution (where navigation segments are equally di-
vided). Our approach offers lower resource consumptions and
higher visual quality in all different navigation configurations,
due to its high adaptability to various navigation parameters,
like the navigation speed and the view popularity.

The rest of the paper is organized as follows. Section II
introduces the related work. Section III describes the proposed
navigation segment representation under the navigation envi-
ronment. Section IV proposes the optimization framework for
the navigation system, and Section V further elaborates on the
problem formulation with novel rate and distortion models.
Section VI investigates practical solutions and analyses their
complexity. Experimental results are demonstrated in Section
VII, and Section VIII draws the conclusions.

II. RELATED WORK

The problem of interactive multiview navigation [1] has
recently gained interest in the research community. A first cat-
egory of works provides navigation interactivity by switching
views between a predefined set of real camera viewpoints. The
H.264 SP/SI-frames [15], for example, is able to increase the
interactivity between view switchings by avoiding transmis-
sion of previous frames in the new view. A SP-frame can be
inserted at view switching point, which is able to be identically
decoded from a cross-view reference instead of a reference in
the same view [5]. The distributed source coding (DSC) can
also be utilized for interactive streaming [16], [17], since a
DSC frame can be identically reconstructed from different
predictors. Another way to increase the interactivity is to
produce multiple decoded versions of the media subset. In
[18], [19], redundant P-frames are used to support multiple
decoding process. In [20], the multiple encoding versions
are stored in the server for diverse user requests. These
methods, however, require large server storage. The interactive
navigation also needs to consider the user behaviors. In [21],

1-D manifold camera arrangement

Navigation Range

(a)

1-D aligned

1-D arc

(b)
Fig. 3. An illustration of camera arrangements: (a) 1-D manifold camera
arrangement (b) typical camera arrangements. The solid circle and arrow
denote the camera position and orientation respectively, while the dash line
is the camera trajectory.

[22], for example, the prediction structure is adapted to the
user position estimated by Kalman filtering. Although the
above methods can increase the interactivity, it is limited to
actual camera viewpoints, resulting in abrupt and unnatural
view switchings. Also, they do not consider the viewing delays
incurred in data transmission and processing.

Some approaches propose to extend the navigation interac-
tivity beyond the camera viewpoints by utilizing the virtual
view synthesis techniques [23], [24]. In [9], [10], for example
the users can access to any virtual views that are rendered
using the two nearest coded camera views. The rendering can
also be performed on the server side. In [25], the virtual views
are encoded using predictive coding and stored in the server,
before being streamed directly to the users. However the
storage burden is largely increased because every accessible
virtual view must be stored.

In order to support the high-quality rendering of virtual
views, appropriate data representations are therefore exten-
sively studied. In [2], [4], the light-field representation [26] is
adopted for view synthesis due to its efficient and high-quality
rendering. However the dense representation of light-field is
heavily redundant and poses additional challenges in data
compression and transmission. Some other data representation
methods are considered to remove the data redundancy in the
representation stage. In [12], [27], for example, the scene
is represented using only one texture and one depth map,
plus some auxiliary information that helps the view synthesis.
However the choice of the appropriate auxiliary information
is still an open question. In [28], the layered depth image
format is used for data representation, where multiple images
are constructed in layers corresponding to different levels of
occlusion. Although data redundancy can be mostly removed
from these representations, additional efforts are required
to convert the captured data into the specific representation
formats.

The increasing interactivity also brings challenges in data
transmission, where the transmission policy needs to react to
different requests of multiple users. In [7], [8], for example,
the streaming of multiview video content in a navigation envi-
ronment is studied, where the optimal transmission strategies
are designed to provide high-quality content to heterogenous
users under limited resources. All the above examples indicate

2

(virtual) viewpoint

camera viewpoint

1-D Manifold Camera Arrangement

: Navigation Domain

Fig. 4. Navigation domain: A user is able to navigate in the whole navigation
domain, based on the data captured by camera viewpoints that lie on a 1-D
manifold.

that designing an interactive navigation system relates to many
issues, including data representation, compression, transmis-
sion and rendering. While most existing works focus on a
particular part of the system, only a few approaches investigate
an end-to-end system design in the literature. In [29], [30],
the classical rate-distortion optimization is extended to the
interactive streaming scenario by considering the transmission
rate and decoding complexity. However it mainly focuses on
the coding aspect and does not consider the data representation
at first. The design of effective solutions for multiview data
representation and coding in the interactive navigation scenario
is still an open problem.

Compared with the previous approaches, our work has
the following contributions. First, we consider an end-to-end
interactive navigation system design from data representation
to rendering and propose to jointly optimize the novel trade-
offs between navigation interactivity, bandwidth limitation and
visual quality. Second, we show that the proper data represen-
tation plays an important role in optimizing the navigation
system and we investigate practical solutions to find effective
data representation strategies adapted to various navigation
parameters (e.g., navigation speed, view popularity). Third,
since the viewing delay caused by data transmission and
processing is discussed in many works but often not properly
handled, we propose a novel mechanism called navigation
ball to prohibit the viewing delays and enable smooth user
navigations. Fourth, we consider a rich 1-D manifold camera
arrangement with high degrees of freedom in camera trans-
lation and rotation for user navigation, which extends the
classical camera array arrangements.

III. NAVIGATION SEGMENT REPRESENTATION FOR
LOW-DELAY NAVIGATIONS

In this section, we describe the proposed interactive multi-
view navigation system step by step. Based on that, we present
our navigation segment representation.

A. 1-D Manifold Camera Arrangement

We are interested in a navigation scenario in a static 3-
D scene, which is captured by a set of cameras positioned
in different locations and orientations. A camera viewpoint

in 3-D scene can be represented as a 6-D vector c =
[x, y, z, θ, φ, ψ]T , where [x, y, z] denotes the position and
[θ, φ, ψ] denotes the orientation. In our work, we study the
challenging camera arrangement depicted in Fig. 10, where
all camera viewpoints lie in a 1-D manifold embedded in
the 6-D space R6. This camera arrangement greatly extends
the navigation interactivity in terms of navigation range,
where multiple degrees of freedom for camera motion can be
replicated, including translation and rotation. For simplicity,
we index each camera viewpoint along the 1-D manifold and
denote it as cn, where n ∈ [1, NV] and NV is the number of
cameras. We assume that all the cameras provide both images
and depth maps of the 3-D scene. We use Yn to represent the
image and the depth map captured at camera viewpoint cn.

B. Navigation Domain and Navigation Path

Similarly to the camera viewpoints, a (virtual) viewpoint
in the 3-D scene can also be represented as a 6-D vector
r ∈ R6. The virtual views are rendered using a depth-image-
based rendering (DIBR) technique [31] with data from the
closest camera views. In a navigation scenario, the set of all
accessible viewpoints within the navigation range forms the
navigation domain, and it is denoted as N ⊂ R6. Fig. 4 shows
the navigation domain, which can be much larger than the
camera set.

The user’s navigation process is associated with a path
traveling through all viewpoints visited by this user in N .
We call this path a navigation path. In practice, the nav-
igation path is discrete and finite, due to finite frame rate
f and bounded navigation period T . Then the total number
of visited viewpoints in one navigation path is Nf = Tf .
We define the navigation path P as the set that sequentially
contains all visited viewpoints within the navigation period,
i.e., P = {r1, r2, · · · , rNf

}, with ri the i-th viewpoint in P .

C. Navigation Ball

When a user navigates along a path P , he will repeatedly
request data in order to render views at each ri. However, the
data response time will lag behind the request time due to the
system delay, which includes the transmission delay and other
data processing delays (e.g., decoding, rendering). Therefore,
more data than the one required by the current viewpoint needs
to be transmitted in order to compensate for system delays.

For that purpose, we introduce the concept of navigation
ball as illustrated in Fig. 5. In more details, we assume
that a data request is periodically sent by the user to the
server every fe frames, i.e., data request is sent at view-
points r1, r1+fe , r1+2fe , etc. These viewpoints are called
requested viewpoints. The set of all requested viewpoints
forms a special subset of P , called the requested path
Pe = {r1, r1+fe · · · r1+(Ne−1)fe}, where Ne = Nf/fe is
the number of requested viewpoints within a single path.
Different from P that is purely related to user navigation,
the requested path Pe is associated to actual data sent to the
user, i.e., the data to be transmitted depends on the location
of each requested viewpoint. For each r ∈ Pe, we target to
transmit data that enables the user to render any views in

3

Fig. 5. Navigation ball for data buffering: A navigation ball gathers all
viewpoints that will possibly be visited by the user before his next data request
is handled by the server.

a neighborhood around r. This neighborhood is called the
navigation ball, and it is defined as

NB(r) = {r′ ∈ N|d(r′, r) ≤ t(r)∆}, (1)

where d(·) is a distance function and t(r)∆ measures the
size of the ball. The parameter ∆ is the navigation speed
describing the maximum velocity of the user in the navigation
domain, and t(r) is the tolerable delay of the navigation ball.
By increasing t(r), longer delay can be tolerated, and therefore
more viewpoints can be visited without additional data from
the server.

When t(r) increases beyond a certain value, the effect of
the system delay can be eliminated and the entire navigation
becomes smooth. For the sake of simplicity, we assume a
maximum system delay τmax for any data request. As illus-
trated in Fig. 5, the tolerable delay t(r) requires to compensate
for the overall delay consisting of the time interval between
consecutive requests fe/f (f is the frame rate) and the system
delay τmax, i.e.,

t(r) ≥ fe/f + τmax, ∀r ∈ Pe, ∀Pe. (2)

When this inequality is satisfied at all requested viewpoints,
the entire user navigation is smooth and there is no data
starvation at the client side.

D. Navigation Segment Representation

An appropriate data representation format is crucial to
the efficiency of data transmission and compression in the
navigation system. For each data request, the system needs to
transmit only the data that is sufficient to cover the navigation
ball of NB(r). Thus, the design of data representation should
allow for certain flexibility to choose any potential subset of
the whole multiview data. Similarly to [12], we investigate a
data representation based on navigation segments. Basically,
a navigation segment is a set of camera views Yn, which is
coded independently of the rest data. Suppose all camera views
are divided into NK navigation segments. The k-th segment
is denoted by

Vk = {n ∈ [1, NV] | Yn is in k-th segment}, ∀k ∈ [1, NK],

… …
𝑉1 𝑉2 𝑉𝑘−1 𝑉𝑘 𝑉𝑘+1 𝑉𝑁𝐾

Spatial 1-D manifold camera domain

…
GOP GOP GOP GOP

Temporal frame domain of monoview video sequence

…

Fig. 6. Navigation segment representation as a spatial analogue to temporal
GOP structure in monoview video sequence.

and it corresponds to the set of indices of the camera views
included in this segment. We further assume that the naviga-
tion segments are non-overlapping and connected along the
underlying 1-D manifold of the camera views. In this case,
the camera views in the left segment is always to the left
of camera views in the right segment. An illustration of our
navigation segment representation is shown in Fig. 6.

In fact, navigation segments can be regarded as an spatial
analogue to the temporal GOP structure in monoview video
coding (see Fig. 6). The GOP structure supports temporal
random access to frames, and the navigation segment structure
supports the spatial random access to viewpoints. Since each
segment Vk is independently decodable, the user only requires
the necessary segments to enable the current navigation. The
bandwidth and delay costs are thus reduced by avoiding the
transmission of unnecessary segments. By further adjusting
the shape of the navigation segments, the navigation system
is able to quantitatively control the interactivity in terms of
bandwidth and delay during the data transmission.

E. Compressing Navigation Segments

We compress each navigation segment independently using
predictive coding in order to remove data redundancy and
save bit rate. Basically, in each navigation segment, one of
the camera views is chosen as the anchor frame (i.e. I-
frame), which is intra coded. The other camera views are
predicted frames (i.e. P-frames) and each P-frame uses one of
its neighboring views as the reference view for prediction. The
images and depth maps are coded using the same prediction
structure.

Two typical prediction structures can be chosen as illustrated
in Fig. 7a. In the IPP structure, the position of I-frame is fixed
to be the first view in each navigation segment, and each P-
frame takes its previous view as the reference frame. While in
the PIP structure, the position of I-frame is float and each P-
frame takes its left / right view as the reference frame when it
is on the right / left side of the I-frame. The position of I-frame
in the PIP structure is further optimized in order to achieve
the minimum encoding bit rate for each navigation segment.
We compare the performance of the two prediction structures
in terms of file size of compressed navigation segments and
the average transmission rate by conducting experiments on
the datasets [13], [14]. The details of the experimental setups

4

I

IPP:

P P P P P

IP P P PP

PIP:

Navigation Segment

(a)

Navigation

speed total rate storage

0 -0.46% -0.41% -0.47%

5 -0.59% -0.59% -0.60%

10 -0.47% -0.47% -0.48%

15 -0.34% -0.34% -0.34%

20 -0.32% -0.32% -0.32%

25 -0.26% -0.26% -0.27%

30 -0.26% -0.26% -0.26%

Avg. -0.39% -0.38% -0.39%

PIP vs IPP

(b)
Fig. 7. Prediction structures. (a) Illustration of two typical prediction
structures. (b) Performance comparison in terms of navigation cost reduction
of ‘PIP’ against ‘IPP’.

can be referred in Sec. VII. Fig. 7b illustrates the comparison
results, where the two prediction structures provide very close
performances. We also notice that, with the IPP structure,
the resulting problem can be efficiently solved (see Sec.
VI), which is important for a practical navigation system.
However the resulting problem with PIP structure is difficult
to handle on the other hand. Therefore, considering the trade-
offs between performance and complexity, we choose the IPP
prediction structure in our work.

There are several possible solutions for the actual com-
pression of the navigation segments. We use the state-of-
the-art MV-HEVC standard [32], [33] as the compression
engine, which is an extension of the HEVC standard [11]
for coding multiview sequences. It exploits inter-view data
redundancies by enabling disparity-compensated prediction,
where previously coded images at the same time instant in
neighboring views are used as references for prediction.

IV. NAVIGATION SYSTEM OPTIMIZATION

A. Optimization Framework

Based on the navigation definition and the navigation seg-
ment representation, we now propose an optimization frame-
work to optimize the full navigation system. In particular, we
consider the following optimization problem

min
V,S,T

UR(V,S) + µ · US(V) + ν · UD(V,S)

s.t t(r) ≥ fe/f + τmax, ∀r ∈ Pe, ∀Pe.
(3)

In this problem, we jointly optimize various navigation costs
of the navigation system, including the compressed data size
on the server US(V), the transmission rate UR(V,S) and the
view synthesis distortion UD(V,S). The parameters µ and

ν are weights for US(V) and UD(V,S) respectively. The
constraint enforces smooth navigation by using the navigation
ball mechanism as indicated in Eq. (2).

The optimization variables denote the optimal design of nav-
igation segments and navigation balls. In particular, V denotes
the partition (or division) of navigation segments, while S
denotes the allocation (or delivery) of navigation segments.
The last optimization variable, T = {t(r) | ∀r ∈ Pe,∀Pe},
controls the size of the navigation balls. The solution to
this problem deals with the optimal partition and allocation
of the navigation segments and the optimal choice of every
navigation ball, which provides the best trade-offs between
the navigation quality and the resource consumption for the
system. We next study each term of the cost function.

B. Navigation Costs

Storage cost
The storage cost US denotes the size of the compressed
multiview data stored in the server. As we compress each
navigation segment independently, the overall storage is the
sum of the segment size, i.e.,

US(V) =

NK∑
k=1

h(Q)(Vk), (4)

where V = {V1, · · · , VNK
} is the partitions of navigation

segments. The function h(Q)(·) is the generic compression
function. When the navigation segment is predictively coded
using the prediction structure as described Section III-D, it is
written as

h(Q)(Vk) = h
(Q)
I (Yik) +

∑
j∈{Vk\ik}

h
(Q)
P (Yj |Ŷj−1), (5)

where h(Q)
I (·) and h(Q)

P (·) represent the compression functions
of I-frame and P-frame respectively with quantization step size
Q. The notation ik denotes the index of the first camera view
in segment Vk, and Ŷn is the reconstruction of Yn.

We consider that the quantization step size Q is constant
for all segments in order to stabilize the quality of all frames,
which is important for a pleasant navigation with steady view-
ing quality. We further assume that the function h(Q)

P (Yj |Ŷj−1)
is independent of the segment partition V , because the quality
of the reference view Ŷj−1 is steady in different partition
choices given a fixed Q value.

Rate cost
The rate cost UR denotes the transmission rate and it measures
the navigation interactivity in terms of system bandwidth.
In our work, we define the transmission rate as the size of
total transmitted data per data request. We first express the
transmission rate at a single requested viewpoint r ∈ Pe as

uR(r;V,S) =

NK∑
k=1

h(Q)(Vk) · s(r, Vk; t(r)), (6)

where s(r, Vk; t(r)) is the indicator function for segment
allocation. Its value is 1 if segment Vk is required for view
rendering considering the navigation ball at r with size t(r).

5

Otherwise it is 0. The set S = {s(r, Vk; t(r)) | ∀r ∈ Pe, Pe, k}
contains all indicator functions. Note that we treat the navi-
gation segments as the minimum unseparated unit for data
transmission.

From the perspective of a system, the definition of UR
should consider the navigation of different users, as they
will have different navigation paths and accordingly different
data transmission instances. Therefore we define UR as the
expected average transmission rate over all possible navigation
paths:

UR(V,S) = EPe

[
1

Ne

∑
r∈Pe

uR(r;V,S)

]
, (7)

where we first compute the average transmission rate per
requested path, and then take the expected value over all
possible requested paths of the users.

It should be pointed out that, we assume a memoryless
transmission scheme, where we do not consider the client’s
memory capacity. This means that the user does not reuse
the data received at the previous requests. Therefore the
transmission rate of a path is simply the sum of individual
rates of each request.

View synthesis distortion
The view synthesis distortion UD is the distortion in the
rendered views and it represents the quality of navigation. We
first denote the view synthesis distortion at a single viewpoint
as uD(r;V,S), because both the partition and allocation of
navigation segments influence this distortion. Similar to the
rate cost, the distortion term UD also requires to consider the
navigation of different users. Therefore we represent it as the
expected sum of distortion over all navigation paths:

UD(V,S) = EP

[∑
r∈P

uD(r;V,S)

]
. (8)

We first compute the sum of view synthesis distortion in
a single navigation path, and then calculate the expected
distortion over all possible navigation paths of the users.

C. Influencing Navigation Parameters

There exist many navigation parameters influencing the
navigation system, like the quantization step size Q, the system
delay τmax, the weights µ and ν, etc. In our work, these
parameters are not treated as optimization variables, but are
regarded as input parameters of the optimization framework,
since we focus our study on the data representation using the
navigation segments.

V. MODEL-BASED PROBLEM FORMULATION

A. Overview

The above navigation problem in Eq. (3) is difficult to
handle. First, we need to introduce rate and distortion mod-
els in order to properly deal with the distortion function
uD(r;V,S) and the expectation operator EPe [·] and EP [·]
in the rate and distortion terms respectively. Second, it is
difficult to solve the segment partition V and the segment

allocation S simultaneously. In our work, we propose to
study the navigation problem by considering the following two
subproblems.
1) We first consider a fixed allocation solution, namely S0.

Given S0, we solve for the optimal segment partition V?
and the optimal size of navigation balls T ? in Eq. (3).

2) With the derived optimal V? and T ? in 1), we further solve
for the optimal segment allocation S? in Eq. (3).

This approach guarantees the optimal solution for users with
fixed allocation solution S0, and provides suboptimal solution
to users with other allocation solutions. We next present
how we formulate these two subproblems using our rate and
distortion models.

B. The Partitioning Problem with Fixed Segment Allocation
Fixed segment allocation S0
We consider a fixed allocation solution S0 that targets a low-
distortion rendering. In order to define S0, we need to consider
the reference views in DIBR. In many existing approaches,
people use two or more reference views for DIBR in order to
reduce the view synthesis distortion. However, in our work, we
assume a single reference view due to the following reasons.
First, the rendering quality is already satisfying with a single
reference, because the virtual view is mostly derived from one
reference while the rest of the references mainly provide side
information for occlusion handling. Second, under the single
reference assumption, the subsequent modeling process is
much simplified and it becomes easier to solve the navigation
problem in Eq. (3).

Under this single reference assumption, we define a fixed
allocation solution S0 as follows. For any virtual viewpoint
within the navigation ball, namely r′ ∈ NB(r), we choose
the camera view that is closest to r′ as the reference view
for rendering, and the index of this camera view is denoted
as l0(r′). We then transmit the corresponding navigation seg-
ments that contain the camera view l0(r′) for all r′ ∈ NB(r).
Since any virtual view is assigned with its closest camera view
for rendering, the solution S0 generally provides a low view
synthesis distortion very close to the minimum value. However
it does not guarantee the minimum transmission rate. The
definition of S0 is consistent with the purpose of having a
high quality rendering at the price of a potential suboptimal
transmission rate.

Optimal size of navigation balls T ?
Under the allocation solution S0, the optimal value of t(r) ∈
T can actually be inferred. As t(r) grows, more virtual
viewpoints are included in the navigation ball. As a result,
each navigation segment will be requested more often, and
consequently the rate term UR(V,S0) in Eq. (3) will keep
increasing. On the other hand, the distortion term UD(V,S0)
is not affected by t(r), because the view synthesis distortion
of each viewpoint r′ is fixed due to its unique and determined
reference view l0(r′) in S0. As a result, the objective function
of Eq. (3) will keep increasing as t(r) grows. Then the optimal
t?(r) is obtained when the equality holds in the smooth
navigation constraint:

t?(r) = fe/f + τmax ≡ t?, ∀t(r) ∈ T . (9)

6

In other words, all navigation balls will have the identical
optimal size indicated by t?.

Modeling process: rate model

Based on S0 and t? defined above, we now propose rate and
distortion models in order to convert the original navigation
problem in Eq. (3) into a solvable problem. We first rewrite
the rate cost UR(V,S0) using Eq. (6) and (7) as follows.

UR(V,S0) =
1

Ne

NK∑
k=1

h(Q)(Vk) · α(Vk,S0), (10)

where α(Vk,S0) = EPe

[∑
r∈Pe

s0(r, Vk; t(r))
]

denotes the
expected number of requests of segment Vk per navigation
path. The notation α(Vk,S0) allows us to consider the global
influence of the allocation solution S0 instead of looking into
individual indicator functions.

We first study α0(Vk,S0) with no navigation ball, i.e.
t? = 0. In that case, the navigation ball shrinks to a single
viewpoint NB(r) = r, and the indicator function is degraded
to s0(r, Vk). We then use the following approximation

α0(Vk,S0) = EPe

[∑
r∈Pe

s0(r, Vk)

]
≈ Ne · Er[s0(r, Vk)],

where we assume that each r is considered independently from
the path Pe. This is justified in the case of a large number
of user accesses, since the expectation related to one single
path tends to a global expectation evaluated over the whole
navigation domain. We further represent s0(r, Vk) as

s0(r, Vk) =

{
1, r ∈

⋃
n∈Vk

N (Yn)

0, otherwise
.

The subset N (Yn) = {r | l0(r) = n} is the set of viewpoints
which require camera view Yn for view rendering. Recall that
we consider the case where a single reference view is used
for rendering in S0. Therefore each r requires only one Yn,
resulting in a non-overlapping division ofN (Yn), i.e.N (Yn)∩
N (Ym) = ∅,∀n 6= m. Hence, we can rewrite the expectation
term in α0(Vk,S0) as

Er[s0(r, Vk)] =

∫
N
pr(r) · s0(r, Vk)dr

=

∫
⋃

n∈Vk

N (Yn)

pr(r)dr =
∑
n∈Vk

∫
N (Yn)

pr(r)dr,

where pr(r) is the density function of r. We further define the
view popularity by converting the density function of virtual
viewpoints into the popularity function of camera viewpoints:

pn ≡
∫
N (Yn)

pr(r)dr. (11)

The popularity pn represents the popularity of the camera view
Yn being required by users for view rendering. Finally we can
approximate α0(Vk,S0) using the view popularity as follows.

α0(Vk,S0) ≈ Ne
∑
n∈Vk

pn. (12)

(a)

0 200 400 600 800 1000
0

5

10

15

20

25

30

NK=8

t*

α(
V

k,
 S

0)

NV/6

center segments
corner segments
linear models

(b)
Fig. 8. Rate model with navigation ball: relationship between α(Vk,S0) and
t?. (a) Qualitative relationship. (b) Quantitative result obtained by experiments
on simulated navigation paths (NK = 8).

Modeling process: rate model with navigation ball

We note that α(Vk,S0) is influenced by the size of the
navigation ball. When t? = 0, α(Vk,S0) has the minimum
value α0(Vk,S0). As t? increases, each navigation segment
will be requested more often, and therefore α(Vk,S0) will
keep increasing until the maximum value of Ne, where the
navigation ball expands to the entire navigation domain and
segment Vk is always being requested in every requested
viewpoint of a path. This relationship is qualitatively illustrated
in Fig. 8a. We propose to model this relationship using a
monotonic decreasing function g(t?) as follows,

α(Vk,S0) = (1− g(t?))Ne + g(t?) · α0(Vk,S0). (13)

In order to derive an appropriate expression of g(t?),
we carry out experiments on simulated navigation paths. In
particular, we generate 500 navigation paths based on 1000
imaginary camera viewpoints lying in a 1-D manifold. A
detailed explanation of the generation process can be referred
in Section VII-C. We adopt a baseline equidistance partitioning
of navigation segments, where the navigation segments are
equally divided with the same width (see Section VII-A).
We apply the segment allocation solution S0, and compute
α(Vk,S0) by averaging the number of request for segment Vk
over all navigation paths at different values of t?. Different
navigation configurations are tested by adjusting the navigation
speed ∆ and the number of navigation segments NK . Fig. 8b
plots the results when NK = 8. It is observed that different
navigation segments reach the maximum value Ne at different
values of t?, because the corresponding navigation ball of

7

each navigation segment takes different time to expand the
whole navigation domain with the same navigation speed ∆.
However when the navigation ball is small (t?∆ ≤ NV /6),
almost all navigation segments (except the two corner ones)
have the same linear behavior. This condition is satisfied in
our problem, because we are dealing with hundreds or even
thousands of camera viewpoints and in general NV � t?∆.
We also ignore the influence of two corner navigation seg-
ments, as typically NK � 2. Then we obtain an identical
linear function of g(t?) for all navigation segments, i.e.

g(t?) = max(1− 2t?∆/NV , 0). (14)

The truncation is to ensure that the range of g(t?) is in [0, 1].
We plot this function in Fig. 8b, which fits the curves well
when t?∆ ≤ NV /6. Note that, although we illustrate a partic-
ular example, extensive experiments under different navigation
configurations verify the effectiveness of the derived model.

Finally we derive our rate model using Eq. (10) (12) (13)
as follows.

UR(V,S0) =
(
1− g(t?)

) NK∑
k=1

h(Q)(Vk)+

g(t?)

NK∑
k=1

(
h(Q)(Vk)

∑
n∈Vk

pn

)
.

(15)

This rate model contains two terms. The first term is a storage-
like term with weight 1 − g(t?), and the second term is
a basic rate term with weight g(t?). When we neglect the
navigation ball, we have g(t?) = 1, and the rate cost is entirely
determined by the basic rate term, which prefers smaller
sizes of navigation segments. As the navigation ball increases,
g(t?) decreases to 0, and the storage-like term will gradually
dominate the overall rate cost, resulting in larger sizes of
navigation segments. This phenomenon is further presented
in our experiments in Sec. VII. In this model, the rate term is
influenced by the partitions of navigation segments, the size
of navigation balls and the view popularity.

Modeling process: distortion model
We next investigate the modeling of the distortion term
UD(V,S0) in the navigation problem of (3). We first look at
the view synthesis distortion at a single viewpoint, namely
uD(r;V,S), which is in general difficult to estimate [34].
However, under the allocation solution S0, we can derive

uD(r;V,S0) = uD(r, Ŷl0(r)),

where we use the nearest camera viewpoint indexed by l0(r)
as the reference view for rendering. With this, we can rewrite
the distortion term in Eq. (8) as

UD(V,S0) = EP

[∑
r∈P

uD(r, Ŷl0(r))

]
≈ NfEr

[
uD(r, Ŷl0(r))

]
.

(16)

Similar to the rate model, here we assume that each r is
considered independently from the navigation path P . We then
further rewrite the expectation term using the density function

pr(r) and the non-overlapping subset N (Yn) introduced pre-
viously, and we derive

Er

[
uD(r, Ŷl0(r))

]
=

∫
N
pr(r)uD(r, Ŷl0(r))dr

=

NV∑
n=1

∫
N (Yn)

pr(r)uD(r, Ŷn)dr.

(17)

This is very similar to the derivation in the rate model,
except that we have the distortion function uD(r, Ŷn), which
computes the view synthesis distortion given a single reference
view.

As aforementioned, the distortion function uD(r, Ŷn) de-
pends on the rendering method and also the quantization level
of the camera views. In DIBR, a virtual view image is first
generated by warping the reference view image according to
the corresponding depth map, and then inpainting is applied
for hole filling [35]. Therefore we can separate the virtual
view image into two parts: hole regions and non-hole regions
[36]. For pixels in hole regions, the distortion mostly comes
from inpainting. If we assume a constant inpainting distortion
Dinp at each pixel location, then the overall distortion in
hole regions is Dinp ·Ω(r, cn), where Ω(r, cn) is the number
of pixels in the hole regions at viewpoint r given reference
view at cn. For pixels in non-hole regions, the distortion
mostly comes from rendering. We assume that an integer
location wrapping is performed during rendering process,
and we ignore the mismatching of pixels due to a depth
distortion. Then the pixels in non-hole regions are exactly
copied from the reference image, and therefore they have
the same reconstruction distortion as pixels in the reference
image. We further assume that the reconstruction distortion
depends only on the quantization step size Q, and is denoted
as D

(Q)
rec . The distortion in the non-hole regions is thus

D
(Q)
rec · (WH − Ω(r, cn)), where W and H are the width

and height of the image respectively. Finally we derive the
distortion function of a single virtual view by aggregating the
distortions in both regions, i.e.

uD(r, Ŷn) = DinpΩ(r, cn) +D(Q)
rec (WH − Ω(r, cn)), (18)

where we further provide the estimation of Ω(r, cn) in detail
in Appendix. Finally, with Eq. (16) (17) and (18), we derive
the distortion model as

UD(V,S0) ≈ NfD(Q)
recWH+

Nf (Dinp −D(Q)
rec) ·

NV∑
n=1

∫
N (Yn)

pr(r)Ω(r, cn)dr.
(19)

In this equation, the right hand side only contains the naviga-
tion parameters and does not have the optimization variables,
because under S0 the view synthesis distortion does not de-
pend on the segment partition V . In particular, all components
in the above expression clearly have determined values, except
for the integral. In the integral, the size of the hole regions
Ω(r, cn) is uniquely determined by the viewpoints r and cn.
The density function pr(r) and the subset N (Yn) are both
determined by the navigation domain. Therefore the integral
also has a determined value though it is hard to compute.

8

We finally note that with the distortion model in Eq. (19), the
distortion term is not influenced by the optimization variables.

The partitioning problem given S0
We are now able to derive a solvable navigation problem by
substituting the rate and distortion models in Eq. (15) and (19)
into the original navigation problem in Eq. (3), and we have

V? = arg min
V

NK∑
k=1

(
h
(Q)
I (Yik) +

∑
j∈{Vk\ik}

h
(Q)
P (Yj |Ŷj−1)

)
·
(
µ+ 1− g(t?) + g(t?)

∑
n∈Vk

pn

)
,

(20)
where the compression function is expanded using Eq. (5).
Since the allocation solution is already given by S0 and the
optimal size of navigation balls t? is provided in Eq. (9),
the only optimization variable in this problem is V , which
represents the partition of navigation segments. Thus this
problem is called the partitioning problem in our work. The
goal is to find the optimal V? that minimizes the rate and
storage costs of the navigation system (note that the distortion
cost is discarded using Eq. (19)).

C. Complementary Allocation Problem

Given the optimal size of navigation balls t? and the optimal
segment partition V? derived in Case 1, we further solve for
the optimal segment allocation in the navigation problem of
Eq. (3), and we derive the following problem.

S? = arg min
S

UR(V?,S) + ν · UD(V?,S) (21)

Note that the storage cost is discarded in this problem, because
it is fixed with the segment partition V? and it is not influenced
by the segment allocation S.

It is realized that we are able to further separate this problem
into smaller problems for each data request at r ∈ Pe using
the definition of rate and distortion costs in Eq. (7) and (8) as
follows.

{s?(r, Vk; t?) | ∀k} = arg min

NK∑
k=1

h(Q)(Vk) · s(r, Vk; t?)

+ ν · Er

[
uD(r′, Ŷl(r′)) | r′ ∈ NB(r)

]
.

(22)
In the cost function, the first term is the rate cost, which is fur-
ther expanded using Eq. (6). The second term is the distortion
term, which is the expected view synthesis distortion within
the navigation ball NB(r). The optimization variable are the
streaming indicator functions s(r, Vk; t?),∀k ∈ [1, NK].

Here we still take the assumption of single reference ren-
dering, but the camera index l(r′) denotes the closest camera
viewpoint to r′ given only the transmitted segments indicated
by s?(r, Vk; t?). Note that it is different from the rendering in
l0(r′), which always uses the closest camera view as reference.
With this, the solution allows to use farther camera views as
references for rendering, which leads to possibly larger view
synthesis distortion. In the extreme case when ν → ∞, the
solution converges to S0 that provides the minimum distortion.

As ν decreases, the solution gradually provides larger dis-
tortion than S0, but with correspondingly lower transmission
rate. Therefore, the derived allocation solution complements
the fixed allocation solution S0 for practical users that might
not be able to afford the amount of data required by S0 due to
bandwidth limitations. It provides a flexible trade-off between
the transmission rate and the viewing quality. We call this
problem the complementary allocation problem in our work.

VI. OPTIMIZATION ALGORITHM

In this section we propose solving algorithms for the parti-
tioning problem in Eq. (20) and the complementary allocation
problem in Eq. (22).

A. The Partitioning Problem
The partitioning problem in Eq. (20) can be solved using

the Dijkstra shortest path algorithm, similar to a key view
selection problem in [37]. The Dijkstra’s algorithm works for
all partitioning parameters, i.e., ik,Vk, NK , simultaneously.
Moreover, it is a fast algorithm that provides a globally optimal
solution.

We first construct a graph where the vertices represents
the views in the navigation domain. The views are organized
in different layers that represent the potential navigation seg-
ments. An example of such a graph is given in Fig. 9. The
nodes aligned in the same vertical line across different layers
represent the same camera view. In each layer, the first node
is encoded as an I-frame and the other nodes are encoded as
P-frames according to our coding structure in each navigation
segment. The last layer is the destination node, which is not a
real camera view. The source node is the first node in the first
layer. Two kinds of directed links, namely R-link and B-link,
are assigned in the graph. Their costs are defined as follows.
The link cost between neighbouring views in different layers
(R-link) is the cost of starting a new navigation segment by
adding the first view of the former layer as an I-frame. While
the link cost between neighbouring views of the same layer
(B-link) is the cost of adding the latter view to the current
navigation segment as a P-frame.

We derive the link costs from the cost function of Eq. (20) as
follows. First of all, the original cost function can be separated
into the unary term and the pairwise term:

(µ+ 1− g(t?))

NK∑
k=1

∑
n∈Vk

hn + g(t?)

NK∑
k=1

∑
n∈Vk

∑
m∈Vk

hnpm.

For simplicity, here we use hn to denote the encoding bits of
an arbitrary I-/P- frame for view n. The unary term aggregates
only the encoding bits hn of each view, while the pairwise
term computes a pairwise cost of hnpm for each ordered pair
of (n,m) in segment Vk. Based on this, we are able to write
the link costs as
R-link : e(vli, v

m
i+1) = h

(Q)
I (Yl) ·

(
µ+ 1− g(t?) + g(t?)pl

)
,m > i

B-link : e(vli, v
l
i+1) =

h
(Q)
I (Yl) · g(t?) · pl+1+

h
(Q)
P (Yl+1|Ŷl) ·

(
µ+ 1− g(t?) + g(t?)(pl + pl+1)

)
, i = l(

h
(Q)
I (Yl) +

∑i−1
j=l h

(Q)
P (Yj+1|Ŷj)

)
· g(t?) · pi+1+

h
(Q)
P (Yi+1|Ŷi) ·

(
µ+ 1− g(t?) + g(t?)

∑i+1
j=l pj

)
, i ≥ l + 1

9

View 1 View 2 View 3 View 4 View 5 View 6

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

source

destination

R-link

B-link

Fig. 9. The graph constructed for the partitioning problem (20): an example
of 6 camera viewpoints. The dashed path represents a navigation segment
structure of {view 1, 2}, {view 3, 4, 5} and {view 6}.

where we let e(vli, v
m
j) to be the link cost between view i in

layer l and view j in layer m. The R-link e(vli, v
m
i+1) has the

cost of starting a new segment with the first view of layer l,
which is view l. Therefore, its cost is the unary term of view
l plus the pairwise term of itself (l, l). The B-link e(vli, v

l
i+1)

has the cost of appending view i + 1 to the current segment
of layer l. Therefore, its cost contains the pairwise term of
(j, i+1),∀j < i+1 (the first term of B-link), plus the pairwise
term of (i + 1, j),∀j ≤ i + 1 and the unary term of i +
1 (the second term of B-link). Moreover, the design of the
graph in Fig. 9 guarantees that each unary and pairwise term
is aggregated only once along any solution from the source to
the destination. As a result, the sum of the link costs of any
solution exactly corresponds to the value of the cost function
in Eq. (20). Therefore, the shortest path solution of this graph
is exactly the solution to the partitioning problem in Eq. (20).

Once the graph is constructed, we can apply the Dijkstra’s
algorithm to find the shortest path from the source to the
destination. The resulting shortest path yields the optimal V?,
where each passed layer represents a navigation segment. For
example, the dashed path in Fig. 9 represents three navigation
segments: V1 = {1, 2}, V2 = {3, 4, 5} and V3 = {6}.

B. The Complementary Allocation Problem
In the complementary allocation problem of Eq. (22), the

rate term is computed by adding up the sizes of the compressed
navigation segments to be transmitted. The distortion term
is estimated using Eq. (18). Differently from the partition-
ing problem, which can be pre-computed offline before the
actual user navigation, the allocation problem has a real-time
requirement, where the system needs to react immediately and
selects the best navigation segments to be transmitted for each
data request. For this purpose, instead of finding the optimal
solution, we adopt an efficient heuristic algorithm for real-time
processing. It contains three steps as follows.

Step 1: For each requested viewpoint r ∈ Pe, determine the
subset of its navigation ball, namely N S

B (r) ⊆ NB(r), using
Eq. (1) but with a smaller tolerable delay tS ≤ t?.

Step 2: For each r′ ∈ NS
B (r), find the nearest camera

viewpoint indexed by l0(r′) and determine the corresponding
navigation segment Vk it belongs to, i.e., l0(r′) ∈ Vk.
Step 3: The streaming indicator function s?(r, Vk; t?) for all
navigation segments is then determined by:

s?(r, Vk; t?) =

{
1, ∃ r′ ∈ NS

B (r), l0(r′) ∈ Vk
0, otherwise , ∀k.

(23)
In this solution, we always guarantee the best rendering quality
for the virtual viewpoints that are closest to the requested
viewpoint, i.e., the viewpoints within N S

B (r), because the user
will more likely visit these viewpoints than the ones farther
away from the requested viewpoint r. The rate-distortion trade-
off, which is originally controlled by the weight ν in Eq. (22),
can be alternatively achieved by changing the size of N S

B (r),
namely tS . When tS = t?, the solution is exactly S0. As
tS decreases from t? to a lower value, the algorithm will
gradually request a smaller amount of navigation segments
with smaller rate cost. The distortion will however increase
because more and more viewpoints outside of N S

B (r) will no
longer have the closest camera view for rendering. Note that,
in practice it is impossible to run the above algorithm for all
viewpoints in N S

B (r), simply because there is infinite number
of them. Instead, we sample N S

B (r) with equal distance, and
run the algorithm only on the sampled viewpoints.

It should be pointed out that, although this solution is
designed for our problem that assumes a memoryless trans-
mission scheme, it can be extended to the case that considers
the client’s memory by simply avoiding the transmission of the
repeated navigation segments received in the previous requests.

C. Complexity Analysis

We briefly analyze the complexity of our algorithms here.
For the offline partitioning problem, the Dijkstra’s algorithm
runs in time O(|E|+|V | log |V |) when a min-priority queue is
used [38], where |E| and |V | represent the number of edges
and nodes respectively. In our problem (Fig. 9), |E| = N2

V

and |V | = 1
2N

2
V + 1

2NV + 1, where NV is the number
of camera viewpoints. The computational complexity is thus
O(N2

V logNV). This complexity is tolerable when NV is not
huge. In our experiment, when NV = 450, it costs around
120 seconds on average in Matlab on a Inter(R) Core(TM)
i5-3320M PC, which suits for an offline solution. However
it might still be necessary to speed up the running time
especially when NV keeps growing. One simple way to reduce
the complexity is to assume a maximum number of camera
viewpoints in each navigation segment. It can be verified
that in this case the computational complexity reduces to
O(NV logNV).

The computational complexity of the complementary allo-
cation problem is more critical, as this has to be solved during
the real-time data transmissions. In the solutions of Eq. (23),
the main computation lies in the search of the nearest camera
viewpoint. We suppose that M points are sampled from the
subset N S

B (r). For each sampled viewpoint, the worst case
complexity for finding its nearest camera viewpoint is O(NV).
Then the worst case complexity for solving the allocation

10

−200
0

200
400

600
800

−500

−400

−300

−200

−100

0

100

200

300

−50

0

50

100

x

z

y

Fig. 10. Illustration of 1-D manifold camera arrangement using the New Tsukuba Stereo Dataset [13], [14]. The solid line denotes the camera trajectory
while the arrows point out the orientations. We also show some camera views at different locations.

problem is O(MNV). Therefore we can adjust the complexity
by changing the sampling rate in the solutions. In real imple-
mentations, when NV = 450,M ≈ 200, tS = 4s,∆ = 20
(a dense sampling for a considerable size of the navigation
ball), the run time is around 1 second in Matlab on the same
Inter(R) Core(TM) i5-3320M PC. This complexity is suitable
for the real-time computation in the streaming session.

VII. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
navigation segment representation. In particular, we compute
the resource consumptions in terms of storage and rate costs,
and the navigation quality in terms of view synthesis distortion
under different navigation configurations. We compare the
proposed method with a baseline method, where the navigation
segments are equally divided.

A. Experimental Setup

Dataset
We perform experiments on the New Tsukuba Stereo Dataset
[13] [14], which provides groundtruth stereo image and depth
pairs for 1800 camera viewpoints along a 1-D manifold trajec-
tory. We further uniformly sample the 1800 camera viewpoints
and obtain 450 of them, because practical navigation systems
generally could not afford too many camera viewpoints due
to resource limitations. Fig. 10 illustrates this camera arrange-
ment.

Navigation parameters
We set the navigation parameters as shown in Table I. As
mentioned in Sec. IV-A, these navigation parameters are not
optimized in our problem, but are treated as input parameters
of the optimization, i.e., their values are set beforehand. Note
that the navigation speed ∆ and the view popularity pn are to
be determined according to different navigation configurations
in our experiments. The 450 image and depth pairs are encoded
by the MV-HEVC engine [32] [33]. The quantization step
size Q is controlled by the QP (quantization parameter) in
the MV-HEVC engine. The higher the QP value, the larger
the quantization step size. As aforementioned, we assume that
the compression function h(Q)

P (Yn|Ŷn−1) does not depend on

TABLE I
NAVIGATION PARAMETER SETTING

Notation Value Description
NV 450 # camera viewpoints
T 90s navigation period
f 30fps frame rate
Nf 2700 # total frames (Nf = Tf)
fe 90 request interval in frames
Ne 30 # requested viewpoints (Ne = Nf/fe)
τmax 1s system delay
µ 0.05 weight for storage cost
∆ TBD navigation speed
pn TBD view popularity
QP 25 quantization parameter for I-frames1

h
(Q)
I (Yn) - encoding bit rates of I- and P-frames:

h
(Q)
P (Yn|Ŷn−1) determined by the MV-HEVC engine

navigation segment partitions under the constant Q value.
Therefore we only encode the pair of neighboring camera
viewpoints and obtain 450 values of h(Q)

I (Yn) and 449 values
of h(Q)

P (Yn|Ŷn−1) (excluding the first camera viewpoint) in
order to estimate the compression function in the optimization.

Comparison algorithms
In our experiments, we use “NBPA” (navigation ball and
popularity-aware) to denote the proposed partitioning algo-
rithm, and “NBPU” (navigation ball and popularity-unaware)
to denote its popularity-unaware version where a uniform view
popularity is assigned. We compare our algorithms with a
baseline method that corresponds to a blind NK-equidistant
partitioning, where the NV camera views are equally divided
into NK non-overlapping navigation segments (when NV is
not divisible by NK , a rounding is performed). We consider
two types of baseline method. The first one is denoted as
“Baseline”, which always uses fixed value of NK for different
navigation configurations. The value of NK is determined
by evaluating the proposed cost function in the partitioning
problem of Eq. (20) with the baseline equidistant partitions.
Because it does not consider the navigation configurations,
we set ∆ = 0, and pn to be uniform respectively. The second
one is denoted as “Baseline-NB”, which further considers the
usage of navigation ball, and the value of NK is flexible for

1QP values for P-frames and depth maps are assigned automatically using
the default settings of the MV-HEVC engine.

11

50 100 150 200 250 300 350 400 450

 camera viewpoint index

NK = 76

50 100 150 200 250 300 350 400 450

 camera viewpoint index

NK = 86

250 260 270 280 290 300

(a) baseline equidistant
250 260 270 280 290 300

(b) NBPU, ∆ = 0

Fig. 11. Partitions of navigation segments for different methods. Top: full
partition patterns. Bottom: enlarged patterns for camera indices from 200 to
350.

TABLE II
WIDTH OF NAVIGATION SEGMENTS IN PROPOSED NBPU (∆ = 0)

Width of navigation segments
(in # camera views)

mean max min max/min
Real encoding

bit rates 5.23 15 2 7.50

Artificial constant
encoding bit rates 6 6 6 1

different values of ∆. We determine NK by changing the value
of ∆ when we evaluate the cost function in Eq. (20) using the
baseline equidistant partitions.

B. Partitioning Evaluation

We first evaluate only the partitioning results, where we
compare different partitioning methods in terms of storage
and rate costs under different navigation configurations of
navigation speeds and view popularities.

Irregular partitioning
We compare the visual results of proposed method and the
baseline method in Fig. 11. For fair comparison, we neglect
the navigation speed (∆ = 0) and the view popularity (uniform
distribution) for the propose method, i.e., we use NBPU with
∆ = 0. We align the camera views along the 1-D manifold and
use color bars to represent different navigation segments. It is
clearly seen that, the proposed method provides an irregular
partitioning compared to the baseline equidistant method.
We further show the corresponding width of the navigation
segments (in number of camera views) in Table II, and we
observe that the widths of the navigation segments are quite
unbalanced with a 7.5 max/min ratio. A comparison experi-
ment is conducted using constant encoding bit rates, where we
first manually assign two sets of artificial constant bit rates to
I- and P-frames respectively, and then we run the proposed
partitioning algorithm. We provide this result in the bottom
row of Table II. We observe that all navigation segments
turn to have the same width and the proposed partitioning
method is actually degraded to the baseline NK-equidistance
partitioning. It indicate that the unbalanced irregular partitions
of navigation segments is due to the variation of the encoding
bit rates of I- and P-frames.

Influence of navigation speed
We study next the influence of the navigation speed ∆ on the
navigation segment partitioning, and we use NBPU as we only

50 100 150 200 250 300 350 400 450

 camera viewpoint index

NK = 50

(a) NBPU, ∆ = 5

50 100 150 200 250 300 350 400 450

 camera viewpoint index

NK = 28

(b) NBPU, ∆ = 20

Fig. 12. Partitions of navigation segments for proposed NBPU with different
navigation speeds.

Fig. 13. Rate-storage curves of different partitioning methods under various
navigation speeds for a uniform view popularity.

focus on the navigation speed and we neglect the effect of the
view popularity. Since the cameras in our dataset are almost
equally placed along the 1-D manifold, the distances between
neighboring cameras are similar so that they are denoted by the
unit distance 1 for simplicity, and we measure ∆ accordingly.

Fig. 12 illustrates the partitions of navigation segments of
our NBPU under different values of ∆. It is seen that, as ∆
increases, the navigation segments grow wider and sparser.
This is because, with a larger ∆, more camera views are
requested to support the view rendering within the increasing
navigation ball, and therefore it becomes more efficient to
compress and transmit a larger number of camera views
together. As a result, the navigation segments tend to contain
more camera views and therefore become wider.

Table III summarizes the comparison results of our NBPU
and the baseline method, where we gradually increase ∆ and
compute the relative reduction of the partitioning function
cost (“total”), the rate cost (“rate”) and the storage cost
(“storage”) respectively according to Eq. (20). We highlight
large performance improvements in green. It is observed that
our NBPU outperforms the baseline methods in all aspects.
Compared to the Baseline with fixed value of NK , our
NBPU achieves larger rate and storage cost reductions as
∆ increases. This shows the effectiveness of considering the
influence of navigation speed. When compared to Baseline-
NB, the reduction is less as expected, because Baseline-NB is
more flexible as NK is further optimized for different values
of ∆. The cost reduction against Baseline-NB is due to the
irregular partitions of NBPU.

We also plot the corresponding rate-storage curves in Fig.
13. The navigation speed ∆ increases from left to right. For all
methods, the rate costs increase as ∆ grows, because a larger
∆ indicates a larger size of navigation balls and therefore
more data is transmitted for data buffering at each request. The
storage cost of Baseline is constant due to its fixed partition
pattern. The storage costs of the other methods decrease as ∆

12

TABLE III
PERFORMANCE COMPARISON BETWEEN PROPOSED NBPU AND THE BASELINE METHOD UNDER VARIOUS NAVIGATION SPEEDS FOR A UNIFORM VIEW

POPULARITY

50 100 150 200 250 300 350 400 450

 camera viewpoint index

NK = 40

50 100 150 200 250 300 350 400 450

 camera viewpoint index

NK = 46

50 100 150 200 250 300 350 400 450

 camera viewpoint index

NK = 21

(a) center view preferred

50 100 150 200 250 300 350 400 450

 camera viewpoint index

NK = 22

(b) right view preferred
Fig. 14. Partitions of navigation segments of proposed NBPA under pre-
defined view popularity distributions at different navigation speeds. Top: low
speed ∆ = 5. Down: high speed ∆ = 20.

grows, because a larger ∆ leads to wider navigation segments
and therefore more redundancies between camera views can
be exploited and eliminated when encoding wider segments. In
this figure, the gap between Baseline and Baseline-NB shows
the cost reduction obtained by adapting the segment partitions
to the navigation speed, and the gap between Baseline-NB
and NBPU shows the additional cost reduction induced by
applying the irregular partitions.

Influence of view popularity
We now study the influence of the view popularity that denotes
the probability of each camera view being requested for view
rendering during user navigation. It is generally non-uniformly
distributed in practice due to the user preferences. Fig. 14
illustrates the segment partitions of our NBPA under several
pre-defined view popularity distributions. A clear adaptation
to the view popularity can be observed, where popular camera
views have finer partitions and unpopular views have coarser
ones. Note that the finer partitions generally lead to lower
transmission rate and higher navigation interactivity due to
the less data dependencies between camera views. The popular
camera views are requested more often during navigation and
consequently occupy a larger percentage of the transmission
rate. Therefore it is more efficient to reduce the overall
transmission rate by applying a finer partitioning to these
camera views rather than the unpopular ones.

We present the performance of different partitioning meth-
ods under various view popularity distributions in Table IV,
where the green box indicates large performance improvement
and the red box indicates performance drop. We first observe
that the popularity-aware NBPA provides significant rate and
storage cost reduction against the popularity-unaware NBPU

Fig. 15. Rate-storage curves of different partitioning methods under various
navigation speeds for a popularity distribution that the right views are
preferred.

when the navigation speed is low (more than 17% rate reduc-
tion for ∆ = 0). However, as ∆ increases, the performance
gap becomes small. This is because, for large ∆, the partitions
become coarser and the partition patterns under different view
popularity distributions become more similar to each other,
leading to a closer performance between them. Compare with
the baseline methods, our NBPA achieves a further rate and
storage reduction for non-uniform view popularities (referring
to Table III for the uniform popularity). These results indicate
that, by adapting the segment partitions to the view popularity,
the proposed method is able to provide different levels of
navigation interactivity for camera views and further reduce
the rate and storage consumptions of the system.

We further visualize the corresponding rate-storage curves
in Fig. 15 for the popularity distribution that the right views
are preferred. The navigation speed ∆ increases from left to
right. The gap between NBPA and NBPU shows the additional
rate and storage cost reductions of considering the influence
of view popularity for the segment partitions.

Influence of other navigation parameters
The partition of navigation segment is also influenced by other
navigation parameters. We briefly analyze them here.

The storage weight µ influence the relative weight between
rate and storage costs, which further changes the optimal
segment partitions. Fig. 16 shows the partition pattern of
proposed NBPU for different µ. As µ increases, more weight
is given to the storage, and the segments become wider; wider
segments increase the compression efficiency and decrease the
storage cost. On the other hand, wider segments increase the

13

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT PARTITIONING METHODS UNDER VARIOUS NAVIGATION SPEEDS AND PRE-DEFINED VIEW POPULARITY

DISTRIBUTIONS.

(a) center view preferred (see Fig. 14a)

(b) right view preferred (see Fig. 14b)

(a) µ = 0.05 (b) µ = 0.5

Fig. 16. Partitions of navigation segments for different µ (NBPU with ∆ =
10).

Fig. 17. Evolution of rate and storage costs versus storage weight µ (NBPU
with ∆ = 10).

transmission rate. This evolution of rate and storage costs is
plotted in Fig. 17 for the proposed NBPU. We also shows
the evolution of the number of segments NK versus µ in Fig.
18. In one extreme, as µ goes to infinity, the storage cost
dominates and the entire multiview data is always represented
by a single navigation segment, which is the classical multi-
view compression problem targeting for the best compression
performance. In another extreme, as µ decreases to 0, the
system purely minimizes the transmission rate and does not
consider the storage, and the partitions of navigation segments
then converge to a certain pattern with the maximum NK . Note

−5 −4 −3 −2 −1 0 1 2 3 4
0

10

20

30

40

50

60

70

log10(µ)

N
K

∆ = 20

∆ = 5

∆ = 10

Fig. 18. Evolution of the number of segments NK versus storage weight µ
(NBPU with different value of ∆).

that this pattern is different for different navigation speeds, and
the width of navigation segment in this pattern does not shrink
to 1 because of the navigation ball with non-zero navigation
speed. Different values of µ provide different combinations
of rate and storage costs. The proper choice of µ depends on
whether the storage or the bandwidth resource is more limited
in practical navigation scenarios.

The request interval fe changes the size of the navigation
ball as indicated in Eq. (9), which further influences the
partition of segments. Fig. 19 illustrates the partition pattern
of NBPU for different values of fe. Similarly to the navigation
speed ∆, a larger fe leads to a larger size of navigation balls,
which further results in wider navigation segments. Fig. 20
plots the rate and storage costs versus fe. Similar trend of
rate and storage costs is observed due to the growing size
of navigation segments as fe increases. The choice of fe
in practical navigation systems depends on the storage and
bandwidth limitations but also on the system delay. As long
as the storage and bandwidth capacities allow, a larger fe is

14

TABLE V
RD PERFORMANCE COMPARISON OF DIFFERENT METHODS AVERAGED OVER 100 SIMULATED NAVIGATION PATHS ALONG CAMERA VIEWPOINTS

speed Y U V Y U V Y U V Y U V

left view preferred 0.2547 0.1608 0.1530 -4.36% -4.93% -4.80% 0.0094 -0.0056 -0.0071 -0.16% 0.16% 0.22%

center view preferred 0.1490 0.1054 0.1134 -2.58% -3.18% -3.49% -0.0401 -0.0323 -0.0257 0.71% 1.05% 0.89%

right view preferred 0.1254 0.0823 0.0971 -2.12% -2.53% -3.00% -0.0200 -0.0181 -0.0157 0.35% 0.55% 0.55%

left view preferred 0.4363 0.2708 0.2632 -7.35% -8.10% -8.10% -0.0947 -0.0585 -0.0559 1.69% 2.01% 1.97%

center view preferred 0.3123 0.2131 0.2104 -5.27% -6.39% -6.54% -0.1029 -0.0567 -0.0548 1.83% 1.80% 1.79%

right view preferred 0.1781 0.1179 0.1283 -3.04% -3.63% -4.00% -0.1268 -0.0795 -0.0711 2.20% 2.67% 2.43%

10

20

View popularityNavigation BD-PSNR BD-rate BD-PSNR BD-rate

NBPA vs Baseline NBPA vs NBPU

(a) fe = 30 (b) fe = 120

Fig. 19. Partitions of navigation segments for different fe (NBPU with
∆ = 10).

Fig. 20. Evolution of rate and storage costs versus fe (NBPU with ∆ = 10).

preferred because it leads to wider navigation segments and
increases the efficiency of compression and transmission. On
the other hand, more data is transmitted at each request for
the larger fe, which however increases the system delay for
transmitting and processing the data. Therefore, fe can not be
arbitrarily large in order to enable low-delay navigation.

C. Complete System Evaluation

We now evaluate the performance of the complete sys-
tem, i.e. a joint evaluation of partition and allocation of the
navigation segments, where we further apply the allocation
solution in Eq. (23) for each data request based on the different
partitioning methods discussed above.

Navigation paths along real views
We first carry out the experiments on navigation paths com-
posed of real camera viewpoints, where the ground-truth
images are always available and we can compute the distortion
directly. In our experiment, we generate simulated navigation
paths from a pre-defined view popularity distribution. In
particular, the first camera viewpoint in the navigation path
is generated based on this distribution. In order to choose the

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300

350

400

450

Frame index in navigation path

C
am

er
a

vi
ew

po
in

t i
nd

ex

Simulated navigation paths along camera viewpoints

Fig. 21. Simulated navigation paths along camera viewpoints (pre-defined
view popularity: center view preferred, navigation speed: ∆ = 10). The colors
represent different navigation paths.

next viewpoint, we build a navigation ball with navigation
speed ∆ centred at the previous viewpoint, and then randomly
pick up a viewpoint from the normalized view popularity
distribution within the navigation ball. This process is repeated
until the last viewpoint in the navigation path is reached.
Then interpolation is applied between consecutive viewpoints
according to the frame rate. Fig. 21 shows the simulated
navigation paths along camera viewpoints in our experiments.
We further fix tS = t? in the allocation solution Eq. (23) to
avoid the rendering of camera views caused by insufficient
data, and therefore the distortion is uniquely affected by
quantization. In this case, the allocation solution is indeed
S0. We then adjust the QP value in order to derive the rate-
distortion (RD) curves. Four QP values {25, 30, 35, 40} for
I-frame are tested, where we rerun the partitioning algorithm
for each QP value and apply the allocation algorithm after-
wards. Table V summarizes the RD performances of different
partitioning methods, which is averaged over 100 simulated
navigation paths. The Bjonteggard metric [39] is adopted for
RD comparison.

It is observed that the proposed NBPA achieves better RD
performance than the baseline method in all configurations,
and the gain is larger as the navigation speed increases. This
is mainly due to the great rate reduction achieved by the
proposed method as discussed before. On the other hand,
NBPA and NBPU have quite similar RD performances. If
we compare Fig. 12 and Fig. 14, it is clearly seen that,
under the same ∆, the segments are quite similar in popular
views for different popularity distributions, while the main
differences lie in the unpopular views. Since the popular views
are required more frequently, it makes a primary contribution

15

1 1.5 2 2.5 3 3.5

x 10
6

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65
x 10

4

rate per request (bits)

di
st

or
tio

n
(#

 p
ix

el
s

in
 h

ol
e

re
gi

on
)

 RD curve

NBPA
NBPU
Baseline

1 1.5 2 2.5 3 3.5

x 10
6

84

84.5

85

85.5

86

86.5

87

87.5

88

88.5

89

rate per request (bits)

su
cc

es
s

ra
te

 (
%

)

Success rate curve

NBPA
NBPU
Baseline

(a) center view preferred, ∆ = 10

1 1.5 2 2.5 3

x 10
6

4.15

4.2

4.25

4.3

4.35

4.4

4.45

4.5
x 10

4

rate per request (bits)

di
st

or
tio

n
(#

 p
ix

el
s

in
 h

ol
e

re
gi

on
)

RD curve

NBPA
NBPU
Baseline

1 1.5 2 2.5 3

x 10
6

87.5

88

88.5

89

89.5

90

90.5

91

91.5

92

rate per request (bits)

su
cc

es
s

ra
te

 (
%

)

Success rate curve

NBPA
NBPU
Baseline

(b) right view preferred, ∆ = 10

Fig. 22. RD performances of different methods averaged over 100 simulated navigation paths along virtual viewpoints.

Fig. 23. Simulated navigation paths along virtual viewpoints plotted by
their positions in 3-D space (center view preferred, ∆ = 10). The solid curve
denotes the camera trajectory, while the dash curves denote different simulated
navigation paths.

to the final RD performance. Therefore the similar segment
patterns lead to the close RD performances between NBPA and
NBPU. It should be reminded that, although the gain in RD
performance is limited, considering the view popularity brings
benefit to the system in terms of lower resource consumptions
as demonstrated previously.

Navigation paths along virtual views
We next conduct experiments on navigation paths composed of
virtual viewpoints which surrounds the real camera viewpoints.
We generate them by adding a 6-D (position plus orientation)

random shift onto the previously derived navigation paths
composed of camera viewpoints. Fig. 23 shows the resulting
navigation paths. Different from the camera viewpoints, the
virtual viewpoints require view synthesis and the distortion is
in general difficult to compute due to the unavailability of the
ground-truth images. Instead, we estimated the view synthesis
distortion using Eq. (18). We further fix QP = 25 so that the
distortion only comes from inpainting, and we adjust tS in Eq.
(23) in order to obtain a series of RD points, based on which
we plot the RD curves.

Fig. 22 illustrates the RD curves of different partitioning
methods. Here the distortion is represented by the number
of pixels in the hole regions, because it is proportional
to the view synthesis distortion as we assume a constant
inpainting distortion in Eq. (18). We further label the view
synthesis as successful when the size of the hole regions is
less than a threshold (half the image size in our experiment).
Otherwise our distortion model is ineffective because the
inpainting distortion drastically increases and the virtual views
are heavily distorted. We therefore discard the unsuccessful
rendering with extremely large hole regions and evaluate the
RD performance only for successful ones. We further plot the
success rate curves on the right side of Fig. 22 for reference.
It is observed that all methods provide similar success rate
curves. It indicates that similar percentages of successful
rendering are evaluated for different methods and therefore
the RD comparison between them is fair. The proposed NBPA

16

clearly outperforms the baseline partitioning method in dif-
ferent configurations of navigation speed and view popularity.
Similarly to the experiments on navigation paths along camera
views, the RD gain mainly comes from a lower transmission
rate provided by the proposed partitioning methods. We also
note that NBPA and NBPU have very close RD performances,
and sometimes NBPU is even better than NBPA. This is
because the segment partition is optimized only for the fixed
allocation solution S0. However, in this experiment, we adopt
the complementary allocation solutions in order to derive
different rate-distortion combinations. There is no guarantee
that NBPA always has better RD performance than NBPU
in this case. On the other hand, as we investigate the trade-
offs between different navigation costs of the system, the
consideration of the better solution should be evaluated in all
different aspects. Although NBPA is less efficient than NBPU
in terms of RD performance in some cases, it is validated in
previous experiments that NBPA always achieves lower rate
and storage costs than NBPU in different situations.

The above evaluations of the complete system demonstrate
the effectiveness of the proposed navigation segment repre-
sentation for a practical navigation system with low resource
consumptions and high navigation quality.

VIII. CONCLUSION

In this paper, we study the optimal navigation segment rep-
resentation for an end-to-end interactive multiview navigation
system. Experimental results verify the effectiveness of the
proposed data representation for practical navigation systems.
Our method provides lower resource consumption, higher
navigation quality and higher adaptation to different navigation
parameters when compared to the baseline representation
method. The idea of navigation segment representation can be
further extended to more challenging navigation scenarios like
the dynamic environment or more complex camera arrange-
ments like the 2-D manifold camera arrays. These problems
will be considered in our future work.

APPENDIX
ESTIMATION OF THE SIZE OF HOLE REGIONS IN SINGLE

VIEW DIBR

In virtual view rendering, the size of the hole regions Ω
can be theoretically derived from the scene geometry. However
this approach is time-consuming because it requires to perform
actual view rendering. In order to derive a fast approach for
practical usage, we consider to estimate the upper bound of Ω
as follows.

As we assume a single reference view for rendering, we
suppose the view change between the target view and the refer-
ence view is a 6-D vector [∆x,∆y,∆z,∆θ,∆φ,∆ψ]T ∈ R6,
which denotes the change in both position and orientation. We
first study the hole regions induced by each component. Let
Ω(∆x) be the hole regions induced only by ∆x. The disparity
value for any pixel location is determined by the equation

d(u, v) = f∆x/z(u, v), (24)

where d(u, v) is the disparity at (u, v) location. z is the depth
and f is the focal length. Then Ω(∆x) can be estimated by

Ω(∆x) ≤ f |∆x|(EV (
1

zmin
− 1

zmax
)) + f |∆x|H 1

zmax
, (25)

where EV denotes the edge along vertical direction and H is
the image height. Both EV and H are represented in pixels.
zmin and zmax denote the minimum and maximum depth
values within the image respectively. On the right side of the
above inequality, the first term denotes the disoccluded pixels
and the second term is the new appearing pixels due to the
view change. Note that EV ≤ H . By replacing EV with H ,
we could further derive

Ω(∆x) ≤ fH|∆x|
zmin

. (26)

Similarly, we could obtain,

Ω(∆y) ≤ fW |∆y|
zmin

, (27)

where W is the image width. The influence of ∆z is similar
to zoom in / out. When ∆z ≤ 0, Ω(∆z) = 0, because it is a
zoom-in action and we assume all pixel values can be obtained
by interpolation. When ∆z > 0, it is a zoom-out action and
we assume the holes are mainly due to the new appearing
pixels at the image borders. Using Eq. (24), it can be derived
that the image borders are changed by

W −W ′ ≤W − zminW

zmin + ∆z
=

∆zW

zmin + ∆z
≤ ∆zW

zmin
,

and similarly,

H −H ′ ≤ ∆zH

zmin
.

Therefore,

Ω(∆z) ≤ H(W −W ′) +W (H −H ′) ≤ 2HW∆z

zmin
,∆z > 0.

(28)
The influences of ∆θ and ∆φ are similar to pitch and yaw
respectively. These actions do not introduce disocclusion and
the holes uniquely come from the new appearing pixels. We
can estimate the new appearing pixels from the angle change
as follows

Ω(∆θ) = fW |∆θ|,−π ≤ ∆θ < π,

Ω(∆φ) = fH|∆φ|,−π ≤ ∆φ < π.
(29)

The influence of ∆ψ is similar to rotation, which also intro-
duces no disoccluded pixels. The new appearing pixels induced
by ∆ψ can be computed from the geometry of the image as
follows

Ω(∆ψ) =



tan(∆ψ)
4

(
(H2 +W 2)(1 + tan2(∆ψ

2
)

−4WH tan(∆ψ
2

)
)
, 0 ≤ ∆ψ < 2 tan−1(H

W
)

WH − H2

sin(∆ψ)
, 2 tan−1(H

W
) ≤ ∆ψ ≤ π

2

Ω(π −∆ψ), π
2
< ∆ψ ≤ π.

(30)
The overall size of hole regions induced by all the com-

ponents [∆x,∆y,∆z,∆θ,∆φ,∆ψ]T is difficult to estimate,
because the individual components would influence each other
and the joint effect is not a simple addition. However we can

17

estimate the upper bound by aggregating the individual areas
of hole regions induced by each component, i.e.

Ω ≤ min{
∑

ω∈{x,y,z,θ,φ,ψ}

Ω(∆ω), WH}. (31)

This is because each time a new component is added, the
newly induced hole regions might have intersections with the
existing hole regions, and therefore the overall size of hole
regions is always smaller than a plain addition of the size of
hole regions induced by each component. Also note that Ω is
bounded by WH , which is the size of the whole image area.

REFERENCES

[1] A. Kubota, A. Smolic, M. Magnor, M. Tanimoto, T. Chen, and C. Zhang,
“Multiview imaging and 3dtv,” IEEE Signal Processing Magazine,
vol. 24, no. 6, pp. 10–21, Nov 2007.

[2] M. Tanimoto, “Overview of free viewpoint television,” Signal Pro-
cessing: Image Communication, Special issue on multi-view image
processing and its application in image-based rendering, vol. 21, no. 6,
pp. 454–461, 2006.

[3] K. Muller, P. Merkle, and T. Wiegand, “3-d video representation using
depth maps,” Proceedings of the IEEE, vol. 99, no. 4, pp. 643–656,
April 2011.

[4] M. Tanimoto, M. P. Tehrani, T. Fujii, and T. Yendo, “Free-viewpoint tv,”
IEEE Signal Processing Magazine, vol. 28, no. 1, pp. 67–76, Jan 2011.

[5] Y. Chen, Y.-K. Wang, K. Ugur, M. M. Hannuksela, J. Lainema, and
M. Gabbouj, “The emerging mvc standard for 3d video services,”
EURASIP Journal on Applied Signal Processing, vol. 2009, pp. 8:1–
8:13, Jan. 2008.

[6] K. Mller, H. Schwarz, D. Marpe, C. Bartnik, S. Bosse, H. Brust,
T. Hinz, H. Lakshman, P. Merkle, F. H. Rhee, G. Tech, M. Winken,
and T. Wiegand, “3d high-efficiency video coding for multi-view video
and depth data,” IEEE Transactions on Image Processing, vol. 22, no. 9,
pp. 3366–3378, Sept 2013.

[7] A. De Abreu, L. Toni, N. Thomos, T. Maugey, F. Pereira, and P. Frossard,
“Optimal layered representation for adaptive interactive multiview video
streaming,” Journal of Visual Communication and Image Representation,
vol. 33, pp. 255–264, 2015.

[8] L. Toni, T. Maugey, and P. Frossard, “Optimized packet scheduling in
multiview video navigation systems,” IEEE Transactions on Multimedia,
vol. 17, no. 9, pp. 1604–1616, Sept 2015.

[9] X. Xiu, G. Cheung, A. Ortega, and J. Liang, “Optimizing frame structure
for interactive multiview video streaming with viewsynthesis,” in IEEE
International Conference on Multimedia and Expo, July 2011, pp. 1–6.

[10] X. Xiu, G. Cheung, and J. Liang, “Delay-cognizant interactive streaming
of multiview video with free viewpoint synthesis,” IEEE Transactions
on Multimedia, vol. 14, no. 4, pp. 1109–1126, Aug 2012.

[11] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of
the high efficiency video coding (hevc) standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–
1668, Dec 2012.

[12] T. Maugey, I. Daribo, G. Cheung, and P. Frossard, “Navigation domain
representation for interactive multiview imaging,” IEEE Transactions on
Image Processing, vol. 22, no. 9, pp. 3459–3472, Sept 2013.

[13] M. Peris, S. Martull, A. Maki, Y. Ohkawa, and K. Fukui, “Towards
a simulation driven stereo vision system,” in Proceedings of the In-
ternational Conference on Pattern Recognition (ICPR), Nov 2012, pp.
1038–1042.

[14] S. Martull, M. Peris, and K. Fukui, “Realistic cg stereo image dataset
with ground truth disparity maps,” in International Conference on
Pattern Recognition (ICPR) workshop TrakMark2012, vol. 111, no. 430,
2012, pp. 117–118.

[15] M. Karczewicz and R. Kurceren, “The sp- and si-frames design for
h.264/avc,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, no. 7, pp. 637–644, July 2003.

[16] N. M. Cheung, A. Ortega, and G. Cheung, “Distributed source coding
techniques for interactive multiview video streaming,” in Picture Coding
Symposium, May 2009, pp. 1–4.

[17] G. Petrazzuoli, M. Cagnazzo, F. Dufaux, and B. Pesquet-Popescu,
“Using distributed source coding and depth image based rendering
to improve interactive multiview video access,” in IEEE International
Conference on Image Processing, Sept 2011, pp. 597–600.

[18] G. Cheung, A. Ortega, and N. M. Cheung, “Generation of redundant
frame structure for interactive multiview streaming,” in International
Packet Video Workshop, May 2009, pp. 1–10.

[19] G. Cheung, A. Ortega, and N.-M. Cheung, “Bandwidth-efficient interac-
tive multiview live video streaming using redundant frame structures,”
in Asia-Pacific Signal and Information Processing Association, Annual
Summit and Conference (APSIPA ASC), 2009, pp. 498–501.

[20] Y. Liu, Q. Huang, S. Ma, D. Zhao, and W. Gao, “Rd-optimized inter-
active streaming of multiview video with multiple encodings,” Journal
of Visual Communication and Image Representation, vol. 21, no. 5, pp.
523–532, 2010.

[21] E. Kurutepe, M. R. Civanlar, and A. M. Tekalp, “Client-driven selective
streaming of multiview video for interactive 3dtv,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 17, no. 11, pp. 1558–
1565, Nov 2007.

[22] A. M. Tekalp, E. Kurutepe, and M. R. Civanlar, “3dtv over ip,” IEEE
Signal Processing Magazine, vol. 24, no. 6, pp. 77–87, Nov 2007.

[23] H.-Y. Shum, S. B. Kang, and S.-C. Chan, “Survey of image-based
representations and compression techniques,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 13, no. 11, pp. 1020–
1037, Nov 2003.

[24] S.-T. Na, K.-J. Oh, C. Lee, and Y.-S. Ho, “Multi-view depth video
coding using depth view synthesis,” in IEEE International Symposium
on Circuits and Systems, May 2008, pp. 1400–1403.

[25] T. Maugey and P. Frossard, “Interactive multiview video system with
low decoding complexity,” in IEEE International Conference on Image
Processing, Sept 2011, pp. 589–592.

[26] M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of
the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’96. New York, NY, USA: ACM, 1996,
pp. 31–42.

[27] T. Maugey, P. Frossard, and G. Cheung, “Consistent view synthesis in
interactive multiview imaging,” in IEEE International Conference on
Image Processing, Sept 2012, pp. 2717–2720.

[28] U. Takyar, T. Maugey, and P. Frossard, “Extended layered depth image
representation in multiview navigation,” IEEE Signal Processing Letters,
vol. 21, no. 1, pp. 22–25, Jan 2014.

[29] I. Bauermann and E. Steinbach, “Rdtc optimized compression of image-
based scene representations (part i): Modeling and theoretical analysis,”
IEEE Transactions on Image Processing, vol. 17, no. 5, pp. 709–723,
May 2008.

[30] ——, “Rdtc optimized compression of image-based scene representa-
tions (part ii): Practical coding,” IEEE Transactions on Image Process-
ing, vol. 17, no. 5, pp. 724–736, May 2008.

[31] C. Fehn, “Depth-image-based rendering (dibr), compression, and trans-
mission for a new approach on 3d-tv,” in Electronic Imaging. Interna-
tional Society for Optics and Photonics, 2004, pp. 93–104.

[32] G. Tech, K. Wegner, Y. Chen, and S. Yea, “3d-hevc draft text 1,” in Joint
Collaborative Team on 3D Video Coding Extensions (JCT-3V) Document
JCT3V-E1001, 5th Meeting: Vienna, Austria, 27 July-2 Aug 2013.

[33] G. J. Sullivan, J. M. Boyce, Y. Chen, J. R. Ohm, C. A. Segall, and
A. Vetro, “Standardized extensions of high efficiency video coding
(hevc),” IEEE Journal of Selected Topics in Signal Processing, vol. 7,
no. 6, pp. 1001–1016, Dec 2013.

[34] R. Ma, N. M. Cheung, O. C. Au, and D. Tian, “Novel distortion metric
for depth coding of 3d video,” in IEEE International Conference on
Image Processing, Sept 2013, pp. 1714–1718.

[35] T. Maugey, P. Frossard, and C. Guillemot, “Guided inpainting with
cluster-based auxiliary information,” in IEEE International Conference
on Image Processing (ICIP), Sept 2015, pp. 1702–1706.

[36] T. Maugey, A. Ortega, and P. Frossard, “Graph-based representation for
multiview image geometry,” IEEE Transactions on Image Processing,
vol. 24, no. 5, pp. 1573–1586, May 2015.

[37] T. Maugey, G. Petrazzuoli, P. Frossard, M. Cagnazzo, and B. Pesquet-
Popescu, “Reference view selection in dibr-based multiview coding,”
IEEE Transactions on Image Processing, vol. 25, no. 4, pp. 1808–1819,
April 2016.

[38] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses
in improved network optimization algorithms,” Journal of the ACM
(JACM), vol. 34, no. 3, pp. 596–615, 1987.

[39] G. Bjontegaard, “Calculation of average psnr differences between rd-
curves,” in Video Coding Experts Group (VCEG) Document VCEG-M33,
13th Meeting: Austin, Texas, USA, 2-4 April 2001.

18

	I Introduction
	II Related Work
	III Navigation Segment Representation for Low-Delay Navigations
	III-A 1-D Manifold Camera Arrangement
	III-B Navigation Domain and Navigation Path
	III-C Navigation Ball
	III-D Navigation Segment Representation
	III-E Compressing Navigation Segments

	IV Navigation System Optimization
	IV-A Optimization Framework
	IV-B Navigation Costs
	IV-C Influencing Navigation Parameters

	V Model-Based Problem Formulation
	V-A Overview
	V-B The Partitioning Problem with Fixed Segment Allocation
	V-C Complementary Allocation Problem

	VI Optimization Algorithm
	VI-A The Partitioning Problem
	VI-B The Complementary Allocation Problem
	VI-C Complexity Analysis

	VII Experimental Results
	VII-A Experimental Setup
	VII-B Partitioning Evaluation
	VII-C Complete System Evaluation

	VIII Conclusion
	Appendix: Estimation of the size of hole regions in single view DIBR
	References

