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ABSTRACT

End-to-End driving is a promising paradigm as it circumvents the drawbacks associated with modular
systems, such as their overwhelming complexity and propensity for error propagation. Autonomous
driving transcends conventional traffic patterns by proactively recognizing critical events in advance,
ensuring passengers safety and providing them with comfortable transportation, particularly in highly
stochastic and variable traffic settings. This paper presents a comprehensive review of the End-to-
End autonomous driving stack. It provides a taxonomy of automated driving tasks wherein neural
networks have been employed in an End-to-End manner, encompassing the entire driving process
from perception to control. Recent developments in End-to-End autonomous driving are analyzed,
and research is categorized based on underlying principles, methodologies, and core functionality.
These categories encompass sensorial input, main and auxiliary output, learning approaches ranging
from imitation to reinforcement learning, and model evaluation techniques. The survey incorporates a
detailed discussion of the explainability and safety aspects. Furthermore, it assesses the state-of-the-
art, identifies challenges, and explores future possibilities. We maintain the latest advancements and

their corresponding open-source implementations at this link.

1. Introduction

Autonomous driving refers to the capability of a vehi-
cle to drive partly or entirely without human intervention.
The modular architecture [1, 2, 3, 4, 5] is a widely used
approach in autonomous driving systems, which divides the
driving pipeline into discrete sub-tasks. This architecture
relies on individual sensors and algorithms to process data
and generate control outputs. It encompasses interconnected
modules, including perception, planning, and control. How-
ever, the modular architecture has certain drawbacks that
impede further advancements in autonomous driving (AD).
One significant limitation is its susceptibility to error prop-
agation. For instance, errors in the perception module of a
self-driving vehicle, such as misclassification, can propagate
to subsequent planning and control modules, potentially
leading to unsafe behaviors. Additionally, the complexity
of managing interconnected modules and the computational
inefficiency of processing data at each stage pose additional
challenges associated with the modular approach. To address
these shortcomings, an alternative approach called End-to-
End driving [6, 7, 8, 9, 10, 11] has emerged. This approach
aims to overcome the limitations of the modular architecture.

The End-to-End approach streamlines the system, im-
proving efficiency and robustness by directly mapping sen-
sory input to control outputs. The benefits of End-to-End
autonomous driving have garnered significant attention in
the research community as shown in Fig. 1. Firstly, End-
to-End driving addresses the issue of error propagation,
as it involves a single learning task pipeline [12, 13] that
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Figure 1: The number of articles in the Web of Science
database containing the keywords ‘End-to-End’ and ‘Au-
tonomous Driving' from 2014 to 2022 illustrates the increasing
trend in the research community.

learns task-specific features, thereby reducing the likeli-
hood of error propagation. Secondly, End-to-End driving
offers computational advantages. Modular pipelines often
entail redundant computations, as each module is trained
for task-specific outputs [4, 5]. This results in unnecessary
and prolonged computation. In contrast, End-to-End driv-
ing focuses on the specific task of generating the control
signal, reducing the need for unnecessary computations and
streamlining the overall process. End-to-End models were
previously regarded as “black boxes", lacking transparency.
However, recent methodologies have improved interpretabil-
ity in End-to-End models by generating auxiliary outputs
[7, 13], attention maps [14, 15, 16, 9, 17, 18], and in-
terpretable maps [18, 19, 8, 20, 12, 21]. This enhanced
interpretability provides insights into the root causes of
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Figure 2: The charts illustrate statistics of the papers included in this survey according to learning approaches (section 6),
environment being utilized for training (sections 10, 11), input modality (section 4), and output modality (section 5).

errors and model decision-making. Furthermore, End-to-
End driving demonstrates resilience to adversarial attacks.
Adversarial attacks [22] involve manipulating sensor inputs
to deceive or confuse autonomous driving systems. In End-
to-End models, it is challenging to identify and manipulate
the specific driving behavior triggers as it is unknown what
causes specific driving patterns. Lastly, End-to-End driv-
ing offers ease of training. Modular pipelines require sep-
arate training and optimization of each task-driven module,
necessitating domain-specific knowledge and expertise. In
contrast, End-to-End models can learn relevant features and
patterns [23, 24] directly from raw sensor data, reducing the
need for extensive engineering and expertise.

Related Surveys: A number of related surveys are avail-
able, though their emphasis differs from ours. The author
Yurtsever et al. [25] covers the autonomous driving domain
with a primary emphasis on the modular methodology. Sev-
eral past surveys center around specific learning techniques,
such as imitation learning [26] and reinforcement learning
[27]. A few end-to-end surveys, including the work by
Tampuu et al. [28], provide an architectural overview of the
complete end-to-end driving pipeline. Recently, Chen et al.
[29] discuss the methodology and challenges in end-to-end
autonomous driving in their survey. Our focus, however, is
on the latest advancements, including modalities, learning
principles, safety, explainability, and evaluation (see Ta-
ble 3).

Motivation and Contributions: The End-to-End ar-
chitectures have significantly enhanced autonomous driv-
ing systems. As elaborated earlier, these architectures have
overcome the limitations of modular approaches. Motivated
by these developments, we present a survey on recent ad-
vancements in End-to-End autonomous driving. The key
contributions of this paper are threefold. First, this survey
exclusively explores End-to-End autonomous driving using
deep learning. We provide a comprehensive analysis of
the underlying principles, methodologies, and functionality,

delving into the latest state-of-the-art advancements in this
domain. Second, we present a detailed investigation in terms
of modality, learning, safety, explainability, and results, and
provide a quantitative summary in Table 3. Third, we present
an evaluation framework based on both open and closed-
loop assessments and compile a summarized list of available
datasets and simulators.

Paper Organization: The survey is organized as per
the underlying principles and methodologies (see Fig. 2).
We present the background of modular systems in Sec-
tion 2. Section 3 provides an overview of the End-to-End
autonomous driving pipeline architecture. This is followed
by sections 4 and 5, which discuss the input and output
modalities of the End-to-End system. Section 6 comprehen-
sively covers End-to-End learning methods, from imitation
learning to reinforcement learning. The domain adaptation
is explained in section 7. Next, we explore the safety aspect
of End-to-End approaches in section 8. The importance of
explainability and interpretability is discussed in section 9.
The evaluation of the End-to-End system consists of open
and closed-loop evaluations, which are discussed in section
10. The relevant datasets and the simulator are presented in
section 11. Finally, sections 12 and 13 provide the future
research direction and conclusion, respectively.

2. Modular system architecture

The modular pipeline [30, 31, 32, 2, 3, 33, 34] begins by
inputting the raw sensory data into the perception module
for obstacle detection and localization via the localization
module, followed by planning and prediction for the optimal
and safe trajectory of the vehicle. Finally, the motor con-
troller outputs the control signals. The standard modules of
the modular driving pipeline are listed below:
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2.1. Components of modular pipeline

Preception: The perception module seeks to achieve a
better understanding [32] of the scene. It is built on top
of algorithms such as object detection and lane detection.
The perception module is responsible for sensor fusion,
information extraction, and acts as a mediator between the
low-level sensor input and the high-level decision module.
It fuses heterogeneous sensors to capture and generalize the
environment. The primary tasks of the perception module
include: (i) Object detection (ii) Object tracking (iii) Road
and lane detection

Localization and mapping: Localization is the next im-
portant module, which is responsible for determining the po-
sition of the ego vehicle and the corresponding road agents
[35]. Tt is crucial for accurately positioning the vehicle and
enabling safe maneuvers in diverse traffic scenarios. The end
product of the localization module is an accurate map. Some
of the localization techniques include High Definition map
(HD map) and Simultaneous Localization And Mapping
(SLAM), which serve as the online map and localize the
traffic agents at different time stamps. The localization map-
ping can further be utilized for driving policy and control
commands.

Planning and driving policy: The planning and driving
policy module [36] is responsible for computing a motion-
level command that determines the control signal based on
the localization map provided by the previous module. It
predicts the optimal future trajectory [37] based on past
traffic patterns. The categorization of trajectory prediction
techniques (Table 1) is as follows:

e Physics-based methods: These methods are suitable
for vehicle motion that can be accurately characterized
by kinematics or dynamics models. They can simulate
various scenarios quickly with minimal computational
cost.

e (lassic machine learning-based methods: Compared
to physics-based approaches, this class of methods can
consider more variables, provide reasonable accuracy,
and have a longer forecasting span, but at a higher
computing cost. Most of these techniques use histori-
cal motion data to estimate future trajectories.

e Deep learning-based methods: Deep learning algo-
rithms are capable of reliable prediction over a wider
range of prediction horizons. In contrast, standard
trajectory prediction methods are only suited for ba-
sic scenes and short-term prediction. Deep learning-
based systems can make precise predictions across a
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Table 1

Performance of different driving policy approaches: PB (Physics-Based), CML (Classical Machine Learning), DL (Deep Learning),

RL (Reinforcement Learning).

Techniques Accuracy Computation cost  Prediction distance
PB Medium Low Short
CML Low Medium Medium
DL Highly accurate High Wide
RL Highly accurate High Wide

Table 2
Summary of deep learning-based approaches for motion prediction utilizing different backbone networks.

Agent and context

Methods Detalil Classification Context encoder Decoder
encoder
Formulation of Traiectory set
CoverNet [38] classification problem CNN CNN CNN J y
. . . generator
over the set of diverse trajectories
It outputs the
HOME [39] 2D top view representation CNN CNN,GRU CNN CNN
of agent possible future
Splitting of trajectory prediction Displacement
TPCN [40] into both temporal and CNN PointNET ++ PointNET++ placer
g . prediction
spatial dimension
Attention head is used
MHA-JAM to generatt_e dIStI.nCt Attention LSTM CNN LSTM
[41] future trajectories
while addressing multimodality
Network architecture
MMTransformer based on stacked Attention Transformer VectorNet MLP
[42] transformer to model the
feature multimodality
It is a anchor-free model which Goal Bases
DenseTNT [43] directly outputs from GNN VectorNet VectorNet multi-trajectory
the dense goal candidates prediction
Collaborative learning Generative
TS-GAN [44] and GAN for modeling LSTM - LSTM
. . model
motion behavior
PRIME [44] Utilizes the model generator and Generative CNN.LSTM LSTM Model-based
learning based evaluator model generator
_ _ I?lffusm_n probability b_ased Spatial Spatial
MotionDiff kinematics model to diffuse
. CNN transformer, transformer, MLP
[45] original states to
oL GRU GRU
noise distribution
A policy planning
ScePT [10] based trajectory prediction for GNN LSTM CNN GRU, PonitNET

accurate motion planning.

wider time horizon. As shown in Table 2, deep learn-
ing utilizes RNN, CNN, GNN, and other networks
for feature extraction, calculating interaction strength,
and incorporating map information.

Control: The motion planner generates the trajectory, which
is then updated by the obstacle subsystem and sent to the
controller subsystem. The computed command is sent to the
actuators of the driving components, including the throttle,

brakes, and steering, to follow the desired trajectory, which

e Reinforcement learning-based methods: These meth-
ods aim to mimic how people make decisions and
learn the reward function by studying expert demon-
strations to produce the best driving strategy. How-
ever, most of these techniques are computationally
costly.

generate the aforementioned control signals.

is optimized and safer in real-world scenarios. The Propor-
tional Integral Derivative (PID) [5] and Model Predictive
Control (MPC) [4] are some of the controllers used to
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2.2. Input and output modality of modular
pipeline
The output modality of each module is designed to be
compatible with the input modality of subsequent modules
in the pipeline to ensure that information is correctly propa-
gated through the modular system.

Sensory data: At this level (Fig. 3), the raw data from
the embedded multi-sensor array is retrieved, filtered, and
processed for semantic mapping. LIDAR, RADAR, Camera,
GPS, and Odometer are some of the sensor inputs to the
perception stack. LIDAR and RADAR are used for depth
analysis, while cameras are employed for detection. The
INU, GPS, and Odometer sensors capture and map the
vehicle’s position, state, and the corresponding environment,
which can be further utilized by decision-level stages.

Input to the mapping and localization: Localization
aims to estimate the vehicle’s position at each time stamp.
Utilizing information from the perception module, the ve-
hicle’s position and the environment are mapped based on
parameters such as position, orientation, pose, speed, and
acceleration. Localization techniques [3] allow for the inte-
gration of multiple objects and the identification of their re-
lationships, resulting in a more comprehensive, augmented,
and enriched representation.

As shown in Fig. 4, we define X, as the vehicle’s position
estimate at time ¢, and M as the environment map. These
variables can be estimated using control inputs C,, which
are typically derived from wheel encoders or sensors capable
of estimating the vehicle’s displacement. The measurements
derived from sensor readings are denoted by .S, and are used
to aid in the estimation of the vehicle’s pose.

c Craq Crz
l l e = )
Xq > Xt > X | | X
<
St1 St Ste1

Figure 4: Visualization of temporal correlations from localiza-
tion that can be used to identify specific behaviors and predict
future positions.

Input to the path planning and decision module: Path
planning is broadly categorized into local and global path
planners. The purpose of the local planner is to execute the

goals set by the global path planner. It is responsible for find-
ing trajectories that avoid obstacles and satisfy optimization
requirements within the vehicle’s operational space.

The problem of local trajectory prediction can be formu-
lated as estimating the future states (¢;) of various traffic
actors (R") in a given scenario based on their current and
past states (#;,). The state of traffic actors includes vehicles
or pedestrians with historical trajectories at different time
stamps.

Input = {R',R>, R>,R>. ... .. , R} 1)

where R’ contains the coordinates of different traffic
actors at each time stamp ¢ (up to A past time stamps).

R' = {(x{, yh, x|, ) . X000 2
where n represents all traffic vehicles detected by the ego
vehicle; (xﬁ, yﬁ) are the coordinates of the vehicle at the ¢
time stamp. X is the input to the path planning module, and
the vehicle trajectory Y is predicted from the model at future
time stamp 7 .

Y = {R*, RIn*2 RIn*3 . Rinty ) 3)

Input to the control module: There are two primary forms
of trajectory command that the controller receives: (i) as a
series of commands (7,) and (ii) as a series of states (7).
Controller subsystems that receive a T trajectory may be
categorized as path tracking techniques, while those that
receive a T, trajectory can be classified as direct hardware
actuation control methods.

e Direct hardware actuation control methods: The Pro-
portional Integral Derivative (PID) [5] control system
is a commonly used hardware actuation technique for
self-driving automobiles. It involves determining a
desired hardware input and an error measure gauging
how much the output deviates from the desired out-
come.

e Path tracking methods: Model Predictive Control
(MPC) [4] is a path-tracking approach that involves
choosing control command inputs that will result
in desirable hardware outputs, then simulating and
optimizing those outputs using the motion model of
the car over a future prediction horizon.

3. End-to-End system architecture

In general, modular systems are referred to as the medi-
ated paradigm and are constructed as a pipeline of discrete
components (Fig. 5) that connect sensory inputs and motor
outputs. The core processes of a modular system include per-
ception, localization, mapping, planning, and vehicle control
[1]. The modular pipeline starts by inputting raw sensory
data to the perception module for obstacle detection [46] and
localization via the localization module [3]. This is followed
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by planning and prediction [44] to determine the optimal and
safe trajectory for the vehicle. Finally, the motor controller
generates commands for safe maneuvering.

On the other hand, direct perception or End-to-End driv-
ing directly generates ego-motion from the sensory input.
It optimizes the driving pipeline (Fig. 5) by bypassing the
sub-tasks related to perception and planning, allowing for
continuous learning to sense and act, similar to humans. The
first attempt at End-to-End driving was made by Pomerleau
Alvinn [47], which trained a 3-layer sensorimotor fully
connected network to output the car’s direction. End-to-End
driving generates ego-motion based on sensory input, which
can be of various modalities. However, the prominent ones
are the camera [48, 49, 50], Light Detection and Ranging
(LiDAR) [6, 10, 7], navigation commands [51, 49, 23],
and vehicle dynamics, such as speed [52, 53, 50]. This
sensory information is utilized as the input to the backbone
model, which is responsible for generating control signals.
Ego-motion can involve different types of motions, such as
acceleration, turning, steering, and pedaling. Additionally,
many models also output additional information, such as a
cost map for safe maneuvers, interpretable outputs, and other
auxiliary outputs.

There are two main approaches for End-to-End driving:
either the driving model is explored and improved via Re-
inforcement Learning (RL) [54, 53, 55, 56, 21, 57], or it is
trained in a supervised manner using Imitation Learning (IL)
[18,6,19,15, 17,58, 7] to resemble human driving behavior.
The supervised learning paradigm aims to learn the driving
style from expert demonstrations, which serve as training
examples for the model. However, expanding an autonomous
driving system based on IL [23] is challenging since it is
impossible to cover every instance during the learning phase.
On the other hand, RL works by maximizing cumulative
rewards [59, 55] over time through interaction with the
environment, and the network makes driving decisions to
obtain rewards or penalties based on its actions. While RL
model training occurs online and allows exploration of the
environment during training, it is less effective in utilizing
data compared to imitation learning. Table 3 summarizes
recent methods in End-to-End driving.

4. Input modalities in End-to-End system

The following section explores the input modalities es-
sential for end-to-end autonomous driving. These encom-
pass cameras for visual insights, LiDAR for precise 3D point
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clouds, multi-modal inputs, and navigational inputs. Fig. 6
illustrates some of the input and output modalities.

4.1. Camera

Camera-based methods [14, 9, 6, 23, 49, 60, 50, 53, 12,
13] have shown promising results in End-to-End driving.
For instance, Toromanoff et al. [53] demonstrated their
capabilities by winning the CARLA 2019 autonomous driv-
ing challenge using vision-based approaches in an urban
context. The use of monocular [13, 11, 61, 53] and stereo
vision [58, 17, 15] camera views is a natural input modality
for image-to-control End-to-End driving. Xiao et al. [62]
employed inputs consisting of a monocular RGB image from
a forward-facing camera and the vehicle speed. Chen et al.
LAV [10] utilize only the camera image input as shown
in Fig. 6(d). Wu et al. [15], Xiao et al. [17], Zhang et
al. [58] utilize camera-only modality to generate high-level
instructions for lane following, turning, stopping and going
straight using imitation learning.

4.2. LiDAR

Another significant input source in self-driving is the
Light Detection and Ranging (LiDAR) sensor. LiDAR [63,
64, 65, 20] is resistant to lighting conditions and offers
accurate distance estimates. Compared to other perception
sensors, LiDAR data is the richest and provides the most
comprehensive spatial information. It utilizes laser light
to detect distances and generates PointClouds, which are
3D representations of space where each point includes the
(x, y, z) coordinates of the surface that reflected the sensor’s
laser beam. When localizing a vehicle, generating odometry
measurements is critical. Many techniques utilize LiDAR
for feature mapping in Birds Eye View (BEV) [9, 19, 16],
High Definition (HD) map [20, 66], and Simultaneous Lo-
calization and Mapping (SLAM) [67]. Shenoi et al. [68]
have shown that adding depth and semantics via LiDAR has
the potential to enhance driving performance. Liang et al.
[69, 70] utilized point flow to learn the driving policy in an
End-to-End manner.

4.3. Multi-modal

Multimodality [8, 18, 10, 16, 71] outperforms single
modality in crucial perception tasks and is particularly well-
suited for autonomous driving applications, as it combines
multi-sensor data. There are three broad categorizations for
utilizing information depending on when to combine multi-
sensor information. In early fusion, sensor data is combined
before feeding them into the learnable End-to-End system.
Chen et al. [10] as shown in Fig. 6(d) use a network that ac-
cepts (RGB + Depth) channel inputs, Xiao et al. [62] model
also input the same modality. The network modifies just the
first convolutional layer to account for the additional input
channel, while the remaining network remains unchanged.
Renz et al. [18] fuse object-level input representation using
a transformer encoder. The author combinedly represents a
set of objects as vehicles and segments of the routes.

In mid-fusion, information fusion is done either after
some preprocessing stages or after some feature extraction.

Zhou et al. [72] perform information fusion at the mid-
level by leveraging the complementary information provided
by both the bird’s-eye view (BEV) and perspective views
of the LiDAR point cloud. Transfuser [7] as shown in
Fig. 6(a) addresses the integration of image and LiDAR
modalities using self-attention layers. They utilized multiple
transformer modules at multiple resolutions to fuse inter-
mediate features. Obtained feature vector forms a concise
representation which an MLP then processes before passing
to an auto-regressive waypoint prediction network. In late
fusion, inputs are processed separately, and their output is
fused and further processed by another layer. Some authors
[73, 69, 70, 62] use a late fusion architecture for LiDAR
and visual modalities, in which each input stream is encoded
separately and concatenated.

4.4. Navigational inputs

End-to-End navigation input can originate from the route
planner [8, 14, 74] and navigation commands [48, 75, 76,
77]. Routes are defined by a sequence of discrete endpoint
locations in Global Positioning System (GPS) coordinates
provided by a global planner [14]. The TCP model [13] as
illustrated in Fig. 6(c) is provided with correlated navigation
directives like lane keeping, left/right turns, and the destina-
tion. This information is used to produce the control actions.

Shao et al. [8] propose a technique that guides driving
using these sparse destination locations instead of explicitly
defining discrete navigation directives. PlanT [18] utilizes
point-to-point navigation based on the input of the goal
location. FlowDriveNet [78] considers both the global plan-
ner’s discrete navigation command and the coordinates of
the navigation target. Hubschneider et al. [75] include a turn
indicator command in the driving model, while Codevilla
et al. [76] utilize a CNN block for specific navigation tasks
and a second block for subset navigation. In addition to the
aforementioned inputs, End-to-End models also incorporate
vehicle dynamics, such as ego-vehicle speed [52, 49, 53, 12].

S. Output modalities in End-to-End system

Usually, an End-to-End autonomous driving system out-
puts control commands, waypoints, or trajectories. In addi-
tion, it may also produce additional representations, such as
a cost map and auxiliary outputs.

5.1. Waypoints

Predicting future waypoints is a higher-level output
modality. Several authors [10, 6,7, 79] use an auto-regressive
waypoint network to predict differential waypoints. Trajec-
tories [8, 74, 80, 13, 19] can also represent sequences of
waypoints in the coordinate frame. The network’s output
waypoints are converted into low-level steering and ac-
celeration using Model Predictive Control (MPC) [4] and
Proportional Integral Derivative (PID) [5]. The longitudinal
controller considers the magnitude of a weighted average
of vectors between successive time-step waypoints, while
the lateral controller considers their direction. The ideal
waypoint [53] relies on desired speed, position, and rotation.
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measurements (e.g., speed). These inputs guide the specific actions taken by the vehicle, enabling it to navigate the environment

effectively through conditional imitation learning [62].

The lateral distance and angle must be minimized to
maximize the reward (or minimize the deviation). The ben-
efit of utilizing waypoints as an output is that they are not
affected by vehicle geometry. Additionally, waypoints are
easier to analyze by the controller for control commands
such as steering. Waypoints in continuous form can be
transformed into a specific trajectory. Zhang et al. [54] and
Zhou et al. [74] utilize a motion planner to generate a series
of waypoints that describe the future trajectory. LAV [10]
predicts multi-modal future trajectories (Fig. 6(d)) for all
detected vehicles, including the ego-vehicle. They use future
waypoints to represent the motion plan.

5.2. Cost function

Many trajectories and waypoints are possible for the safe
maneuvering of the vehicle. The cost [20, 81, 56, 21, 80, 82]
is used to select the optimal one among the possibilities.
It assigns a weight (positive or negative score) to each
trajectory based on parameters defined by the end user, such
as safety, distance traveled, comfort, and others. Rhinehart
et al. [83] and Chen et al. [10] refine control using the
predictive consistency map, which updates knowledge at test
time. They also evaluate the trajectory using an ensemble
expert likelihood model. Prakash et al. [14] utilize object-
level representations to analyze collision-free routes. Zeng
et al. [84] employ a neural motion planner that uses a cost
volume to predict future trajectories. Hu et al. [20] employ
a cost function illustrated in Fig. 6(f) that takes advantage
of the learned occupancy probability field, represented by
segmentation maps, and prior knowledge such as traffic rules
to select the trajectory with the minimum cost. Regarding
safety cost functions, Zhao et al. [50], Chen et al. [85], and
Shao et al. [8] employ safety maps. They analyze actions

within the safe set to create causal insights regarding haz-
ardous driving situations.

5.3. Direct control and acceleration

Most of the End-to-End models [83, 74, 53, 48, 23,
75, 76, 77, 48] provide the steering angle and speed as
outputs at a specific timestamp. The output control needs to
be calibrated based on the vehicle’s dynamics, determining
the appropriate steering angle for turning and the necessary
braking for stopping at a measurable distance.

5.4. Auxiliary output

The auxiliary output can provide additional information
for the model’s operation and the determination of driving
actions. Several types of auxiliary outputs include the seg-
mentation map [9, 7] (Fig. 6(e)), BEV map [12, 9, 19, 16],
future occupancy [18, 9, 84, 82] of the vehicle (Fig. 6(e)),
and interpretable feature map [18, 8, 7, 20, 12, 81] (Fig.
6(b)(f)). These outputs provide additional functionality to
the End-to-End pipeline and help the model learn better
representations. The auxiliary output also facilitates the
explanation of the model’s behavior [7, 82], as one can
comprehend the information and infer the reasons behind the
model’s decisions.

6. Learning approaches for End-to-End
system
The following sections discuss various learning ap-

proaches in End-to-End Driving, including imitation learn-
ing and reinforcement learning.

6.1. Imitation learning
Imitation learning (IL) [10, 18, 13, 14, 86] is based
on the principle of learning from expert demonstrations.
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These demonstrations train the system to mimic the expert’s
behavior in various driving scenarios. Large-scale expert
driving datasets are readily available, which can be leveraged
by imitation learning [62] to train models that perform at
human-like standards.

The main objective is to train a policy 7z, (s) that maps
each given state to a corresponding action (Fig. 7) as closely
as possible to the given expert policy z*, given an expert
dataset with state action pair (s, a):

arg Ingn ES NP(S|9) L(ﬂ'*(s), 7[9(3)) (4)

where P(s | 0) represents the state distribution of the
trained policy 7.

Behavioural Cloning (BC), Direct Policy Learning (DPL),
and Inverse Reinforcement Learning (IRL) are extensions of
imitation learning in the domain of autonomous driving.

6.1.1. Behavioural cloning

Behavioural cloning [87, 7, 13, 12, 49, 23, 88] is the
supervised imitation learning task where the goal is to treat
each state-action combination in expert distribution as an
Independent and Identically Distributed (I.I.D) example and
minimise imitation loss for the trained policy:

arg rnein E(; g0y ~pr L(@", my(s)) 5)

where p*(s | #*) is an expert policy state distribution,
and (state s, action a*) is provided by expert policy p*.

Perception Module

Visual Observation (e.g., Segmentation)

ik Action
@ Behavior Reflex @
3 Behavior Module (ours) w I

® ® ®
wl wl wl

(Action Proposals)

Figure 8: Behavior cloning [49] is a perception-to-action driving
model that learns behavior reflex for various driving scenarios.
The agent acquires the ability to integrate expert policies in a
context-dependent and task-optimized manner, allowing it to
drive confidently.

Prakash et al. [14], Chittaet al. [7], NEAT [12], Ohn et al.
[49] utilize a policy that maps input frames to low-level con-
trol signals in terms of waypoints. These waypoints are then
fed into a PID to obtain the steering, throttle, and brake com-
mands based on the predicted waypoints. Behavior cloning
[49] assumes that the expert’s actions can be fully explained
by observation, as it trains a model to directly map from input

to output based on the training dataset (Fig. 8). However,
this leads to the distribution shift problem, where the actual
observations diverge from the training observations. Many
latent variables impact and govern driving agent’s actions in
real-world scenarios. Therefore, it is essential to learn these
variables effectively.

6.1.2. Direct policy learning

Within the context of BC, which maps sensor inputs to
control commands and is limited by the training dataset,
DLP aims to learn an optimal policy [48] directly that maps
inputs to driving actions. The DLP algorithm obtains expert
evaluations [56] during runtime to gather more training data,
particularly for scenarios where the initial policy falls short.
It combines an expert dataset with Imitation Learning for
initial training and iteratively augments the dataset with
additional trajectories collected by the trained policy. The
agent can explore its surroundings and discover novel and
efficient driving policies.

The online imitation learning algorithm DAGGER [89]
provides robustness against cascading errors and accumu-
lates additional training instances. Chen et al. [10] intro-
duced automated dagger-like monitoring, where the privi-
leged agent’s supervision is collected through online learn-
ing and transformed into an agent that provides on-policy
supervision. However, the main drawback of direct policy
learning is the continuous need for expert access during the
training process, which is both costly and inefficient.

6.1.3. Inverse reinforcement learning

Inverse Reinforcement Learning (IRL) [90, 48] aims to
deduce the underlying specific behaviours through the re-
ward function. Expert demonstrations D = {C 1562, 855 e , Cn}
are fed into IRL. Each {; = {(sl,az), (89, a9), .. (s,,,a,,)}
consists of a state-action pair. The principal goal is to
get the underlying reward which can be used to repli-
cate the expert behaviour. Feature-based IRL [91] teaches
the different driving styles in the highway scenario. The
human-provided examples are used to learn different reward
functions and capabilities of interaction with road users.
Maximum Entropy (MaxEnt) inverse reinforcement learning
[92] is an extension of the feature-based IRL based on
the principle of maximum entropy. This paradigm robustly
addresses reward ambiguity and handles sub-optimization.
The major drawback is that IRL algorithms are expensive
to run. They are also computationally demanding, unstable
during training, and may take longer to converge on smaller
datasets.

6.2. Reinforcement learning

Reinforcement Learning (RL) [93, 57, 56, 53] is a
promising approach to address the distribution shift prob-
lem. It aims to maximize cumulative rewards [94] over time
by interacting with the environment, and the network makes
driving decisions to obtain rewards or penalties based on its
actions. IL cannot handle novel situations significantly dif-
ferent from the training dataset, RL is robust to this issue as it
explores scenario under given environment. Reinforcement

P.S. Chib et al.

Page 10 of 28



Recent Advancements in End-to-End Autonomous Driving using Deep Learning: A Survey

Driver

IL Agent

nn lll State s

Simulation Strong
Ground Truth Supervisions

Actions

3 . Safe Action G
Ajé’"s Environment

Agent Action a

Intervention Cost C;

partial
demonstration [ ~0bslacle
from human ' °

r intervention

)
& control
trajectory target

Human Expert

(a) Roach Expert Supervision

Expert A. Human-Al Copilot

from agent

B. Human Interface

C. Copilot Trajectory

(b) Human Copilot Learning

Figure 9: RL-based learning method for training the agent to drive optimally: (a) lllustrating the reinforcement learning expert
[54] that maps the BEV to the low-level driving actions; the expert can also provide supervision to the imitation learning agent.
(b) Human-in-the-loop learning [55] allows the agent to explore the environment, and in danger scenarios, the human expert

takes over the control and provides the safe demonstration.

learning encompasses various models, including value-
based models such as Deep Q-Networks (DQN) [95], actor-
critic based models like Deep Deterministic Policy Gradient
(DDPG) and Asynchronous Advantage Actor Critic (A3C)
[95], maximum entropy models [92] such as Soft Actor
Critic (SAC) [96], and policy-based optimization methods
such as Trust Region Policy Optimization (TRPO) and
Proximal Policy Optimization (PPO) [97].

Liang et al. [98] demonstrated the first effective RL ap-
proach for vision-based driving pipelines that outperformed
the modular pipeline at the time. Their method is based
on the Deep Deterministic Policy Gradient (DDPG), an
extended version of the actor-critic algorithm. Chen et al.
[99] uses tabular-RL to first learn an expert policy and
then uses policy distillation to learn a student policy in an
imitation learning approach.

Recently, Human-In-The-Loop (HITL) approaches [100,
55, 56, 54, 14] have gained attention in the literature. These
approaches are based on the premise that expert demonstra-
tions provide valuable guidance for achieving high-reward
policies. Several studies have focused on incorporating hu-
man expertise into the training process of traditional RL or
IL paradigms. One such example is EGPO [56], which aims
to develop an expert-guided policy optimization technique
where an expert policy supervises the learning agent.

HACO [55] allows the agent to explore hazardous en-
vironments while ensuring training safety. In this approach,
a human expert can intervene and guide the agent to avoid
potentially harmful situations or irrelevant actions (see Fig.
9(b)). Another reinforcement learning expert, Roach [54],
translates bird’s-eye view images into continuous low-level
actions (see Fig. 9(a)). Experts can provide high-level su-
pervision for imitation learning or reinforcement learning in
general. Policies can be initially taught using imitation learn-
ing and then refined using reinforcement learning, which
helps reduce the extensive training period required for RL.
Jia et al. [19] utilize features extracted from Roach to learn
the ground-truth action/trajectory, providing supervision in
their study. Therefore, reinforcement learning provides a
solution to address the challenges of imitation learning by
enabling agents to actively explore and learn from their

environment. There are also associated challenges, such
as sample inefficiency, exploration difficulties leading to
suboptimal behaviors, and difficulties generalizing learned
policies to new scenarios.

7. Learning domain adaptation from
simulator to real

Large-scale virtual scenarios can be constructed in vir-
tual engines, enabling the collection of a significant quan-
tity of data more readily. However, there still exist signifi-
cant domain disparities between virtual and real-world data,
which pose challenges in creating and implementing virtual
datasets. By leveraging the principle of domain adaptation,
we can extract critical features directly from the simulator
and transfer the knowledge learned from the source domain
to the target domain, consisting of accurate real-world data.

The H-Divergence framework [101] resolves the do-
main gap at both the visual and instance levels by ad-
versarially learning a domain classifier and a detector si-
multaneously. Zhang et al. [102] propose a simulator-real
interaction strategy that leverages disparities between the
source domain and the target domain. The authors create
two components to align differences at the global and local
levels and ensure overall consistency between them. The
realistic-looking synthetic images may subsequently be used
to train an End-to-End model. A number of techniques rely
on an open pipeline that introduces obstacles in the current
environment. PlaceNet [103] places objects into the image
space for detection and segmentation operations. GeoSim
[104] is a geometry-aware approach that dynamically inserts
objects using LiDAR and HD maps. DummyNet [105] is
a pedestrian augmentation framework based on a GAN
architecture that takes the background image as input and
inserts pedestrians with consistent alignment. Some works
take advantage of virtual LiDAR data [106, 107, 108]. Sallab
et al. [106] perform learning on virtual LiDAR point clouds
from CARLA [109] and utilize CycleGAN to transfer styles
from the virtual domain to the real KITTI [110] dataset. Fang
et al. [107] propose a LiDAR simulator that
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Figure 10: Demonstration of safe driving methods: (a) InterFuser [8] processes multisensorial information to detect adversarial
events, which are then used by the controller to constrain driving actions within safe sets. (b) KING [6] improves collision avoidance
using scenario generation. The image shows the ego vehicle (shown in red) maintaining a safe distance during a lane merge in
the presence of an adversarial agent (shown in blue). (c) In the same context, the image illustrates the vehicle slowing down to

avoid collision.

augments real point clouds with artificial obstacles by
blending them appropriately into the surroundings. Regard-
ing planning and decision disparity, Pan et al. [116] propose
learning driving policies in a simulated setting with realistic
frames before applying them in the real world. Osinski et
al. [117] propose a driving policy using a simulator, where
a segmentation network is developed using annotated real-
world data, while the driving controller is learned using
synthetic images and their semantics. Mitchell et al. [118]
and Stocco et al. [119] enable robust online policy learning
adaptation through a mixed-reality arrangement, which in-
cludes an actual vehicle and other virtual cars and obstacles,
allowing the real car to learn from simulated collisions and
test scenarios.

8. Safety

Ensuring safety in End-to-End autonomous driving sys-
tems is a complex challenge. While these systems offer
high-performance potential, several considerations and ap-
proaches are essential for maintaining safety throughout the
pipeline. First, training the system with diverse and high-
quality data that covers a wide range of scenarios, including
rare and critical situations. Hanselmann et al. [6], Chen et
al. [10], Chitta et al. [7], Xiao et al. [14], and Ohn-Bar et al.
[49] demonstrate that training on critical scenarios helps the
system learn robust and safe behaviors and prepares it for

environmental conditions and potential hazards. These sce-
narios include unprotected turnings at intersections, pedes-
trians emerging from occluded regions, aggressive lane-
changing, and other safety heuristics, as shown in Fig. 10(b)
and Fig. 10(c). Hanselmann et al. [6] focus on improving
robustness by inducing adversarial scenarios (collision sce-
narios) and collecting an observation-waypoint dataset using
experts, which is then used to fine-tune the policy.

Integrating safety constraints and rules into the End-to-
End system is another vital aspect. The system can prior-
itize safe behavior by incorporating safety considerations
during learning or post-processing system outputs. Safety
constraints include a safety cost function [80, 82, 65, 90],
avoiding unsafe maneuvers [11, 19], and collision avoidance
strategies [58, 13, 50]. Zeng et al. [84] define the cost volume
responsible for safe planning; Kendall et al. [59] propose a
practical safety reward function for safety-sensitive outputs.
Lietal. [55] and Hu et al. [20] demonstrate safety by utilizing
the Safety Cost function that penalizes jerk, significant ac-
celeration, and safety violations. To avoid unsafe maneuvers,
Zhang et al. [51] eliminate unsafe waypoints, and Shao et al.
[8] introduce InterFuser (Fig. 10(a)), which constrains only
the actions within the safety set and steers only the safest
action. The above constraints ensure that the system operates
within predefined safety boundaries.

Implementing additional safety modules and testing
mechanisms (Tables 4, 5) enhances the system’s safety.

P.S. Chib et al.
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Table 4

END-TO-END DRIVING TESTING TO ENSURE SAFETY

Methods

Summary

Literature

Search-based
testing

Generating neuron coverage to
identify false actions

[120]

Designing an diverse and critical
unsafe test cases

[6]

Objective function to search safety
sensitive output

(84]

Optimization-
based attack

Place the original object with an
adversarial one

[103]

Virtual obstacles to generate
adversarial attack in natural environment

(2]

GAN-based
attack

Generate the adversarial realistic-looking
representations based on images

[121]

Generate pedestrian augmentation from
inserting pedestrians in image

[122]

Designing an objective function to search
for the diverse unsafe test cases

(8]

Table 5
END-TO-END TESTING ORACLE MEASURES CORRECT CONTROL DECISION AT DIFFERENT SCENARIOS
Test Oracle Detail Literature
Metamorphic The control signal should not get alter [6]
testing in different condition
Differential The End-to-End system must give the same [50]
testing safe control for same scenario
Model-based Predicting the critical scenario that 23]
oracle cause system failure

Real-time monitoring of the system’s behavior allows for
detecting abnormalities or deviations from safe operation.
Hu et al. [9], Renz et al. [18], Wu et al. [13], and Hawke
et al. [24] implement a planner that identifies collision-
free routes, reduces possible infractions, and compensates
for potential failures or inaccuracies. Renz et al. [18] use a

rule-based expert algorithm for their planner, while Wu et
al. [13] propose a trajectory + control model that predicts
a safe trajectory over the long horizon. Hu et al. [9] also
employ a goal planner to ensure safety. Codevilla et al. [23]
demonstrate the system’s ability to respond appropriately
and return the vehicle to a safe state when encountering

Table 6
POPULAR SAFETY METRICS USED FOR SAFETY EVALUATION OF DRIVING SYSTEM
Classification Critical Metrics Literature Description
Time to Collision (TTC) [123] It defines the minimum tl'me |n'terva| that the two agents
will collide
Worst Time to Collision (WTTC) [124] The WTTC metric is an extension of t_he tradltllonal TTC that
takes numerous traces of actors into consideration
Time to Maneuver (TTM) [123] The TTM yields the latest time in the range [0, TTC] at W!WI-Ch an
expert actor may conduct a movement that avoids a collision
Temporal TTR metric provides an approximation of the latest time before a
metrics Time to React (TTR) [120] P pproxt
reaction is necessary
. The THW measure determines the amount of time it will take an
Time Headway (THW) [123] actor to get to the location of other vehicle
Deceleration Safety Time (DST) [125] It calculates the deceleratu.)n required to maintain the
safe distance
Stopping Distance (SD) [126] Minimum stopping dlsta.nce at the time of
Non-Temporal deceleration
metrics Crash Potential Index (CPI) [127] It measures the probabl_llty that the veh_lcle cannot avoid the
collision by deceleration
Conflict Index (CI) [127] It estimates the collision probability and the severity
factors
P.S. Chib et al. Page 16 of 28
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potential inconsistencies. Similarly, Zhao et al. [50] incorpo-
rate stop intentions to help avoid hazardous traffic situations
and respond appropriately. These mechanisms ensure that
the system can detect and respond to abnormal or unexpected
situations, thereby reducing the risk of accidents or unsafe
behavior.

Adversarial attack [22] methods, as shown in the Table
4, are utilized in driving testing to evaluate the correctness
of the output control signal. These testing methodologies
aim to identify vulnerabilities and assess the robustness
against adversaries. The End-to-End testing oracle (Table 5)
determines the correct control decision within a given sce-
nario. Metamorphic testing tackles the oracle problem by
verifying the consistency of the steering angle [6] across
various weather and lighting conditions. It provides a reli-
able way to ensure that the steering angle remains stable and
unaffected by these factors. Differential testing [50] exposes
inconsistencies among different DNN models by comparing
their inference results for the same scenario. If the models
produce different outcomes, it indicates unexpected behavior
and potential issues in the system. The model-based oracle
employs a trained probabilistic model to assess and predict
potential risks [23] in real scenarios. By monitoring the
environment, it can identify situations that the system may
not adequately handle.

Safety metrics provide quantitative measures to evaluate
the performance of autonomous driving systems and assess
how well the system functions in terms of safety. Time to
Collision (TTC), Conflict Index (CI), Crash Potential Index
(CPI), Time to React (TTR), and others are some of the
metrics that can provide additional objective comparisons
between the safety performance of various approaches and
identify areas that require improvement. A description of
these metrics is provided in Table 6.

9. Explainability

Explainability [128] refers to the ability to understand
the logic of an agent and is focused on how a user inter-
prets the relationships between the input and output of a
model. It encompasses two main concepts: interpretability,
which relates to the understandability of explanations, and
completeness, which pertains to exhaustively defining the
behavior of the model through explanations. Choi et al.
[129] distinguish three types of confidence in autonomous
vehicles: transparency, which refers to the person’s ability to
foresee and comprehend vehicle operation; technical compe-
tence, which relates to understanding vehicle performance;
and situation management, which involves the notion that
the user can regain vehicle control at any time. According
to Haspiel et al. [130], explanations play a crucial role when
humans are involved, as the ability to explain an autonomous
vehicle’s actions significantly impacts consumer trust, which
is essential for the widespread acceptance of this technology.

In the context of explainability for end-to-end autonomous
driving systems, we can categorize explanation approaches
into two main types (Fig. 11): local explanations and global

Explainability
Local Global
Explanation Explanation
Posthoc  Counterfactual Model Expl.éining
Saliency Explanation Translation Representation

Figure 11: Categorization of Explainability Approaches.

explanations. A local explanation aims to describe the ratio-
nale behind the predictions of the model. On the other hand,
global explanations aim to comprehensively comprehend the
model’s behavior by describing the underlying knowledge.
As of now, there is no available research on global explana-
tions in the context of end-to-end autonomous driving [131].
Therefore, future research should focus on addressing this

gap.

9.1. Local explanations

A local explanation describes why the model f produces
its prediction y = f(x) given an input x. There are two
approaches: in 9.1.1, we determine which visual region has
the most impact, and in 9.1.2, we identify the factors that
caused the model to predict f(x).

9.1.1. Post-hoc saliency methods

A post-hoc saliency technique attempts to explain which
portions of the input space have the most effect on the
model’s output. These approaches provide a saliency map
that illustrates the locations where the model made the most
significant decisions.

Post-hoc saliency methods primarily focus on the per-
ception component of the driving architecture. Bojarski et
al. [132] introduced the first post-hoc saliency approach
for visualizing the impact of inputs in autonomous driving.
Renz et al. [18] proposed the PlanT method (Fig. 12(a)),
which utilizes an attention mechanism for post-hoc saliency
visualization to provide object-level representations using
the attention weights of the transformer to identify the most
relevant objects. Mori et al. [133] proposed an attention
mechanism that utilizes the model’s predictions of steering
angle and throttle. These local predictions are employed as
visual attention maps and combined with learned parameters
using a linear combination to make the final decision. While
attention-based methods are often believed to improve the
transparency of neural networks, it should be noted that
learned attention weights may exhibit weak correlations with
several features. The attention weights can provide accurate
predictions when measuring different input features during
driving. Overall, evaluating the post-hoc effectiveness of
attention mechanisms is challenging and often relies on
subjective human evaluation.

P.S. Chib et al.
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Figure 12: Explainability Methods: (a) PlanT [18] visualization showing the attention given to the agent in various scenarios.
(b) Using InterFuser [8], failure cases can be visualized by integrating three RGB views and a predicted object density map. The
orange boxes indicate objects that pose a collision risk to the ego-vehicle. The object density map offers predictions for the current
traffic scene (7,) and future traffic scenes at 1-second (#,) and 2-second (t,) intervals.

9.1.2. Counterfactual explanation

Saliency approaches focus on answering the ‘where’
question, identifying influential input locations for the model’s
decision. In contrast, counterfactual explanations address the
‘what’ question by seeking small changes in the input that
alter the model’s prediction. Counterfactual analysis aims to
identify features X within the input x that led to the outcome
y = f(x) by creating a new input instance x’ where X is
modified, resulting in a different outcome y’. The modified
input instance x’ serves as the counterfactual example, and
' represents the contrasting class, such as ‘What changes in
the traffic scenario would cause the vehicle to stop moving?’
It could be a red light.

Since the input space consists of semantic dimensions
and is modifiable, assessing the causality of input compo-
nents is straightforward. Li et al. [125] proposed a causal
inference technique for identifying risky objects. Steex [134]
developed a counterfactual method that modifies the style of
the region to explain the visual model. The semantic input
provides a high-level object representation, making it more
interpretable compared to pixel-level representations.

Bansal et al. [135] explore the underlying causes of
particular outcomes by examining the ChauffeurNet model
using manually crafted inputs that involve omitting particu-
lar objects.

In End-to-End driving, the steering, throttle, and brake
driving outputs can be complemented with auxiliary outputs
such as the occupancy and interpretable semantics to demon-
strate a specific degree of counterfactual understandability.
Chitta et al. [7] introduce an auxiliary output (semantics
map) that employs the A* planner to address a counterfactual
inquiry of “What is the possibility of a collision without
braking". Shao et al. [8] designed a system, as shown in Fig.
12(b), which infers counterfactual reasoning for the potential
failures with the assistance of an intermediate object density
map. Sadat et al. [90] generate a probabilistic semantic occu-
pancy map over space and time, capturing the positions of di-
verse road agents. Occupancy maps provide a counterfactual
explanation as they act as an intermediary representation to

the motion planning system, higher occupancy probabilities
will discourages the maneuvers while lower occupancy will
encourage them.

9.2. Global explanations

Global explanations aim to provide an overall under-
standing of a model’s behavior by describing the knowl-
edge it possesses. They are classified into model translation
(9.2.1) and representation explanation techniques (9.2.2) for
analyzing global explanations.

9.2.1. Model translation

The objective of model translation is to transfer the
information from the original model to a different model that
is inherently interpretable. This involves training an explain-
able model to mimic the input-output relationship. Recent
studies have explored translating deep learning models into
decision trees [136], rule-based models [137], or causal
models [138]. However, one limitation of this approach is the
potential discrepancies between the interpretable translated
model and the original self-driving model.

9.2.2. Explaining representations

Explaining representations aims to explain the informa-
tion captured by the model’s structures at various scales.
Zhang et al. [139] and Bau et al. [140] make efforts to gain
insights into what the neurons capture. The activation of a
neuron can be understood by examining input patterns that
maximize its activity. For example, one can sample the input
using gradient ascent [141] or generative networks [142].
Tian et al. [120] employ the concept of neuron coverage to
identify false actions that could potentially lead to fatalities.
They partition the input space based on neuron coverage,
assuming that inputs with the same neuron coverage will
result in the same model decision. Their objective is to
increase neuron coverage through transformations such as
linear changes in image intensity and affine transformations
like rotation and convolution.

P.S. Chib et al.

Page 18 of 28



Recent Advancements in End-to-End Autonomous Driving using Deep Learning: A Survey

Table 7
CARLA AUTONOMOUS DRIVING LEADERBOARD 1.0 SUBMISSION UNTIL AUGUST 2023
Rank Submission DS RC IP CP | cv ‘ CL ‘ RLI ‘ SSI I Ol | RD | AB Type
% % [0,1] infractions/km E/M
1 ReasonNet [16] 79.95 | 89.89 | 0.89 | 0.02 | 0.13 | 0.01 0.08 | 0.00 | 0.04 | 0.00 0.33 E
1 InterFuser [8] 76.18 | 88.23 | 0.84 | 0.04 | 0.37 | 0.14 0.22 | 0.00 | 0.13 | 0.00 0.43 E
2 TCP [13] 75.14 | 85.63 | 0.87 | 0.00 | 0.32 | 0.00 0.09 | 0.00 | 0.04 | 0.00 0.54 E
3 TF++ [71] 66.32 | 78.57 | 0.84 | 0.00 | 0.50 | 0.00 0.01 | 0.00 | 0.12 | 0.00 0.71 E
3 LAV [10] 61.85 | 94.46 | 0.64 | 0.04 | 0.70 | 0.02 0.17 | 0.00 | 0.25 | 0.09 0.10 E
4 TransFuser [7] 61.18 | 86.69 | 0.71 | 0.04 | 0.81 | 0.01 0.05 | 0.00 | 0.23 | 0.00 0.43 E
5 Latent TransFuser [7] | 45.20 | 66.31 | 0.72 | 0.02 | 1.11 | 0.02 | 0.05 | 0.00 | 0.16 | 0.00 1.82 E
6 GRIAD [100] 36.79 | 61.85 | 0.60 | 0.00 | 2.77 | 0.41 0.48 | 0.00 | 1.39 | 1.11 0.84 E
7 TransFuser+ [7] 3458 | 69.84 | 0.56 | 0.04 | 0.70 | 0.03 0.75 | 0.00 | 0.18 | 0.00 241 E
8 World on Rails [99] 31.37 | 57.65 | 0.56 | 0.61 | 1.35 | 1.02 0.79 | 0.00 | 0.96 | 1.69 0.47 E
9 MaRLn [53] 2498 | 46.97 | 0.52 | 0.00 | 2.33 | 247 0.55 | 0.00 1.82 1.44 0.94 E
10 NEAT [12] 21.83 | 41.71 | 0.65 | 0.04 | 0.74 | 0.62 0.70 | 0.00 | 2.68 | 0.00 5.22 E
11 AIM-MT [12] 19.38 | 67.02 | 0.39 | 0.18 | 1.53 | 0.12 155 | 0.00 | 0.35 | 0.00 211 E
12 TransFuser [14] 16.93 | 51.82 | 0.42 | 0.91 | 1.09 | 0.19 1.26 | 0.00 | 0.57 | 0.00 1.96 E
13 CNN-Planner [143] 15.40 | 50.05 | 0.41 | 0.08 | 4.67 | 0.42 0.35 | 0.00 | 2.78 | 0.12 4.63 M
14 Learning by [48] 894 | 1754 | 0.73 | 0.00 | 0.40 | 1.16 0.71 | 0.00 | 1.52 | 0.03 4.69 E
15 MaRLn [53] 556 | 2472 | 0.36 | 0.77 | 3.25 | 13.23 | 0.85 | 0.00 | 10.73 | 2.97 11.41 E
16 CILRS [12] 5.37 1440 | 0.55 | 2.69 | 1.48 | 2.35 162 | 0.00 | 455 | 4.14 4.28 E
17 CaRINA [144] 456 | 23.80 | 0.41 | 0.01 | 7.56 | 51.52 | 20.64 | 0.00 | 14.32 | 0.00 | 10055.99 M

Route Completion (RC), Infraction Score/penalty (IS), Driving score (DS), Collisions pedestrians (CP)/(PC), Collisions
vehicles (CV), Collisions layout (CL)/(LC), Red light infractions (RLI), Red light violation (RV), Stop sign infractions (SSI),
Off-road infractions (Ol), Route deviations (RD), Agent blocked (AB), End-to-End Architecture (E), Modular Architecture

(M).

10. Evaluation

The evaluation of the End-to-End system consists of
open-loop evaluation and closed-loop evaluation. The open
loop is assessed using real-world benchmark datasets such as
KITTI [110] and nuScenes [145]. It compares the system’s
driving behavior with expert actions and measures the devia-
tion. Measures such as MinADE, MinFDE [9], L2 error [20],
and collision rate [84] are some of the evaluation metrics
presented in Table 3. In contrast the closed-loop evaluation
directly assesses the system in controlled real-world or simu-
lated settings by allowing it to drive independently and learn
safe driving maneuvers.

In the open-loop evaluation of End-to-End driving sys-
tems, the system’s inputs, such as camera images or LIDAR
data, are provided to the system. The resulting outputs,
such as steering commands and vehicle speed, are evaluated
against predefined driving behaviors. The evaluation metrics
commonly used in the open-loop evaluation include mea-
sures of the system’s ability to follow the desired trajectory
or driving behaviors, such as the mean squared error [50], L2
[9, 82] between the predicted and actual trajectories or the
percentage of time the system remains within a certain dis-
tance of the desired trajectory [13]. Other evaluation metrics
may also be employed to assess the system’s performance
in specific driving scenarios [14, 6], such as the system’s
capability to navigate intersections, handle obstacles, or
perform lane changes. The open loop provides faster initial
assessment based on functionalities and is also helpful for

testing specific components or behaviors in isolation. How-

ever, they inherit drawbacks from the benchmark datasets as

they cannot generalize to wider geographical distribution.
Most of the recent End-to-End systems are evaluated in

closed-loop settings such as LEADERBOARD and NOCRASH

[109]. Table 7 compares all the state-of-the-art methods
on the CARLA public leaderboard. The CARLA leader-
board analyzes autonomous driving systems in unanticipated
environments. Vehicles are tasked with completing a set
of specified routes, incorporating risky scenarios such as
unexpectedly crossing pedestrians or sudden lane changes.
The leaderboard measures how far the vehicle has suc-
cessfully traveled on the given Town route within a time
constraint and how many times it has incurred infractions.
Several metrics provide a comprehensive understanding of
the driving system, which are mentioned below:

e Route Completion (RC): [7, 10, 18, 13, 8] measures
the percentage of the distance that an agent can com-
plete.

e Infraction Score/penalty (IS): [14, 51, 12] is a geo-
metric series that tracks infractions and aggregates the
infraction penalties. It measures how often an agent
drives without causing infractions.

e Driving score (DS): [54, 52, 49] is a primary metric
calculated as the multiplication of the route comple-
tion and the infraction penalty. It measures the route
completion rate weighted by infractions per route.
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There are specific metrics that evaluate infractions; each
metric has penalty coefficients applied every time an infrac-
tion takes place. Collisions with pedestrians, collisions with
other vehicles, collisions with static elements, collisions
layout, red light infractions, stop sign infractions, and off-
road infractions are some of the metrics used [143]. Closed-
loop evaluation provides dynamic testing adaptability where
one can provide customized configuration and sensor set-
tings. The feedback loop in it allows for iterative refinement,
enabling the system to learn and improve from mistakes
and experiences. However, several challenges are associated
with closed-loop. These include the complexity of the initial
setup and the domain gap, which might require additional
fine-tuning.

11. Datasets and simulator

11.1. Datasets

In End-to-End models, the quality and richness of data
are critical aspects of model training. Instead of using dif-
ferent hyperparameters, the training data is the most crucial
factor influencing the model’s performance. The amount of
information fed into the model determines the kind of out-
comes it produces. We summarized the self-driving dataset
based on their sensor modalities, including camera, LiDAR,
GNSS, and dynamics. The content of the datasets includes
urban driving, traffic, and different road conditions. Weather
conditions also influence the model’s performance. Some
datasets, such as ApolloScape [146], capture all weather
conditions from sunny to snowy. The details are provided
in Table 8.

11.2. Simulators and toolsets

Standard testing of End-to-End driving and learning
pipelines requires advanced software simulators to process
information and make conclusions for their various func-
tionalities. Experimenting with such driving systems is ex-
pensive, and conducting tests on public roads is heavily
restricted. Simulation environments assist in training spe-
cific algorithms/modules before road testing. Simulators like
Carla [109] offer flexibility to simulate the environment
based on experimental requirements, including weather con-
ditions, traffic flow, road agents, etc. Simulators play a
crucial role in generating safety-critical scenarios and con-
tribute to model generalization for detecting and preventing
such scenarios.

Widely used platforms for training End-to-End driv-
ing pipelines are compared in Table 9. MATLAB/Simulink
[147] is used for various settings; it contains efficient plot
functions and has the ability to co-simulate with other soft-
ware, such as CarSim [148], which simplifies the creation of
different settings. PreScan [149] can mimic real-world en-
vironments, including weather conditions, which MATLAB
and CarSim lack. It also supports the MATLAB Simulink
interface, making modeling more effective. Gazebo [150] is
well-known for its high versatility and easy connection with
ROS. In contrast to the CARLA and LGSVL [151] simula-
tors, creating a simulated environment with Gazebo requires

mechanical effort. CARLA and LGSVL offer high-quality
simulation frameworks that require a GPU processing unit to
operate at a decent speed and frame rate. CARLA is built on
the Unreal Engine, while LGSVL is based on the Unity game
engine. The API allows users to access various capabilities in
CARLA and LGSVL, from developing customizable sensors
to map generation. LGSVL generally links to the driving
stack through various bridges, and CARLA allows built-in
bridge connections via ROS and Autoware.

12. Future research directions

This section will highlight the possible research direc-
tions that can drive future advancements in the domain from
the perspective of learning principles, safety, explainability,
and others.

12.1. Learning robustness

Current research in End-to-End autonomous driving
mainly focuses on reinforcement learning (Section 6.2)
and imitation learning (Section 6.1) methods. RL trains
agents by interacting with simulated environments, while IL
learns from expert agents without extensive environmental
interaction. However, challenges like distribution shift in IL
and computational instability in RL highlight the need for
further improvements.

12.2. Enhanced safety

Ensuring the behavioral safety of vehicles and accurately
predicting uncertain behaviors are key aspects in safety re-
search as discussed in Section 8. An effective system should
be capable of handling various driving situations, contribut-
ing to comfortable and reliable transportation. To facilitate
the widespread adoption of End-to-End approaches, it is
essential to refine safety constraints and enhance their effec-
tiveness.

12.3. Advancing model explainability

The lack of interpretability poses a new challenge for
the advancement of End-to-End driving. However, ongoing
efforts (Section 9) are being made to address this issue by de-
signing and generating interpretable features. These efforts
have shown promising improvements in both performance
and explainability. However, further exploration is required
in global explanation strategies, including designing novel
approaches to explain model actions leading to failures
and suggesting potential solutions. Future research can also
explore ways to improve feedback mechanisms, allowing
users to understand the decision-making process and infuse
confidence in the reliability of End-to-End driving systems.

12.4. Collaboration perception systems

Vehicles can communicate directly utilizing collabora-
tive perception to observe surroundings beyond their line
of sight and field of view. This approach addresses issues
related to occlusion and limited receptive fields. Cooperative
or collaborative perception enables vehicles in the same area
to communicate and jointly assess the scene.
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Table 9
PROMINENT SIMULATORS USED FOR CREATING VIRTUAL ENVIRONMENTS FOR END-TO-END SYSTEMS
Simulator MATLAB CarSim PreScan CARLA LGSVL
wiators [147] [148] [149] [109]  [151]
Sensors v v v v v
support
Weather v v v
condition
Camera
calibration v v v
Path v v v v v
planning
Vehicle v v v v v
dynamics
ertual v v v v
environment
Infras.truc.ture v % v v v
fabrication
S.cenarlos v v v v v
simulator
Ground
truth v v v
Simulator v v v v v
connectivity
System
scalability v /
Open v v
source
System v v v v v
stable
System v v v v v
portable
API
flexibility v v v v

Cooperative perception methods [182, 183, 184] include
V2V (vehicle-to-vehicle), V2I (vehicle-to-infrastructure),
and V2X (vehicle-to-everything) modes. Future works should
focus on enhancing the transmission efficiency within col-
laboration systems while safeguarding data privacy.

12.5. Large language and vision models

Large vision models have emerged as a prominent trend
in Al. By harnessing the advancements in these models,
various domains can benefit from their integration. Visual
prompts have become essential aids for understanding visu-
als across diverse domains and enhancing model capacity for
interpreting visual data. Presently, SAM-Track [185] for ob-
ject tracking and VIMA [186] for robot action manipulation
showcase potential, implying that these large models can op-
timize visual recognition systems. Moreover, we can effec-
tively utilize large language and vision models through trans-
fer learning, domain adaptation, and fine-tuning. We can
transfer insights from a larger model to a smaller one, em-
phasizing the importance of compact transfer of knowledge
and applying it to novel tasks while upholding performance
and adaptability, especially in contexts like autonomous
driving. Future efforts must focus on designing large vision

models tailored explicitly to autonomous driving and prompt
fine-tuning to guide tasks related to perception and control.

13. Conclusion

Over the past few years, there has been significant inter-
est in End-to-End autonomous driving due to the simplicity
of its design compared to conventional modular autonomous
driving. We develop a taxonomy based on modalities, learn-
ing, and training methodology and investigate the potential
of leveraging domain adaptation approaches to optimize the
training process. Furthermore, the paper explores evaluation
framework that encompasses both open and closed-loop as-
sessments, enabling a comprehensive analysis of system per-
formance. To facilitate further research and development in
the domain, we compile a summarized list of advancements,
publicly available datasets and simulators. The paper also
explores potential solutions proposed by different articles
regarding safety and explainability. Despite the impressive
performance of End-to-End approaches, there is a need
for continued exploration and improvement in safety and
interpretability to achieve broader technology acceptance.
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