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Strong Consistency of Spectral Clustering for the
Sparse Degree-Corrected Hypergraph Stochastic

Block Model
Chong Deng, Xin-Jian Xu, and Shihui Ying, Member, IEEE

Abstract—We prove strong consistency of spectral clustering
under the degree-corrected hypergraph stochastic block model
in the sparse regime where the maximum expected hyperdegree
is as small as Ω(logn) with n denoting the number of nodes. We
show that the basic spectral clustering without preprocessing or
postprocessing is strongly consistent in an even wider range of
the model parameters, in contrast to previous studies that either
trim high-degree nodes or perform local refinement. At the heart
of our analysis is the entry-wise eigenvector perturbation bound
derived by the “leave-one-out” technique. To the best of our
knowledge, this is the first entry-wise error bound for degree-
corrected hypergraph models, resulting in the strong consistency
for clustering non-uniform hypergraphs with heterogeneous hy-
perdegrees.

Index Terms—Hypergraph, stochastic block model, spectral
clustering, consistency.

I. INTRODUCTION

COMMUNITY detection, also known as graph clustering,
occupies a central position in modern network science.

The goal is to partition nodes in a network into communities
such that the nodes in the same community are more sim-
ilar than those belonging to different communities. Among
numerous algorithms designed for this purpose, the model-
based algorithms stand out for their statistical guarantees.
The stochastic block model (SBM) [1] is one of the well
known generative models for random graphs with community
structure. In this model, edges are independently generated
with probabilities depending only on the community member-
ships of nodes, and thus the nodes in the same community
have the same expected degrees. As a consequence, the
SBM delivers a poor description of real networks that exhibit
degree heterogeneity even within communities. To overcome
this limitation, the degree-corrected stochastic block model
(DCSBM) [2] has been proposed by introducing a set of node-
specific parameters to allow any possible degree distribution.
It shows that the consideration of the degree heterogeneity
significantly improves the ability of the model to fit real
networks.

For community detection in a generative model, i.e., re-
covering the hidden community assignments from a single
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instance generated by the model, it is usually concerned with
consistency of an algorithm:

• strong consistency (or exact recovery). Finding the true
partition of all nodes (up to a permutation) with high
probability;

• weak consistency (or almost exact recovery). Finding the
true partition of all but a vanishing fraction of nodes (up
to a permutation) with high probability.

The fundamental limits of community detection under the
(DC)SBM have been widely studied [3], [4], [5], [6], and the
performance of many clustering algorithms, such as spectral
algorithms [7], [8], has also been investigated both theoret-
ically and numerically. However, as graphs model pairwise
relationships by edges connecting pairs of nodes, they fail
to capture higher-order interactions, and this is where hy-
pergraphs come into play. Different from graphs, edges in a
hypergraph, called hyperedges, can connect any number of
nodes. Due to this merit, community detection in hypergraphs,
or hypergraph clustering, has received increasing attention
recently. In particular, the SBM has been generalized to
the hypergraph SBM (HSBM) [9], in which the probability
of occurrence of a hyperedge depends on the community
memberships of all nodes in it. Considering the degree het-
erogeneity, the DCSBM has also been generalized to the
degree-corrected HSBM (DCHSBM). Yet, there are very few
studies on the theoretical limits for community detection under
the DCHSBM and the algorithms achieving the detectability
thresholds.

As one of the most popular algorithms, spectral clustering
has been adopted for graph clustering. In its basic form,
nodes are first represented as points in a low-dimensional
space based on the leading eigenvectors, and these points
are then clustered using standard clustering algorithms such
as k-means. To develop spectral algorithms for hypergraph
clustering, several matrices have been considered including ad-
jacency matrix [10], hypergraph Laplacian [11] and adjacency
tensor [12]. All these algorithms are weakly consistent in
the HSBM under certain conditions on the model parameters.
As for strong consistency, Cole and Zhu [13] achieved exact
recovery for dense hypergraphs but it is suboptimal in the
sparse case. On the other hand, two-stage algorithms have
been proposed [10], [14], [15]: first obtain a weakly consistent
community assignment from the trimmed adjacency matrix or
hypergraph Laplacian and then perform local refinement to
guarantee strong consistency.

ar
X

iv
:2

30
9.

10
41

6v
1 

 [
cs

.S
I]

  1
9 

Se
p 

20
23



JOURNAL OF LATEX CLASS FILES 2

For graph clustering, it has been proved that the basic
spectral clustering without trimming or refinement is strongly
consistent [16], [17]. Therefore, it is natural to ask a question:
whether the basic hypergraph spectral clustering could achieve
strong consistency or not? Answering this question requires a
more refined entry-wise analysis of eigenvector perturbations.
The goal of this paper is to prove strong consistency of the
basic spectral clustering under the DCHSBM in the sparse
regime where the maximum expected hyperdegree might be
of order Ω(log n).

A. Main contributions

Let A be the weighted adjacency matrix (Equation (1)) of
a hypergraph generated by a DCHSBM (Definition 1) and
P = E[A] be the population counterpart of A. Let Û and
U be the matrices respectively formed by stacking the K
leading eigenvectors of A and P , where K is the number of
communities. As the matrix U contains all information about
the true community assignment, the task becomes bounding
the deviation between Û and U . While the well known Davis-
Kahan theorem specifies an upper bound on ∥Û Ô − U∥F for
some orthogonal matrix Ô (this matrix is used to align Û
and U ; see Equation (8) for its specific expression), it gives a
loose bound on ∥Û Ô−U∥2,∞, hence no guarantee for node-
wise behavior. We show that simply applying k-means on the
row-normalized leading eigenvector matrix of the weighted
adjacency matrix achieves strong consistency in an even wider
range of parameters. We develop a sharp deviation bound
on ∥A − P∥ for non-uniform hypergraphs with general edge
probabilities. As a byproduct, we also derive an upper bound
on mis-clustered nodes incurred by an approximate k-means
algorithm which leads to weak consistency of Algorithm 1
(see Section II-C). Via the leave-one-out analysis, we obtain an
eigenvector perturbation bound in two-to-infinity norm which
is the first result on node-wise error bounds for hypergraph
models. With this bound, we also study strong consistency of
Algorithm 2 (see Section II-C), which is simple in nature but
will be extremely hard to analyze if one only has a bound
on the deviation between Û and U in the Frobenius norm.
Finally, we consider a special case of the model where the
conditions for exact recovery will be expressed more clearly.
To the best of our knowledge, our study gives the first strong
consistency result for clustering non-uniform hypergraphs with
heterogeneous hyperdegrees.

B. Related Work

To date, there are few studies on strong consistency for hy-
pergraph stochastic block models. Kim et al [18] demonstrated
that exact recovery shows a sharp phase-transition behavior
for the uniform HSBM with two equal-sized and symmetric
communities. They proposed a semidefinite programming al-
gorithm which is strongly consistent in an order-wise optimal
parameter regime. Ahn et al [10] investigated consistency of
spectral clustering in weighted uniform HSBMs where the
number of clusters K is constant. Cole and Zhu [13] proposed
a spectral algorithm based on the hypergraph adjacency matrix
and proves that the algorithm achieves exact recovery in the

dense uniform HSBM where K = Θ(
√
n). Chien et al [14]

showed that spectral algorithms with local refinement achieve
the exact recovery criteria in the sparse HSBM. Zhang and
Tan [15] studied fundamental limits of exact recovery in the
general uniform HSBM and develop a two-stage algorithm that
meets the achievability threshold.

In [17], the authors performed an entry-wise eigenvec-
tor analysis and proved that spectral clustering achieves the
threshold of exact recovery in a graph SBM with two blocks.
In our study, we adopt the idea of the leave-one-out technique.
Compared with [17], our main contributions are as follows.
First, we generalize the entry-wise eigenvector perturbation
analysis for graphs to hypergraphs. This is non-trivial because
the weighted adjacency matrix A violates the “row- and
column-wise independence” assumption made in [17]. Based
on the idea of the leave-one-out method, we introduce a set
of suitably defined surrogate matrices A(l) where randomness
contributed by hyperedges containing l is eliminated, and then
resort to the matrix Bernstein inequality where sequential
transformations and inequalities are performed to address the
dependency across entries of A. Second, we develop a sharp
deviation bound on ∥A − P∥ for non-uniform hypergraphs.
Finally, we derive the strong consistency result for spectral
clustering in the non-uniform DCHSBM with multiple com-
munities.

Gaudio and Joshi [19] derived an entry-wise bound on the
second eigenvector of the adjacency matrix and prove strong
consistency of spectral clustering for the uniform HSBM
with two communities. Compared with [19], we consider
different algorithms and have a different goal: we try to find
under what conditions on degree heterogeneity, the number of
communities, sparsity and the minimal non-zero eigenvalue
of the matrix (See Lemma 1), spectral clustering without
pre-processing and post-processing could achieve strong con-
sistency. Gaudio and Joshi [19] instead aimed at proving
their algorithm can achieve the theoretical threshold. While
our settings are more general, our result does not achieve
the theoretical limit in this special case. Both our work and
Ref. [19] perform the entry-wise eigenvector analysis. The
main difference is as follows. Ref. [19] obtains a more refined
l∞ eigenvector perturbation bound by generalizing Theorem
1.1 in Ref. [17] to the two-block HSBM case. We derive
an entry-wise bound for deviation between Û and U in l2,∞
norm by applying the matrix Bernstein inequality together with
the Davis-Kahan theorem and the triangle inequality, where
we carefully handle the dependence across the entries of A.
Our entry-wise bound makes it possible to guarantee strong
consistency of the considered algorithms in the general K-
block case, where K is even allowed to diverge to infinity at
a slow rate.

Wang [20] established the information-theoretical threshold
for strong consistency in non-uniform HSBM with two equal-
sized communities. However, the algorithms considered in
Ref. [20] are not applicable to the case of multiple blocks.
Dumitriu and Wang [21] derived sharp threshold for exact
recovery in non-uniform HSBM with multiple communities
and provided multi-stage algorithms that successfully achieve
exact recovery above the threshold. Compared with Ref. [21],
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we consider strong consistency of spectral clustering without
preprocessing or postprocessing and derive the first entry-wise
eigenvector perturbation bound for non-uniform hypergraphs
with heterogeneous hyperdegrees.

C. Paper Organization

We start in Section II with an introduction of the DCHSBM,
the weighted adjacency matrix and two hypergraph clustering
algorithms. We describe our main results as well as its proof
in Section III-A. The consistency results in a special case is
given in Section IV. Section VI contains concluding remarks.

D. Notations

Given a matrix X , we use Xi· to refer the i-th row of X .
Let ∥·∥ denote the spectral norm of a matrix or the l2 norm
of a vector and ∥·∥F denote the matrix Frobenius norm. Let
∥X∥2,∞ = maxi∥Xi·∥ be the two-to-infinity norm of X . For
any vector v ∈ Rn, let vmax = maxi vi, vmin = mini vi
and diag(v) be an n×n matrix with zero off-diagonal whose
ii-th element is vi. For any positive integer n, we use [n] =
{1, 2, · · · , n} to denote the set of positive integers not greater
than n. Denote δ as the Kronecker function: for i, j ∈ Z,
δi,j = 1 if i = j, and δij = 0 otherwise. Throughout the paper,
we use the standard asymptotic notations: o(·), O(·),Θ(·),Ω(·)
and ω(·).

II. PRELIMINARIES

A. The Model

Let n be the number of nodes in a hypergraph. The nodes
are divided into K communities and each node i is assigned
a label gi ∈ [K] representing the community to which it
belongs. Additionally, each node i is assigned a parameter
θi > 0 to control its expected degree. Let M ⩾ 2 be
the maximum hyperedge cardinality in the hypergraph. Let
E be the hyperedge set of a complete hypergraph on [n]
with edge size between 2 and M . Each possible hyperedge
e ∈ E (hyperedge that contains duplicate nodes is allowed) is
associated with an indicator variable he such that he = 1 if e
is present and he = 0 otherwise.

Definition 1 (Degree-corrected hypergraph stochastic block
model): In a DCHSBM, {he}e∈E are independent Bernoulli
random variables satisfying

P(he = 1) = beπ(θe)Φ(ge) ∈ [0, 1],

where π(θe) =
∏

i∈e θi is the product of the hyperdegree
parameters of the nodes in e, Φ is an affinity function that
maps the group assignment to a non-negative real number and
the coefficient be denotes the number of distinct ways to order
the nodes of e.

For example, suppose n = 8,K = 2,M = 5 and
g = (1, 1, 1, 1, 1, 2, 2, 2). For three possible hyperedges e1 =
(2, 6), e2 = (1, 3, 8), e3 = (1, 4, 4, 7), we have be1 =
2, be2 = 6, be3 = 12 and thus P(he1 = 1) = 2θ2θ6Φ(1, 2),
P(he2 = 1) = 6θ1θ3θ8Φ(1, 1, 2) and P(he3 = 1) =
12θ1θ

2
4θ7Φ(1, 1, 1, 2).

Let nk denote the size of the k-th community. Without
loss of generality, we assume n1 ⩾ n2 ⩾ · · · ⩾ nK .
The community memberships can also be represented by an
assignment matrix Z ∈ {0, 1}n×K where Zik = 1 if gi = k
and Zik = 0 otherwise. For each e ∈ E, we define ge as a
vector of the cluster labels for nodes in e.

To ensure model identifiability, we impose the constraint
that

∑
i θiδgi,k = nk for each k ∈ [K]. Thus, the DCHSBM

nests the HSBM as a special case by setting θi = 1 for all
i ∈ [n]. Similarly, we define θe as a vector of the hyperdegree
parameters of the nodes in e.

Furthermore, we introduce vectors ae ∈ Rn, where aei is
the number of occurrences of node i in e. The hyperdegree of
node i is defined by di =

∑
e∈E aeihe and the cardinality of

each possible hyperedge e ∈ E is given by |e| =
∑n

i=1 aei.
A basic but important choice of Φ is the so-called “all-

or-nothing” affinity function, where the hyperedge probability
depends on whether all nodes in the hyperedge are in the same
community or not.

Definition 2 (Degree-corrected hypergraph planted partition
model): For each e = {i1, · · · , im} ∈ E, it is generated with
probability

P(he = 1) = αmbeπ(θe) · ((p− q)1{gi1=···=gim} + q),

where p > q > 0 are constants independent of n and αm ⩾ 0
is a scaling factor that varies with n and controls the number
of the hyperedge cardinality m.

We investigate consistency of spectral algorithms for this
model in Section IV as a case study and test the performance
of the considered algorithms in this model in Section V.

B. The Weight Adjacency Matrix

Spectral algorithms for community detection in the model
depend on the weighted adjacency matrix A ∈ Rn×n which
is non-negative symmetric with entries:

Aij =

{∑
e∈E

aeiaej

|e|−1 he, if i ̸= j,∑
e∈E

aei(aei−1)
|e|−1 he, if i = j.

(1)

When there is no hyperedge containing repeated nodes, the
diagonal entries of A are all zero. The so-defined weighted
adjacency matrix corresponds to the adjacency matrix of a
weighted undirected graph projected by a hypergraph [22].
In this work, we investigate consistency of the hypergraph
spectral clustering based on the weighted adjacency matrix in
the DCHSBM.

To understand why the spectrum of A contains information
about the hidden community structure, we first take a close
look at its expectation P = E[A]. Denote the eigenvalues
of P by {λi}ni=1 such that |λ1| ⩾ · · · ⩾ |λn| and let
{ui}ni=1 be the corresponding unit-norm eigenvectors. Define
U = (u1, · · · , uK) ∈ Rn×K and U∗ the normalized matrix
with U∗

i· = Ui·/∥Ui·∥. The following lemma characterizes the
eigen-structure of P .

Lemma 1 (The eigen-structure of P ):
(i). There exists a symmetric matrix B ∈ RK×K such that

P = diag(θ)ZBZTdiag(θ). (2)
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(ii). If B is full rank, then there exists an orthogonal matrix
Q ∈ RK×K such that for any i ∈ [n],

Ui· = θ̃iQgi·, (3)

where θ̃i = θi/ϕgi and ϕk =
√∑n

j=1 θ
2
j δgj ,k for k ∈

[K].
As an immediate consequence of (2), we have rank(P ) ⩽

K, which means λK+1 = · · · = λn = 0. Readers familiar with
spectral clustering in graphs will find that P could be regarded
as the population adjacency matrix of an ordinary DCSBM
parameterized by g, θ and B, which could be viewed as a
“projected model”. It is known that graph projection may cause
the community structure unidentifiable under some parameter
space [11], [15]. Therefore, the condition that matrix B is full
rank, i.e., |λK | > 0, is crucial for the success of the graph-
projection-based clustering algorithms.

According to (3), for any two nodes i and j, if they belong to
the same community, i.e., gi = gj , then Ui· and Uj· point to the
same direction in RK ; otherwise, Ui· and Uj· are orthogonal to
each other. By normalizing the rows of U to have unit length,
we have

∥U∗
i· − U∗

j·∥ =
√
2 · 1{gi ̸=gj}.

Thus, the community memberships of all nodes will be exactly
recovered from U∗ without difficulty.

In practice, P is not observed and spectral clustering is
applied to the noisy observation A. Thus, if Û∗ is close
enough to U∗, we can expect that the spectral algorithms could
still successfully recover the true community memberships.
However, bounding the deviation of Û∗ from U∗ (especially
entry-wise) turns out to be a non-trivial task once the entries of
A are no longer independent. More care must be taken when
dealing with the complex dependency across entries.

C. Spectral Algorithms

Denote the K leading eigenvalues of A by {λ̂k}Kk=1 such
that |λ̂1| ⩾ · · · ⩾ |λ̂K | and let {ûk}Kk=1 be the corresponding
unit-norm eigenvectors. Let Û ∈ Rn×K be the matrix that
contains the K leading eigenvectors of A as columns and
Û∗ ∈ Rn×K be the row-normalized version of Û , i.e.,
Û∗
i· = Ûi·/∥Ûi·∥ for all i ∈ [n].
The first algorithm we consider is the classical spectral

clustering summarized in Algorithm 1. For strong consistency
of the k-means step, we utilize the result of Theorem 2.3 in
Ref. [16]. The second one is a simple thresholding algorithm
listed in Algorithm 2. Two nodes will be assigned to the same
community when the distance between the corresponding rows
of Û∗ is small enough. Concretely, we try to find a threshold
τ such that, starting from an empty graph G = ([n], ∅), after
connecting all node pairs (i, j) satisfying ∥Û∗

i· − Û∗
j·∥ < τ ,

G has exactly K connected components, which corresponds
to the true K communities. Initially there are n connected
components, each of which contains only one node. After
adding an edge, the number of components either decreases
by one or remains the same. If we connect all node pairs, there
will be only one connected component. Therefore, Algorithm

2 can successfully output a partition of [n] into K communities
and the output is unique.

Algorithm 1 Hypergraph spectral clustering with k-means
Input: The hypergraph H and the number of communities K.

1: Construct the weighted adjacency matrix A and compute
Û∗.

2: Run k-means algorithm with k = K on the rows of Û∗.
Output: A community assignment ĝ where ĝi is the cluster

index of i-th row.

Algorithm 2 Hypergraph spectral clustering via thresholding
Input: The hypergraph H and the number of communities K.

1: Construct the weighted adjacency matrix A and compute
Û∗.

2: Let G be a simple graph with node set [n] and an empty
edge set.

3: Sort node pairs {(i, j)|i, j ∈ [n]} in ascending order by
∥Û∗

i· − Û∗
j·∥.

4: Add edges to node pairs in G in the above order until G
has exactly K connected components.

Output: A community assignment g̃ where g̃i is the index of
the component to which i belongs in G.

For both algorithms, the successful recovery of community
labels of all nodes depends strongly on Û∗ and U∗ being
sufficiently close entry-wise. When proving strong consis-
tency of Algorithm 2, we show that with high probability:
if |Û∗

i· − Û∗
j·| < 1/

√
2 then gi = gj , otherwise gi ̸= gj . Here

we comment on the threshold 1/
√
2, which could be replaced

by any constant τ ∈ (0,
√
2). For any nodes i and j, by the

triangle inequality, we have ∥Û∗
i· − Û∗

j·∥ ⩽ 2∥Û∗Ô−U∗∥2,∞
if gi = gj and ∥Û∗

i· − Û∗
j·∥ ⩾

√
2 − 2∥Û∗Ô − U∗∥2,∞

otherwise. Since both bounds are tight in the worst case, a
sufficient and necessary condition to ensure strong consistency
of Algorithm 2 is

∥Û∗Ô − U∗∥2,∞ <
1

2
min{τ,

√
2− τ}. (4)

Because 1/
√
2 maximizes the right-hand side of (4), it is

optimal in the sense that it imposes the mildest requirement
on ∥Û∗Ô − U∗∥2,∞.

III. CONSISTENCY OF HYPERGRAPH SPECTRAL
CLUSTERING

A. The Main Result

We show that under mild conditions on the model parame-
ters, both algorithms mentioned above are strongly consistent.
Let g′ be an estimator of g that partitions nodes into K
communities. The number of mis-clustered nodes of g′ is
defined by

l(g, g′) = min
σ∈SK

n∑
i=1

1{gi ̸=σ(g′
i)},

where SK is the K-th order symmetric group and the min-
imum is taken over all possible permutation of [K]. We say
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g′ is weakly consistent if l(g, g′) = o(n) with probability
1−o(1), which only needs the fraction of mis-clustered nodes
to vanish in the large n limit. In contrast, strong consistency
requires l(g, g′) = 0 with probability 1 − o(1), which means
that the community membership of all nodes should be exactly
identified in large samples. For notational simplicity, we write
“g′ = g with high probability” in short.

To ensure strong consistency of spectral algorithms, we
make the following assumptions about the model parameters.

Assumption 1: M = O(1).
That is, M is not allowed to vary with n. A constant

maximum hyperedge cardinality is necessary for both the
sharp upper bound on ∥A − P∥ and the bound on the node-
wise deviation ∥Û Ô−U∥2,∞ to hold. This is a mild condition
for M since in practice M is usually much smaller than n.

Assumption 2: n1/nK = O(1).
In other words, the nodes form communities of fairly

balanced size, which is a standard assumption for strong
consistency [10], [15], [16].

Assumption 3: κ = |λ1|/|λK | = O(
√
log n).

This is a necessary condition for Theorem 3 in Section III-B.
In the literature, κ is usually assumed to be bounded from
above by a constant [23]. A weaker requirement is made here
thanks to the sharp deviation bound on ∥A− P∥.

Assumption 4: B is full rank, or equivalently, λK ̸= 0.
This assumption is in fact a critical condition for the iden-

tifiability of the partitions. Since the hypergraph is projected
to a weighted graph, a large eigen-gap, i.e., a large value of
|λK |, ensures that the partition is identifiable and thus could
be successfully extracted. It is unclear whether Algorithms 1
and 2 are still strongly consistent under milder conditions on
model parameters (e.g., B contains distinct rows).

Let d = max{nmaxij Pij , c0 log n} be an upper bound of
the expected node hyperdegrees for some constant c0 > 0.
Define

γ =
maxi∈[n]∥Ui·∥
mini∈[n]∥Ui·∥

=
θ̃max

θ̃min

. (5)

γ depends only on the model parameter θ and specifies an
upper bound on ∥Ui·∥/∥Uj·∥, which is useful when character-
izing the upper bound for clustering error rate. For a HSBM,
we have γ =

√
n1/nK = O(1) due to Assumption 2, which

corresponds to the absence of degree heterogeneity in the
HSBM. In general, the stronger the degree heterogeneity is, the
larger γ is and the harder for clustering algorithms to achieve
exact recovery.

The main result is given by the following theorem.
Theorem 1: Let A be a weighted adjacency matrix of a

hypergraph generated by a DCHSBM that Assumptions 1-4
hold.
(i). There exists a constant C1 = C1(M, c0) such that if n is

sufficiently large1 and

γK3/2
√
d log n

|λK |
⩽ C1, (6)

then ĝ = g with high probability.

1Note that the number of nodes n being sufficiently large is a necessary
condition for the success of the k-means algorithm [11], [16].

(ii). There exists a constant C2 = C2(M, c0) such that if

γ
√
d log n

|λK |
⩽ C2, (7)

then g̃ = g with high probability.
Though the condition (7) is milder than (6), Algorithm 1

may have better theoretical and/or practical performance than
Algorithm 2 since Theorem 1 only provides sufficient condi-
tions for the considered algorithms to achieve exact recovery.
Note that conditions (6) and (7) do not directly reveal the
fact that strong consistency should be more achievable when
a hypergraph gets denser since both d and λK are affected
by the sparsity of the hypergraph. To better demonstrate this,
we consider the consistency of ĝ and g̃ in the m-uniform
HPPM, which has been widely studied in the literature [10],
[13], [18]. In the m-uniform HPPM, all hyperedges are of
size m and the generation probability of e = {i1, · · · , im} is
P(e) = αmbe((p− q) · 1{gi1=···=gim} + q).

Corollary 1: Let A be a weighted adjacency matrix of a
hypergraph generated by the m-uniform HPPM, then Assump-
tion 4 holds. If

K = O((log n)
1

2m−2 ),

then Assumption 3 holds. When Assumptions 1-4 all hold, we
have the following conclusions:
(i). There exists a constant C1 > 0 such that for sufficiently

large n, if

αm ⩾ C1
K2m+1 log n

nm−1
,

then ĝ = g with high probability.
(ii). There exists a constant C2 > 0 such that if

αm ⩾ C2
K2m−2 log n

nm−1
,

then g̃ = g with high probability.
This corollary is a special case of Corollary 2 in Sec-

tion IV-A. The proof could be found in Appendix A-C. We
compare Algorithms 1 and 2 with existing strongly consistent
algorithms in Table I. While [10], [14], [15] require the number
of communities K to be a constant, [13] allows K to grow
like O(

√
n) which is much faster than ours, but that algorithm

only works for dense hypergraphs. In contrast, we allow K to
diverge to infinity at a slow rate in the sparse regime. When
K is a constant, the sparsity required by Algorithms 1 and 2
meets the theoretical limit Ω(log n/nm−1).

B. Proof of the main result

The outline of the proof is as follows. We first derive a sharp
bound on the deviation ∥A − P∥ by the combinatorial tech-
nique [8]. Then, we obtain an upper bound on ∥Û Ô−U∥2,∞
using the leave-one-out technique [17]. Finally, we bound
∥Û∗Ô−U∗∥2,∞ and analyze the performance of Algorithms 1
and 2.

To derive a tight bound on ∥A − P∥, we adopt the Kahn-
Szemeredi argument [24], which has been used to bound the
second largest eigenvalue of ER graphs [25] and the spectral
norm of general binary symmetric random matrices [8].
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TABLE I
COMPARISON OF STRONGLY CONSISTENT ALGORITHMS

Paper Algorithm type m K αm Sizes of blocks
[18] SDP O(1) 2 Ω(logn/

(n−1
m−1

)
) Equal

[10] Spectral+LR O(1) O(1) Ω(n logn/
(n
m

)
) Almost equal

[14] Spectral+LR O(1) O(1) Ω(logn/nm−1) Almost equal
[13] Spectral O(1) O(

√
n) Θ(1) Equal

[15] Spectral+LR O(1) O(1) Θ(logn/nm−1) Almost equal

Algorithm 1 Spectral O(1) O((logn)
1

2m−2 ) Ω(K
2m+1 logn
nm−1 ) Almost equal

Algorithm 2 Spectral O(1) O((logn)
1

2m−2 ) Ω(K
2m−2 logn
nm−1 ) Almost equal

Theorem 2: Let Assumption 1 hold. For any r > 0, there
exists a constant C = C(M, c0, r) such that

∥A− P∥ ⩽ C
√
d

with probability at least 1−O(n−r).
It should be mentioned that [10] first extended the above

techniques to hypergraphs and obtained a concentration bound
for the weighted uniform hypergraph stochastic block model in
which the edge weight has binary expected value. On the con-
trary, the model we consider here is non-uniform and the edge
probabilities are more general. In this scenario, the DCHSBM
allows variation of density of edges of different cardinality.
Since we focus on sparse hypergraphs, the hyperdegrees of
nodes, which could be as small as Ω(log n), will be regarded
as a summary of the sparsity of edges of different cardinalities.

As a byproduct, we establish the weak consistency of
Algorithm 1 based on Theorem 2. The classical way to derive
the error bound of Algorithm 1 consists of three steps: (i)
Bound ∥A−P∥; (ii) Bound ∥ÛQ̂−U∥F and ∥Û∗Q̂−U∗∥F for
some orthogonal matrix Q̂ ∈ RK×K ; and (iii) Bound the error
incurred by an (1 + ϵ)-approximate k-means algorithm [26].
Combining Theorem 2, Lemmas 5.1 and 5.3 in [8], we have
the following lemma.

Lemma 2: Let Assumption 1 hold. Suppose an (1 + ϵ)-
approximate k-means algorithm is used in Algorithm 1 for a
constant ϵ > 0. There exists a constant c > 0 such that if

Kd

nKλ2K θ̃
2
min

< c,

then

l(g, ĝ) = O

(
Kd

λ2K θ̃
2
min

)
with high probability.

Again we consider the m-uniform HPPM with Assump-
tions 1 and 2 being held. Algorithm 1 is weakly consistent
when K = O(n

m−1
2m−1 ) and αm = ω(K

2m−1

nm−1 ), which is a
weaker condition than that of [11].

Remark 1: As reported in [11], for dense enough hyper-
graphs, one has l(g, ĝ) = O(1), which also implies strong con-
sistency. Taking the m-uniform HPPM where Assumptions 1
and 2 hold for an example, one has l(g, ĝ) = O(1) whenever
m ⩾ 3, K = o(n

m−2
2m−2 ) and αm = ω(K

2m−2

nm−2 ). In this case,
it follows that d = ω(K2m−2n), which means a much denser
hypergraph than that implied by Theorem 1.

By the Davis-Kahan theorem, one can bound ∥Û∗Ô−U∗∥F .
However, it will lead to a trivial bound on ∥Û∗Ô − U∗∥2,∞,
and thus could not guarantee strong consistency. As an alter-
native, we turn to more refined analysis of the perturbation
of eigenvectors. For this purpose, we study the entry-wise
eigenvector deviation between Û and U . Due to the possibility
of the presence of identical eigenvalues of A (P ), Û (U ) may
not be uniquely determined. Therefore, a K ×K orthogonal
matrix is involved to align Û and U .

Let H = ÛTU and its singular value decomposition be
H = Ū Σ̄V̄ T , then the matrix sign function [27] is a K ×K
orthogonal matrix given by

sgn(H) = Ū V̄ T . (8)

We have the following theorem specifying an upper bound on
∥Ûsgn(H)− U∥2,∞.

Theorem 3: Let Assumptions 1 and 3 hold. For any r >
0, there exist some constants C3 = C3(M, c0, r) and C4 =
C4(M, c0, r) such that if

√
d log n ⩽ C3|λK |, then

∥Ûsgn(H)− U∥2,∞ ⩽ C4

√
d log n

|λK |
∥U∥2,∞

with probability at least 1−O(n−r).
One can find the proof in Appendix C, which is based

on the leave-one-out technique used to study the entry-wise
eigenvector deviation for graphs where the adjacency matrix
has independent entries [17]. The main challenge here stems
from the dependency across entries of A.

To derive the bound on ∥Ûsgn(H)− U∥2,∞, a key step is
to bound

∥(A−P )(ÛH−U)∥2,∞ = max
l∈[n]

∥(A−P )l·(ÛH−U)∥, (9)

which is challenging because of the dependence between Al·
and ÛH . We employ the leave-one-out method to tackle this
problem.

For each l ∈ [n], we define a matrix A(l) ∈ Rn×n as

A
(l)
ij =

∑
e∈E:ael=0

aei(aej − δij)

|e| − 1
he+

∑
e∈E:ael>0

aei(aej − δij)

|e| − 1
E[he],

(10)
where all the randomness contributed by the possible hyper-
edges containing node l is eliminated. Denote the eigenvalues
of A(l) by {λ̂(l)i }ni=1, which are arranged in decreasing order of
absolute value. Let Û (l) be a matrix that contains the K lead-
ing eigenvectors of A(l) as columns and let H(l) = (Û (l))TU .
We have the following observations:



JOURNAL OF LATEX CLASS FILES 7

• E[A(l)] = P and A(l) concentrates around P . As a
consequence, Û (l) and H(l) should be close to Û and
H , respectively;

• Al· and Û (l) are independent, which implies the indepen-
dence between Al· and Û (l)H(l);

• A−A(l) and Û (l) are independent.
Now we can bound (9) as

∥(A− P )l·(ÛH − U)∥
⩽ ∥(A− P )l·(ÛH − Û (l)H(l))∥+ ∥(A− P )l·(Û

(l)H(l) − U)∥
⩽ ∥A− P∥∥ÛH − Û (l)H(l)∥+ ∥(A− P )l·(Û

(l)H(l) − U)∥.

Applying the Davis-Kahan theorem yields

∥ÛH − Û (l)H(l)∥ ⩽
2∥(A−A(l))Û (l)∥

|λK |
.

Therefore, we are able to apply the matrix Bernstein inequality
[28, Theorem 1.6.2] to bound ∥(A − A(l))Û (l)∥ and ∥(A −
P )l·(Û

(l)H(l) − U)∥. See the proof for more details.
Proof [Proof of Theorem 1]: By Theorem 3, there are

constants c1, c2 > 0 such that if
√
d log n/|λK | ⩽ c1, then

∥Ûsgn(H)− U∥2,∞ ⩽ c2

√
d log n

|λK |
∥U∥2,∞

with probability at least 1−O(n−3). We first let C1, C2 < 1/c2
and have

∥Ûi·∥ ⩾ ∥Ui·∥ − ∥Ûi·sgn(H)− Ui·∥
⩾ min

i∈[n]
∥Ui·∥ − ∥Ûsgn(H)− U∥2,∞

⩾ min
i∈[n]

∥Ui·∥
(
1− c2

γ
√
d log n

|λK |

)
> 0,

with probability at least 1 − O(n−3). For any two non-zero
vectors x, y ∈ RK , we have

∥ x

∥x∥
− y

∥y∥
∥ ⩽ 2

∥x− y∥
∥y∥

,

which yields

∥Û∗
i·sgn(H)− U∗

i·∥ =

∥∥∥∥∥ Ûi·

∥Ûi·∥
sgn(H)− Ui·

∥Ui·∥

∥∥∥∥∥
⩽ 2

∥Ûi·sgn(H)− Ui·∥
∥Ui·∥

⩽ 2
∥Ûsgn(H)− U∥2,∞

mini∈[n]∥Ui·∥

⩽ 2c2
γ
√
d log n

|λK |
.

Thus, we obtain

∥Û∗sgn(H)− U∗∥2,∞ ⩽ 2c2
γ
√
d log n

|λK |

with probability exceeding 1−O(n−2).
For strong consistency of the k-means step of Algorithm 1,

we use the result of Theorem 2.3 in [16]. Notice that the K
distinct rows of U∗ are orthogonal unit-length vectors, one

can choose the two deterministic sequences as c1n = 1 and
c2n = 2c2

γ
√
d logn
|λK | . Since

∞∑
n=1

P(∥Û∗sgn(H)− U∗∥2,∞ ⩾ c2n) <∞,

then ∥Û∗sgn(H) − U∗∥2,∞ ⩽ c2n almost surely. Under
the current settings, a sufficient condition for Assumption
4.3 in [16] is c2n ⩽ c3/(260K

3/2), where the constant
c3 ∈ (0, 1) is a lower bound on KnK/n that does exist
due to Assumption 2. The result follows by choosing C1 =
min{c1, c3/(520c2)}.

Next, we consider the consistency of g̃. When nodes i and
j belong to the same community, we have

∥Û∗
i· − Û∗

j·∥ = ∥(Û∗
i· − Û∗

j·)sgn(H)∥
⩽ ∥Û∗

i·sgn(H)− U∗
i·∥+ ∥Û∗

j·sgn(H)− U∗
j·∥

⩽ 4c2
γ
√
d log n

|λK |
.

While they belong to different communities, it follows that

∥Û∗
i· − Û∗

j·∥ = ∥(Û∗
i· − Û∗

j·)sgn(H)∥
⩾ ∥U∗

i· − U∗
j·∥ − ∥Û∗

i·sgn(H)− U∗
i·∥ − ∥Û∗

j·sgn(H)− U∗
j·∥

⩾
√
2− 4c2

γ
√
d log n

|λK |
.

Therefore, Algorithm 2 exactly recovers the true community
structure whenever

4c2
γ
√
d log n

|λK |
< 1/

√
2 and

√
2− 4c2

γ
√
d log n

|λK |
⩾ 1/

√
2,

which are satisfied if C2 < min{c1, 1/(4
√
2c2)}. ■

IV. CONSISTENCY FOR THE DCHPPM

A. The Uniform Case

Corollary 2: Let A be a weighted adjacency matrix of
a hypergraph generated by an m-uniform DCHPPM, then
Assumption 4 holds. If

Km−1ϕ2max/ϕ
2
min = O(

√
log n),

then Assumption 3 holds. Suppose Assumptions 1-4 hold.

(i). There exists a constant C1 > 0 such that for sufficiently
large n, if

αm ⩾ C1
γ2θ2maxK

2m+1 log n

nm−1
, (11)

then ĝ = g with high probability.
(ii). There exists a constant C2 > 0 such that if

αm ⩾ C2
γ2θ2maxK

2m−2 log n

nm−1
, (12)

then g̃ = g with high probability.
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B. The Non-uniform Case

Corollary 3: Let A be a weighted adjacency matrix of a
hypergraph generated by the above model, then Assumption 4
holds. Let m0 = max{m ∈ Z|2 ⩽ m ⩽M,αm > 0}. If

Km0−1ϕ2max/ϕ
2
min = O(

√
log n),

then Assumption 3 holds. Suppose Assumptions 1-4 hold.
(i). There exists a constant C1 > 0 such that for sufficiently

large n, if

M∑
m=2

mαmn
m−1 ⩾ C1γ

2θ2maxK
2m0+1 log n, (13)

then ĝ = g with high probability.
(ii). There exists a constant C2 > 0 such that if

M∑
m=2

mαmn
m−1 ⩾ C2γ

2θ2maxK
2m0−2 log n, (14)

then g̃ = g with high probability.
Remark 2: As the number of hyperedges of size m is of

order Θ(αmn
m), (13) essentially requires that the total number

of hyperedges is Ω(γ2θ2maxK
2m0+1n log n), which reduces to

Ω(n log n) when θi = 1 for all i ∈ [n] and K is a constant.

V. NUMERICAL EXPERIMENT

In this section, we test the practical performance of Al-
gorithms 1 and 2 in DCHPPMs. We set n = 3000,M =
4, p = 10, q = 1 and vary K, θ, and the averaged expected
degree. We choose K from {2, 3} and let the communities
have the same size in both cases. We consider two choices
of θ: (i) θ

(1)
i = 1 for all i ∈ [n]; and (ii) first draw

ψi uniformly and independently from [1, 2], and then set
θ
(2)
i = nψi/(K

∑
j∈[n] ψiδgi,gj ). We choose αm such that

the number of hyperedges of different sizes is the same. By
multiplying all αm by the same number, we are able to vary
sparsity of the hypergraph. In implementation of Algorithm 1,
we use MATLAB “kmeans” algorithm.

The clustering accuracy measured by an error rate l(g, g′)/n
is shown in Figure 1. For both Algorithms 1 and 2, larger
number of communities or stronger degree heterogeneity will
make it harder to achieve exact recovery. As the hypergraph
gets denser, both algorithms are able to fully recover the
true community assignment. In the experiment, Algorithm 1
consistently outperforms Algorithms 2, which demonstrates
the superiority of the k-means algorithm over the simple
thresholding method.

VI. CONCLUSION

This paper characterizes the performance of spectral clus-
tering based on the weighted adjacency matrix in a sparse
DCHSBM. We consider both heterogeneous hyperdegrees and
general edge-connecting probability. By establishing an entry-
wise eigenvector perturbation bound, we show that even the
simplest spectral clustering algorithm could exactly recover
the true community structure under mild conditions on the
model parameters, hence an important advancement over the

Fig. 1. Clustering result for Algorithms 1 and 2 in the DCHPPM. Each value
is the average over 10 independent trials. The first and second rows show the
results corresponding to θ = θ(1) and θ(2), respectively. The first and second
columns are the results corresponding to K = 2 and 3, respectively.

literature. We suggest two further extensions. As spectral
clustering assumes that the number of communities K is
known, an important question would be the estimation of K.
In this paper, we allow K to grow with n, but at a very
slow rate to ensure that Assumption 3 holds. One possible
way to improve this is to use the method developed in
Ref. [29] to establish the entry-wise bound. However, this may
fail when the maximum expected degree grows as Ω(log n),
the most challenging regime. On the other hand, a recent
study [15] characterized the theoretical limit for exact recovery
in a general uniform HSBM by the GCH-divergence. While
the success of hypergraph spectral clustering depends on a
large eigen-gap, it is important to explore and interpret the
relation between λK and the GCH-divergence. The proposed
spectral algorithm, relying on local refinement to be strongly
consistent, is shown to meet the exact recovery threshold. It is
worth investigating whether the spectral algorithms considered
in this work achieve the theoretical limit. If not, can the
threshold be achieved by adding a local refinement step [15]?
Since hypergraph projection itself may incur information loss
which makes it hard to achieve the limit, a possible approach
is to consider tensor-based methods.

APPENDIX A
PROOF OF LEMMAS AND COROLLARIES

A. Proof of Lemma 1

(i) For i ̸= j, consider a hyperedge e such that aei ⩾ 1
and aej ⩾ 1, one has be = |e|!∏n

k=1 aek!
and be\{i,j} =

(|e|−2)!
(
∏

k ̸=i,j aek!)·(aei−1)!·(aej−1)! =
aeiaej

|e|(|e|−1)be, and thus

Aij =
∑

e∈E:aei⩾1,aej⩾1

|e|
be\{i,j}

be
he.
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Then

Pij =
∑

e∈E:aei⩾1,aej⩾1

|e|
be\{i,j}

be
E[he]

=

M∑
m=2

m

n∑
i3=1

· · ·
n∑

im=1

θiθj

m∏
l=3

θil · Φ(gi, gj , gi3 , · · · , gim)

= θiθj

M∑
m=2

m

K∑
k3=1

· · ·
K∑

km=1

m∏
l=3

nkl
· Φ(gi, gj , k3, · · · , km).

For each e ∈ E such that aei ⩾ 2, one obtains be\{i,i} =
(|e|−2)!

(
∏

j ̸=i aej !)·(aei−2)! =
aei(aei−1)
|e|(|e|−1) be. Therefore

Aii =
∑

e∈E:aei⩾2

|e|
be\{i,i}

be
he,

and

Pii =
∑

e∈E:aei⩾2

|e|
be\{i,i}

be
E[he]

=

M∑
m=2

m

n∑
i3=1

· · ·
n∑

im=1

θ2i

m∏
l=3

θil · Φ(gi, gi, gi3 , · · · , gim)

= θ2i

M∑
m=2

m

K∑
k3=1

· · ·
K∑

km=1

m∏
l=3

nkl
· Φ(gi, gi, k3, · · · , km).

The result follows by letting B be a K ×K matrix with

Brs =

M∑
m=2

m

K∑
k3=1

· · ·
K∑

km=1

m∏
l=3

nkl
· Φ(r, s, k3, · · · , km),

for 1 ⩽ r, s ⩽ K.
(ii) See, for example, Lemma 4.1 in [8].

B. Proof of Lemma 2
By Lemma 5.1 in [8], there exists an orthogonal matrix

Q̂ ∈ RK×K such that

∥ÛQ̂− U∥F ⩽
2
√
2K

|λK |
∥A− P∥ ⩽ C

2
√
2Kd

|λK |
with high probability.

Note that one cannot guarantee ∥Ûi·∥ > 0 for all i ∈ [n]
with high probability. Let S0 = {i ∈ [n]|Ûi· = 0} be the set of
nodes that correspond to zero rows of Û . The nodes in S0 are
regarded as mis-clustered and are not involved in the k-means
step. Since ∥ÛQ̂−U∥2F ⩾

∑n
i=1 1{Ûi·=0}∥Ui·∥2 ⩾ θ̃2min|S0|,

we have |S0| ⩽ ∥ÛQ̂− U∥2F /θ̃2min.
Let Û ′ and U ′ be the matrices whose rows are given by the

normalized non-zero rows of Û and U , respectively, it follows
that

∥Û ′Q̂− U ′∥F =

√√√√√∑
i∈Sc

0

∥∥∥∥∥ Ûi·

∥Ûi·∥
Q̂− Ui·

∥Ui·∥

∥∥∥∥∥
2

⩽

√√√√ n∑
i=1

∥Ûi·Q̂− Ui·∥2
∥Ui·∥2

⩽
∥ÛQ̂− U∥F

θ̃min

.

Define S1 = {i ∈ Sc
0|∥Û ′

i·Q̂− U ′
i·∥ ⩾ 1/

√
2}, then

|S1| ⩽ 4(2 + ϵ)∥Û ′Q̂− U ′∥2F

By Lemma 5.3 in [8]. When

nK > 4(2 + ϵ)∥Û ′Q̂− U ′∥2F ,

the nodes outside S0

⋃
S1 are all correctly assigned.

Thus, one can choose c = 1
32(2+ϵ)C so that when

Kd

nKλ2K θ̃
2
min

< c,

the nodes outside S0

⋃
S1 are all correctly clustered, and the

number of incorrectly clustered nodes is bounded by

l(g, ĝ) ⩽ |S0|+ |S1| ⩽ 8(9 + 4ϵ)C
Kd

λ2K θ̃
2
min

.

C. Proof of Corollary 2

Under the current settings, it is easy to obtain

Brs = mαm

(
(p− q)nm−2

r δrs + qnm−2
)
.

Notice that the eigenvalues of P are identical to those of
diag(ϕ)Bdiag(ϕ), we have

λmax(B) ⩽ mαm((p− q)nm−2
1 +Kqnm−2)

⩽ Kpmαmn
m−2,

λ1 ⩽ λmax(B) ·max
k

ϕ2k ⩽ Kpmαmϕ
2
maxn

m−2,

λmin(B) ⩾ (p− q)mαmn
m−2
K ,

λK ⩾ λmin(B) ·min
k
ϕ2k ⩾ (p− q)mαmϕ

2
minn

m−2
K ,

and then κ = λ1/λK ⩽ c1K
m−1ϕ2max/ϕ

2
min for some

constant c1 > 0. Since ϕ2k ⩾ (
∑

i θiδgi,k)
2/nk = nk,

we have λK ⩾ (p − q)mαmn
m−1
K . When maxij Pij ⩽

θ2max maxrsBrs ⩽ pmαmθ
2
maxn

m−2, we have d ⩽
max{pmαmθ

2
maxn

m−1, c0 log n}.
Consider the consistency of Algorithm 1, a sufficient con-

dition for γK3/2
√
d logn
|λK | being sufficiently small is

αm ⩾ C1
γ2θ2maxK

2m+1 log n

nm−1

for some constant C1 > 0.
Analogously, there exists a constant C2 > 0 such that if

αm ⩾ C2
γ2θ2maxK

2m−2 log n

nm−1
,

then Algorithm 2 is strongly consistent.
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D. Proof of Corollary 3

It is easy to obtain the following conclusions:

Brs =

M∑
m=2

mαm

(
(p− q)nm−2

r δrs + qnm−2
)
,

λmax(B) ⩽ Kp

M∑
m=2

mαmn
m−2,

λmin(B) ⩾ (p− q)

M∑
m=2

mαmn
m−2
K ⩾ c1

p− q

Km0−2

M∑
m=2

mαmn
m−2,

λ1 ⩽ ϕ2maxλmax(B) ⩽ Kpϕ2max

M∑
m=2

mαmn
m−2,

λK ⩾ ϕ2minλmin(B) ⩾
c1(p− q)ϕ2min

Km0−2

M∑
m=2

mαmn
m−2,

κ ⩽
p

c1(p− q)
Km0−1ϕ2max/ϕ

2
min,

where c1 > 0 is a constant.
From the fact that ϕmin ⩾

√
nK , we have λK ⩾

c2(p−q)
Km0−1

∑M
m=2mαmn

m−1 for some constant c2 > 0. Since
maxij Pij ⩽ pθ2max

∑M
m=2mαmn

m−2, we have d ⩽
max{pθ2max

∑M
m=2mαmn

m−1, c0 log n}. Then, the sufficient
conditions for γK3/2

√
d log n/|λK | and γ

√
d log n/|λK | be-

ing sufficiently small are
M∑

m=2

mαmn
m−1 ⩾ C1γ

2θ2maxK
2m0+1 log n

for some constant C1 > 0 and
M∑

m=2

mαmn
m−1 ⩾ C2γ

2θ2maxK
2m0−2 log n

for some constant C2 > 0, respectively.

APPENDIX B
PROOF OF THEOREM 2

The overall structure of the proof is similar to that in [8].
Let W = A− P and S = {x ∈ Rn|∥x∥ ⩽ 1} be the unit ball
in Rn, the goal is to bound the spectral norm of W :

∥W∥ = sup
x∈S

|xTWx|.

We first outline the three major steps of the proof.
(1). Discretization. Fix a constant δ ∈ (0, 1/3) and define a

set of grid points in S:

T = {x = (x1, · · · , xn)T ∈ S|
√
nxi/δ ∈ Z, for i ∈ [n]},

we will prove the following results:
(i) T is a δ-net of S. That is, T is a finite subset of S

such that for any x ∈ S, there exists a point y ∈ T
satisfying ∥x− y∥ ⩽ δ.

(ii) ∥W∥ ⩽ (1− 3δ)−1 supx,y∈T |xTWy|.
Bounding ∥W∥ is then reduced to bound the supremum
of |xTWy| over all x, y ∈ T . Next, we split the point
pairs in the grid into two parts, called the light pairs

and heavy pairs, and then bound each of the two parts
separately.

(2). Bounding the light pairs. We use Bernstein inequality to
bound the contribution of the light pairs.

(3). The contribution of heavy pairs, however, cannot be
simply bounded by the standard Bernstein inequality.
We show that the two key properties of the random
hypergraph, i.e., bounded degree property and bounded
discrepancy property, still hold and thus the contribution
of heavy pairs is bounded.

Lemma 3: T is a δ-net of S.
Proof : It is straightforward to see that T is a finite subset of

S. For any x = (x1, · · · , xn)T ∈ S, without loss of generality,
assume xi ⩾ 0 for i = 1, · · · , n. For each 1 ⩽ i ⩽ n, there
exists ki ∈ Z such that

0 ⩽ kiδ/
√
n ⩽ xi ⩽ (ki + 1)δ/

√
n.

Let y = (k1δ/
√
n, · · · , knδ/

√
n)T , we have ∥y∥ ⩽ ∥x∥ ⩽ 1,

which means y ∈ T . Moreover, we have ∥x − y∥ ⩽√
n(δ/

√
n)2 = δ.

Lemma 4: ∥W∥ ⩽ (1− 3δ)−1 supx,y∈T |xTWy|.
Proof : For any x0 ∈ S, according to Lemma 3, there exist

x1, x2 ∈ T such that ∥x0 − x1∥ ⩽ δ and ∥x0 − x2∥ ⩽ δ. We
have

|xT0Wx0| = |(x0 − x1 + x1)
TW (x0 − x2 + x2)|

⩽ |(x0 − x1)
TW (x0 − x2)|+ |(x0 − x1)

TWx2|
+ |xT1W (x0 − x2)|+ |xT1Wx2|

⩽ (δ2 + 2δ)∥W∥+ |xT1Wx2|
⩽ 3δ∥W∥+ sup

x,y∈T
|xTWy|.

Then ∥W∥ = supx∈S |xTWx| ⩽ 3δ∥W∥+supx,y∈T |xTWy|.
Split the pairs (xi, yj) into light pairs: Lxy =

{(i, j)||xiyj | ⩽
√
d/n} and heavy pairs L̄xy =

{(i, j)||xiyj | >
√
d/n}. The corresponding contributions are

Ixy =
∑

(i,j)∈Lxy
xiyjwij and Īxy =

∑
(i,j)∈L̄xy

xiyjwij .
Lemma 5: For any constant c > 0,

P
(

sup
x,y∈T

|Ixy| ⩾ c
√
d

)
⩽ 2 exp

[
−
(

c2/2

M(M2 + c/3)
− 2 log

(
2

δ
+ 1

))
n

]
.

Proof : For any x, y ∈ T , we have

Ixy =
∑

(i,j)∈Lxy

xiyj
∑
e∈E

aei(aej − δij)

|e| − 1
(he − E[he])

=
∑
e∈E

 ∑
(i,j)∈Lxy

aei(aej − δij)xiyj
|e| − 1

 (he − E[he]).

Let Se =
(∑

(i,j)∈Lxy

aei(aej−δij)xiyj

|e|−1

)
(he − E[he]), then

Ixy =
∑

e∈E Se. Note that {Se}e∈E are independent random
variables, and

E[Se] = 0,
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|Se| ⩽
1

|e| − 1
·
√
d

n

∑
(i,j)∈Lxy

aei(aej − δij) ⩽M

√
d

n
,

∑
e∈E

E[S2
e ] =

∑
e∈E

var(he)

(|e| − 1)2

 ∑
(i,j)∈Lxy

aei(aej − δij)xiyj

2

⩽
∑
e∈E

E[he]
|e|

|e| − 1

∑
(i,j)∈Lxy

a2ei(aej − δij)
2x2i y

2
j

⩽
∑
e∈E

E[he]
|e|

|e| − 1

∑
1⩽i,j⩽n

a2ei(aej − δij)
2x2i y

2
j

⩽
∑
e∈E

E[he]|e|2 ·
∑

1⩽i,j⩽n

aei(aej − δij)x
2
i y

2
j

⩽M3
∑
e∈E

E[he] ·
∑

1⩽i,j⩽n

aei(aej − δij)x
2
i y

2
j

|e| − 1

=M3
∑

1⩽i,j⩽n

(∑
e∈E

aei(aej − δij)

|e| − 1
E[he]

)
x2i y

2
j

=M3
∑

1⩽i,j⩽n

Pijx
2
i y

2
j

⩽M3d/n.

Applying the Bernstein inequality yields

P(|Ixy| ⩾ c
√
d) = P(|

∑
e∈E

Se| ⩾ c
√
d)

⩽ 2 exp

(
−c2d/2

M3d
n +M

√
d

n · c
√
d/3

)

= 2 exp

(
− c2/2

M(M2 + c/3)
n

)
.

Since |T | ⩽ ( 2δ + 1)n, we have

P
(

sup
x,y∈T

|Ixy| ⩾ c
√
d

)
⩽ |T |2 · 2 exp

(
− c2/2

M(M2 + c/3)
n

)
⩽ 2 exp

[
−
(

c2/2

M(M2 + c/3)
− 2 log

(
2

δ
+ 1

))
n

]
.

Next, we show that supx,y∈T |Īxy| is bounded by c
√
d.

Since for any x, y ∈ T ,

|
∑

(i,j)∈L̄xy

xiyjPij | ⩽
∑

(i,j)∈L̄xy

x2i y
2
j

|xiyj |
Pij

⩽
n√
d
pmax

∑
1⩽i,j⩽n

x2i y
2
j

⩽
√
d,

we need only to show that

|
∑

(i,j)∈L̄xy

xiyjAij | = O(
√
d)

for any x, y ∈ T (not with high probability but definitely). In
what follows, we prove that both the bounded degree property
and the bounded discrepancy property hold.

Lemma 6 (Bounded degree property): For any constant c >
0, there exists a constant c1 = c1(c) such that P(di ⩾ c1d) ⩽
n−c for any node i ∈ [n].

Proof : Recall that di =
∑n

j=1Aij =
∑

e∈E aeihe. Notice
that E[di] =

∑n
j=1 E[Aij ] =

∑n
j=1 Pij ⩽ d, we have

P(di ⩾ c1d) = P(di − E[di] ⩾ c1d− E[di])
⩽ P(di − E[di] ⩾ (c1 − 1)d)

= P

(∑
e∈E

aei(he − E[he]) ⩾ (c1 − 1)d

)
.

Let Se = aei(he − E[he]). Since E[Se] = 0, |Se| ⩽M , and∑
e∈E

E[S2
e ] =

∑
e∈E

a2eivar(he)

⩽M
∑
e∈E

aeiE[he]

=M · E[di]
⩽Md,

we have

P(di ⩾ c1d) ⩽ exp

(
−(c1 − 1)2d2/2

Md+M · (c1 − 1)d/3

)
⩽ exp

(
−c0(c1 − 1)2/2

M(2 + c1)/3
log n

)
= n

− 3c0(c1−1)2

2M(2+c1)

by the Bernstein inequality.
For any I, J ⊂ [n], let e(I, J) =

∑
i∈I

∑
j∈J Aij and

define µ(I, J) = |I||J | dn which is an upper bound on the
expectation of e(I, J).

Lemma 7 (Bounded discrepancy property): For any constant
c > 0, there exist constants c2 = c2(c) and c3 = c3(c), such
that, with probability least 1− 2n−c, for any I, J ⊂ [n] with
|I| ⩽ |J |, either of the following holds:

• e(I, J)/µ(I, J) ⩽ ec2 (here e denotes Euler’s number).
• e(I, J) log e(I,J)

µ(I,J) ⩽ c3|J | log n
|J| .

Proof : If |J | ⩾ n/e, according to Lemma 6, there exists
c1 = c1(c) such that e(I, J) ⩽

∑
i∈I di ⩽ c1d|I| with

probability at least 1 − n−c. Since µ(I, J) ⩾ d
e |I|, we have

e(I, J)/µ(I, J) ⩽ ec1 with high probability.
Otherwise, suppose |J | < n/e. Note that

e(I, J) =
∑
i∈I

∑
j∈J

∑
e∈E

aei(aej − δij)

|e| − 1
he

=
∑
e∈E

 ∑
i∈I,j∈J

aei(aej − δij)

|e| − 1

he

is a sum over independent random variables and

0 ⩽

 ∑
i∈I,j∈J

aei(aej − δij)

|e| − 1

he ⩽ |e| ⩽M.

According to Lemma 5 in [10], there exists a constant c′ =
c′(M) > 1 such that

P(e(I, J) > kµ(I, J)) ⩽ exp(− 1

2M
k log k · µ(I, J))
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for any k ⩾ c′. Given c3 > 0, we choose k′ =
max{c′, t(I, J)} where t(I, J) ⩾ 1 is the unique solution of

t log t = c3
|J |

µ(I, J)
log

n

|J |
,

then

P(e(I, J) ⩾ k′µ(I, J)) ⩽ exp(− 1

2M
k′ log k′ · µ(I, J))

⩽ exp(− c3
2M

|J | log n

|J |
).

According to the proof of Lemma 4.2 in [8], we have

P(∃(I, J) : |I| ⩽ |J | ⩽ n/e, e(I, J) ⩾ k′µ(I, J)) ⩽ n−(c3/M−12)/2.
(15)

Therefore, when c3 > 12M , for any I, J ⊂ [n] with |I| ⩽
|J | ⩽ n/e, with high probability at least one of the following
holds:

• k′ = c′ ⩾ t(I, J), which implies e(I, J) ⩽ c′µ(I, J).
• k′ = t(I, J) ⩾ c′, which means k′ log k′ =

c3
|J|

µ(I,J) log
n
|J| .

In the second case, according to (15), we have e(I, J) ⩽
k′µ(I, J) with high probability, and then

e(I, J)

µ(I, J)
log

e(I, J)

µ(I, J)
⩽ k′ log k′ = c3

|J |
µ(I, J)

log
n

|J |
,

which yields

e(I, J) log
e(I, J)

µ(I, J)
⩽ c3|J | log

n

|J |
with high probability. Note that both c2 and c3 depend only
on c and M . The result follows by setting c2 = max{c1, c′}
and c3 = (2c+ 12)M .

Lemma 8: If both the bounded degree property and
the bounded discrepancy property hold with some constant
c1, c2, c3, then

sup
x,y∈T

|
∑

(i,j)∈L̄xy

xiyjAij | = O(
√
d).

We refer to [8], [25] for a proof.

APPENDIX C
PROOF OF THEOREM 3

Let r > 0 be a fixed constant. We first provide several useful
lemmas.

Lemma 9: The following two conclusions hold.
(i). There exists a constant c1 = c1(M, c0, r) such that

max
l∈[n]

∥A(l) − P∥ ⩽ c1
√
d, ∥A− P∥ ⩽ c1

√
d

with probability at least 1−O(n−r).
(ii). ∥H∥ ⩽ 1, ∥H(l)∥ ⩽ 1. If |λK | ⩾ 4max{∥A −

P∥, ∥A(l) − P∥}, then ∥H − sgn(H)∥1/2 ⩽
2∥A− P∥/|λK |, ∥H−1∥ ⩽ 2, ∥(H(l))−1∥ ⩽ 2, and

∥Û ÛT − Û (l)(Û (l))T ∥ ⩽
2∥(A−A(l))Û (l)∥

|λK |
. (16)

Proof :

(i). For any l ∈ [n], it follows that

(A(l) − P )ij =
∑

e∈E:ael=0

aei(aej − δij)

|e| − 1
(he − E[he]).

According to the proof of Theorem 2, there exists a
constant c1 > 0 such that P(∥A−P∥ ⩽ c1

√
d) ⩾ 1−n−r

and P(∥A(l) − P∥ ⩽ c1
√
d) ⩾ 1− n−r−1. Then

P
(
max
l∈[n]

∥A(l) − P∥ ⩽ c1
√
d, ∥A− P∥ ⩽ c1

√
d

)
⩾ 1− n · n−r−1 − n−r = 1−O(n−r).

(ii). We only prove (16). See Lemma 2 in [17] and Lemma
4.14 in [30] for the proof of the other conclusions.
According to Lemma 2.5 in [30] and the Davis-Kahan
theorem, we have

∥Û ÛT − Û (l)(Û (l))T ∥ ⩽
∥(A−A(l))Û (l)∥

δ

with δ = min1⩽i⩽K<j⩽n |λ̂i − λ̂
(l)
j |. By Weyl’s inequal-

ity, it follows that |λ̂K−λK | ⩽ ∥A−P∥ ⩽ |λK |/4. Then
|λ̂K | ⩾ 3/(4|λK |). On the other hand, Weyl’s inequality
forces that

|λ̂(l)K+1| = |λ̂(l)K+1 − λK+1| ⩽ ∥A(l) − P∥⩽ |λK |/4.

Then δ = |λ̂K | − |λ̂(l)K+1| ⩾ |λK |/2, and the result
follows.

Lemma 10: For any fixed matrix X ∈ Rn×K , there exists
a constant C = C(M, c0, r) such that

∥(A− P )X∥2,∞ ⩽ C
√
d log n∥X∥2,∞

with probability at least 1−O(n−r−1).
Proof : We use the matrix Bernstein inequality to derive the

bound. For each i ∈ [n], we have

∥(A− P )i·X∥ = ∥
n∑

j=1

(Aij − Pij)Xj·∥

= ∥
n∑

j=1

(∑
e∈E

aei(aej − δij)

|e| − 1
(he − E[he])

)
Xj·∥

= ∥
∑
e∈E

 n∑
j=1

aei(aej − δij)

|e| − 1
Xj·

 (he − E[he])∥.

Let Se =
(∑n

j=1
aei(aej−δij)

|e|−1 Xj·

)
(he − E[he]).

(i). E[Se] = 0, and

∥Se∥ ⩽ ∥
n∑

j=1

aei(aej − δij)

|e| − 1
Xj·∥

⩽
n∑

j=1

aei(aej − δij)

|e| − 1
∥Xj·∥

⩽
n∑

j=1

aei(aej − δij)

|e| − 1
∥X∥2,∞

= aei∥X∥2,∞ ⩽M∥X∥2,∞.
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(ii). Define We =
∑n

j=1
aei(aej−δij)

|e|−1 Xj·. Then

v = max{∥
∑
e∈E

E[SeS
T
e ]∥, ∥

∑
e∈E

E[ST
e Se]∥}

= max{∥
∑
e∈E

var(he)WeW
T
e ∥, ∥

∑
e∈E

var(he)W
T
e We∥}

⩽ max{
∑
e∈E

var(he)∥WeW
T
e ∥,

∑
e∈E

var(he)∥WT
e We∥}

=
∑
e∈E

var(he)∥We∥2.

Since We is an 1×K row vector, we have

v ⩽
∑
e∈E

var(he)∥
n∑

j=1

aei(aej − δij)

|e| − 1
Xj·∥2

⩽
∑
e∈E

E[he]

 n∑
j=1

aei(aej − δij)

|e| − 1
∥Xj·∥

2

⩽
∑
e∈E

E[he] (aei∥X∥2,∞)
2

=M∥X∥22,∞
∑
e∈E

aeiE[he]

=M∥X∥22,∞E[di] ⩽Md∥X∥22,∞.

Let C > 0 be a constant such that 3C2

2M(3+C/
√
c0)

⩾ r + 3.
By the matrix Bernstein inequality, it follows that

P(∥(A− P )i·X∥ ⩾ C
√
d log n∥X∥2,∞)

⩽ (1 +K) exp

(
−3C2d log n

2M(3d+ C
√
d log n)

)
⩽ (1 +K) exp

(
−3C2d log n

2M(3d+ Cd/
√
c0)

)
= (1 +K)n

− 3C2

2M(3+C/
√

c0)

⩽ (1 +K)n−r−3 ⩽ n−r−2.

Then

P
(
∥(A− P )X∥2,∞ ⩾ C

√
d log n∥X∥2,∞

)
⩽ n−r−1.

As a consequence, there exists a constant c2 = c2(M, c0, r)
such that

P(∥(A− P )U∥2,∞ ⩽ c2
√
d log n∥U∥2,∞) ⩾ 1−O(n−r−1).

Furthermore, due to the independence between (A−P )l· and
Û (l)H(l) − U , by the proof of Lemma 10, there is a constant
c3 = c3(M, c0, r) such that for each l ∈ [n]

∥(A−P )l·(Û
(l)H(l) −U)∥ ⩽ c3

√
d log n∥Û (l)H(l) −U∥2,∞

with probability at least 1−O(n−r−1). Then

∥(A−P )l·(Û (l)H(l)−U)∥ ⩽ c3
√
d log n∥Û (l)H(l)−U∥2,∞,

for any l ∈ [n], with probability exceeding 1−O(n−r).
Lemma 11: For any fixed matrix X ∈ Rn×K , there exists

a constant C = C(M, c0, r) such that

∥(A−A(l))X∥ ⩽ C
√
d log n∥X∥2,∞,∀l ∈ [n],

with probability at least 1−O(n−r).

Proof : We use the matrix Bernstein inequality to derive
the bound. Define We =

aea
T
e −diag(ae)
|e|−1 , then A − A(l) =∑

e∈E:ael>0(he − E[he])We and

∥(A−A(l))X∥ = ∥
∑

e∈E:ael>0

(he − E[he])WeX∥.

Define Se = (he − E[he])WeX , then
(i). E[Se] = 0, and

∥Se∥ ⩽ ∥WeX∥
⩽ ∥WeX∥F

=

√√√√ n∑
i=1

∥
n∑

j=1

(We)ijXj·∥2

=

√√√√ n∑
i=1

∥
n∑

j=1

aei(aej − δij)

|e| − 1
Xj·∥2

⩽

√√√√√ n∑
i=1

 n∑
j=1

aei(aej − δij)

|e| − 1
∥Xj·∥

2

⩽

√√√√ n∑
i=1

(aei∥X∥2,∞)
2

⩽ ∥X∥2,∞

√√√√M

n∑
i=1

aei

⩽M∥X∥2,∞.

(ii).

v = max{∥
∑

e∈E:ael>0

E[SeS
T
e ]∥, ∥

∑
e∈E:ael>0

E[ST
e Se]∥}

⩽
∑

e∈E:ael>0

var(he)∥WeX∥2

⩽
∑

e∈E:ael>0

E[he]∥WeX∥2F

⩽
∑

e∈E:ael>0

E[he] ·M2∥X∥22,∞

⩽M2∥X∥22,∞
∑
e∈E

aelE[he]

=M2∥X∥22,∞E[dl]
⩽M2d∥X∥22,∞.

Let C > 0 be a constant such that 3C2

2M(3M+C/
√
c0)

⩾ r+2.
By the matrix Bernstein inequality, it follows that

P(∥(A−A(l))X∥ ⩾ C
√
d log n∥X∥2,∞)

⩽ (1 +K) exp

(
−3C2d log n

2M(3Md+ C
√
d log n)

)
⩽ (1 +K) exp

(
−3C2d log n

2M(3Md+ Cd/
√
c0)

)
= (1 +K)n

− 3C2

2M(3M+C/
√

c0)

⩽ (1 +K)n−r−2 ⩽ n−r−1.
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Then

∥(A−A(l))X∥ ⩽ C
√
d log n∥X∥2,∞,∀l ∈ [n]

with probability at least 1− n−r.
Since A − A(l) is independent of Û (l), according to

Lemma 11, there exists a constant c4 = c4(M, c0, r) such
that

∥(A−A(l))Û (l)∥ ⩽ c4
√
d log n∥Û (l)∥2,∞,∀l ∈ [n]

with probability exceeding 1−O(n−r).
Define the following events:

E1 = {∥A(l) − P∥ ⩽ c1
√
d,∀l ∈ [n], and ∥A− P∥ ⩽ c1

√
d},

E2 = {∥(A− P )U∥2,∞ ⩽ c2
√
d log n∥U∥2,∞},

E3 = {∥(A− P )l·(Û
(l)H(l) − U)∥

⩽ c3
√
d log n∥Û (l)H(l) − U∥2,∞,∀l ∈ [n]},

E4 = {∥(A−A(l))Û (l)∥ ⩽ c4
√
d log n ∥Û (l)∥2,∞,∀l ∈ [n]}.

Lemma 12: There exist some constants c5, c6 > 0 (depend-
ing only on M, c0 and r) such that if

√
d log n ⩽ c5|λK |,

then

∥A(ÛH − U)∥2,∞ ⩽

c6

(√
d log n∥ÛH − U∥2,∞ + (

√
d log n+

κd

|λK |
)∥U∥2,∞

)
with probability at least 1−O(n−r).

Proof : By the triangle inequality, it follows that

∥A(ÛH−U)∥2,∞ ⩽ ∥(A−P )(ÛH−U)∥2,∞+∥P (ÛH−U)∥2,∞.

We first use the leave-one-out technique to develop an upper
bound on ∥(A − P )(ÛH − U)∥2,∞. Applying the triangle
inequality again yields

∥(A− P )(ÛH − U)∥2,∞ = max
l∈[n]

∥(A− P )l·(ÛH − U)∥2

⩽ max
l∈[n]

(∥(A− P )l·(ÛH − Û (l)H(l))∥

+ ∥(A− P )l·(Û
(l)H(l) − U)∥)

⩽ max
l∈[n]

(∥A− P∥∥ÛH − Û (l)H(l)∥

+ ∥(A− P )l·(Û
(l)H(l) − U)∥).

That is, Û (l)H(l) is employed here as a surrogate of ÛH .
Set c5 ⩽ 1/(4c1) such that |λK | ⩾ 4c1

√
d. When E1

⋂
E4

happens, which has probability at least 1−O(n−r), we have

∥ÛH − Û (l)H(l)∥ = ∥[Û ÛT − Û (l)(Û (l))T ]U∥
⩽ ∥Û ÛT − Û (l)(Û (l))T ∥

⩽
2∥(A−A(l))Û (l)∥

|λK |

⩽
2c4

√
d log n∥Û (l)∥2,∞

|λK |
⩽ 2c4c5∥Û (l)∥2,∞
⩽ 4c4c5∥Û (l)H(l)∥2,∞
⩽ 4c4c5(∥ÛH∥2,∞ + ∥ÛH − Û (l)H(l)∥2,∞)

⩽ 4c4c5(∥ÛH∥2,∞ + ∥ÛH − Û (l)H(l)∥),

for all l ∈ [n]. So long as 4c4c5 ⩽ 1
2 , we have

∥ÛH − Û (l)H(l)∥ ⩽ 8c4c5∥ÛH∥2,∞
⩽ ∥ÛH∥2,∞
⩽ ∥ÛH − U∥2,∞ + ∥U∥2,∞,

for all l ∈ [n]. When E1
⋂

E3
⋂

E4 happens, which has
probability at least 1 − O(n−r), we can deduce that for all
l ∈ [n],

∥(A− P )l·(Û
(l)H(l) − U)∥ ⩽ c3

√
d log n∥Û (l)H(l) − U∥2,∞

⩽ c3
√
d log n

(
∥ÛH − Û (l)H(l)∥2,∞ + ∥ÛH − U∥2,∞

)
⩽ c3

√
d log n

(
∥ÛH − Û (l)H(l)∥+ ∥ÛH − U∥2,∞

)
⩽ c3

√
d log n

(
2∥ÛH − U∥2,∞ + ∥U∥2,∞

)
.

Combining these two results, we have

∥(A− P )(ÛH − U)∥2,∞
⩽ max

l∈[n]
(∥A− P∥∥ÛH − Û (l)H(l)∥+ ∥(A− P )l·(Û

(l)H(l) − U)∥)

⩽ c1
√
d(∥ÛH − U∥2,∞ + ∥U∥2,∞)

+ c3
√
d log n

(
2∥ÛH − U∥2,∞ + ∥U∥2,∞

)
⩽ (c1 + c3)

√
d log n

(
3∥ÛH − U∥2,∞ + 2∥U∥2,∞

)
with probability exceeding 1−O(n−r).

Next, we bound ∥P (ÛH − U)∥2,∞. According to
Eq. (4.114) in [30], when E1 happens and |λK | ⩾ 4c1

√
d,

we have

∥P (ÛH − U)∥2,∞ ⩽ ∥U∥2,∞ · ∥Λ∥ · ∥Û ÛT − UUT ∥2

⩽ ∥U∥2,∞ · ∥Λ∥ · 2∥A− P∥2

λ2K

⩽ |λ1| ·
2c21d

λ2K
∥U∥2,∞

=
2c21κd

|λK |
∥U∥2,∞.

Combining these two bounds, the result follows by letting
c5 = min{1/(4c1), 1/(8c4)} and c6 = max{3(c1+c3), 2(c1+
c3) + 2c21}.

Define E5 = {∥A(ÛH − U)∥2,∞ ⩽ c6(
√
d log n∥ÛH −

U∥2,∞ + (
√
d log n + κd/|λK |)∥U∥2,∞)}.We are now ready

to prove Theorem 3.
Proof : Suppose

√
d log n ⩽ c5|λK | and

⋂5
i=1 Ei happens,

which has probability exceeding 1 − O(n−r). According to
Lemma 4.16 in [30], we have

∥ÛH − U∥2,∞ ⩽ γ1 + γ2 + γ3

with γ1 =
2∥A(ÛH−U)∥2,∞

|λK | , γ2 =
4c1

√
d∥AU∥2,∞
λ2
K

, and γ3 =
∥(A−P )U∥2,∞

|λK | . The last two terms could be directly bounded.
First, when E2 happens, we have

γ3 ⩽ c2

√
d log n

|λK |
∥U∥2,∞.
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Next, since

∥AU∥2,∞ ⩽ ∥(A− P )U∥2,∞ + ∥PU∥2,∞
= ∥(A− P )U∥2,∞ + ∥UΛ∥2,∞
⩽ c2

√
d log n∥U∥2,∞ + ∥U∥2,∞∥Λ∥

= (c2
√
d log n+ |λ1|)∥U∥2,∞,

we have

γ2 ⩽ 4c1(c2

√
d log n

|λK |
+ κ)

√
d

|λK |
∥U∥2,∞

⩽ 4c1(c2c5 + κ)

√
d

|λK |
∥U∥2,∞.

Now we turn to bound γ1. For large n such that c5κ ⩽ log n,
we have

γ1 =
2

|λK |
∥A(ÛH − U)∥2,∞

⩽ 2c6

√
d log n

|λK |

(
∥ÛH − U∥2,∞ + (1 +

κ
√
d√

log n|λK |
)∥U∥2,∞

)

⩽ 2c6

√
d log n

|λK |

(
∥ÛH − U∥2,∞ +

(
1 +

c5κ

log n

)
∥U∥2,∞

)
⩽ 2c6

√
d log n

|λK |

(
∥ÛH − U∥2,∞ + 2∥U∥2,∞

)
.

The upper bound on ∥ÛH − U∥2,∞ gives that

∥ÛH − U∥2,∞ ⩽ 2c6

√
d log n

|λK |

(
∥ÛH − U∥2,∞ + 2∥U∥2,∞

)
+ γ2 + γ3.

As long as c5 · 2c6 ⩽ 1/2, we have

∥ÛH − U∥2,∞ ⩽ 8c6

√
d log n

|λK |
∥U∥2,∞ + 2γ2 + 2γ3

⩽

(
8c6 +

8c1(c2c5 + κ)√
log n

+ 2c2

) √
d log n

|λK |
∥U∥2,∞.

Recall that κ = O(log n) by Assumption 3. Let the constant
c7 = c7(M, c0, r) be an upper bound on 8c6 +

8c1(c2c5+κ)√
logn

+
2c2. When log n > 1, we have

∥Ûsgn(H)− ÛH∥2,∞ ⩽ ∥Û∥2,∞∥H − sgn(H)∥
⩽ 2∥ÛH∥2,∞∥H − sgn(H)∥

⩽ 2(∥ÛH − U∥2,∞ + ∥U∥2,∞) · 4∥A− P∥2

λ2K

⩽
8c21d

λ2K
(∥ÛH − U∥2,∞ + ∥U∥2,∞)

⩽ 8c21c5(1 + c5c7)

√
d log n

|λK |
∥U∥2,∞.

Applying the triangle inequality yields

∥Ûsgn(H)−U∥2,∞ ⩽ ∥Ûsgn(H)−ÛH∥2,∞+∥ÛH−U∥2,∞.

Thus, the result follows by choosing C3 = min{c5, 1/(4c6)}
and C4 = c7 + 8c21c5(1 + c5c7). ■
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