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Abstract

This paper presents a video-based approach to detect the presence of parked vehicles in street lanes.

Potential applications include detection of illegally and double-parked vehicles in urban scenarios and

incident detection on roads. The technique extracts information from low-level feature points (Harris

corners) in order to create spatio-temporal maps that describe what is happening in the scene.

The method does not rely on any background subtraction or perform any form of object tracking.

The system has been evaluated using private and public data sets and has proven to be robust against

common difficulties found in CCTV video such as varying illumination, camera vibration, presence of

momentary occlusion by other vehicles, and high noise levels.

I. INTRODUCTION

Urban traffic is currently a real problem for most medium-sized and large cities. To reduce

the problems caused by traffic congestion, intelligent transportation systems (ITS) are being

deployed world-wide to achieve a more efficient use of existing infrastructures [1].

One problem that appears with high traffic densities (near congestion) is that any small incident

may have a multiplicative effect. For this reason, the development of technologies that help

authorities to react quickly to any type of incident is important. Among the technologies applied
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to ITS, video offers some advantages such as the ability to cover wider areas. Also, most places

of interest have monitoring cameras already installed. Moreover, the range of possible automatic

analysis tasks that can be done using video is, by far, larger than with any other kind of sensor.

Traditionally, video cameras have mainly been used as a monitoring tool. However, when

the number of cameras grows, it becomes unfeasible to monitor the cameras by humans. To

overcome this issue, some tools for automatic traffic video analysis have begun to be offered

commercially. Examples of a few companies that perform traffic video analysis include [2], [3],

[4]. Unfortunately, it is difficult to evaluate the performance and limitations of these solutions

since these companies do not often provide any details of their algorithms and implementations.

This paper presents a technique that uses video to automatically detect the presence of parked

vehicles in street lanes. Parked vehicles can severely affect the traffic flow especially under

near congestion conditions. Bear in mind that although an illegally parked vehicle only blocks

one street lane, other vehicles driving down this lane are forced to move to adjacent lanes,

thus perturbing the traffic flow in more lanes. Even though our system has an obvious law-

enforcement application, we are more interested in reporting the state of the lane in order to be

used as an input for dynamic traffic planning.

Dynamic traffic planning systems [5] achieve a better regulation of the whole infrastructure

by using complex models with many input traffic variables. Some examples of input variables

for such systems are: instantaneous and historic values of traffic data in different streets/roads

(number of vehicles, average speed, mean stopping times, queue lengths,...); and the number of

available lanes (not occupied by parked vehicles) on each avenue. This last information is what

can be obtained from the algorithm presented in this paper.

Detection of parked vehicles involves detecting objects that remain stopped for more than a

certain time. In urban scenarios, the minimum stopping time must be longer than traffic light

cycles. The algorithm proposed in this paper has been evaluated with two data sets, one private

and one public, described in detail in Sect. VI. Figure 1 shows sample images from two scenarios

of the private data set. In the images, the areas of interest where vehicles park illegally have

been highlighted .
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(a) (b)

Figure 1. Two example scenarios indicating the lanes under analysis.

II. PREVIOUS WORK

The problem of detecting illegally and double-parked vehicles has been gaining more attention

in the literature, especially since the i-LIDS vehicle detection challenge was released in 2007 [6].

To our knowledge, almost all previous approaches use some type of background model to

detect objects of interest. Once foreground objects are extracted, most approaches use some sort

of object tracking. An interesting survey on object tracking can be found in [7].

Examples of algorithms that use background subtraction and object tracking include [8], [9],

[10], [11], [12], [13]. For instance, in [8], Bevilacqua and Vaccari present a method to detect

stopped vehicles based on the detection of the tracked object’s centroid position during short

time intervals. They use background subtraction to detect foreground objects. Objects are tracked

using an optical-flow motion estimation technique. Then, the centroid position of each car is

analyzed within short time intervals. If the centroid remains within a small area for a short time,

then the object is considered to be static for a short stability interval. If the object trajectory

contains many contiguous short stability intervals, then a long stability interval is detected. The

duration of this long stability interval is used to measure the full vehicle stopping time. In our

opinion, this approach will have problems if the background changes during the time that a

vehicle is parked, either because it is parked for a long time, or because the illumination is

changing fast. The stopping times reported in [8] seem to be far shorter than the ones found in

the real world.
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In [9], Maddalena and Petrosino adopt a self-organized model for both the scene background

and foreground in order to distinguish between moving and stopped foreground regions. In [10],

the authors employ a DSP-based system for automatic visual surveillance. Block-matching

motion detection and MOG-based foreground extraction are proposed in that work.

Other methods propose general frameworks for static object detection in which parked vehicles

are a particular case. For example, in [11], Guler et al. (from the company IntuVision [14])

propose using an object tracker that is specially adapted to detect stationary objects. A scene

description layer is used. Essentially, it contains the background in the absence of vehicles.

Each time that a pixel becomes stationary after having had motion, it is compared with the

background; if it is similar to it, then the probability that it belongs to a static object is decreased;

if it is quite different, then the probability of being a static foreground object is increased. The

algorithm has been tested using the i-LIDS sample data set (section VI-B) for abandoned bags

and parked vehicle scenarios. In our opinion, this scheme cannot deal with long parking times

or fast illumination changes. A fast change in the appearance of the background would be

considered a parked car. On the other hand, if the background changes while an area is occupied

by a parked car, the background shown when the car leaves will be different from the one learnt

before the car arrived. Moreover, the requirement of obtaining a background image with no cars

is not very practical for most busy city scenarios.

In [12], Venetianer et al. propose using the ObjectVideo tracker [15] to detect static objects.

ObjectVideo implements a series of generic algorithms for object tracking that can be used for

different purposes. For the case of parked vehicles, they used the sample subset of i-LIDS (see

section VI-B). Although good results are reported on the sample subset, they recognize that

these results do not correspond to the whole i-LIDS data set. In fact, they say that they have

purchased the whole Parked Vehicle data set but conclude that further investigation is needed to

see how to use ObjectVideo modules on this data. Finally, in [13], tracking is performed in 1-D

after a transformation that projects the pixels of one lane of interest.

An example of an approach that uses background subtraction without any object tracking

is presented by Porikli in [16]. This method uses two different time constants to estimate

two backgrounds using different time-constants. Short-term background captures objects that

have recently stopped and ignores moving objects, while long-term background models what is

normally understood as background. The difference between the two backgrounds should contain
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static objects. They have tested their approach with only one sequence of the sample i-LIDS

data set of parked vehicles. Nothing is said about how to reestimate background when vehicles

depart, or how to distinguish between vehicles and background in the case of long-term parking.

In our opinion, systems that use pixel-based background subtraction are not appropriate for

detecting parked vehicles for long periods of time. If long constants of time are used to estimate

background, then fast illumination changes such as those found on windy days with scattered

clouds will cause the background to be invalid most of the time. On the other hand, short

constants of time will incorporate stopped cars into the background too early. To illustrate the

huge background variations in real scenarios, Figure 2 shows images from the two scenarios of

Fig.1 at different times of the day and with different weather conditions (rainy, sunny, cloudy).

Most background subtraction methods require knowing if there are parked or moving cars

during startup. This requirement constitutes a limitation for unsupervised deployments. Ideally,

intra-frame object detectors can be really useful to solve the problem of detecting parked cars

without background estimation. An intra-frame object detector is able to detect a specific kind

of object using only one image. It is known that intra-frame object detectors exist for faces [17],

[18] and pedestrians [19]. However, the huge variability in the aspect of vehicles, depending on

point of observation, color, car model, etc. has made that there are no widely used intra-frame

vehicle detectors. Nevertheless, some attempts in the literature have taken this direction [20].

An additional limitation of intra-frame detectors is that they usually require a minimum object

size and, normally, this required size is larger than that found in traffic monitoring cameras.

III. SYSTEM OVERVIEW

As mentioned in the introduction, the final goal is to detect the presence of parked vehicles

in a particular street lane, rather than attempting to detect each individual vehicle. The street

pavement normally appears as a smooth flat surface (except for the road markings). However,

within the space that a car occupies in the image, it is possible to find more textured information.

To take advantage of this fact, corner points are used as an important clue of the possible presence

of vehicles. The use of corner points to distinguish foreground from asphalt was also proposed

by [21] in the context of counting vehicles in motorways. We would like to stress that detecting

features that are normally contained in cars, is different from precisely detecting cars. Upon

careful reflection on the need to precisely segment individual cars in order to detect blocked
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Figure 2. Sample views of two different scenarios at different times to illustrate the variations around the clock.

lanes, we have concluded that this requirement is excessive. Even though our proposal is an

indirect approach, it is much more robust to changes in illumination and performs better in

extremely difficult scenarios with high traffic densities where it is almost impossible to segment

individual vehicles.

An additional reason for choosing not trying to detect vehicles, but features related with them,

is the wide range of car sizes that it is necessary to cover due to perspective. In typical scenes
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where cars approach or depart, vehicles at the bottom of the image have a relatively large size

while those at the top have a very small size (widths of less than 5 pixels).

From the above reasoning, the algorithm starts by detecting all corner points using the Harris

algorithm [22]. Hereafter, the shorter term corners will be used to refer to these feature points.

These corners are then classified into two categories, static and dynamic. Dynamic corners most

probably correspond to moving objects such as vehicles or pedestrians. However, static corners

may appear on stopped cars and also on the background. Although the asphalt pavement is

normally a smooth surface (without corners), the presence of road markings causes the detection

of static corners at arrows, line ends, etc. Fortunately, since static cameras mounted on street

poles are being used, these points always appear at the same locations and can be removed, as

will be explained below.

From the point of view of traffic, a lane can be considered as a one-dimensional entity (in the

longitudinal dimension). The area monitored by cameras located at junctions normally extends

vertically (see the sample scenarios of Fig.1). Ignoring the transverse (horizontal) dimension of

corners within the lane of interest, a one dimensional vector (for each frame) can be obtained.

This vector has the same length as the longitudinal (vertical) dimension of the lane, and each

element contains the number of corners at a given depth. Remember that these corners will likely

correspond to vehicles. It is interesting to emphasize the information compression achieved by

the process of discarding one coordinate. This greatly reduces the computational complexity,

similarly to [13]. Appending these one-dimensional vectors for different frames allows the

creation of spatio-temporal maps (2D) that contain the time evolution of the location of corners.

The fine details about spatio-temporal maps will be presented in section IV. These maps are then

conveniently filtered to take into account the fact that only vehicles that stop for a time longer

than a threshold are being detected. Details about the filtering will be explained in section IV-C.

Finally, after filtering, a classifier is applied using portions of maps corresponding to small time

intervals to determine the lane occupancy.

The proposed system can be used for both real-time operation and off-line statistical analysis

of lane occupancy. In real-time operation, the maps are filtered as they are built and the most

recent portion of the map is used to make a decision about the current lane status.
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Figure 3. Flowchart of the processing performed for each frame.

a) b)

Figure 4. a) Corners detected using Harris detector. b) Corners detected using Tomasi-Kanade features detector.

IV. DETAILED ALGORITHM DESCRIPTION

In this section, a detailed explanation of each of the modules will be presented.

A. Processing of each video frame

Figure 3 shows a flowchart with the processing performed for each frame. The rest of this

section will describe these blocks in detail.

Given the frame at time t, the first step is to detect image corners. The well-known Harris

corner detector [22] has been used. We have also tried the Tomasi-Kanade feature detector [23].

The performance in terms of detection of parked cars is the same as Harris’. In figure 4 it is

shown the results of corner detection using both methods. The important point is that both of

them produce large clusters of static corners at the locations of parked cars (although not exactly

in the same locations).

In any case, there is no need for sub-pixel precision in this corner detection step. Good open

source implementations of many corner detectors types can be found in the OpenCV Library [24].

The result of corner detection is a list of corner points Pt for each frame. Next, a masking process

selects a subset of relevant corners P̂t from Pt. Initially, the mask is manually configured to
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cover the lane of interest as in Fig.1. The mask may also contain holes which are used to discard

static corners at selected coordinates within the lane of interest. These coordinates correspond

to background corners and are automatically detected. The process of automatic detection of

background corners is described below.

In the next step, selected corners P̂t are classified into static or dynamic, obtaining two disjoint

lists of corners St andMt, respectively. Any motion estimation method, such as block-matching

or optical flow, could have been used to this end. However, a much simpler technique has been

used because the magnitude or direction of the motion are not needed; it is only necessary to

know whether or not the corner is in motion.

Hence, for each corner ci ∈ P̂t, with coordinates (xi, yi)

di = max
(x′,y′)∈N (ci)

{|It(x′, y′)− It−1(x′, y′)|} (1)

is computed, where It(x, y) is the image gray-level, and N (ci) is a small neighborhood around

corner ci. A neighborhood of size 11 × 11 has been used in all our experiments. If di is over

a threshold dth, then ci is classified as a dynamic corner; otherwise, as a static one. Typical

values of dth fall in the range of 10 to 25 for 8-bit quantized grayscale images. Note the great

computational saving that this simple approach achieves compared with any possible motion

estimation algorithm. It might be argued that this simple approach would fail in the case of high

noise, sudden illumination change, or camera vibration. However, this happens rarely and, as

will be explained later, our system does not rely on precise classification of corners but on the

accumulation of static corners at a certain spatial location within a time interval (of the order of

a few seconds). In fact, all these potential difficulties happen in the tested sequences and have

not affected the algorithm performance.

Figure 5 shows an example with the result of our corner classification approach. In this

example, the mask (light blue area) is set to cover most of the avenue and no corners are

discarded within this area. It can be seen that dynamic (green) corners are located on vehicles in

motion. On the other hand, static (red) corners tend to concentrate on stopped/parked vehicles

(see, for instance, the white parked van on the right) and on road markings. It can also be seen

that a smarter design of the mask, which had avoided the road lines between lanes, would have

discarded most static background corners.

To automatically discard most of these static background corners, an accumulator image
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ASd(x, y) is built during the day d. Each pixel in ASd(x, y) counts the number of static corners

detected at that specific coordinate. Let St(x, y) be a binary image which is built at instant t

using the list of static pixels St as follows:

St(x, y) =

 1 if St contains a static corner at (x, y)

0 otherwise
. (2)

Then, the acumulator of static points AS(x, y)d is built as:

ASd(x, y) =
Nt∑
t=0

St(x, y) (3)

where Nt denotes the number of frames in one day. Notice that ASd(x, y) can be incrementally

computed during the day and the images St(x, y) do not need to be stored.

Large values in ASd(x, y) correspond to corners on the road, and possibly to corners on

vehicles that have been parked for a really long time. This criterion is used to select which

points will be ignored during the next day (d+ 1). A threshold value corresponding to 2 hours

has been used.

It is possible to think that discarding background corners caused by parked cars on day d− 1

might be a problem for detecting corners on day d. However, there is a small probability that

parked vehicles on day d contain a corner at exactly the same coordinates as one that parked on

day d− 1. Even in this case, since many corners are found within a car, the probability that all

corners match these masked coordinates is almost null. Figure 6 shows an example of locations

where the accumulator of static corners ASd(x, y) is above the threshold.

Points have been dilated for a better visualization. As illustrated in Fig.3, the mask is updated

once every day using ASd(x, y).

In a similar way, using the list of dynamic cornersMt, it is possible to obtain a binary image

of dynamic corners Mt(x, y):

Mt(x, y) =

 1 if Mt contains a dynamic corner at (x, y)

0 otherwise
. (4)

Dynamic corners will also be of interest in the determination of whether or not the lane is

blocked as is shown in the next section.

The processing of each frame finishes by marginalizing the traverse coordinate x in both

St(x, y) and Mt(x, y):

st(y) =
∫
St(x, y) dx (5)
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Figure 5. Corner detection and classification sample results. Static corners are shown in red, while moving corners are depicted

as green.

Figure 6. Locations (in red) where static corners will be discarded based on the accumulator of the day before. Notice that

some points are located on road markings or dirt. Points on smooth areas are due to cars that were parked at those locations

the day before for a long enough time.

mt(y) =
∫
Mt(x, y) dx (6)

B. Raw Map formation

After processing each frame, the next step is to fuse information from different time instants

into a compact representation. For that purpose, spatio-temporal maps are built for both static

and dynamic corners by appending the column vectors st(y) and mt(y) of different time instants

horizontally. Therefore, the vertical dimension of the maps corresponds to depth (longitudinal

dimension of the lane) and the horizontal to time. In [25], we also proposed the idea of spatio-
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Figure 7. Example of static raw spatio-temporal map corresponding to 60 minutes. The horizontal axis corresponds to time

while the vertical corresponds to the longitudinal lane dimension.

- t

6
y

Figure 8. Result of the spatial filtering applied to the static map of Fig.7.

temporal maps for counting people. However, the information embedded on those maps was

completely different.

The initial spatio-temporal maps are low-pass filtered in the time direction and subsampled in

time so that each column corresponds to the summary of a 5-second interval. This time resolution

is more than enough for our application. Spatio-temporal maps will be denoted as Mmap(t, y)

and Smap(t, y) for dynamic and static maps, respectively.

The spatio-temporal maps obtained as described above will be called raw maps. Figure 7

shows an example of a raw static spatio-temporal map Smap(t, y) for the lane of the scenario of

Fig.1a. Note that spatio-temporal maps are not binary images; the value of a pixel (t, y) in the

map represents the number of corner points (static or dynamic depending on the type of map)

that have contributed in a 5-second interval around instant t and at a fixed depth y.

C. Spatial filtering of static raw maps

As Fig.5 shows, corners on a vehicle do not form a dense grid. This implies that corners on a

car might not appear as a connected region in a raw spatio-temporal map. This issue is clearly
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Figure 9. Example of static spatio-temporal map after spatial (vertical) filtering and temporal (horizontal) filtering.

- t

6
y

Figure 10. Combined spatio-temporal map obtained from Fig.9. The static map is in red whereas the dynamic map is in green.

visible in Fig.7. These regions in the map can be connected if it is assumed that there will be

a maximum separation in the vertical dimension between the corners of a particular vehicle. A

morphological (grayscale) close operator [26], with a vertical structuring element that is slightly

longer than the maximum gap between corners of the same vehicle in the y dimension, is used

for this purpose.

A careful look at Fig.7 shows the presence of some long horizontal lines that are not close to

any other and have a height of one pixel. These lines correspond to background static corners

and are normally caused by road dirt (that was not present the day before). These spurious

horizontal lines can be easily removed with an additional filtering. A morphological grayscale

open filter, with a vertical structuring element that is shorter than the minimum expected size

of a vehicle is used to this end. Figure 8 illustrates the result of these two morphological filters

applied to the spatio-temporal map of Fig.7. It should be mentioned that dynamic maps are

not spatially filtered since the intrinsic motion of their corners integrates the information in the

vertical dimension.
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a)

b)

c)

d)

Figure 11. Combined map and camera view at the time marked by the white cursor line. a) In this case, no cars are parked on

the left-most lane. b) In this case, one car is parked. Notice that the vertical coordinates of the parked car and the red region

are the same. c) Three cars are parked on the lane under analysis at different depths. d) Despite the tremendous change in the

illumination conditions, parked vehicles can still be detected. The absence of green lines indicates very low traffic during late

night. All maps in this figure correspond to one hour.

D. Temporal filtering of static spatio-temporal maps

As illustrated in Fig. 8, after spatial filtering of a static map Smap(t, y), many connected

regions appear which correspond to stopped vehicles. The horizontal dimension of these regions

is directly related to the time that they remained static. A morphological open with a horizontal

structuring element is used to discard events that are shorter than a minimum parking time.

The output of the spatio-temporal filtering of Smap(t, y) will be denoted as Ŝmap(t, y) in the
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sequel. The result of temporal filtering of the map in Fig. 8 is displayed in Fig. 9. In this example,

a minimum stopping time of 1 minute (that corresponds to a structuring element of size 12)

has been used. It is interesting to observe that temporal filtering introduces a delay in real-time

operation. This delay is related to the fact that one must wait at least one minute to conclude

that a vehicle has been stopped for one minute. Another point that it is interesting to note is

how a temporal filtering of the order of magnitude of minutes can be efficiently implemented

using spatio-temporal maps.

Dynamic spatio-temporal maps are not temporally filtered.

E. Combined spatio-Temporal Maps

Maps of moving and static corners can be aligned both spatially and temporally. Therefore,

it is possible to combine them into a single image using different color channels for better

visualization. The red channel is used for the static map and the green one for the dynamic map

creating a color spatio-temporal map like the one depicted in Fig.10. This representation provides

a quick view of what has happened in the lane of interest during a time interval. Each green line

corresponds to a car driving up/down a lane (depending on the view), hence, indicating traffic

flow. Red stripes indicate the presence of parked cars.

Figure 12. Long Term Parked Container. Top Row: sample camera views of different instants of the presence of the container.

Bottom Row: Corresponding one hour map. The white line indicates the time of the top central view, where the container is

detected together with a car.

To better understand the relation between maps and camera views, Fig. 11 shows a few
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examples. The particular instant at which each image was captured is highlighted with a vertical

white line in the corresponding combined spatio-temporal map.

Information such as the number of parked vehicles, how long they are parked, how parked

vehicles influenced the traffic flow, etc. can be obtained from these maps.

Just to illustrate how our system is able to continuously detect the presence of objects that

remain on the road for long periods of time, the example of Fig.12 shows a garbage container

left on the street for about two hours at sunrise. In the map, the presence of the container can

be seen as a red stripe that extends horizontally across the total width of the map.

V. SPATIO-TEMPORAL MAPS ANALYSIS

The original objective of this research was to decide when a lane was blocked by parked

vehicles. However, the information provided by spatio-temporal maps is much richer and allows

additional information about the following to be obtained:

• Parking times: Measuring the horizontal dimension of red regions in the map gives the

parking duration of a parked vehicle. These measures can be statistically modeled with

mean and variance as a function of the hour of the day and the day of the week.

• Frequent parking locations: Vertical positions of red regions in the map are related to vertical

positions on the original image.

• Typical conflictive hours that may require more active police surveillance to prevent illegal

parking.

In any case, obtaining this sort of extra information is out of the scope of this paper. In this

section, we will focus only on how to determine the state of the lane.

In order to determine the state of the lane and its availability for traffic planning, a simple

four state classifier has been implemented. It uses the following two features:

rvol(t) =
∫ L

0

∫ t

t−∆t
Ŝmap(t, y) dt dy (7)

gvol(t) =
∫ L

0

∫ t

t−∆t
Mmap(t, y) dt dy (8)

These features represent the red (static) and green (dynamic) volume of the combined spatio-

temporal map in a certain interval ∆t of analysis, respectively. In the equations, L stands for

the total length of the lane.
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The features rvol(t) and gvol(t) define four different lane states as follows:

• No parked cars and no traffic. This situation normally happens at night (A region in Fig.13).

• Parked cars and no traffic on the lane. This is what happens if a double-parked vehicle

blocks the lane, thus reducing the total capacity of the street (B region in Fig.13).

• Parked cars and traffic present. In this case, a parked car is blocking the lane but traffic still

flows before or after it. This situation is more frequent in avenues when the traffic density

of the avenue is relatively high and corresponds to the C region in Fig.13.

• No parked vehicles and traffic flowing. The lane is contributing to the total traffic capacity

of the street (D region in Fig.13).

Examples of each of the four states can be seen in Fig.11. A simple classifier that thresholds

rvol(t) and gvol(t) independently allows us to efficiently obtain the different lane states over time.

VI. DATA SETS

Two data sets have been used for testing. One is an internal data set, and the other one is a

publicly available data set.

A. Valencia data set

This data set was provided by the traffic authorities of the city of Valencia (Spain) in the context

of a national research project [27]. The video data comes from 10 different traffic cameras. For

each camera, one week continuous sequences were recorded at 25 images per second, with CIF

resolution. The total volume of this data set is about 1.5TB of compressed video (11 MB/min.).

A sample of these videos can be downloaded from [28]. The videos show:

• Changes in illumination: sequences were obtained at all times of the day.

• Changes in weather conditions: sunny, cloudy and rainy.

• Presence of fast illumination changes on windy days with sun and clouds.

• Large variability in traffic density, from nights to rush hours in some very busy streets.

• Real stopped cars.

• Some very long-term stopped cars (more than one hour).

Unfortunately for legal reasons, this data set cannot be publicly released.
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B. I-LIDS data set

The i-LIDS library has been sponsored by the UK Government to evaluate the performance

of vision-based equipment. The main purpose is to evaluate the performance, under realistic

conditions, of equipment for possible adoption by the UK authorities. I-LIDS proposes several

application scenarios, among which it includes detection of parked vehicles.

This scenario contains three different stages (see Fig.14). The i-LIDS data is organized in four

subsets:

• The sample set contains 4 sequences, named as easy, medium, hard, and night, which

can be freely downloaded from internet [6]. These sequences are very short and each one

contains just one parking event. The sample set was proposed as a challenge in the AVSS

2007 Conference and has been widely used by other authors addressing this problem.

• The training set is a large collection of short duration videos from the 3 stages. Unlike the

sample set, this data set must be purchased, at the cost of the media, and is delivered on

a 500GB hard disk. Sequences have a resolution of 720× 576 and 25 frames/s. They have

been compressed using MJPEG at a relatively high bit-rate. This does not mean that the

quality of the images is good, since in many cases, especially at night, the images contain

high noise levels. Different illumination and weather conditions can be found. They are

intended to develop algorithms and parameter tuning for each stage.

• The test set is meant to self-evaluate performance. It is a collection of longer videos that may

contain many parked vehicles or, in some cases, none. The idea is to evaluate performance

with this data set with the parameters obtained using the training data set. This data set must

also be purchased and is again delivered on a 500GB hard disk. Ground truth is available for

Training and Testing data sets. The testing data set contains a total of 216 events in about

22 hours of video (including the 3 stages). The parking times range from 63 seconds to

about 29 minutes; in total, only 14 vehicles stop for more than 10 minutes, and the median

stopping time is about 90 seconds. In general, these stopping times are much shorter than

those in the Valencia data set.

• The evaluation set is not public and is retained by the UK Home Office. The idea is

that periodically the UK authorities launch a call for evaluation. Manufacturers or research

groups that have achieved good enough performance on the test set can submit a machine
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A B

CD

rvol(t)

gvol(t)

Figure 13. Lane state regions in the rvol(t)-gvol(t) space.

Stage 1 Stage 2 Stage 3

Figure 14. I-LIDS stages for Parked Vehicle Detection.

to be evaluated by the Home Office. The machines that pass the Home Office’s tests are

included in a list of candidate suppliers.

In the case of the Parked Vehicle scenario, an event means that a new vehicle has been stopped

for more than 60 seconds in a non-parking area. Events must be reported within the next 10

seconds. In other words, an event must be triggered between the seconds 60 and 70 after the

vehicle stops. No event shall be generated for parkings shorter than 60 seconds. Also, no event

must be signaled when the vehicle leaves. However, an additional event must be generated if a

second vehicle arrives and stops for more than 60 seconds while the first one remains parked.

C. Data Set Comparison

In both data sets, Valencia and i-LIDS, a number of distractions occur that make the problem

more difficult. Examples of such distractions are the presence of other vehicles and pedestrians

moving near the stopped car, people that get in and out the vehicles, vehicles that temporarily

occlude totally or partially the stopped vehicle, short duration stops, camera vibration, etc.

Distractions act as background noise that contributes to causing false alarms or missed detections.

October 28, 2015 DRAFT



20

In both scenarios, distractions can be considered real since they reflect what normally may happen

in scenarios of this kind. However, in the Valencia data set, parking events are real in the sense

that they correspond to what really happened in some streets during a certain time period. On

the other hand, i-LIDS events are simulated , at least most of them. Also, the duration of many

parking events are artificially made to last slightly more than one minute.

VII. PERFORMANCE METRICS FOR PARKED VEHICLE DETECTION

In order to evaluate the performance of any system, it is essential to define the metrics to be

used. These metrics are different depending on the final application. The following metrics can

be considered for the problem of Parked Car Detection:

A. Hit-Miss metric

This metric measures the ability of the system to detect individual vehicles that park. Standard

precision and recall measurements can be used to measure performance:

P =
a

a+ b
(9)

R =
a

a+ c
(10)

where

• a: number of vehicles that park that are correctly detected (true positives).

• b: number of detections that do not correspond to real parked vehicles (false alarms).

• c: number of vehicles that park and are not detected (missed detections).

B. Precise Event Detection Metric

This metric measures the accuracy of event detection. If an event occurs at τi and it is detected

at ti, then the quadratic error for that detection is defined as:

e2
i = (τi − ti)2 (11)

A global value of the accuracy is obtained by averaging the values of e2
i for a relatively large

number of events:

σ2
t =

1

Nevents

Nevents∑
i=1

e2
i (12)
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The down-side of this measure is that it is only available for correctly detected events. Therefore,

it should be accompanied with precision and recall measurements for a good performance

evaluation.

In the case of the i-LIDS challenge, a good value on this feature has no extra merit (it is

equally good to detect an event within 1 second or within 8 seconds).

C. Occupation Time Metric

This metric measures the percentage of time that a lane contains parked vehicles for longer

than a minimum time. In this case, the parking of new vehicles while the lane contains previous

parked vehicles is not relevant.

Precision (P) and recall (R) measurements can also be used where:

• a is the number of seconds that the lane contained parked vehicles that were correctly

detected.

• b is the number of seconds that the system indicated parked vehicle presence that was not

true (false alarms).

• c it the number of seconds that the lane contained parked vehicles that were not detected

(missed detections).

For the application that motivated this research, this is the most appropriate metric. We are

not interested in how many cars are parked but rather if the lane is available. We consider that

the precise event detection metric has a more academic or research value, and it could provide a

way to compare systems that have similar precision and recall. On the other hand, the Hit-Miss

metric is probably the best for surveillance scenarios where parking events are rare.

VIII. RESULTS

This section presents the results using our algorithm and some comparison with previously

published results. Section VIII-A provides quantitative performance results using the occupation

time metric on the Valencia data set. A comparison with other previous works using the i-LIDS

sample data set is presented in Sect.VIII-B. Finally, the results obtained with our approach using

the full i-LIDS test data set are provided in Sect.VIII-C.
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A. Quantitative results on the Valencia data set

The Valencia data set has been evaluated using the occupation time metric. The first day of

each sequence has been used for training and tuning parameters and the other 6 days for testing.

The parameters learned from the first day are:

• The value of dth used to classify pixels as static or moving (page 9). A value of dth = 25

has been used for most sequences.

• The size of the spatial filters (section IV-C). These parameters are related to the expected

vehicle size and depend on the particular scenario geometry.

• The accumulator of static corners ASd(x, y) of the previous day (Eq.3). Notice that ASd(x, y)

is updated every day.

• Threshold on rvol(t) to consider that the lane contains a stopped car (Eq. 7).

Only 6 of the 10 available scenarios in the data set contain parked vehicles. The number of

parked vehicles depends on the day, the hour, and the scenario. However, a number of about

100 parked vehicles per day can be considered as a typical value (the lanes are blocked about

40% of time). The scenarios without parked vehicles are also useful to evaluate false alarms.

In the Valencia data set, a perfect recall has been achieved:

R = 1.0

which means that it was possible to always detect that the lane was blocked for more than the

minimum required time (2 minutes in this data set). We are aware that this does not mean that

our system cannot miss parked vehicles; it only means that it did not happen in our data set

(which is quite large). Some cases of missed parked vehicles on the i-LIDS dataset are shown

in Sect. VIII-C.

On the other hand, false alarms may occur in certain situations. False alarms usually happen

when the lane under analysis is half in sun and half in shade. Figure 15 illustrates one of such

challenging situations; in the spatio-temporal map, it looks as if there was a parked car. This

adverse situation happens only on sunny days (and not in every scenario) and depends on the

shape of the shadow (which in turn depends on the shape of the roofs of the buildings). The

duration of these false alarms is different for each scenario, but, in general, if they occur, it is

less than 30 minutes per day. The impact of these situations on precision varies depending on
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Figure 15. Example of camera view when the lane is half in shade and half in sun. Depending on the shape of the roofs of

the buildings static corners can be detected and false alarms can be generated.

whether or not there are parked cars when it happens. On average, a precision value of:

P ≈ 0.97

is obtained for lanes that remain blocked by parked vehicles about 40% of the time. Notice that

this is important because, according to Eq.9, precision also depends on the percentage of time

that the lane is blocked (a false alarm of just one minute in a lane that is never blocked yields

a precision of P = 0). Availability can be defined as the percentage of the day when the system

is reliable. Excluding the 30 minutes per day where shadows may cause trouble, the proposed

system provides an availability of about 98%.

B. Results on i-LIDS sample data set

In order to compare our results with those obtained by other researchers such as [8], [9], [10],

[11], [12] and [16], our method has also been tested using the sample i-LIDS subset.

Figure 16 shows examples of frames from the four sequences where it is possible to see the

cars that have to be detected in each sequence. For the i-LIDS challenge, these sequences were

precisely annotated with the arrival and departure of each car.

The spatio-temporal maps of the four sequences are shown in Fig.17. The white line indicates

the time instant that corresponds to the images of Fig.16. The presence of the vehicle that is

parking is clearly visible in the four maps. Green vertical lines correspond to cars driving down

the lane under analysis. Notice that the presence of other traffic does not affect the detection

of the stopped car. In all cases, stopped cars can be detected regardless of camera vibration,

differences in car size, nearby traffic, low illumination, or high noise levels.
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Easy Medium

Hard Night

Figure 16. i-LIDS image samples of the easy, medium, hard, and night sequences.

Easy Medium

Hard Night

Figure 17. i-LIDS data set spatio-temporal maps. Notice that the vertical position of the red blob corresponds to the vertical

coordinate of stopped cars in Fig.16.

Table I shows a summary of the results obtained by other authors with this data set. Notice

that all authors use the Precise event detection metric (see Sect.VII-B) with this data set. The

results on this data set are all very similar except that there is missing information for some

sequences and authors.

In our opinion, this small data set can only provide limited insight about algorithm perfor-
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mance. For this reason, larger data sets have been used to evaluate our approach. Also, as

stated above, we think that the Hit-Miss or Occupation Time Metrics are more relevant for our

application.

Author Easy Medium Hard Night

Our System Yes Yes Yes Yes

Bevilacqua and Vaccari [8] Yes Yes Yes N/A

Lee et al. [13] Yes Yes Yes N/A

Maddalena and Petrosino [9] Yes Yes Yes N/A

Boragno et al. [10] Yes Yes Yes Yes

Guler et al. [11] Yes Yes Yes Yes

Venetianer et al. [12] Yes Yes Yes Yes

Porikli [16] N/A Yes N/A N/A

Table I

COMPARISON OF DETECTION RESULTS IN I-LIDS SAMPLE DATA SET. YES MEANS THAT THE PARKED VEHICLE WAS

DETECTED. N/A MEANS THAT THE AUTHORS DO NOT REPORT RESULTS ON THAT SEQUENCE.

C. Results on the testing i-LIDS data set

First of all, we would like to emphasize that, to our knowledge, there are no previous published

results using this public data set. Due to the large size of results using this data set, this section

presents just a summary of them. A more detailed description is provided in Appendix A.

Using the training i-LIDS data set, the same parameters as in the Valencia data set were

determined (see Sect.VIII-A).

In our implementation, input images were downsized from 720× 576 to 240× 180. This has

no impact on the results, but it makes processing much faster.

Figure 18 shows the static corner maps corresponding to the first 60 minutes of the rightmost

lane of the stage 1 sequence PVTEA101a (see Fig.14). It is interesting to observe how the

temporal filter removes events that are shorter than one minute.

In the i-LIDS sequences, it is quite common for new cars to park next to previously parked

vehicles. An event like this is highlighted in Fig.18 with a red circle, and the corresponding

images are shown in Fig. 19. Detecting the arrival instant of the second vehicle is really difficult
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a)

b)

c)

Figure 18. Maps corresponding to the first 60 minutes of the bottom lane of sequence EA101a. a) Raw map of static corners.

b) Spatially filtered map. c) Result of temporal filtering of spatially filtered map.

for the algorithm proposed in this paper. However, as can be seen from the maps, the system will

continue to detect the presence of the second car until it leaves even though it was occluded for

some time by the vehicle that arrived first. Missing the arrival instant of the second car would

lead to a missed detection using the i-LIDS hit-miss metric. However, the occupation time metric

gets a perfect recall (R = 1) and no false alarm (P = 1) in this fragment (it was possible to

detect when the lane was blocked).

Each stage contains two lanes that were processed independently. Since the i-LIDS test set

has a total duration of about 22 hours, it contains a total of 22× 2 = 44 hours of lane analysis.

False alarms, for the reasons detailed in the appendix, were present for 13 minutes. This gives

a probability of false alarm of 0.5% of total time. Total parking time is 10h36’. For several

reasons, that are detailed in the appendix, a total of 25 minutes containing parked vehicles are

missed. This gives the following figures for the time occupancy metric:
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a) b)

Figure 19. Camera views corresponding to the encircled portion in the map of Fig.18. (a) One vehicle is parked. (b) A second

car parks right behind the first one.

P = 0.98 R = 0.96

The main conclusions from this data set are similar to those obtained with the Valencia data

set.

• If vehicles are not occluded and they fall (mostly) in the lane mask, they are always detected.

• All the missed detections occured with vehicles that were partially occluded by tree branches

or in areas that were excluded from the detection mask.

• False alarms occured in a small portion of time; they were caused by two things:

– Shadows in the middle of the lanes; however, keep in mind that not all shadows produce

false alarms (it depends on the shape and contrast of the shadows).

– Very slow moving traffic queues. In this case, the system was not able to cope with

the fact that the stopped vehicle was not always the same (the queue advanced very

slowly). See Fig.22a.

IX. CONCLUSIONS

In this paper, an approach for dealing with the problem of parked vehicle detection has been

presented. It is based on the analysis of spatio-temporal maps of static image corners. Our

solution to the problem does not require estimating background or tracking any object.

Using a 2 Ghz Core 2 Duo Processor, our implementation can process more than 150 CIF

images per second. This means that several video streams can be analyzed in real time in
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the same machine. The task that requires the most computational power is the Harris corner

detection (located at the pixel-level processing layer). Corner classification (static/dynamic), map

formation, and analysis represent a negligible computational load.

The proposed approach has been thoroughly evaluated on two huge data sets, one private and

one public. As far as we know, it is the first time that a system for detecting parked vehicles has

been evaluated in real conditions using databases of this size. With this extensive evaluation, we

found that the proposed approach is robust to:

• Illumination changes, fast and slow.

• Presence of moving lights due to traffic.

• Thermal noise in night conditions.

• Presence of pedestrians around stopped cars.

• Passengers getting in and out of the vehicles.

• Hazard warning lights flashing.

• Occlusions by cars passing near the stopped vehicle.

• Different illumination conditions: night, day, dawn, dusk,...

• Different weather conditions: cloudy, sunny, rainy. In the case of rain, the system has proved

to be resilient to specular reflections on the wet pavement.

• Automatic day/night camera mode switching.

• Camera Automatic Gain Control.

• Camera shakes due to wind.

Robustness against these problems is achieved by the statistical nature of the algorithm, which

is based on the fact that a car generates a large number of static corners around the position

and time where it is located. For this reason, failing to detect static corners for a short time

(occlusion) or misclassifying some corners as dynamic instead of static (noise, camera vibration,

etc.) during one frame have no impact in the detection capability if, on average, a large number

of static corners are around the same spatial location during a short time interval (5 seconds). The

spatial and temporal average filters also contribute to increasing the robustness of the system.

The presented system has the very practical additional advantage that it does not require any

supervision at startup.
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APPENDIX

This appendix provides detailed results using the testing i-LIDS data set. Sample images for

the cases where the algorithm has failed are also presented. The data set has been evaluated

using the occupation time metric. False alarm time is used as a measure of performance for

sequences that do not contain parked vehicles.
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STAGE 1 RESULTS

Seq. name P R Remarks

PVTEA101a 1.0 1.0 Rainy day. Cars park with windscreen

wipers on and are still detected.

PVTEA101b 1.0 1.0 Night sequence. Some cars drive with

lights off. Hazard warning lights cause

some erroneous classification of cor-

ners; however, the parked vehicle is

correctly detected.

PVTEA102a 0.85 1.0 Sunny and windy day. Fast illumina-

tion changes. Some tree shadows cause

false alarms for about 5 minutes (out of

52 minutes) in one of the two lanes .

No missed detection.

PVTEA102b 1.0 1.0 Rainy and windy. Camera vibration.

Specular reflections on wet pavement

at some moments. Relatively fast back-

ground changes.

PVTEA103a 1.0 1.0
Daylight. No rain, no shadows.

PVTEA103b 1.0 1.0

PVTEA104a 1.0 1.0 Night sequence. Poor street illumina-

tion. Some cars park with the lights off

and are still detected.
PVTEA104b 1.0 1.0

PVTEN102d 1.0 1.0 Daylight. Cloudy.

Table II

STAGE 1. DETAILED RESULTS FOR SEQUENCES CONTAINING EVENTS.
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Seq. name Duration Min. FA Remarks

PVTEN101a 20 min. 0 Sunny day. Shadows on the

lanes did not generate false

alarms.

PVTEN101b 25 min. 0 Sun creates reflections on wet

ground.

PVTEN102a 19 min. 0 Daylight. Variable weather.

Shadows from trees create

some static corners but not

enough to cause a detection

.
PVTEN102c 20 min. 0

PVTEN102b 10 min. 0
Daylight. Raining.

PVTEN102f 20 min. 0

PVTEN102e 30 min. 0 Daylight. Cloudy.

PVTEN103a 25 min. 0
Night. Good street illumina-

tion.
PVTEN103b 20 min. 0

PVTEN104a 20 min. 0

Table III

STAGE 1. DETAILED RESULTS FOR SEQUENCES THAT DO NOT CONTAIN EVENTS.

STAGE 2 RESULTS
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a) b)

Figure 20. a) Missed detection in sequence PVTEA201c. b) Missed detection in sequence PVTEA202b .

Figure 21. Sequence of images showing a missed detection in sequence PVTEN201b. The occlusion by the SUV car and the

tree leaves make this sequence extremely difficult.
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STAGE 3 RESULTS

a) b) c)

Figure 22. a) Queue that caused a false alarm in PVTEA301c. b) Van that was not detected in sequence PVTEA301c because

it was mostly outside of the lane mask. c) Vehicle not detected in sequence PVTEN301c because the overlaid text area was

excluded from the detection mask.
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Seq. name P R Remarks

PVTEA201a 1.0 1.0

Daylight. No rain, no shadows.
PVTEA201b 1.0 1.0

PVTEA201d 1.0 1.0

PVTEA202a 1.0 1.0

PVTEA201c 1.0 0.83 Night sequence. Poor street

illumination. Some cars park

with the lights off and are still

detected. Two cars that park

with lights off in badly illu-

minated zones are missed. See

Fig.20a.

PVTEA202b 1.0 0.82 Rain and wind. Camera vibra-

tions. Specular reflections on

wet pavement at some mo-

ments. Relatively fast back-

ground changes. A tree is oc-

cluding the upper left part of

the lane. Two cars partially oc-

cluded by the tree are not de-

tected. See Fig.20b.

PVTEN202a 1.0 0.86 Night sequence. Poor street

illumination. Some cars park

with the lights off. One car is

missed because it parks with

the lights off in a specially

badly illuminated zone. See

Fig.20a.

PVTEN201a 1.0 0.5

PVTEN201b - 0.0 Daylight. Cloudy. This

sequence contains only one

parked vehicle, and it is missed

due to occlusions (see Fig.21).

This sequence illustrates the

difficulty of this data set very

well. Precision can not be

computed in this case since

nothing is detected in this

sequence.

PVTEN201c 1.0 1.0 Daylight. A tree occludes the

upper part of the lane. Our

lane mask excludes this area.

Any car parking in that zone

would have been missed (see

Fig.20b). Comparing Figures

20b and 14 we can see that

the tree leaves occlude a large

portion of the lane during some

seasons.

PVTEN201d 1.0 1.0 Daylight. Rain. The tree also

occludes a region but no one

parks in that area.

PVTEN202b 1.0 1.0 Daylight. Variable weather.

Moments of sunshine with

shadows from trees and

moments of cloudy weather.

Shadows from trees create

some static corners but not

enough of them as to trigger

false alarms.

PVTEN202c 1.0 1.0 Daylight. I-LIDS events corre-

spond to cars that park between

previously parked cars. We can

detect that the lanes are perma-

nently blocked, but are unable

to detect the precise instant of

new car arrivals.

Table IV

STAGE 2. DETAILED RESULTS FOR SEQUENCES CONTAINING EVENTS.
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Seq. name P R Remarks

PVTEA301a 1.0 1.0

Daylight. Cloudy.PVTEA301b 1.0 1.0

PVTEA301e 1.0 1.0

PVTEA301c 0.82 0.88 Daylight. In this sequence a false

alarm was generated for 2 min-

utes because of a queue (Fig.22a).

A van that is located outside of

the lane mask was not detected

(Fig.22b).

PVTEA301d 1.0 1.0 Night sequence with good illumi-

nation. Parked vehicles with warn-

ing lights on are correctly detected.

PVTEN301b 1.0 1.0 Daylight. Variable weather with

moments of sunshine that generate

shadows on the lanes. No false

alarm produced.

PVTEN301c N/A 0.0 Daylight. Rain. The sequence con-

tains two cars that park at the top

of the image. None of them is de-

tected because the lane mask does

not contain that region (the detec-

tion mask is indicated by i-LIDS

for each stage and does not include

the location where these two cars

stop). The region where these two

cars park corresponds to overlaid

text. Fig.22c shows the car that is

missed. Precision is not computed

since nothing is detected in that

sequence.

Table V

STAGE 3. DETAILED RESULTS FOR SEQUENCES CONTAINING EVENTS.
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Seq. name Duration Min. FA Remarks

PVTEN301a 30 min. 2 False alarm of 2 minutes duration

caused by queue similar to that in

Fig.22a.

PVTEN301d 20min. 2 Daylight. False alarm of 2 minutes

duration caused by queue similar to

that in Fig.22a.

PVTEN301e 20min. 0 Daylight. Cloudy. Camera vibra-

tions

PVTEN302a 30min. 0 Night sequence with good street

illumination

PVTEN302b 30min. 0 Twilight. Wet pavement with spec-

ular reflections from vehicles head-

lights.

PVTEN303c 30min. 0 Night sequence. Raining. Specular

reflections of street lights on wet

pavement. Camera vibration. Water

drops on the camera lens.

Table VI

STAGE 3. DETAILED RESULTS FOR SEQUENCES THAT DO NOT CONTAIN EVENTS.
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