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Abstract—The aircraft arrival sequencing and scheduling (ASS)
problem is a salient problem in air traffic control (ATC), which
proves to be nondeterministic polynomial (NP) hard. This paper
formulates the ASS problem in the form of a permutation problem
and proposes a new solution framework that makes the first
attempt at using an ant colony system (ACS) algorithm based
on the receding horizon control (RHC) to solve it. The resultant
RHC-improved ACS algorithm for the ASS problem (termed the
RHC-ACS-ASS algorithm) is robust, effective, and efficient, not
only due to that the ACS algorithm has a strong global search
ability and has been proven to be suitable for these kinds of
NP-hard problems but also due to that the RHC technique can
divide the problem with receding time windows to reduce the
computational burden and enhance the solution’s quality. The
RHC-ACS-ASS algorithm is extensively tested on the cases from
the literatures and the cases randomly generated. Comprehensive
investigations are also made for the evaluation of the influences of
ACS and RHC parameters on the performance of the algorithm.
Moreover, the proposed algorithm is further enhanced by using
a two-opt exchange heuristic local search. Experimental results
verify that the proposed RHC-ACS-ASS algorithm generally out-
performs ordinary ACS without using the RHC technique and
genetic algorithms (GAs) in solving the ASS problems and offers
high robustness, effectiveness, and efficiency.

Index Terms—Air traffic control (ATC), ant colony system
(ACS), arrival sequencing and scheduling (ASS), receding horizon
control (RHC).

NOMENCLATURE

ACO Ant colony optimization.
ACS Ant colony system.
ALT Assigned landing time.
ASS Arrival sequencing and scheduling.
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TABLE I
MINIMAL LTI BETWEEN THE AIRCRAFT [5]

ATC Air traffic control.
COP Combinatorial optimization problem.
FCFS First come first served.
GA Genetic algorithm.
JSP Job shop-scheduling problem.
LTI Landing time interval.
PLT Predicted landing time.
RHC Receding horizon control.
TAD Total airborne delay.
TSP Traveling salesman problem.

I. INTRODUCTION

A SS IS one of the most significant problems in ATC [1]–
[4]. With the development of airline industry, air traffic

congestion has become increasingly more serious. Economic
loss as a result of flight delays has become serious enough to
call for urgent solutions. Building more airports or runways is
considered not a realistic option because of practical constraints
and investment costs. However, a promising approach is to
more optimally schedule the aircraft arrival sequence, which
is the ASS that can be formulated as a minimization problem.
The objective of the ASS is to minimize the TAD by generating
efficient landing sequences, assigning landing times for the
arrival aircraft, and satisfying a set of practical operational
constraints. A straightforward approach to the ASS problem
is the FCFS algorithm, which is according to the aircraft’s
PLT at the runway. This would be a fair and perfect schedule
approach if no operational time separation is needed for any
two successive landings.

However, a practical ASS problem is subject to a number
of constraints, such as the LTI between any two successive
landings [5], at least for safety reasons. One set of reference
data has been given by Bianco et al. [5], as shown in Table I,
on four types of aircraft with different speed, capacity, weight,

1524-9050/$26.00 © 2010 IEEE
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Fig. 1. Example of using position shift to improve the FCFS landing sequence. (a) Original sequence based on PLTs. (b) FCFS landing sequence by considering
the LTI. Total delay is 194 s. (c) Optimal landing sequence by considering the LTI. Total delay is 122 s.

and other technical properties. As shown in the table, the LTI
is not a constant because different pairs of aircraft and different
relative landing sequences will both affect its value. Generally
speaking, a smaller aircraft following a larger aircraft will
require a longer separation than the other way around. For
example, a Boeing 727 (B727) has to wait for 200 s after
the landing of a Boeing 747 (B747). However, when a B747
lands after a B727, the LTI is only 72 s. These asymmetric
characteristics of the LTI make the FCFS algorithm not always
a good choice for the ASS problem. Fig. 1 shows an example
of the FCFS approach when taking into account both PLT
and LTI, where the TAD can be reduced by exchanging the
landing sequence of the B747 and the B727. More substan-
tially, the asymmetric nature of the LTI has made the ASS a
nondeterministic polynomial (NP)-hard problem [5], [6]. Due
to the significance and difficulty of the ASS problem, heuristic
or metaheuristic optimization algorithms are in great need of
investigation.

So far, many research efforts have been made, including the
development of various formulations to model the problem and
the use of variants of deterministic and heuristic algorithms [7]–
[12]. Psaraftis [13], [14] and Bianco et al. [15] both modeled the
ASS as a JSP and reported the use of dynamic programming
approach. The TSP model was used in [5]. Beasley et al.
[16] attempted to solve this problem by using a mixed-integer
linear optimization program. Monte Carlo optimization [17]
and constrained position shifting approaches [18] were also
reported for solving the ASS problem. However, most of these
studies schedule the sequence by assigning all the aircraft
in the same process, whereas many researchers have argued
that it is inefficient to consider too many aircraft at the same
time because of the large search space. Moreover, scheduling
all the aircraft in the same process is particularly difficult in
a dynamic environment, where many inherent or unexpected
disturbances may occur, such as delay of the aircraft, cancel-
lation of flights, and emergency landing of some unanticipated
aircraft [19], [20].

Therefore, it is important, as well as challenging, to de-
velop an algorithm that could solve the ASS problem robustly,
effectively, and efficiently. Recently, Hu and Chen [19] in-
troduced the RHC concept to the study of the ASS prob-
lem. The RHC divides the ASS problem into a number of

subproblems with a reduced search space and therefore can
bring in a lighter computational burden and can achieve a
higher solution quality. They also developed a GA based on the
RHC to solve the ASS problem, leading to a further improved
TAD and less computational burden [20]. This has been ex-
tended to a binary representation GA (BRGA) with an efficient
crossover operator to enhance the search ability for optimal
ASS [21]. The successes of applying GAs to the ASS problem
[20]–[22] have advocated a strong potential of evolutionary
computation algorithms in dealing with this type of NP-hard
problems.

As an important branch of the evolutionary computation
algorithms, ACO is an adaptive and global stochastic search and
optimization algorithm. First reported in 1997, the ACS is an
elaborately designed ACO approach to the TSP [23], which is a
typical discrete COP. ACS has been proven to be very suitable
and promising in solving various COPs. Many research reports
have shown the effectiveness and efficiency of ACO/ACS in
solving real-world problems, such as data mining [24],
resource-constrained project scheduling [25], lithium-ion bat-
tery design [26], JSP [27], protein folding [28], fuzzy controller
design [29], reclosers and distributed generators placements
[30], grid workflow scheduling [31], power electronic circuit
design [32], and block-layout design [33]. The ASS problem is
also a COP, which can be modeled as a permutation problem
similar to the TSP [5] or the JSP [13]–[15]. Therefore, ACS is
very suitable and has its natural advantages to solve the ASS
problem using its construction process to schedule the aircraft
just like constructing the TSP tour by visiting the cities one
by one, which has been demonstrated to be very effective and
efficient.

This paper makes the first attempt to use the ACS algorithm
to solve the ASS problem by incorporating an RHC strategy.
The RHC aims to reduce the computational burden and enhance
the solution quality. Moreover, the RHC helps to make the ACS
algorithm tolerant to an uncertain dynamic environment with
strong adaptive and global search ability. To develop the RHC-
enhanced ACS algorithm for the ASS problem (RHC-ACS-
ASS algorithm), several novel techniques and heuristics are
studied so as to make the best use of the ACS algorithm and the
problem-related information. First, an efficient heuristic infor-
mation strategy is designed for the RHC-ACS-ASS algorithm.
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Fig. 2. Example of RHC for ASS.

Taking the PLT of the aircraft into account when selecting the
next aircraft, this strategy should help the algorithm assign
the most urgent aircraft to land as early as possible to reduce
the TAD. Second, a two-opt exchange heuristic local search
method, which is similar to that used in solving TSPs, is
developed for the RHC-ACS-ASS algorithm to further enhance
the solution’s quality.

The rest of this paper is organized as follows. In Section II,
the ASS problem formulation and the RHC concept are given,
with a concise description of the ACS framework. Section III
develops the RHC-ACS-ASS algorithm in detail. Experiments
are carried out in Section IV, and test results are compared with
other algorithms on robustness, effectiveness, and efficiency.
Finally, conclusions are summarized in Section V, and future
work is highlighted.

II. BACKGROUND

A. ASS

The ASS problem involves a number of aircraft expected to
land on the same runway on a daily basis. Assume that there
are N aircraft needing to be scheduled during one operational
day, and each aircraft has a respective PLT. The objective of
the ASS problem is to find an optimal sequence for all the
aircraft to land on the runway with a minimum TAD. In a
specified landing sequence

∏
after scheduling, let

∏
(i), the

ith element in sequence
∏

, denote the order of aircraft i in
the original sequence. For instance,

∏
(5) = 3 means that the

fifth aircraft in the scheduled sequence
∏

is the third aircraft
in the original sequence before scheduling. By considering the
operational constraint LTI, the ALT for each aircraft can be cal-
culated as

ALT
(∏

(i)
)

=

⎧⎪⎨
⎪⎩

PLT (
∏

(i)) , if i=1

max{PLT (
∏

(i)) , ALT (
∏

(i−1))

+ LTI (TP (
∏

(i−1)) , TP (
∏

(i)))} , otherwise

(1)

where TP (i) is the aircraft type of the ith aircraft in the original
sequence, and LTI(i, j) is the LTI of an aircraft of type j
landing immediately after an aircraft of type i, refer to Table I

for example. With all the ALTs determined, the TAD can be
calculated as

TAD =F =
N∑

i=1

[
ALT

(∏
(i)

)
− PLT

(∏
(i)

)]

=

∏
(N)∑

j=
∏

(1)

[ALT(j) − PLT(j)] . (2)

The objective is thus to find an optimal
∏

OPT such that it
minimizes the TAD defined by (2).

Note that another metric of objective is sometimes adopted
in the literature, where the total operation time (i.e., the com-
pletion time of all aircraft for landing) is instead defined as
the objective of the ASS problem [34]. The metric of the TAD
emphasizes the operating cost of airlines, whereas the metric
of the total operation time focuses on the best utilization of
the runway (i.e., the maximum throughput of the runway). Al-
though the two metrics are not equivalent, a minimum TAD can
always offer a minimum total operation time [20]. Therefore,
without loss of generality, the TAD metric is adopted in this
paper.

B. RHC

Utilizing real-time optimization, RHC is a very effective on-
line predictive control strategy [35]–[37]. The receding horizon
is a sliding time frame, within which the original problem is
solved as several smaller problems for a reduced computational
burden. RHC can also cope with the real-time demand of un-
certainties and disturbances in a dynamical environment [19].
This is due to that when there are uncertainties or disturbances
in the environment, the RHC can perceive it and deals with it
in the current or the following receding horizons. The RHC
involves two parameters: 1) the time interval of a scheduling
window TTI and 2) the width of the receding horizon NRHC,
measured as the number of TTI’s dividing the horizon. Fig. 2
illustrates how RHC works using an example of NRHC = 4.
For a given horizon of interest, optimization is performed on
information from the entire horizon, i.e., from all NRHC = 4
intervals. However, only scheduling decisions made for the
first time interval are actually implemented. As illustrated in
Fig. 2, the scheduling window is the first time interval in the
receding horizon, i.e., optimization is globally made within the
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horizon of interest, whereas scheduling is locally implemented
in the first interval of the horizon. As the scale of each receding
horizon is smaller than the whole problem, the computational
burden of optimization is reduced such that it can be computed
in real time. Moreover, as the solution space of each receding
horizon is much smaller, the optimization approach can more
efficiently perform the global search to obtain higher quality
solution.

When applying the RHC strategy in an optimization problem,
the problem is divided into a number of subproblems by the
receding horizon. For the kth (k = 1, 2, 3, . . .) subproblem,
environmental information is collected in the duration from
the beginning of time interval k to the end of time interval
k + NRHC − 1. The objective of optimization is for the kth
time interval only. Then, the optimization process repeats for
the (k + 1)th receding horizon until the entire problem is
complete. By using the RHC strategy, the scale of each receding
horizon is smaller than the whole problem, and therefore, the
computational burden of optimization is reduced such that it can
be computed in real time. Moreover, as the search space of each
receding horizon is much smaller, the optimization approach
can more efficiently perform the global search to obtain higher
quality solution.

C. ACS

ACS is an effective and efficient global optimization algo-
rithm that was first developed by Dorigo and Gambardella as
a more efficient version of ACO [23]. ACS was originally
designed for the TSP, and its framework is suitable for discrete
COPs. In solving the TSP, a number of ants randomly start from
various cities. Then, each ant constructs its tour by visiting all
the cities one by one. On locating a city s, the ant chooses
the next city r from the unvisited cities by considering the
“pheromone” deposited on the edge of (s, r) and the heuristic
information value of (s, r) together. Then, it moves from s
to r and repeats this process until a complete tour is con-
structed. When an ant completes constructing such a potential
solution, the pheromone on the edges of the solution path will
evaporate by a “local pheromone updating rule.” After all the
ants complete their tour constructions, the best tour with the
shortest length will be compared with the last historically best
solution to determine the current historically best solution. The
pheromone on the edges of the historically best solution is
enhanced by a “global pheromone updating rule.” Then, the
algorithm moves to the next generation until a termination
criterion is met.

III. RECEDING HORIZON CONTROL–ANT COLONY

SYSTEM-ARRIVAL SEQUENCING AND SCHEDULING

ALGORITHM FOR SOLVING THE ASS

A. Aircraft for Scheduling Obtained by RHC

The first task in the scheduling process is to find all the
aircraft whose PLT is within each receding horizon. Without
loss of generality, considering the kth (k = 1, 2, 3, . . .) re-
ceding horizon, the time window is Ω(k) = [(k − 1)TTI, (k +

NRHC − 1)TTI], and the scheduling window is ω(k) = [(k −
1)TTI, kTTI], indicating that only the aircraft whose ALTs are
within this scheduling window can land on the runway during
the kth receding horizon process.

As ω is always narrower than Ω (if NRHC > 1), there will
be some aircraft that cannot be scheduled to land during the
kth receding horizon process and, hence, need to be scheduled
in the following processes. To make these aircraft available in
these processes, their PLTs need to be modified if the aircraft
will be missed when the receding horizon moves forward. For
example, if PLT(i) ∈ ω(k) and ALT(i) /∈ ω(k), i.e., if aircraft
i’s PLT is within the kth scheduling window but is not assigned
in the kth receding horizon, then PLT(i) should be modified to
kTTI, making PLT(i) ∈ Ω(k + 1) follow so that the aircraft can
be scheduled in the next receding horizon.

B. ACS Solution Construction

Here, an ACS is used to optimize the sequence of the aircraft
that fall in the kth receding horizon. The objective of the ACS
algorithm is to find an optimal sequence π such that

min f =
M∑
i=1

(ALT (π(i)) − PLT∗ (π(i))) (3)

is minimized, where M is the number of aircraft, and
PLT∗(π(i)) means that the original PLT of the π(i) aircraft is
used in the calculation but not that which has probably been
modified in previous receding horizon processes.

During the solution construction process, techniques for how
to determine the initial pheromone, how to select the first
aircraft, and how to transit from one aircraft to another step by
step to until completion are described below.

1) Initialization State Configurations: The initialization
state configuration includes designing the initial pheromone
τ0 and determining the first scheduled aircraft. To design the
initial pheromone τ0, the FCFS approach is used to schedule
the M aircraft and find a sequence πFCFS. Then, the fitness of
πFCFS is calculated by (3), as fFCFS. Similar to [23], we set
τ0 = (M · fFCFS)−1.

Then, the construction process randomly chooses an aircraft
from M as the first aircraft to schedule. As soon as the first air-
craft is determined, the ALT needs to be calculated and assigned
to the aircraft. There are two conditions in this situation. The
first condition is that the process is in the first receding horizon
(k = 1), and the second condition is that the process is not in
the first receding horizon (k > 1). Under the first condition, the
ALT for the aircraft is just its PLT. Under the second condition,
its ALT is the larger between its PLT and the LTI following the
last aircraft in the previous receding horizon. Therefore, ALT
calculation is defined as

ALT(s) =

⎧⎪⎨
⎪⎩

PLT(s), if k = 1
max (PLT∗(s), ALT(s∗)

+ LTI (TP (s∗), TP (s))) , otherwise
(4)

where s∗ is the last aircraft in the previous receding horizon.
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2) State Transition Rule: In the RHC-ACS-ASS algorithm,
the state transition rule is as follows: When an ant com-
pletes scheduling aircraft s, it then chooses the next aircraft
r by applying the rule given in (5), shown at the bottom of
the page.

In (5), the set Js is the allowable aircraft that can be selected
by the ant on the current aircraft s, making sure that each of
the M aircraft is scheduled once and once only. The parameter
q0(0 ≤ q0 ≤ 1) is used to control the exploitation and explo-
ration behaviors of the ant. If a randomly generated number
q in range [0, 1] is smaller than q0, then the ant chooses the
next aircraft u whose pheromone τ and heuristic η are maxi-
mal, measured by [τ(s, u)][η(s, u)]β , where β is a parameter
that determines the relative importance of pheromone versus
heuristic information (β > 0) [23]. Otherwise, the next aircraft
r will be determined as a random variable R using a probability
selection as

p(s, r) =

⎧⎨
⎩

[τ(s,r)]·[η(s,r)]β∑
u∈Js

[τ(s,u)]·[η(s,u)]β
, if r ∈ Js

0, otherwise.

(6)

In the RHC-ACS-ASS algorithm, “reasonable” pheromone
information τ and heuristic information η need to be designed
so as to make their value ranges comparable with each other.
In (5) and (6), η is the heuristic information that represents the
urgency of each aircraft. The expected assigned time for the
aircraft r is given in (7), whereas the heuristic information of
η(s, r) is given as

E(s, r) = max (PLT(r), ALT(s) + LTI (TP (s), TP (r))) (7)

η(s, r) =
1

E(s, r) − ALT(s)
. (8)

C. Pheromone Updating Rules

There are a local pheromone updating rule and a global
pheromone updating rule in an ACS process. In the RHC-ACS-
ASS algorithm developed here, the local pheromone updating
operation is carried out on each aircraft pair (s, r) in the
completed scheduled sequence as

τ(s, r) = (1 − ρ) · τ(s, r) + ρ · τ0 (9)

for each ant.
Conversely, the global pheromone updating operation is only

performed on the best-so-far (historically best) solution πBest.
Only the pheromone on the aircraft pair of the sequence of πBest

is increased as

τ(s, r) = (1 − ε) · τ(s, r) + ε · Δτ,

where Δτ = (fπBest)
−1, if(s, r) ∈ πBest. (10)

These two pheromone updating rules are used to adjust the
search behaviors of the ants. The effect of the local pheromone
updating rule is to reduce the desirability of the visited edges by
some ants. Evaporation of the pheromone on the visited edges
makes them less attractive for the following ants. Hence, it is
useful for increasing the population diversity. The effect of the
global pheromone updating rule is to increase the desirability
of the edges on the best-so-far solution. This reinforcement can
result in a higher convergence speed.

D. Complete RHC-ACS-ASS Algorithm

The complete RHC-ACS-ASS algorithm is shown in Fig. 3
and is described in the following six steps.

Step 1: Initialization. Set up parameters NRHC and TTI for
the RHC, and set the current receding horizon k = 1.

Step 2: Find out all the M aircraft whose PLTs belong to
the kth receding horizon Ω(k) = [(k − 1)TTI, (k +
NRHC − 1)TTI].

Step 3: Schedule the M aircraft in the kth receding horizon
by using an ACS.

Step 4: Assign the aircraft whose ALTs belong to kth sched-
uled window ω(k) = [(k − 1)TTI, kTTI] to land on
the runway.

Step 5: Modify the PLT for those aircraft whose PLT be-
longs to ω(k) but the ALT does not belong to ω(k).
The modification is to set their PLT to kTTI, making
them belong to Ω(k + 1), such that they can be
scheduled in the next receding horizon.

Step 6: Termination check. When all the aircraft have been
assigned to land at the runway, the algorithm termi-
nates. Otherwise, set k = k + 1 and go to Step 2 for
the next receding horizon optimization.

In the preceding steps, Step 3 is the major process of the
algorithm. The flowchart is illustrated on the right side of Fig. 3,
and the details are given below.

Step 3.1: Schedule the M aircraft by the FCFS approach and
calculate the fitness value through (3). Calculate
the initial pheromone τ0 and set the pheromone for
each aircraft pair as τ0.

Step 3.2: For each ant, do the following.

a) Determine the first landing aircraft s and con-
struct the whole landing sequence using the
state transition rule as (5) and (6).

b) Perform the local pheromone updating as (9).

Step 3.3: Calculate the fitness of each ant and determine
the best solution. Moreover, the current best solu-
tion is compared with the historically best solution
to determine the historically best solution.

Step 3.4: Perform the global pheromone updating as (10).

r =

{
arg maxu∈Js

{
[τ(s, u)] · [η(s, u)]β

}
, if q ≤ q0 (exploitation)

R, otherwise (biased exploration)
(5)
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Fig. 3. Flowchart of the RHC-ACS-ASS algorithm.

Step 3.5: Termination check. If the termination criteria are
met, e.g., the maximal generations, then the process
stops. Otherwise, go to Step 3.2, and continue
optimizing.

IV. EXPERIMENTS AND COMPARISONS

A. Test Cases

Experimental tests are carried out in this section to verify the
robustness, effectiveness, and efficiency of the RHC-ACS-ASS
algorithm. It is implemented in Visual C++ 6.0 on a PC running
a Pentium Dual CPU at 2.0 GHz with 2.0-GB random access
memory.

The test cases in [20] and [21] are used here to test the
effectiveness of the RHC-ACS-ASS algorithm. The efficiency
of the RHC-ACS-ASS is also tested by comparing with the
corresponding results obtained by the FCFS approach and the
GA-based approaches developed in [20] and [21]. The GA-
based algorithms are compared because they were proven to
outperform traditional approaches [20], [21]. Moreover, an
ACS-ASS algorithm is implemented and compared with the
RHC-ACS-ASS algorithm. The ACS-ASS algorithm directly
applies the ACS algorithm to solve the ASS problem. It can
be regarded that ACS-ASS is a special case of RHC-ACS-ASS,
where the time interval TTI is long enough to contain all the
aircraft in an operational day. In other words, ACS-ASS does
not use the RHC strategy and schedules all the aircraft at one
time by using the ACS algorithm.

The parameter configurations are given in Table II. Both
ACS-ASS and RHC-ACS-ASS use the same configurations for
the ACS-related parameters. Two of the ACS-related parame-
ters are the population size NP and the maximal generation
number NG. They are set to five times the number of aircraft

TABLE II
PARAMETER CONFIGURATIONS FOR THE RHC-ACS-ASS ALGORITHM

M in the current receding horizon. The other ACS-related
parameters are q0 = 0.9, ρ = 0.9, ε = 0.1, β = 2.0, and τ0 =
(M · fFCFS)−1. The RHC-related parameters are that NRHC =
4 and TTI = 150 s. These parameter configurations are based
on empirical studies presented in Sections IV-B and C.

1) Case 1—30 Aircraft: In this test case, the PLTs for all
the aircraft are adopted from [20], as presented in the first
three columns of Table III. The results of FCFS, RHC-GA,
ACS-ASS, and RHC-ACS-ASS are presented and compared.
The results of RHC-GA given in [20] are adopted directly and
compared in Table III.

It can be observed from the table that RHC-ACS-ASS ob-
tains the best solution to this test case for a TAD of 3721 s.
The FCFS algorithm yields a very poor solution for a TAD of
8027 s. When the GA-based algorithm is enhanced by RHC,
RHC-GA performs better than ACS-ASS, which does not
use the RHC strategy. However, this does not mean that the
GA-based approach is better than the ACS-based approach at
solving the ASS problem. The fact that RHC-GA outperforms
ACS-ASS can also be caused by the advantages of the RHC
strategy. To make a better comparison, we refer to the data
provided in [20] and calculate the TAD according to the se-
quence presented in [20, Tab. II]. The results show that the
solution obtained by the conventional dynamic optimization
GA (CDO-GA) therein, which is a conventional GA without
the RHC strategy, takes 6058 s for the TAD. This result is
worse than that obtained by our ACS-ASS algorithm, which is



ZHAN et al.: EFFICIENT ACS BASED ON RHC FOR THE AIRCRAFT ASS PROBLEM 405

TABLE III
EXPERIMENTAL RESULT COMPARISONS IN CASE 1 WITH 30 AIRCRAFT

TABLE IV
COMPARISONS BETWEEN ACS-ASS AND RHC-ACS-ASS IN CASE 1

3866 s for TAD. Conversely, when both GA- and ACS-based
algorithms are combined with the RHC strategy, our RHC-
ACS-ASS performs better than RHC-GA. These comparisons
show that the ACS-based algorithm is very promising in solving
the ASS problem, particularly when the algorithm is integrated
with the RHC strategy.

Table IV presents comparisons between ACS-ASS and RHC-
ACS-ASS on Case 1. These are the average results of 100 in-
dependent runs for each algorithm. It appears that a TAD of
3721 s is the best solution to this problem. RHC-ACS-ASS
obtains this best solution with the “Best Ratio” of 97%, whereas
ACS-ASS succeeds only 35% out of the 100 trials. The mean
CPU time shows that RHC-ACS-ASS is much faster than ACS-
ASS, whereas the mean and standard deviation show that RHC-
ACS-ASS obtains a better solution than ACS-ASS.

These advantages are mainly due to the RHC strategy. By
using the RHC strategy, RHC-ACS-ASS divides the whole ASS
problem into a number of subproblems by the receding horizon
and solves them one by one. On one hand, as fewer aircraft are
considered in each receding horizon, the population size and
the maximal generation will be smaller because they are set as
five times the number of the aircraft being optimized (refer to
Table II for the parameter settings). Although a number of sub-

problems have to be solved, the total computational burden is
still lighter than the one needed without using RHC. Therefore,
the RHC strategy can contribute to the reduced computational
burden. On the other hand, as fewer aircraft are considered in
each receding horizon, the search space will be smaller, and
therefore the algorithm can more efficiently perform the global
search to find a better solution. Moreover, in the ASS problem,
it is unlikely that a very late aircraft is assigned to land very
early, whereas a very early aircraft is assigned to land very
late in an optimal solution. Therefore, it will not affect the
global search ability of the algorithm by scheduling the aircraft
one receding horizon after another receding horizon but will
contribute to lighter computational burden and higher solution
quality.

2) Case 2—20 Aircraft: Table V lists the test case with
20 aircraft in the first three columns. This case was also used
in [21] to test the performance of BRGA. The results obtained
by the proposed ACS-ASS and RHC-ACS-ASS algorithms are
presented in Table V and are compared with those obtained by
the FCFS and BRGA algorithms.

Similar to the experimental results in Case 1, the results
shown in Table V also reveal that the ACS-based algorithms
are still very promising. RHC-ACS-ASS not only outperforms
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TABLE V
EXPERIMENTAL RESULT COMPARISONS IN CASE 2 WITH 20 AIRCRAFT

TABLE VI
COMPARISONS BETWEEN ACS-ASS AND RHC-ACS-ASS IN CASE 2

FCFS but also does better than BRGA. Even the ACS-ASS
without using the RHC strategy obtains a much better solution
when compared with the FCFS algorithm. These results con-
firm that the ACS approach is suitable and promising in solving
the ASS problem.

A further comparison is made between ACS-ASS and RHC-
ACS-ASS in Table VI. These results are also the average of
100 independent runs. They also demonstrate the contributions
of the RHC strategy in terms of reduced computational bur-
den and improved solution quality, similar to those shown in
Table IV.

B. Analysis of ACS Parameters

The ACS parameters include the computational burden-
related parameters NP and NG and the performance-related
parameters q0, β, ρ, and ε. The parameters NP and NG, on
one hand, affect the solution quality and, on the other hand,
determine the computational burden. Hence, tradeoffs should
be considered when setting up these two parameters. Moreover,
it is useful to study the influences of the performance-related
parameters to the solution quality.

1) Computational Burden Related Parameters: In the pre-
ceding experiments, the population size of ants NP and the
maximal generations NG are both set as five times the aircraft
number M in the receding horizon being optimized. In the
following investigation, NP varies from M , 3M , 5M , 7M
to 9M , and NG varies from M to 10M , making up the
combinations for tests. All the other parameters remain the
same as in Section IV-A. Each combination is tested to optimize
both Cases 1 and 2. For each case, 30 independent runs are

carried out, and the mean results are plotted in Figs. 4 and 5,
respectively.

Figs. 4(a) and 5(a) show the influences of the parameters
on the solution quality, whereas Figs. 4(b) and 5(b) show the
influences of the parameters on the computational burden. As
anticipated, the solution quality improves with the increase of
the population size NP or the number of generations NG.
However, as this increases the CPU time too, it is necessary
to make tradeoffs between the solution quality and the compu-
tational burden. Since the solution quality is not very sensitive
to NG when NP ≥ 5M , and the improvement in quality is
insignificant when NG increases from 5M to 10M , setting
both NP and NG to 5M would be a good choice.

2) Performance Related Parameters: The investigation be-
gins with the parameters q0. We set q0 from 0.1 to 0.9 with
a step length of 0.1. With each parameter configuration, the
algorithm is used to optimize the preceding two test cases for
100 independent trials. The mean TAD and the successful rate
are calculated and plotted in Fig. 6(a) and (b), respectively.
The tendency of the curves indicates that it is better to use a
larger q0 for better performance. When q0 is set to 0.8 or 0.9,
the mean TAD becomes the smallest, and the successful rate
is very high. However, q0 cannot be set as 1.0 because this
configuration makes the algorithm have no exploration ability
and thus perform poorly. The results of the mean TAD for
q0 = 1.0 are too poor to plot within the scale of Fig. 6(a).

The next parameter tested is β. As shown in Fig. 7,
β should not be too large, e.g., not larger than 5. For
Case 1, the best β is 3, whereas for Case 2, it is 1. Moreover,
the poor performance of the algorithm when β is 0 indicates
that the heuristic information plays an important role in the
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Fig. 4. Influence of the population size (NP ) and the maximal generation (NG) on RHC-ACS-ASS in Case 1. (a) Mean TAD. (b) Mean CPU time (in
milliseconds).

Fig. 5. Influence of the population size (NP ) and the maximal generation (NG) on RHC-ACS-ASS in Case 2. (a) Mean TAD. (b) Mean CPU time (in
milliseconds).

Fig. 6. Influence of the parameter q0 on RHC-ACS-ASS. (a) Mean TAD. (b) Successful rate in reaching the best solution.

RHC-ACS-ASS algorithm. Similarly, the results for β = 0 are
too poor to plot within the scale of Fig. 7(a).

Finally, the parameter ρ for local updating and the parameter
ε for global updating are investigated. The results are plotted
in Fig. 8, where Fig. 8(a) shows the solution quality for Case 1
and Fig. 8(b) for Case 2. It can be seen that for all values of
ε, the TAD decreases when ρ increases in both Cases 1 and 2.

As the parameter ρ represents the pheromone evaporation on
the visited edges, a larger ρ reduces the accumulation of
pheromone on the visited edges and increases the population
diversity. In contrast, the figures show that the parameter ε
for global updating is better to be small. Both a large ρ and
a small ε support the functionality to let the ants construct
as many different solutions as possible. This is useful for the
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Fig. 7. Influence of the parameter β on RHC-ACS-ASS. (a) Mean TAD. (b) Successful rate in reaching the best solution.

Fig. 8. Influence of the parameters ρ and ε on RHC-ACS-ASS. (a) Mean TAD in Case 1. (b) Mean TAD in Case 2.

algorithm to avoid being trapped in the local optima of a com-
plex problem, such as the ASS problem. Hence, both Cases 1
and 2 need a large ρ and a small ε.

C. Analysis of RHC Parameters

There are two RHC-related parameters NRHC and TTI that
can affect the performance of RHC-ACS-ASS. The receding
horizon length NRHC determines the sight of the algorithm. If
NRHC is too small, then little information can be used to decide
the schedule. In contrast, a too large NRHC may increase the
computational burden. The time interval duration TTI can affect
the number of aircraft that are scheduled in the current receding
horizon. These two parameters are investigated on both Cases 1
and 2. We carried out 100 independent runs for each case, and
the mean results are plotted in Fig. 9.

Fig. 9(a) and (b) shows the results for Case 1, whereas
Fig. 9(c) and (d) shows the results for Case 2. In this paper, we
consider combinations for TTI ∈ {100, 150, 200} and NRHC ∈
{1, 2, 3, 4, 5, 6}, whereas all the other parameters remain the
same, as in Section IV-A.

From Fig. 9(b) and (d), we can see that the CPU time
increases as the NRHC increases. In addition, it consumes more
CPU time when TTI is larger. For the solution quality shown in

Fig. 9(a) and (c), the mean TAD is better (smaller) when TTI

is 150 s. The algorithm yields very good results when NRHC

is set to 4. This is particularly evident in Fig. 9(c). Therefore,
NRHC = 4 and TTI = 150 s are recommended for use.

D. Algorithm Robustness Tests

Although the advantages of the proposed RHC-ACS-ASS al-
gorithm have been studied in the two test cases when compared
with the FCFS and GA-based algorithms, it is still beneficial
to test the algorithm robustness because RHC-ACS-ASS is
a probabilistic algorithm. Robustness measures how well an
algorithm manages to consistently obtain the global optimum,
i.e., during all runs, on various test cases. Therefore, we ex-
amine the solution quality obtained by the proposed algorithm
against the true optimal solutions. We randomly generate ten
traffic data with each data set having ten aircraft. The type of
each aircraft is randomly assigned, and its PLT is randomly
generated within the time range [0 s, 500 s]. As the aircraft
number is 10 in each test case, the true optimal solution can
be obtained by an exhaustive search. For each test case, 100
independent runs are conducted under the RHC-ACS-ASS,
and the BRGA algorithms and the experimental results are
compared in Table VII. For RHC-ACS-ASS, the parameters are
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Fig. 9. (a) Mean TAD in Case 1 with different NRHC and TTI. (b) Mean CPU time (in milliseconds) in Case 1 with different NRHC and TTI. (c) Mean TAD
in Case 2 with different NRHC and TTI. (d) Mean CPU time (in milliseconds) in Case 2 with different NRHC and TTI.

TABLE VII
EXPERIMENTAL RESULTS OF RHC-ACS-ASS AND BRGA COMPARED WITH THE OPTIMAL RESULTS

the same as those used in Section IV-A, whereas for BRGA, the
parameters are the same as those used in [21].

Table VII shows that RHC-ACS-ASS can obtain the optimal
solutions in all ten cases with 100% successful rate in the
100 runs. In contrast, BRGA has experienced difficulties in
consistently obtaining optimal solutions on all the test cases and
even results in error values no smaller than 5% in Cases 2 and 3.
Overall, the experimental results confirm that the RHC-ACS-
ASS algorithm developed in this paper is more robust than
BRGA in reaching the global optimal solution. The good
performance of RHC-ACS-ASS also demonstrates the effec-
tiveness of the parameter settings investigated in the preceding
sections.

E. Algorithm Efficiency Tests

Due to the stochastic optimization nature of the ACS algo-
rithm, only statistical conclusions can be made by evaluating
the algorithm effectiveness and efficiency using comprehensive
experiments and comparisons. In this section, we carry out ex-
periments on an uncongested situation, a normal situation, and
a congested situation with 30 aircraft as well as with 60 aircraft.
Hence, six situations are simulated in total. In each situation, to
reduce the stochastic influence of the test case, 20 sets of traffic
data are generated. Each aircraft is assigned with a random type
and a random PLT. For the 30 aircraft traffic data, the PLT is
within the time range of [0 s, 4500 s], [0 s, 3000 s], and [0 s,
1500 s] for the uncongested, normal, and congested situations,
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TABLE VIII
EXPERIMENTAL RESULTS OF DIFFERENT ALGORITHMS ON DIFFERENT CONGESTED SITUATIONS WITH 30 AND 60 AIRCRAFT

TABLE IX
EXPERIMENTAL RESULTS OF RHC-ACS-ASS WITH AND WITHOUT LOCAL SEARCH ON DIFFERENT CONGESTED SITUATIONS WITH 30 AND 60 AIRCRAFT

respectively, whereas the PLT for the 60 aircraft traffic data is
within the time range of [0 s, 9000 s], [0 s, 6000 s], and [0 s,
3000 s] for the uncongested, normal, and congested situations,
respectively. In the simulations, both BRGA and RHC-ACS-
ASS run 100 independent times on each traffic data, and the
average TAD of the 100 runs is calculated. Therefore, we obtain
20 average TAD values for each situation (i.e., uncongested,
normal, and congested situations with 30 and 60 aircraft) be-
cause 20 traffic data are randomly generated for test in each
situation. The mean of these 20 values is calculated and is
presented in Table VIII. In addition, the mean of the TAD
obtained by the FCFS approach on the 20 traffic data of each
situation is presented in Table VIII.

Table VIII shows that both BRGA and RHC-ACS-ASS can
obtain better results than FCFS. To make a more comprehensive
comparison, we use two metrics R1 = (FCFS − BRGA)/
FCFS and R2 = (FCFS − RHC-ACS-ASS)/FCFS to evaluate
the performance improved by BRGA and RHC-ACS-ASS,
respectively. The data show that BRGA can improve the
solution by at least 24.96% when compared with FCFS,
whereas RHC-ACS-ASS can improve the solution by at
least 28.01%. The metric R = R2 − R1 is also presented
in Table VIII to compare the performance of BRGA and
RHC-ACS-ASS. BRGA performs slightly better than RHC-
ACS-ASS on the uncongested situation with 30 aircraft,
whereas RHC-ACS-ASS wins on all the other five situations.
Moreover, the results demonstrate that as the situation becomes
more complicated, e.g., becomes more congested and with
more aircraft, the advantage of RHC-ACS-ASS becomes more
evident. It should be noted that the parameters of RHC-ACS-
ASS are set the same as those in Section IV-A. The results
indicate that these parameter configurations still work well on
the test cases here, confirming that RHC-ACS-ASS is effective
and efficient in obtaining a good solution to the ASS problem.

F. Experiments With Local Search

Here, the RHC-ACS-ASS algorithm is hybridized with a
two-opt exchange local search, and the results are shown in
Table IX. The two-opt heuristic was originally developed for

solving the TSP [38]. In general, the two-opt heuristic deletes
two edges from the TSP tour and adds two new edges to form
a new tour. If the exchange results in a shorter route, then keep
the new edges; otherwise, try to improve the tour by deleting
other edges and adding other new edges.

The two-opt heuristic designed for the TSP focuses on ex-
changing the edges. However, the ASS problem is not exactly
the same as the TSP in that the ASS focuses on the aircraft
positions. Therefore, a special two-opt exchange heuristic that
is suitable for the ASS problem is designed here. This new
two-opt exchange heuristic is carried out as a local search
operator after the solution has been obtained by the RHC-
ACS-ASS algorithm. The procedure exchanges the positions
of every two aircraft based on the obtained solution to form
a set of new solutions. Among all the new obtained solutions,
the solution with the shortest TAD can be determined. If it
is better than the original solution, then it is accepted, and
the procedure continues to exchange the positions of every
two aircraft according to this new obtained best solution. The
procedure terminates until no better solution can be obtained
by exchanging the positions of the aircraft.

We carried out experiments based on the traffic data gener-
ated in Section IV-E by using the RHC-ACS-ASS algorithm
with the two-opt exchange heuristic local search. The results are
compared with those obtained by the RHC-ACS-ASS algorithm
without the two-opt exchange heuristic local search in Table IX,
revealing that the solution quality can be improved by this
local search. For the 30 aircraft test cases, the effect of the
local search is most evident in the congested situation. This
is probably because of the high complexity of this situation
Therefore, if RHC-ACS-ASS encounters difficulty in obtaining
the best possible solution, the local search can help improve the
solution. Note that in the 60 aircraft test cases, the effect of the
local search appears to be most evident in a normal situation.

V. CONCLUSION

This paper has modeled the ASS problem in the form of a
permutation problem and has, hence, proposed a new solution
framework. An efficient ACS has been developed to solve
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this NP-hard problem by incorporating an RHC strategy. The
resulting RHC-ACS-ASS algorithm exhibits very good global
search ability and solves the ASS problem well. With the help
of the RHC strategy, RHC-ACS-ASS can not only reduce the
computational burden but also improve the solution accuracy.
The proposed algorithm has been described in detail and tested
on a number of simulation cases. Extensive experimental results
show that the RHC-ACS-ASS algorithm not only outperforms
GA-based algorithms but also ACS-based algorithm without an
RHC strategy. For complex cases, the algorithm performance
can further be enhanced by incorporating a two-opt exchange
heuristic local search. Investigations into the influences of the
ACS and RHC parameters on the performance of RHC-ACS-
ASS confirm the robustness, effectiveness, and efficiency of the
proposed algorithm.

Further research work includes the following: 1) using real-
time data and test cases from the airport to further test and
refine the algorithm; 2) applying the algorithm to the dynamical
environment with uncertainties and disturbances; and 3) ex-
tending the algorithm to solving the ASS problem with multiple
runways.
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