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Abstract

We address online combinatorial optimization when the player has a prior over the ad-

versary’s sequence of losses. In this setting, Russo and Van Roy proposed an information

theoretic analysis of Thompson Sampling based on the information ratio, allowing for elegant

proofs of Bayesian regret bounds. In this paper we introduce three novel ideas to this line of

work. First we propose a new quantity, the scale-sensitive information ratio, which allows us

to obtain more refined first-order regret bounds (i.e., bounds of the form O(
√
L∗) where L∗

is the loss of the best combinatorial action). Second we replace the entropy over combina-

torial actions by a coordinate entropy, which allows us to obtain the first optimal worst-case

bound for Thompson Sampling in the combinatorial setting. We additionally introduce a novel

link between Bayesian agents and frequentist confidence intervals. Combining these ideas we

show that the classical multi-armed bandit first-order regret bound Õ(
√
dL∗) still holds true in

the more challenging and more general semi-bandit scenario. This latter result improves the

previous state of the art bound Õ(
√

(d+m3)L∗) by Lykouris, Sridharan and Tardos.

Moreover we sharpen these results with two technical ingredients. The first leverages a

recent insight of Zimmert and Lattimore to replace Shannon entropy with more refined po-

tential functions in the analysis. The second is a Thresholded Thompson sampling algorithm,

which slightly modifies the original algorithm by never playing low-probability actions. This

thresholding results in fully T -independent regret bounds when L∗ ≤ L
∗

is almost surely

upper-bounded, which we show does not hold for ordinary Thompson sampling.

*This work was done while M. Sellke was an intern at Microsoft Research.
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1 Introduction

We first recall the general setting of online combinatorial optimization with both full feedback (full

information game) and limited feedback (semi-bandit game). Let A ⊂ {0, 1}d be a fixed set of

combinatorial actions, and assume that m = ‖a‖1 for all a ∈ A. An (oblivious) adversary selects

a sequence ℓ1, . . . , ℓT ∈ [0, 1]d of linear functions, without revealing it to the player. At each time

step t = 1, . . . , T , the player selects an action at ∈ A, and suffers the instantaneous loss 〈ℓt, at〉.
The following feedback on the loss function ℓt is then obtained: in the full information game the

entire loss vector ℓt is observed, and in the semi-bandit game only the loss on active coordinates is

observed (i.e., one observes ℓt⊙at where ⊙ denotes the entrywise product). Importantly the player

has access to external randomness, and can select their action at based on the observed feedback

so far. The player’s objective is to minimize their total expected loss LT = E

[∑T
t=1〈ℓt, at〉

]
.

The player’s perfomance at the end of the game is measured through the regret RT , which is the

difference between the achieved cumulative loss LT and the best one could have done with a fixed

action. That is, with L∗ = mina∈A

∑T
t=1〈ℓt, a〉, one has RT = LT − L∗. The optimal worst-case

regret (supℓ1,...,ℓT∈[0,1]d RT ) is known for both the full information and semi-bandit game. It is

respectively of order m
√
T ([KWK10]) and

√
mdT ([ABL14]).

1.1 First-order regret bounds

It is natural to hope for strategies with regret RT = o(L∗). If this holds, one can then claim that

LT = (1 + o(1))L∗ (in other words the player’s performance is close to the optimal in-hindsight

performance up to a smaller order term). However, worst-case bounds may fail to capture this

behavior when L∗ ≪ T . The concept of first-order regret bound tries to remedy this issue, by

asking for regret bounds scaling with L∗ instead of T . In [KWK10] an optimal version of such a

bound is obtained for the full information game:

Theorem 1 ([KWK10]) In the full information game, there exists an algorithm such that for any

loss sequence one has RT = Õ(
√
mL∗).

By Õ(·) we suppress logarithmic terms, even log(T ). However all our bounds stated in the

main body state explicitly the logarithmic dependency.

The state of the art for first-order regret bounds in the semi-bandit game is more complicated.

It is known since [AAGO06] that for m = 1 (i.e., the famous multi-armed bandit game) one can

have an algorithm with regret RT = Õ(
√
dL∗). On the other hand for m > 1 the best bound due

to [LST18] is Õ(
√

(d+m3)L∗). Using mirror descent and an entropic regularizer as in [ABL14],

the following bound can be shown:

Theorem 2 In the semi-bandit game, there exists an algorithm such that for any loss sequence one

has RT = Õ(
√
dL∗).

This bound is tight for L∗ = Θ(mT ) since the minimax regret for the semi-bandit problem is

Θ̃(
√
mdT ) ([ABL14]). We derive a version of this result using the recipe first proposed (in the

context of partial feedback) in [BDKP15]. Namely, to show the existence of a randomized strategy

with regret bounded by BT for any loss sequence, it is sufficient to show that for any distribution
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over loss sequences there exists a strategy with regret bounded by BT in expectation. Indeed, this

equivalence is a simple consequence of the Sion minimax theorem [BDKP15]. In other words to

prove Theorem 2 it is sufficient to restrict our attention to the Bayesian scenario, where one is

given a prior distribution ν over the loss sequence (ℓ1, . . . , ℓT ) ∈ [0, 1][d]×[T ] and aims for small ex-

pected regret with respect to that prior. Importantly note that there is no independence whatsoever

in such a random loss sequence, either across times or across coordinates for a fixed time. Rather,

the prior is completely arbitrary over the Td different values (ℓt(i))t∈[T ],i∈[d].

The rest of the paper is dedicated to the (first-order) regret analysis of a particular Bayesian

strategy, the famous Thompson Sampling ([Tho33]). In particular we will show that Thompson

Sampling implies Theorem 1 and an alternate version of Theorem 2.

1.2 Thompson Sampling

In the Bayesian setting one has access to a prior distribution on the optimal action

a∗ = argmin
a∈A

T∑

t=1

〈ℓt, a〉.

In particular, one can update this distribution as more observations on the loss sequence are col-

lected. More precisely, denote pt for the posterior distribution of a∗ given all the information at

the beginning of round t (i.e., in the full information this is ℓ1, . . . , ℓt−1 while in semi-bandit it is

ℓ1 ⊙ a1, . . . , ℓt−1 ⊙ at−1). Then Thompson Sampling simply plays an action at at random from pt.
This strategy has recently regained interest, as it is both efficient and successful in practice for

simple priors ([CL11]) and particularly elegant in theory. A breakthrough in the understanding of

Thompson Sampling’s regret was made in [RVR16] where an information theoretic analysis was

proposed. They consider in particular the combinatorial setting for which they prove the following

result:

Theorem 3 ([RVR16]) Suppose that under the prior ν, the sequence (ℓ1, . . . , ℓT ) is i.i.d. Then in

the full information game Thompson Sampling satisfies E[RT ] = Õ(m3/2
√
T ), and in the semi-

bandit game it satisfies E[RT ] = Õ(m
√
dT ).

Suppose furthermore that under the prior ν, for any t, conditionally on ℓ1, . . . , ℓt−1 one has

that ℓt(1), . . . , ℓt(d) are independent. Then Thompson Sampling satisfies respectively E
ν [RT ] =

Õ(m
√
T ) and E

ν [RT ] = Õ(
√
mdT ) in the full information and semi-bandit game.

It was observed in [BDKP15] that the assumption of independence across times is immaterial in

the information theoretic analysis of Russo and Van Roy. However it turns out that the indepen-

dence across coordinates (conditionally on the history) in Theorem 3 is key to obtain the worst-case

optimal bounds m
√
T and

√
mdT . One of the contributions of our work is to show how to appro-

priately modify the notion of entropy to remove this assumption.

Most importantly, we propose a new analysis of Thompson Sampling that allows us to prove

first-order regret bounds. In various forms we show the following result:
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Theorem 4 For any prior ν, Thompson Sampling satisfies in the full information game E
ν [RT ] =

Õ(
√

mE[L∗]). Furthermore in the semi-bandit game, Eν [RT ] = Õ(
√
dE[L∗]).

To the best of our knowledge such guarantees were not known for Thompson Sampling even in

the full-information case with m = 1 (the so-called expert setting of [CBFH+97]). Our analysis

can be combined with recent work in [ZL19] which allows for improved estimates based on using

mirror maps besides the Shannon entropy.

The link between Theorems 4 and 2 requires some explanation. In order to recover the full

strength of Theorem 2 via the minimax strategy, one would need a regret bound Õ(E[
√
dL∗]) which

is stronger than the guarantee of Theorem 4. However if an almost sure upper bound L∗ ≤ L
∗

is

known, then Theorem 4 implies the existence of a frequentist algorithm attaining regret

E
ν [RT ] = Õ

(√
dE[L

∗
]

)
.

In fact the estimate in Theorem 4 can be made fully independent of T , e.g. with no hidden log(T )
terms. As explained in Section 7, this is accomplished by a modified Thresholded Thompson sam-

pling algorithm which always avoids low-probability actions. Therefore a frequentist algorithm

obtaining the same guarantee exists.

Finally, we note that Thompson sampling against certain artificial prior distributions is also

known to obey frequentist regret bounds in the stochastic case ([AG12, LTW20]). However we

emphasize that in this paper, Thompson Sampling assumes access to the true prior distribution for

the loss sequence and the guarantees are for expected Bayesian regret with respect to that prior.

2 Information ratio and scale-sensitive information ratio

As a warm-up, and to showcase one of our key contributions, we focus here on the full information

case with m = 1 (i.e., the expert setting). We start by recalling the general setting of Russo and

Van Roy’s analysis (Subsection 2.1), and how it applies in this expert setting (Subsection 2.2).

We then introduce a new quantity, the scale-sensitive information ratio, and show that it naturally

implies a first-order regret bound (Subsection 2.3). We conclude this section by showing a new

bound between two classical distances on distributions (essentially the chi-squared and the relative

entropy), and we explain how to apply it to control the scale-sensitive information ratio (Subsection

2.4).

2.1 Preparation

Let us denote Xt ∈ R
d for the feedback received at the end of round t. That is in full information

one has Xt = ℓt, while in semi-bandit one has Xt = ℓt ⊙ at. Let us denote by Pt the posterior

distribution of ℓ1, . . . , ℓT conditionally on a1, X1, . . . , at−1, Xt−1. We write Et for the expectation

with respect to Pt, which returns a random variable measurable with respect to the sigma algebra

generated by (a1, X1, . . . , at−1, Xt−1). In Thompson sampling, we take at ∼ pt conditionally on

(a1, X1, . . . , at−1, Xt−1), where again pt is the distribution of a∗ under Pt. Hence Et[at] = pt when

viewed as vectors in R
d. Let IGt be the mutual information under the posterior distribution Pt,
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(denoted in general It) between a∗ and Xt, i.e.

IGt = It(a
∗, Xt) = H(pt)− Et[H(pt+1)].

(The abbreviation IG stands for “information gain” as it represents the amount of new information

about the unknown a∗.) Let

rt = Et[〈ℓt, at − a∗〉]
be the instantaneous regret at time t. The information ratio introduced by Russo and Van Roy is

defined as:

Γt :=
r2t
IGt

. (1)

The point of the information ratio is the following result:

Proposition 1 (Proposition 1, [RVR16]) Let Γ > 0 be a positive constant and consider a strategy

such that Γt ≤ Γ for all t almost surely. Then one has

E[RT ] ≤
√
T · Γ ·H(p1) ,

where H(p1) denotes the Shannon entropy of the prior distribution p1 (in particular H(p1) ≤
log(d)).

Proof The main calculation is as follows:

E[RT ] = E

[
T∑

t=1

rt

]
≤

√√√√T · E
[

T∑

t=1

r2t

]
≤

√√√√T · Γ · E
[

T∑

t=1

IGt

]
. (2)

Moreover the total information accumulation E

[∑T
t=1 IGt

]
can be easily bounded via

E

[
T∑

t=1

IGt

]
= E

[
T∑

t=1

H(pt)−H(pt+1)

]

= E[H(p1)−H(pT+1)]

≤ H(p1).

(3)

Substituting into (2) concludes the proof.

2.2 Pinsker’s inequality and Thompson Sampling’s information ratio

We now describe how to control the information ratio (1) of Thompson Sampling in the expert

setting. Let

Ent(p, q) =

d∑

i=1

p(i) log(p(i)/q(i)) (4)
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denote the relative entropy. Using the martingale property Et[pt+1] = pt implies

Et[Ent(pt+1, pt)] = Et

[
d∑

i=1

pt+1(i) log(pt+1(i)/pt(i))

]

= Et

[
d∑

i=1

pt+1(i) log pt+1(i)

]
−

d∑

i=1

pt(i) log pt(i)

= H(pt)− Et[H(pt+1)]

= IGt.

(5)

We also recall Pinsker’s inequality:

‖p− q‖21 ≤ 2 · Ent(p, q). (6)

(Here on the left side we view p and q as vectors in R
d.)

Having completed our preparations we turn to bounding the information ratio. Observe that

the posterior distribution pt of a∗ ∈ {e1, . . . , ed} satisfies (again viewing pt as a vector in R
d):

pt = Et[a
∗]. Using the tower rule Et[Et+1[X ]] = Et[X ] for conditional expectations in the second

step, we have the important calculation

rt = Et[〈ℓt, at − a∗〉]
= Et [Et+1[〈ℓt, at − a∗〉]]
= Et [〈ℓt,Et+1[(at − a∗)]〉]
= Et[〈ℓt, pt − pt+1〉].

(7)

Here the third step holds because ℓt is known at time t + 1 (and note that all steps are really

equalities!). Finally we estimate the right hand side above via

〈ℓt, pt − pt+1〉 ≤
1

2
‖pt − pt+1‖1 (8)

using the observation ‖ℓt − (1
2
, 1
2
, . . . , 1

2
)‖∞ ≤ 1

2
(and the fact that pt and pt+1 have the same sum-

of-coordinates). Combining (7) and (8) with Jensen’s inequality and (6) in the first step below and

then using (5) yields:

r2t ≤
1

2
· Et[Ent(pt+1, pt)]

(5)
=

It
2
.

We have shown:

Lemma 1 ([RVR16]) In the expert setting, Thompson Samping’s information ratio (1) satisfies

Γt ≤ 1
2

for all t.

Using Lemma 1 in Proposition 1 one obtains the following worst case optimal regret bound for

Thompson Sampling in the expert setting:

E[RT ] ≤
√

T log(d)

2
.
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2.3 Scale-sensitive information ratio

The information ratio (1) was designed to derive
√
T -type bounds (see Proposition 1). To obtain√

L∗-type regret we propose the following quantity which we coin the scale-sensitive information

ratio:

Λt :=
(r+t )

2

IGt · Et[〈ℓt, at〉]
, (9)

where

r+t := Et[〈ℓt,max(0, pt − pt+1)〉].
With this new quantity we obtain the following refinement of Proposition 1:

Proposition 2 Let Λ > 0 be a positive constant and consider a strategy such that Λt ≤ Λ for all t
almost surely. Then one has

E[RT ] ≤
√

E[L∗] · Λ ·H(p1) + Λ ·H(p1) .

Proof The main calculation is as follows:

E[RT ] ≤ E

[
T∑

t=1

r+t

]
≤

√√√√
E

[
T∑

t=1

Et[〈ℓt, at〉]
]
· E
[

T∑

t=1

(r+t )
2

Et[〈ℓt, at〉]

]

≤

√√√√
E[LT ] · Λ · E

[
T∑

t=1

IGt

]

(3)

≤
√
E[LT ] · Λ ·H(p1) .

The proof is concluded from Lemma 2 just below, with (a, b, c) = (E[LT ],E[L
∗],Λ ·H(p1)).

Lemma 2 Suppose a, b, c ≥ 0 satisfy a− b ≤ √
ac. Then a− b ≤

√
bc+ c.

Proof We asume a ≥ b+ c as otherwise the result follows immediately. Then

c ≤
√
ac

=⇒ a− b+ c ≤ 2
√
ac

=⇒ (
√
a−

√
c)2 ≤ b

=⇒
√
ac− c ≤

√
bc

=⇒ a− b− c ≤
√
bc.

Here the first implication comes from the main hypothesis and the second from rearranging. The

third implication follows by taking the square root of the previous line (both sides are positive

since a ≥ b + c) and multiplying by
√
c. The final implication follows by using again the main

hypothesis.
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2.4 Reversed chi-squared/relative entropy inequality

We now describe how to control the scale-sensitive information ratio (9) of Thompson Sampling

in the expert setting. As we saw in Subsection 2.2, the two key inequalites in the Russo-Van Roy

information ratio analysis are a simple Cauchy–Schwarz followed by Pinsker’s inequality (recall

(7)):

rt = Et[〈ℓt, pt − pt+1〉] ≤ Et[‖ℓt‖∞ · ‖pt − pt+1‖1] ≤
√

Et[Ent(pt+1, pt)] =
√

IGt .

In particular, as far as first-order regret bounds are concerned, the “scale” of the loss ℓt is lost in

the first Cauchy–Schwarz. To control the scale-sensitive information ratio we propose to do the

Cauchy–Schwarz step differently and as follows (using the fact that ℓt(i)
2 ≤ ℓt(i)):

rt = Et[〈ℓt, pt − pt+1〉] ≤

√√√√
Et

[
d∑

i=1

ℓt(i)pt(i)

]
· Et

[
d∑

i=1

(pt(i)− pt+1(i))2

pt(i)

]
(10)

=
√
Et[〈ℓt, pt〉] · Et[χ2(pt, pt+1)] ,

where χ2(p, q) =
∑d

i=1
(p(i)−q(i))2

p(i)
is the chi-squared divergence. Thus, to control the scale-

sensitive information ratio (9), it only remains to relate the chi-squared divergence to the relative

entropy. Unfortunately it is well-known that in general one only has Ent(q, p) ≤ χ2(p, q) (which is

the opposite of the inequality we need). Somewhat surprisingly we show that the reverse inequality

in fact holds up to a factor of two true for a slightly weaker form of the chi-squared divergence,

which turns out to be sufficient for our needs:

Lemma 3 For p, q ∈ R
d
+ define the positive chi-squared divergence χ2

+ by

χ2
+(p, q) =

∑

i:p(i)≥q(i)

(p(i)− q(i))2

p(i)
.

Then one has

χ2
+(p, q) ≤ 2 · Ent(q, p) .

Proof Consider the function ft(s) = s log(s/t)−s+t, and observe that f ′′
t (s) = 1/s. In particular

ft is convex, and for s ≤ t it is 1
t
-strongly convex. Moreover one has ft(t) = f ′

t(t) = 0. This

directly implies:

ft(s) ≥
1

2t
(t− s)2+.

Writing

Ent(q, p) =
d∑

i=1

(q(i) log(q(i)/p(i))− q(i) + p(i))

and using the above estimate for each i ∈ [d] concludes the proof.

9



We can therefore redo the calculuation (10) using r+t and then invoke Lemma 3 (together with

the identity (5)) in the final step:

(rt)
2
+ = Et[〈ℓt, (pt − pt+1)+〉]2

≤ Et

[
d∑

i=1

ℓt(i)pt(i)

]
· Et




∑

i:pt(i)≥pt+1(i)

(pt(i)− pt+1(i))
2

pt(i)




= E[〈ℓt, pt〉] · Et[χ
2
+(pt, pt+1)]

≤ 2 · E[〈ℓt, pt〉] · IGt.

(11)

Here in the first line, the positive part operation (·)+ is applied entry-wise to (pt − pt+1). We have

shown the following.

Lemma 4 In the expert setting, Thompson Samping’s scale-sensitive information ratio (9) satisfies

Λt ≤ 2 for all t.

Using Lemma 4 in Proposition 2 we arrive at the following new regret bound for Thompson Sam-

pling:

Theorem 5 In the expert setting Thompson Sampling satisfies for any prior distribution:

E[RT ] ≤
√

2E[L∗] ·H(p1) + 2H(p1) .

3 Combinatorial setting and coordinate entropy

We now return to the general combinatorial setting, where the action set A is a subset of {A ∈
{0, 1}d : ‖A‖1 = m}, and we continue to focus on the full information game. Recall that, as

described in Theorem 3, Russo and Van Roy’s analysis yields in this case the suboptimal regret

bound Õ(m3/2
√
T ) (the optimal bound is m

√
T ). We first argue that this suboptimal bound comes

from basing the analysis on the standard Shannon entropy. We then propose a different analysis

based on the coordinate entropy.

3.1 Inadequacy of the Shannon entropy

Let us consider the simple scenario where A is the set of indicator vectors for the sets ak =
{1 + (k − 1) ·m, . . . , k ·m}, k ∈ [d/m]. In other words, the action set consists of d

m
disjoint

intervals of size m. This problem is equivalent to a classical expert setting with d/m actions, and

losses with values in [0, m]. In particular there exists a prior distribution such that any algorithm

must suffer regret m
√

T log(d/m) ≥ m
√

TH(p1) (the lower bound comes from the fact that there

are only d/m available actions).

Thus we see that, unless the regret bound reflects some of the structure of the action set A ⊂
{0, 1}d (besides the fact that elements have m non-zero coordinates), one cannot hope for a better

regret than m
√

TH(p1). For larger action sets, H(p1) could be as large as m log(d/m). Thus, if

we are to obtain a regret bound depending only on m and T via the entropy of the optimal action

set, the best possible bound will be m3/2
√
T . However the optimal rate for this online learning
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problem is known to be Õ(m
√
T ). This suggests that the Shannon entropy is not the right measure

of uncertainty in this combinatorial setting, at least if we expect Thompson Sampling to perform

optimally.

Interestingly a similar observation was made in [ABL14] where it was shown that the regret

for the standard multiplicative weights algorithm is also lower bounded by the suboptimal rate

m3/2
√
T . The connection to the present situation is that standard multiplicative weights corre-

sponds to mirror descent with the Shannon entropy. To obtain an optimal algorithm, [KWK10,

ABL14] proposed to use mirror descent with a certain coordinate entropy. We show next that

basing the analysis of Thompson Sampling on this coordinate entropy allows us to prove optimal

guarantees.

3.2 Coordinate entropy analysis

For any vector v = (v1, v2, . . . , vd) ∈ [0, 1]d, we define its coordinate entropy Hc(v) to simply be

the sum of the entropies of the individual coordinates:

Hc(v) =

d∑

i=1

H(vi) = −
d∑

i=1

vi log(vi) + (1− vi) log(1− vi).

For a {0, 1}d-valued random variable such as a∗, we define Hc(a∗) = Hc(E[a∗]). Equivalently,

the coordinate entropy Hc(a∗) is the sum of the (ordinary) entropies of the d Bernoulli random

variables 1i∈a∗ .

This definition allows us to consider the information gain in each event [i ∈ a∗] separately in

the information theoretic analysis via

IGc
t = Hc

t (pt)− Et[H
c
t (pt+1)],

denoting now pt = Et[at]. We define for p, q ∈ [0, 1]d with
∑d

i=1 p(i) =
∑d

i=1 q(i):

Entc(p, q) =
d∑

i=1

p(i) log
p(i)

q(i)
+ (1− p(i)) log

1− p(i)

1− q(i)
. (12)

For intuition, note that each term is the relative entropy between Bernoulli variables with means

p(i) and q(i), and the above definitions are additive across coordinates. Similarly to (5), we have

Et[Ent
c(pt+1, pt)] = Et

[
d∑

i=1

pt+1(i) log
pt+1(i)

pt(i)

]
+ Et

[
d∑

i=1

(1− pt+1(i)) log
1− pt+1(i)

1− pt(i)

]

= Et

[
d∑

i=1

pt+1(i) log pt+1(i) + (1− pt+1(i)) log(1− pt+1(i))

]

−
[

d∑

i=1

pt(i) log pt(i) + (1− pt(i)) log(1− pt(i))

]

= Hc(pt)− Et[H
c(pt+1)]

= IGc
t .

(13)
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Moreover, Lemma 3 continues to hold with the coordinate entropy:

1

2
χ2
+(pt, pt+1) ≤ Ent(pt+1, pt)

=

d∑

i=1

p(i) log(p(i)/q(i))

≤
d∑

i=1

p(i) log(p(i)/q(i)) +

d∑

i=1

(1− p(i)) log
1− p(i)

1− q(i)

= Entc(pt+1, pt).

(14)

Here in the second-to-last step we used Jensen’s inequality and the fact that
∑d

i=1 pt(i) =
∑d

i=1 pt+1(i)
(as in the usual proof that KL divergence is non-negative). Next, following (11), we estimate

(rt)
2
+ = Et[〈ℓt, (pt − pt+1)+〉]2

≤ Et

[
d∑

i=1

ℓt(i)pt(i)

]
· Et




∑

i:pt(i)≥pt+1(i)

(pt(i)− pt+1(i))
2

pt(i)




= Et[〈ℓt, pt〉] · Et[χ
2
+(pt, pt+1)]

≤ 2 · Et[〈ℓt, pt〉] · Et[Ent
c(pt+1, pt)]

= 2 · Et[〈ℓt, pt〉] · IGc
t .

(15)

As a result, the scale-sensitive information ratio with coordinate entropy is

Λc
t :=

(r+t )
2)

IGc
t · Et[〈ℓt, at〉]

≤ 2.

By exactly the same argument as in Proposition 2, we find

E[RT ] ≤
√

2E[L∗]Hc(p1) + 2Hc(p1). (16)

To establish the first half of Theorem 4 it remains to upper-bound H(p1) using a function of (m, d).
By Jensen’s inequality,

Hc(p1) ≤ Hc
(m
d
,
m

d
, . . . ,

m

d

)
= m log

(
d

m

)
+ (d−m) log

(
d

d−m

)
.

Using the inequality log(1 + x) ≤ x on the second term we obtain

Hc(p1) ≤ m log

(
d

m

)
+m ≤ m log(3d/m).

Substituting into (16) gives the claimed estimate

E[RT ] ≤
√
2m log(3d/m)E[L∗] + 2m log(3d/m).

Remark 1 The fact we use the coordinate entropy suggests that it is unnecessary to leverage infor-

mation from correlations between different arms, and we can essentially treat them as independent.

In fact, our proofs for Thompson Sampling apply to any algorithm which observes arm i at time t
with probability pt(i ∈ a∗). This remark extends to the thresholded variants of Thompson Sampling

we discuss at the end of the paper.

12



4 Bandit Setting

Now we return to the m = 1 setting and consider the case of bandit feedback. We again begin by

recalling the analysis of Russo and Van Roy, and then adapt it in analogy with the scale-sensitive

framework. For most of this section, we require that an almost sure upper bound L∗ ≤ L
∗

for

the loss of the best action is given to the player. Under this assumption we show that Thompson

Sampling obtains a regret bound Õ(
√

H(p1)dL
∗
), by using a bandit analog of the method in the

previous section. This estimate can be improved with the method of [ZL19] which shows how to

analyze Thompson Sampling based on online stochastic mirror descent. By using a logarithmic

regularizer in the analysis, we obtain a regret bound depending only on E[L∗], i.e. without the

assumption L∗ ≤ L
∗
, matching the statement of Theorem 4.

4.1 The Russo and Van Roy Analysis for Bandit Feedback

In the bandit setting we cannot bound the regret by the movement of pt. Indeed, the calculation (7)

relies on the fact that ℓt is known at time t + 1 which is only true for full feedback. However, a

different information theoretic calculation gives a good estimate. Below, we set

ℓ̄t(i) = Et[ℓt(i)], and ℓ̄t(i, j) = Et[ℓt(i)|a∗ = j].

The analog of (7) which we take as our starting point follows. For later flexibility we allow algo-

rithms that are not Thompson sampling.

Proposition 3 Suppose an algorithm for the bandit game has pt(i) = Pt[i = a∗] and plays from

at ∼ p̂t. Then the expected regret is given by

RT =

T∑

t=1

rt

for

rt =
d∑

i=1

(
p̂t(i)ℓ̄t(i)− pt(i)ℓ̄t(i, i))

)
.

In the case p̂t = pt of Thompson sampling, this formula simplifies to

rt =
d∑

i=1

(
pt(i)(ℓ̄t(i)− ℓ̄t(i, i))

)
.

Proof We will claim that rt = Et[ℓ(at) − ℓ(a∗)] which implies the first statement. Indeed, one

immediately verifies that

Et[ℓ(at)] =

d∑

i=1

p̂t(i)ℓ̄t(i);

Et[ℓ(a
∗)] =

d∑

i=1

pt(i)ℓ̄t(i, i).

13



For x, y ∈ [0, 1] we let

Ent[x, y] = −x log(x/y)− (1− x) log
1− x

1− y

denote the binary entropy between the corresponding Bernoulli random variables. ThusEnt[x, y] =
Entc[x, y] for scalars x, y ∈ [0, 1].

Lemma 5 ([RVR16]) In the bandit setting, Thompson Sampling’s information ratio satisfies Γt ≤
d for all t. Therefore it has expected regret E[RT ] ≤

√
dTH(p1).

Proof Using Proposition 3, Cauchy–Schwarz and finally Pinsker,

rt =

d∑

i=1

pt(i)(ℓ̄t(i)− ℓ̄t(i, i))

≤

√√√√d

d∑

i=1

pt(i)2(ℓ̄t(i)− ℓ̄t(i, i))2

≤

√√√√d

d∑

i=1

pt(i)2Ent[ℓ̄t(i, i), ℓ̄t(i)].

By Lemma 6 below, this means

rt ≤
√

d · IGt

which is equivalent to Γt ≤ d.

The following lemma generalizes a calculation in [RVR16]. In it, we take S ⊆ [d] to be a

random set of arms. In the bandit setting we will always take S = {a∗}, but less obvious choices

for S will be considered in the semibandit game. (In all our applications S will be a function of

(ℓt(i))(t,i)∈[T ]×[d]) but even this assumption is not necessary below.)

We also let At ⊆ [d] be the set of actions chosen by the player at time t, so At = {at} when

m = 1. It will be convenient to use the notation:

pt(i ∈ S) = P[i ∈ S],

p̂t(i) = P[i ∈ At],

ℓ̄t(i, i ∈ S) = E[ℓt(i)|i ∈ S],

IGc
t(S) =

∑

i∈S

IGc
t(i).

Throughout the later parts of this paper, we will use various choices of S, for instance the top m
actions. In the proof below, we also denote by Lt(X) the law of the random variable X at time

t. As mentioned previously we write It[X, Y ] to denote the mutual information between X and Y
conditioned on all observations before time t.

14



Lemma 6 Suppose a Bayesian player is playing a semi-bandit game with a random subset S ⊆ [d]
of arms. Each round t, the player picks some subset At of arms and observes the losses (ℓt(i))i∈At .

Then
d∑

i=1

p̂t(i)pt(i ∈ S)Ent[ℓ̄t(i, i ∈ S), ℓ̄t(i)] ≤ IGc
t [S].

Proof Let ℓ̃t(i) be a {0, 1}-valued random variable with expected value ℓ̄t(i) and conditionally

independent of everything else. The data processing inequality gives the inequality

It[ℓ̃t(i), 1i∈S] ≤ It[ℓt(i), 1i∈S]

between mutual informations. We explicitly write out the mutual information on the left-hand side.

Things simplify since the random variable ℓ̃t(i) is Bernoulli:

It[ℓ̃t(i), 1i∈S] = pt(i ∈ S)DKL(ℓ̃t(i|i ∈ S) || ℓ̃t(i)) + pt(i /∈ S)DKL(ℓ̃t(i|i /∈ S) || ℓ̃t(i))
= pt(i ∈ S)Ent[ℓ̄t(i|i ∈ S), ℓ̄t(i)] + pt(i /∈ S)Ent[ℓ̄t(i|i /∈ S), ℓ̄t(i)]

≥ pt(i ∈ S)Ent[ℓ̄t(i|i ∈ S), ℓ̄t(i)].

Next we observe that the event [i ∈ At] holds with probability p̂t(i) independently of everything

else. Therefore

p̂t(i)pt(i ∈ S)Ent[ℓ̄t(i, i ∈ S), ℓ̄t(i)] ≤ p̂t(i)It[ℓ̃t(i), 1i∈S]

≤ p̂t(i)It[ℓt(i), 1i∈S]

= It[ℓt(i)1i∈At , 1i∈S]

≤ It[(At, ~ℓt(At)), 1i∈S]

= IGt[1i∈S].

Here the last inequality step holds because (At, ~ℓt(At)) determines ℓt(i)1i∈At . Summing over

i ∈ [d] completes the proof.

The next lemma is a scale-sensitive analog of an information ratio bound for partial feedback,

in the sense that a similar improved Cauchy–Schwarz inequality is used. However going from such

a statement to a regret bound turns out to be more involved in the small loss setting, so we do not

try to push the analogy too far.

Lemma 7 In the setting of Lemma 6,

d∑

i=1

p̂t(i)pt(i ∈ S)

(
(ℓ̄t(i)− ℓ̄t(i, i ∈ S))2+

ℓ̄t(i)

)
≤ 2 · IGc

t [S].

Proof By the proof of Lemma 3,

d∑

i=1

p̂t(i)pt(i ∈ S)

(
(ℓ̄t(i)− ℓ̄t(i, i ∈ S))2+

ℓ̄t(i)

)

≤ 2

d∑

i=1

p̂t(i)pt(i)
(
Ent
(
ℓ̄t(i, i ∈ S), ℓ̄t(i)

)
− ℓ̄t(i, i ∈ S) + ℓ̄t(i)

)
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and

d∑

i=1

p̂t(i)pt(i /∈ S)

(
(ℓ̄t(i)− ℓ̄t(i, i /∈ S))2+

ℓ̄t(i)

)

≤ 2
d∑

i=1

p̂t(i)pt(i)
(
Ent
(
ℓ̄t(i, i /∈ S), ℓ̄t(i)

)
− ℓ̄t(i, i /∈ S) + ℓ̄t(i)

)
.

Summing and noting that

pt(i ∈ S)ℓ̄t(i, i ∈ S) + pt(i /∈ S)ℓ̄t(i, i /∈ S) = pt(i ∈ S)ℓ̄t(i) + pt(i /∈ S)ℓ̄t(i)

= ℓ̄t(i),

we obtain

d∑

i=1

p̂t(i)pt(i ∈ S)

(
(ℓ̄t(i)− ℓ̄t(i, i ∈ S))2+

ℓ̄t(i)

)
+

d∑

i=1

p̂t(i)pt(i /∈ S)

(
(ℓ̄t(i)− ℓ̄t(i, i /∈ S))2+

ℓ̄t(i)

)

≤ 2
d∑

i=1

p̂t(i)

(
pt(i ∈ S)Ent(ℓ̄t(i, i ∈ S), ℓ̄t(i)) + pt(i /∈ S)Ent(ℓ̄t(i, i /∈ S), ℓ̄t(i))

)

≤ 2
d∑

i=1

p̂t(i)pt(i ∈ S)Ent
(
ℓ̄t(i, i ∈ S), ℓ̄t(i)

)

Lem 6
≤ 2 · IGc

t [S].

4.2 General Theorem on Bayesian Agents

Here we state a theorem on the behavior of a Bayesian agent in an online learning environment.

In the next subsection we use it to give a nearly optimal regret bound for Thompson Sampling

with bandit feedback. This theorem is stated in a rather general way to encompass the semi-bandit

setting as well as the Thresholded Thompson Sampling discussed later.

As with the rest of this paper, the theorem below concerns the Bayes-optimal setting, in which

a Bayesian agent starts with a prior and the true environment is generated from that prior. As

before, we let pt(i) = Pt[i ∈ A∗] be the time-t probability that i is one of the top m arms and

p̂t(i) = Pt[i ∈ At] the probability that the player plays arm i in round t.
We also suppose that there exist constants 1

L
∗ ≤ γ1 ≤ γ2 and a time-varying partition

[d] = Rt ∪ Ct (17)

of the action set into rare and common arms such that:
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1. If i ∈ Ct, then p̂t(i), pt(i) ≥ γ1.

2. If i ∈ Rt, then p̂t(i) ≤ pt(i) ≤ γ2.

The partition [d] = Rt∪Ct into arms with low and high probability to be optimal will be used to

analyze the original Thompson sampling algorithm, as well as Thresholded Thompson Sampling

which plays only from Ct.

Theorem 6 Consider an online learning game with arm set [d] and random sequence of losses

ℓt(i), in the Bayes-optimal setting. Assume there always exists an action with total loss at most L
∗
.

Each round, the player plays some action At ∈
(
[d]
m

)
, i.e. a set of m ≥ 1 arms, and pays/observes

the loss for each of them. Moreover suppose a partition (17) exists and the properties above hold

for it. Then the following statements hold for every i ∈ [d].

A) The expected loss incurred by the player from arm i while i ∈ Rt is rare is

E




∑

t∈[T ]: i∈Rt

p̂t(i)ℓt(i)


 ≤ 2γ2L

∗
+ 8 log(T ) + 4.

B) The expected total loss that arm i incurs while i ∈ Ct is common is

E




∑

t∈[T ]: i∈Ct

ℓt(i)


 ≤ L

∗
+ 2

(
log

(
1

γ1

)
+ 10

)√
L

∗

γ1
.

The use of Theorem 6 will become clear in the remainder of this section. We give the proof in

the Appendix but outline next some of the key ideas.

4.2.1 Proof Ideas for Theorem 6

As initial intuition for Theorem 6, recall that for any bandit algorithm satisfying p̂t(i) > 0 for all

(t, i) ∈ [T ]× [d], one may construct the importance-weighted estimate

L̂t(i) =
∑

s≤t

ℓt(i)1i∈At

p̂t(i)

for Lt(i) =
∑

s≤t ℓt(i). Moreover this estimate is unbiased in the sense that for all fixed (t, i) ∈
[T ]× [d] and any fixed loss sequence, we have

E[L̂t(i)] = Lt(i).

In fact our analysis uses unbiased loss estimates for common arms i ∈ Ct, but underbiased esti-

mates for i ∈ Rt. This is because dividing by p̂t(i) leads to a large variance in the natural unbiased

estimate when p̂t(i) is small. Moreover we separately construct loss estimates for Ct and Rt. The

precise definitions are given in the following table.

The variables ℓRt (i) and ℓCt (i) are the losses of arm i, separated into rare and common contribu-

tions. Thus the variables LR
t and LC

t track the cumulative rare and common loses. Each uC
t (i) is an

17



Table 1: Notations for unbiased and underbiased loss estimators.

ℓRt (i) = ℓt(i) · 1i∈Rt uR
t (i) =

ℓRt (i)·1i∈At

γ2
LR
t (i) =

∑
s≤t ℓ

R
s (i) UR

t (i) =
∑

s≤t u
R
s (i)

ℓCt (i) = ℓt(i) · 1i∈Ct uC
t (i) =

ℓCt (i)·1i∈At

p̂t(i)
LC
t (i) =

∑
s≤t ℓ

C
s (i) UC

t (i) =
∑

s≤t u
C
s (i)

unbiased estimate of ℓCt (i) while uR
t (i) is an underbiased estimate of ℓRt (i). The same properties

carry over for the Ut variables as unbiased or underbiased estimates of the Lt.

The central idea behind Theorem 6 is that the online player has enough information to compute

the loss estimates UR
t (i) and UC

t (i). For example, suppose that UC
t (i) ≫ L

∗
is much larger than

L
∗
. It is easy to show that UC

t (i) is provably an accurate estimate for Lt(i) in the frequentist sense

(via a martingale generalization of the Chernoff bound). Given this, we might hope the Bayesian

player would “automatically” infer that the optimality i ∈ A∗ of arm i is extremely unlikely, and

hence i ∈ Rs would hold for s > t. The Bayes-optimality assumption makes this hope a reality!

Indeed the tower rule for conditional expectations implies

E[Pt[E]] = P[E]

for any event E. Then roughly speaking, if P[E] ≈ 1, it follows that

P[Pt[E] ≈ 1] ≈ 1. (18)

Moreover by Bayes-optimality the algorithm plays based on Pt. In particular we might take E
to be something like “the error |UC

t (i) − LC
t (i)| is small”. Then on the event E, the observation

UC
t (i) ≫ L

∗
implies that i /∈ A∗. Therefore (18) implies that with high probability, we have

Pt[i ∈ A∗] ≤ 1− Pt[E] ≈ 1.

Roughly speaking this argument shows that i ∈ Rt must hold with high probability once UC
t (i) ≫

L
∗
, as long as |UC

t (i)− LC
t (i)| is relatively small with high probability.

In fact since UC
t (i) is an unbiased estimator for Lt(i), the approximation error |UC

t (i)− LC
t (i)|

can be shown to be small with high probability when the variance of the estimate is controlled.

This holds when the probabilities p̂t(i) ≥ γ > 0 are uniformly lower-bounded, which holds by

construction within Ct. As a result, the above proof outline works for Theorem 6B.

The proof of Theorem 6A uses a similar technique although the quantity to be bounded is dif-

ferent. It argues that any player-incurred loss from rare arms must quickly make UR
t (i) extremely

large. Indeed since all rare arms i ∈ Rt have p̂t(i) ≤ γ2, we expect

UR
t (i) ≫ L

∗

to hold once ∑

t∈[T ]:i∈Rt

p̂t(i)ℓt(i) ≫ γ2L
∗
.

A statement of this form can in fact be shown using a one-sided martingale concentration inequal-

ity. However we take advantage of this conclusion in a different way. Namely we argue that once
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UR
t ≫ L

∗
occurs, p̂t(i) must become so small that arm i is pulled extremely infrequently. For

finite T , the slow-down in exploring arm i is so drastic that arm i is only pulled O(logT ) times

while i ∈ Rt. The log(T ) term in the result is crucial here because we cannot argue that p̂t(i)
becomes zero but only that it becomes extremely small. Given infinite time, Thompson sampling

can potentially return to explore every arm i until paying regret L
∗
+ 1 per arm (at which point

pt(i) finally becomes 0); see Theorem 17 for a concrete example. This issue is circumvented by the

Thresholded Thompson sampling algorithm discussed later, which does attain fully T -independent

small loss regret when L∗ ≤ L
∗

is known to hold almost surely.

4.3 First-Order Regret for Bandit Feedback

As suggested by Theorem 6, we split the action set into rare and common arms for each round. For

the m = 1 bandit case, we define for some constant γ > 0:

Rt = {i ∈ [d] : pt(i) ≤ γ}, Ct = {i ∈ [d] : pt(i) > γ} (19)

Note that an arm i can switch between rare and common over time. As in Table 1 we split the loss

function into

ℓt(i) = ℓRt (i) + ℓCt (i)

via

ℓRt (i) = ℓt(i)1i∈Rt , and ℓCt (i) = ℓt(i)1i∈Ct .

Recalling Proposition 3, in the bandit case it will be convenient to redefine

r+t = pt(i) · (ℓ̄t(i)− ℓ̄t(i, i))+.

Now we are ready to prove the first-order regret bound for bandits.

Theorem 7 Suppose that L∗ ≤ L
∗

almost surely. Then Thompson Sampling with bandit feedback

obeys the regret estimate

E[RT ] ≤ O

(√
H(p1)dL

∗
+ d log2(L

∗
) + d log(T )

)
.

Proof Fix γ > 0 and define Rt and Ct as in (19). We apply Proposition 3 and split off the rare arm

losses at the start of the analysis:

E[RT ] ≤ E

[
T∑

t=1

r+t

]

= E

[
T∑

t=1

pt(i) · (ℓ̄t(i)− ℓ̄t(i, i))+

]

≤ E



∑

(t,i):i∈Rt

pt(i)ℓ̄t(i)


+ E



∑

(t,i):i∈Ct

pt(i) · (ℓ̄t(i)− ℓ̄t(i, i))+


 .

(20)
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The first term is bounded by Theorem 6A with the rare/common partition above, γ1 = γ2 = γ, and

p̂t(i) = pt(i). For the second term, again using Cauchy–Schwarz and then Lemmas 3 and 7 gives:

E



∑

(t,i):i∈Ct

pt · (ℓ̄t(i)− ℓ̄t(i, i))+


 ≤

√√√√√E



∑

(t,i):i∈Ct

ℓ̄t(i)


E



∑

(t,i):i∈Ct

pt(i)2 ·
(ℓ̄t(i)− ℓ̄t(i, i))

2
+

ℓ̄t(i)




≤

√√√√√2 · E




∑

(t,i):i∈Ct

ℓt(i)



 ·H(p1).

(21)

Substituting in the conclusion of Theorem 6B and combining gives:

E[RT ] ≤ d(2γL
∗
+ 8 log(T ) + 4) +

√√√√√H(p1)d


L

∗
+ 2

(
log

(
1

γ

)
+ 10

)√
L

∗

γ


.

Taking γ = min
(
1, log2(L

∗
)

L
∗

)
completes the proof.

5 Improved Estimates Beyond Shannon Entropy

In recent work [ZL19], it is shown that Thompson sampling can be analyzed using any mirror map,

with the same guarantees as online stochastic mirror descent. See also [LS19] which improves the

Russo and Van Roy entropic bound using Tsallis entropy, and [LG21] which further elucidates the

connection between generalized information ratios and mirror descent. Their work is compatible

with our methods for first order analysis, allowing for further refinements. By using the Tsallis

entropy we remove the log(d) factor potentially coming from H(p1) in Theorem 7, and also gain

the potential for polynomial-in-d savings for informative priors. By using the log barrier we obtain

a small loss bound depending only on E[L∗] instead of requiring an almost sure upper bound L
∗
.

Definition 1 For α ∈ (0, 1), the α-Tsallis entropy of a probability vector p is

Hα(p) =

(∑d
i=1 p

α
i

)
− 1

α(1− α)
.

Note that with d actions, Hα(p) ≤ d1−α

α(1−α)
.

Theorem 8 Suppose that L∗ ≤ L
∗

almost surely. Then Thompson Sampling with bandit feedback

obeys the regret estimate

E[RT ] ≤
1√

α(1− α)
O

(√
Hα(p1)dαL

∗
+ d log2(L

∗
) + d log(T )

)
.

Taking the worst case Hα(p1) = d1−α over p1 yields the regret estimate

E[RT ] ≤ Oα

(√
dL

∗
+ d log2(L

∗
) + d log(T )

)
.
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Theorem 9 Thompson Sampling with bandit feedback obeys the regret estimate

E[RT ] = O(
√
dE[L∗] log(T ) + d log(T ).

We observe that for a highly informative prior, Theorem 8 may be much tighter than a worst

case bound. For example if p1(i) . i−β for some β > 1, then for α ≥ 1
β

we will have Hα(p1)

bounded independently of d. Hence the main term of the regret will be Oα(
√
dαL

∗
), meaning the

regret bound is improved multiplicatively by a power of d.

We also remark that Theorem 9 actually does not require Theorem 6. As a result its proof

is in the end somewhat shorter than that of Theorem 8. However the L
∗
-dependent results have

the interesting advantage of leading to fully T -independent regret with Thresholded Thompson

Sampling as explained in the next section. We now turn to the proofs which adapt the ideas of

[ZL19] to our setting.

Definition 2 A C3 function f : [0, 1] → R
+ ∪ {∞} is admissible if for all x ∈ [0, 1],

1. f ′(x) ≤ 0.

2. f ′′(x) ≥ 0.

3. f ′′′(x) ≤ 0.

For f admissible we consider the potential function

F (v) =

d∑

i=1

f(v), v ∈ [0, 1]d.

The admissible functions we will consider are:

• f(x) = x log(x) (negative entropy);

• f(x) = −x1/2 (negative Tsallis entropy);

• f(x) = − log(Tx+ 1) (log barrier).

Letting ∆d denote the simplex of d-dimensional probability vectors, we set

Max(F ) = max
p∈∆d

F (p), Min(F ) = min
p∈∆d

F (p)

and also

diam(F ) = Max(F )−Min(F ).

Note that convexity of f implies Max(F ) = F (1) + (d− 1)F (0) and Min(F ) = dF (1/d).
It will later be convenient to use semibandit analogs of these quantities. Let

∆d,j = {x ∈ [0, 1]d,
d∑

i=1

xi = j}
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and define

Maxj(F ) = max
p∈∆d

F (p); (22)

Minj(F ) = min
p∈∆d

F (p); (23)

diamj(F ) = Maxj(F )−Minj(F ). (24)

While studying the full-feedback scenario, we crucially used in Lemma 3 a one-sided strong

convexity property of the entropy function. Admissibility is the condition required to generalize

this calculation. Indeed, for x, y ∈ [0, 1], admissibility implies

f(y)− f(x) ≥ f ′(x)(y − x) +
f ′′(x)

2
(x− y)2+. (25)

This is because f(b) is convex on b ≥ a and f ′′(a)–strongly convex on b ≤ a.

The proposition below uses Cauchy–Schwarz with scale-sensitive scaling in this general set-

ting. For the sake of later application we work in the general m ≥ 1 setting. Similarly to before,

for some random set S ⊆ [d] of arms, we set

pt(i) = Pt[i ∈ S];

p̂t(i) = Pt[i ∈ At];

ℓt(i, i) = Et[ℓt(i) | i ∈ S].

Thus for Thompson sampling, S = {a∗1, . . . , a∗m} and p̂t = pt.

Proposition 4 Let f be admissible. Then

Et[F (pt+1)− F (pt)] ≥
d∑

i=1

p̂t(i)pt(i)
2f ′′(pt(i))

(
ℓ̄t(i)− ℓ̄t(i, i)

)2
+

2ℓ̄t(i)
.

Proof As in the proof of Lemma 6, define ℓ̃t(i) to be a {0, 1}-valued random variable with mean

ℓ̄t(i), independently of everything else. Bayes rule implies:

Pt

[
i ∈ S | ℓ̃t(i) = 1

]
=

Pt[i ∈ S] · Pt

[
ℓ̃t(i) = 1 | i ∈ S

]

Pt[ℓ̃t(i) = 1]

=
pt(i)ℓ̄t(i, i)

ℓ̄t(i)
.

Rearranging, we find

ℓ̄t(i, i) =
Pt

[
i ∈ S | ℓ̃t(i) = 1

]
ℓ̄t(i)

pt(i)

and so

ℓ̄t(i)− ℓ̄t(i, i) = ℓ̄t(i)

(
pt(i)− Pt

[
i ∈ S | ℓ̃t(i) = 1

]

pt(i)

)
.
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Therefore we may rewrite the right-hand side of the statement to be proved:

d∑

i=1

p̂t(i)pt(i)
2f ′′(pt(i))

(
ℓ̄t(i)− ℓ̄t(i, i)

)2
+

ℓ̄t(i)

=
d∑

i=1

p̂t(i)ℓ̄t(i)f
′′(pt(i))

(
pt(i)− Pt

[
i ∈ S | ℓ̃t(i) = 1

])2
+
.

(26)

Below we will use the conditional probability Pt

[
i ∈ A∗ | ℓ̃t(i)

]
, which is a random variable which

depends on information up to time t and also on the value ℓ̃t(i) ∈ {0, 1}. (This is a completely

standard use of notation, but we want to clarify that it involves conditioning on the random variable

ℓ̃t(i) instead of the event [ℓ̃t(i) = 1] as is done just above.) Applying (25), we find:

f
(
Pt

[
i ∈ S | ℓ̃t(i)

]
− f(pt(i)

)

≥ f ′(pt(i)) ·
(
Pt

[
i ∈ S | ℓ̃t(i)

]
− pt(i)

)
+

f ′′(pt(i))

2

(
pt(i)− Pt

[
i ∈ S | ℓ̃t(i)

])2
+
.

(27)

Note that

Et

[
Pt

[
i ∈ S | ℓ̃t(i)

]]
= pt(i)

by the tower rule for conditional expectations. Taking the expectation over ℓ̃t(i) in (27) yields

Et

[
f
(
Pt

[
i ∈ S | ℓ̃t(i)

])
− f(pt(i))

]
≥ Et

[
f ′′(pt(i))

2

(
pt(i)− Pt

[
i ∈ S | ℓ̃t(i)

])2
+

]

≥ f ′′(pt(i))ℓ̄t(i)

2

(
pt(i)− Pt

[
i ∈ S | ℓ̃t(i) = 1

])2
+
.

Multiplying by p̂t(i) (which is determined at time t) and summing over i,

Et

[
d∑

i=1

p̂t(i)ℓ̄t(i)
f ′′(pt(i))

2

(
pt(i)− Pt

[
i ∈ S | ℓ̃t(i) = 1

])2
+

]

≤ Et

[
d∑

i=1

p̂t(i)
(
f
(
Pt

[
i ∈ S | ℓ̃t(i)

])
− f(pt(i))

)]
.

(28)

Convexity of f implies that f(Xt) is a submartingale for any martingale Xt. In particular for all

i, j ∈ [d], we have

Et

[
f
(
Pt

[
i ∈ S | ℓt(j)

])]
≥ Et

[
f
(
Pt

[
i ∈ S | ℓ̃t(j)

])]
(29)

≥ f(pt(i)) (30)
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Combining the results above allows us to finally conclude the proof:

Et[F (pt+1(i))− F (pt(i))] =

d∑

i,j=1

p̂t(j)
(
Et

[
f(Pt[i ∈ S | ℓt(j)]− f(pt(i))

])

(29)

≥
d∑

i,j=1

p̂t(j)
(
Et

[
f(Pt[i ∈ S | ℓ̃t(j)]− f(pt(i))

])

(30)

≥
d∑

i=1

p̂t(i)Et

[
f
(
Pt

[
i ∈ S | ℓt(i)

])
− f(pt(i))

]

(28)

≥
d∑

i=1

p̂t(i)ℓ̄t(i)
f ′′(pt(i))

2

(
pt(i)− Pt

[
i ∈ S | ℓ̃t(i) = 1

])2
+

(26)
=

d∑

i=1

p̂t(i)pt(i)
2f ′′(pt(i))

((
ℓ̄t(i)− ℓ̄t(i, i)

)2
+

2ℓ̄t(i)

)
.

Corollary 1 Let f be admissible (recall Definition 2), and define Rt, Ct as in (19) for γ > 0.

Consider a bandit problem (with m = 1) such that L∗ ≤ L
∗

almost surely. Then Thompson

sampling satisfies

E[RT ] ≤ E



∑

(t,i):i∈Rt

pt(i)ℓt(i)


+ E



∑

(t,i):i∈Ct

pt(i)(ℓt(i)− ℓt(i, i))+


 (31)

and the two terms are bounded by

E




∑

(t,i):i∈Rt

pt(i)ℓt(i)



 ≤ min
(
γT, d · (2γL∗

+ 8 log(T ) + 4)
)
; (32)

E




∑

(t,i):i∈Ct

pt(i)(ℓt(i)− ℓt(i, i))+



 ≤

√√√√√2(Max(F )− F (p1)) · E




∑

(t,i):i∈Ct

ℓ̄t(i)

pt(i)f ′′(pt(i))



 .

(33)

Proof The first inequality (31) follows exactly as (20) in the proof of Theorem 7.

For the first term, the upper bound γT is immediate while Theorem 6 with γ1 = γ2 = γ implies

E



∑

(t,i):i∈Rt

pt(i)ℓ̄t(i)


 ≤ d · (2γL∗

+ 8 log(T ) + 4).
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For the second term,

E



∑

(t,i):i∈Ct

pt(i) · (ℓ̄t(i)− ℓ̄t(i, i))+




≤

√√√√E

∑

(t,i):i∈Ct

pt(i)3f ′′(pt(i))

(
ℓ̄t(i)− ℓ̄t(i, i)

)2
+

ℓ̄t(i)
·
√√√√E

∑

(t,i):i∈Ct

ℓ̄t(i)

pt(i)f ′′(pt(i))

≤

√√√√E

∑

(t,i)∈[T ]×[d]

pt(i)3f ′′(pt(i))

(
ℓ̄t(i)− ℓ̄t(i, i)

)2
+

ℓ̄t(i)
·
√√√√E

∑

(t,i):i∈Ct

ℓ̄t(i)

pt(i)f ′′(pt(i))

Prop.4
≤

√√√√2

T∑

t=1

Et[F (pt+1)− F (pt)] ·
√√√√E

∑

(t,i):i∈Ct

ℓ̄t(i)

pt(i)f ′′(pt(i))

≤
√
2 · E[F (pT )− F (p1)] ·

√√√√E

∑

(t,i):i∈Ct

ℓ̄t(i)

pt(i)f ′′(pt(i))

≤
√√√√2 · (Max(F )− F (p1)) · E

∑

(t,i):i∈Ct

ℓ̄t(i)

pt(i)f ′′(pt(i))
.

(34)

Here the first inequality used Cauchy–Schwarz. The second expanded the first sum from {(t, i) :
i ∈ Ct} to all of [d]×[T ]. The third applies Proposition 4 to the sum over i, and the fourth inequality

telescopes the resulting sum. The fifth and final inequality is trivial.

Now we can prove the refined bandit estimates. We begin with the Tsallis entropy.

Proof of Theorem 8: We take f(x) = −xα. Then

f ′′(x) = α(1− α)xα−2;

Max(F ) = −1;

Min(F ) = −d1−α.

Thus Corollary 1 yields

E[RT ] ≤ d · (2γL∗
+ 8 log(T ) + 4) +

√√√√2

(
−1 +

d∑

i=1

p1(i)α

)
·
√√√√E

∑

(t,i):i∈Ct

ℓ̄t(i)pt(i)1−α

α(1− α)
.

Without the square-root, the first part of the last term is

2

(
−1 +

d∑

i=1

p1(i)
α

)
≤ O(Hα(p1)).

25



Removing the square-root and 1
α(1−α)

from the second part and applying Hölder’s inequality,

E

∑

(t,i):i∈Ct

ℓ̄t(i)pt(i)
1−α ≤



E

∑

(t,i):i∈Ct

ℓ̄t(i)




α

E

∑

(t,i):i∈Ct

ℓ̄t(i)pt(i)




1−α

≤ dα


L

∗
+ 2

(
log

(
1

γ

)
+ 10

)√
L
∗

γ




α

· E[LT ]
1−α.

Here we used the fact that for each i ∈ [d],

E

[
T∑

t=1

ℓ̄t(i)pt(i)

]
= E[LT ] (35)

is the expected loss incurred by Thompson sampling. With the choice γ = log2(L
∗
)

L
∗ , we have

L
∗
+ 2

(
log

(
1

γ

)
+ 10

)√
L

∗

γ
≤ O(L

∗
).

Assuming E[RT ] ≥ 0 (else any regret statement is vacuous), we get

E[RT ] ≤ d ·
(
2 log2(L

∗
) + 8 log(T ) + 4

)
+O

(√
Hα(p1)

) (
dL

∗
)α/2

E[LT ]
(1−α)/2

≤ d ·
(
2 log2(L

∗
) + 8 log(T ) + 4) +O

(√
Hα(p1)dα

)
·
(
L
∗
+ E[RT ]

)1/2
.

We finally apply Lemma 8 below with:

• R = E[RT ]

• X = d · (2γL∗
+ 8 log(T ) + 4)

• Y = O(
√
Hα(p1)dα)

• Z = L
∗
.

This gives the regret bound

E[RT ] =
1√

α(1− α)
· O
(√

Hα(p1)dαL
∗
+Hα(p1)d

α + d log2(L
∗
) + d log(T )

)
.

Observing that Hα(p1)d
α ≤ d ≤ d logT allows us to remove the Hα(p1)d

α term and thus com-

pletes the proof.

Lemma 8 If R,X, Y, and Z are non-negative real numbers and R ≤ X + Y
√
Z +R, then

R ≤ X + Y 2 + Y
√
Z.
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Proof Rearranging, squaring, and further rearranging yields:

R ≤ X + Y
√
Z +R

=⇒ R2 − 2RX +X2 ≤ Y 2Z + Y 2R

=⇒ R2 − (2X + Y 2)R ≤ Y 2Z −X2

=⇒
(
R−

(
X +

Y 2

2

))2

≤ Y 4

4
+ Y 2Z −X2

=⇒ R ≤ X +
Y 2

2
+

√
Y 4

4
+ Y 2Z −X2

≤ X + Y 2 + Y
√
Z.

Proof of Theorem 9:

We apply Corollary 1 again, this time with f(x) = − log(Tx+ 1). We have

diam(F ) = d log(T )(1 + o(1));

f ′′(x) =
1

(x+ T−1)2
.

Define Rt and Ct using (19) with γ = T−1. The Rt contribution in Corollary 1 is at most γT = 1
so it remains to estimate the Ct contribution.

To do this we observe that for pt(i) ≥ γ = 1
T

,

f ′′(pt(i))
−1 = (pt(i) + T−1)2 ≤ pt(i)

2 + 3pt(i)T
−1.

Plugging in this estimate gives

∑

t,i:i∈Ct

ℓ̄t(i)

pt(i)f ′′(pt(i))
≤
∑

t,i

(
pt(i)ℓ̄t(i) +

3ℓ̄t(i)

T

)
≤ E[LT ] + 6d.

Going back to the beginning and combining, we have shown

E[RT ] = O
(√

d log(T )(E[LT ] + d) + 1
)
= O

(√
dE[LT ] log(T ) + d

√
log(T )

)
. (36)

Recall from Lemma 2 a− b ≤ √
ac implies a− b ≤

√
bc+ c for non-negative a, b, c. The proof is

concluded by taking

• a = E[LT ]

• b = E[L∗] +O(d
√
log(T ))

• c = O(d log(T ))

to obtain

E[RT ] = O
(√

dE[L∗] log(T ) + d log(T )
)
.
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6 Combinatorial Semi-bandit Setting

We now consider semi-bandit feedback in the combinatorial setting, combining the intricacies of

Sections 3 and 4. We again have an action set A contained in the set {a ∈ {0, 1}d : ||a||1 = m},

but now we observe the m losses of the arms played. A natural generalization of the bandit m = 1

proof to higher m yields a first-order regret bound of Õ(
√

mdL
∗
). However, we give a refined

analysis using an additional trick of ranking the m arms in a∗ by their total loss and performing

an information theoretic analysis on a certain set partition of these m optimal arms. This method

allows us to obtain a Õ(
√

dL
∗
) regret bound for the semi-bandit regret. The analyses based on

other mirror maps extend as well.

6.1 Naive Analysis and Intuition

We let A∗ ∈ A be the optimal set of m arms, and assume that A has total loss L∗ ≤ L
∗
. Extending

the definition before, let

ℓ̄t(i, j) = E[ℓt(i)|j ∈ A∗]. (37)

Ignoring the issue of exactly how to assign arms as rare/common, one expects that mimicking the

proof of Theorem 7 will imply:

E[RT ] = E

[
∑

t,i

pt(i)(ℓt(i)− ℓt(i, i))

]

≤ E




∑

(t,i):i∈Rt

pt(i)ℓt(i)



+ E




∑

(t,i):i∈Ct

pt(i) · (ℓ̄t(i)− ℓ̄t(i, i))+



 .

(Proposition 3 extends easily to the semibandit setting; see below for a careful statement.) The first

term is again small due to Theorem 6A and the second term can be estimated by mimicking (21)

and applying Cauchy–Schwarz to obtain

E



∑

(t,i):i∈Ct

pt(i) · (ℓ̄t(i)− ℓ̄t(i, i))+


 ≤ 2E



∑

(t,i):i∈Ct

ℓt(i)


 ·Hc(A∗).

The main difference is that now the coordinate entropy Hc(A∗) can be as large as Õ(m). So the

result is

E[RT ] ≤ Õ

(√
Hc(a∗)dL

∗
)

= Õ
(√

mdL
∗
)
.

This argument is inefficient because it allows every arm to have loss L
∗

before becoming rare.

However actually, only j optimal arms can have loss more than L
∗

j
. So although the coordinate

entropy of A∗ can be as large as Õ(m), the coordinate entropy on the arms with large loss so far is

much smaller. This motivatives the rank ordering introduced in the next subsection.

Before moving on, let us justify the first step of the attempt above by generalizing Proposition 3.

We give a careful statement but omit the proof as it is exactly identical. Recall the notation (37).
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Proposition 5 Suppose an algorithm for the semibandit game has pt(i) = Pt[i ∈ A∗] and p̂t =
Pt[i ∈ At]. Then the expected regret is given by

RT =

T∑

t=1

rt

for

rt =

d∑

i=1

(
p̂t(i)ℓ̄t(i)− pt(i)ℓ̄t(i, i))

)
.

In the case p̂t = pt of Thompson sampling, this formula simplifies to

rt =
d∑

i=1

(
pt(i)(ℓ̄t(i)− ℓ̄t(i, i))

)
.

6.2 Rare Arms and Rank Order

We introduce two notions needed for the semi-bandit proof. First, analogously to our definition

of rare and common arms in the bandit m = 1 case, we partition [d] into rare and common arms.

The definition becomes slightly more complicated in the combinatorial setting, since setting some

arms to be rare can affect probabilities for other arms.

We construct Rt and Ct starting with an empty subset Rt = ∅ ⊆ [d] of rare arms and grow it as

follows. While there exists i ∈ [d] satisfying

Pt

[
(i ∈ A∗) and A∗ ⊆ Ct

]
≤ γ, (38)

we choose such an arm i to add to Rt. (Here Ct = [d]\Rt at all stages during the algorithm. At the

end, all i ∈ Ct do not satisfy (38). In particular,

Pt

[
(i ∈ A∗) and A∗ ⊆ Ct

]
> γ ∀i ∈ Ct. (39)

Otherwise stated, we obtain a subset Ct ⊆ [d] of arms, each of which has a large probability at

least γ to be in A∗, even after removing actions which overlap Rt at all. In addition to (39), the

resulting partition [d] = Rt ∪ Ct satisfies the following. For all i ∈ Rt,

pt(i) ≤ P[A∗ 6⊆ Ct] ≤ dγ. (40)

This is because each time an arm i ∈ [d] moves from Ct to Rt in the algorithm above, the quantity

P[A∗ 6⊆ Ct] increases by at most γ. Comparing with the conditions after (17) suggests that in

semi-bandit situations we should take (γ1, γ2) = (γ, dγ) in applying Theorem 6. This is exactly

what we will do.

The next step is to implement a rank ordering of the m coordinates. We take

A∗ = {a∗1, a∗2, . . . , a∗m}

where

LT (a
∗
1) ≥ LT (a

∗
2) ≥ · · · ≥ LT (a

∗
m)
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and ties are broken arbitrarily. Crucially, we observe that

LT (a
∗
j) ≤

L
∗

j
. (41)

We further consider a general partition of [m] into disjoint subsets S1, S2, . . . , Sr. Define

A∗
Sk

= {a∗s : s ∈ Sk}.
We will carry out an information theoretic argument which treats separately the events {i ∈ A∗

Sk
}.

At the end of the calculation, we will see that the dyadic partition Sk = {2k−1, . . . , 2k−1} improves

the naive analysis above. In fact the naive analysis corresponds to the trivial partition S1 = [m].
Towards such an analysis it will be helpful to define

pt(i, Sk) = P[i ∈ A∗
Sk
]; (42)

ℓ̄(i, Sk) = E[ℓt(i) | i ∈ ASk
]. (43)

6.3 Semi-bandit Regret Bound via Shannon Entropy

Here we carry out the strategy just outlined for the Shannon entropy. We again begin by decom-

posing the regret into contributions from Rt and Ct. We choose a small threshold γ ∈ [0, 1/d] and

apply the recursive procedure from the previous section, thus obtaining partitions [d] = Rt ∪ Ct
which satisfy (39) and (40). We then apply Theorem 6 with (γ1, γ2) = (γ, dγ) to bound the

resulting terms.

Theorem 10 The expected regret of Thompson Sampling in the semi-bandit setting is

O

(
log(m)

√
dL

∗
log(d) +md2 log2(L

∗
) + d log(T )

)
.

Proof Set

(γ1, γ2) =

(
m log2(L

∗
)

L
∗ ,

md log2(L
∗
)

L
∗

)
.

Let S1, . . . , Sr be as discussed in the previous subsection. The analysis begins with another decom-

position of the regret into rare and common contributions. Recall Proposition 5 and the notations

(42) and (43). We have:

E[RT ] ≤ E



∑

(t,i):i∈Rt

pt(i)ℓ̄t(i)


+ E



∑

(t,i):i∈Ct

pt(i)(ℓ̄t(i)− ℓ̄t(i, i))




= E



∑

(t,i):i∈Rt

pt(i)ℓ̄t(i)


+

r∑

k=1

E



∑

(t,i):i∈Ct

pt(i, Sk)(ℓ̄t(i)− ℓ̄t(i, Sk))


 .

(44)

A direct application of Theorem 6A gives the bound

E



∑

(t,i):i∈Rt

pt(i)ℓ̄t(i)


 ≤ O

(
md2 log2(L

∗
) + d log(T )

)
(45)
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for the first term on the right-hand side. For the second term, we apply Cauchy–Schwarz for each

k ∈ [r] separately. This yields

r∑

k=1

E



∑

(t,i):i∈Ct

pt(i, Sk)(ℓt(i)− ℓt(i, Sk))




≤
r∑

k=1

√√√√√E



∑

(t,i)

pt(i)pt(i, Sk)

(
(ℓ̄t(i)− ℓ̄t(i, Sk))

2
+

ℓ̄t(i)

)

1/2

E



∑

(t,i):i∈Ct

pt(i, Sk)ℓ̄t(i)

pt(i)



1/2

.

(46)

By Lemma 7 the first expectation inside the square-root can be estimated information theoretically

by Hc(A∗
Sk
):

E



∑

(t,i)

pt(i)pt(i, Sk)

(
(ℓ̄t(i)− ℓ̄t(i, Sk))

2
+

ℓ̄t(i)

)
 ≤ 2

∑

t

Ict [Sk]

≤ 2 ·Hc(A∗
Sk
).

Moreover we can change ℓt(i) to ℓ̄t(i):

E



∑

(t,i):i∈Ct

pt(i, Sk)ℓ̄t(i)

pt(i)


 = E



∑

(t,i):i∈Ct

pt(i, Sk)ℓt(i)

pt(i)




This is because pt are probabilities at the start of round t and ℓ̄t(i) = Et[ℓt(i)]. Substituting into

(46), the common-arm regret term is upper-bounded by:

r∑

k=1

E



∑

(t,i):i∈Ct

pt(i, Sk)(ℓt(i)− ℓt(i, Sk))


 ≤

r∑

k=1

√√√√√2 ·Hc(A∗
Sk
)E



∑

(t,i):i∈Ct

pt(i, Sk)ℓt(i)

pt(i)


.

The reason for introducing the sets Sk now appears: to give a separate estimate for the inner

expectation on the right-hand side. Let sk = min(Sk). Observe that if Lt(i) >
L
∗

sk
, then we cannot

have i ∈ A∗
Sk

because

Lt(a
∗
j ) ≤ LT (a

∗
j) ≤

L
∗

j
< Lt(i), ∀j ∈ Sk.

Roughly speaking, for each fixed i the sum

∑

t∈[T ]: i∈Ct

pt(i, Sk)ℓ̄t(i)

pt(i)

will typically stop growing much once Lt(i) > L
∗

sk
because pt(i, Sk) will be very small while

pt(i) ≥ γ. Before this starts to happen, we have the simple estimate
pt(i,Sk)
pt(i)

≤ 1. Therefore the
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sum should be bounded by approximately L
∗

sk
. In fact Lemma 11 below gives the estimate

E




∑

t∈[T ]: i∈Ct

pt(i, Sk)ℓ̄t(i)

pt(i)



 ≤ L
∗

sk
+O



log(1/γ1)

√
L
∗

skγ1



 .

Using the estimate Hc(A∗
Sk
) = O(|Sk| log(d)) and multiplying by d to account for the d arms, the

common arm regret contribution is hence estimated by

r∑

k=1

E



∑

(t,i):i∈Ct

pt(i, Sk)(ℓt(i)− ℓt(i, Sk))


 ≤

r∑

k=1

√√√√√2 ·Hc(A∗
Sk
)E



∑

(t,i):i∈Ct

pt(i, Sk)ℓt(i)

pt(i)




≤ O

(
r∑

k=1

√
2d log(d)|Sk|L

∗ ·
(
s−1
k + log(1/γ1)

(
skγ1L

∗)−1/2
))

. (47)

Because γ1 =
m log2 L

∗

L
∗ it follows that

log(1/γ1)
(
skγ1L

∗)−1/2
= O

(√
1

skm

)
.

Next we substitute and observe that
√

s−1
k +O

(√
1

skm

)
= O(s

−1/2
k )

since sk ≤ m. Therefore the right-hand side (47) above is bounded by

O

(
r∑

k=1

√
2d log(d)|Sk|L

∗ ·
(
s−1
k + log(1/γ1)

(
skγ1L

∗)−1/2
))

≤ O

(
r∑

k=1

√
2d log(d)|Sk|L

∗
s−1
k

)

=

√
d log(d)L

∗ · O




r∑

k=1

√
|Sk|
sk



 .

(48)

We are left with finding a partition (S1, . . . , Sr) that makes the right-hand sum
∑r

k=1

√
|Sk|
sk

as

small as possible. Taking a single set S1 = [m] as in the naive analysis gives
√
m, and taking d

singleton subsets Sk = {k} also yields
∑m

k=1 k
−1/2 = Θ(

√
m). But a dyadic decomposition does

much better! Setting

Sk = {2k−1, . . . , 2k − 1} ∩ [m] (49)

for k ≤ ⌈log2(m)⌉, we find

∑

k≤⌈log2(m)⌉

√
|Sk|
sk

≤
∑

k≤⌈log2(m)⌉

√
2 = O(logm).
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Combined with (47) and (48), this choice thus gives

r∑

k=1

E




∑

(t,i):i∈Ct

pt(i, Sk)(ℓt(i)− ℓt(i, Sk))





≤
r∑

k=1

√
2d log(d)|Sk|L∗ ·

(
s−1
k + log(1/γ1)

(
skγ1L

∗)−1/2
)

≤
√
d log(d)L

∗ · O




r∑

k=1

√
|Sk|
sk




≤ O

(
log(m)

√
d log(d)L

∗
)
.

Combining with the estimate (45) for rare arms and substituting into (44) finishes the proof.

6.4 Semi-bandit Regret Bound from Tsallis Entropy

We improve the regret bound of Theorem 10 using Tsallis entropy. The main result follows.

Theorem 11 Suppose that the best combinatorial action almost surely has total loss at most L
∗
.

Then Thompson sampling with semi-bandit feedback obeys the regret estimate

E[RT ] ≤ O
(
log(m)

√
dL

∗
+md2 log2(L

∗
) + d log(T )

)
.

In proving Theorem 11 we require the technical Lemma 9 which is proved in the Appendix. It

relies on Freedman’s martingale concentration inequality.

Lemma 9 Fix an arm i ∈ [d]. In the context of Theorem 6, fix constants λ ≥ 2 and L̃ > 0 and

assume γ1 ≥ 1/L̃. With probability at least 1− 2e−λ/2, for all t such that LC
t (i) ≤ L̃:

UC
t (i) ≤ LC

t (i) + λ

√
L̃

γ1
.

The following simple result will also be useful.

Lemma 10 Let (Mt)t∈Z+ be a martingale started at M1 = p ∈ [0, 1] such that almost surely,

Mt ∈ [0, 1] for all t. Then the expected maximum is

E[sup
t≥0

Mt] ≤ p(1− log p).

Proof By Doob’s inequality,

P[sup
t≥0

Mt ≥ q] ≤ p/q, ∀q ∈ [p, 1].
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The tail-sum formula thus implies

E[sup
t≥0

(Mt)] =

∫ 1

0

P[sup
t≥0

(Mt) ≥ q]dq

≤ p+

∫ 1

p

p/qdq

= p(1− log p)

as desired.

Lemma 11 Fix a subset Sk ⊆ [m], let sk = min(Sk), and assume

m/L
∗ ≤ γ1 ≤

1

2
.

Then any Bayesian bandit algorithm satisfies

E




∑

t∈[T ]: i∈Ct

pt(i, Sk)ℓ̄t(i)

pt(i)



 ≤ L
∗

sk
+O



log

(
1

γ1

)√
L
∗

skγ1



 .

Proof Recall the notation of Table 1. We first apply Lemma 9 with γ1 = γ and

L̃ =
L

∗

sk
.

The conclusion is that for λ ≥ 2 and γ1 ≥ sk/L
∗
, with probability at least 1 − 2e−λ/2, all t with

LC
t (i) ≤ L

∗

sk
also satisfy

UC
t (i) ≤ LC

t (i) + λ

√
L
∗

skγ1

≤ L
∗

sk
+ λ

√
L
∗

skγ1
.

Note that pt(i, Sk) ≤ pt(i) and for i ∈ Ct also γ1 ≤ pt(i). It follows that for any C > 0:

E




∑

t∈[T ]: i∈Ct

pt(i, Sk)ℓ̄t(i)

pt(i)


 ≤ C + 1 +

(
1

γ1

)
E




∑

t∈[T ]: i∈Ct,LC
t (i)≥C

pt(i, Sk)ℓ̄t(i)


 . (50)

We rewrite the latter expectation, then essentially rewrite it again as a Riemann-Stieltjes integral.

Letting pt(i, Sk) = p⌊t⌋(i, Sk) for any positive real t,

E




∑

t∈[T ]: i∈Ct,LC
t (i)≥C

pt(i, Sk)ℓ̄t(i)



 = E




∑

LC
t (i)≥C

pt(i, Sk)ℓ
C
t (i)





≤ E

[∫ ∞

C

pt(i, Sk)dL
C
t (i)

]
.
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Define τx to be the first value of t satisfying

LC
t (i) ≥ x,

where τx = ∞ if LC
T (i) < x. Since ℓt(i) ≤ 1 almost surely for all t, it follows that t ≥ τLC

t (i)−1.

Therefore, changing variables from t to LC
t (i) yields:

E

[∫ ∞

C

pt(i, Sk)dL
C
t (i)

]
≤ E

[∫ ∞

C

max
t≥τx−1

(pt(i, Sk)) · 1τx<∞dx

]

≤ E

[∫ ∞

C

max
t≥τx−1

(pt(i, Sk)) · 1τx−1<∞dx

]

≤ 1 + E

[∫ ∞

C

max
t≥τx

(pt(i, Sk)) · 1τx<∞dx

]
.

(51)

To translate the result of Lemma 9, we choose x and λ > 2 to satisfy

x =
L
∗

sk
+ λ

√
L
∗

skγ1
(52)

Then Lemma 9 implies

E[pτx(i, Sk)1τx<∞] ≤ 2e−λ/2. (53)

Moreover Lemma 10 implies

Eτx [max
t≥τx

pt(i, Sk)1τx<∞] ≤ pτx(i, Sk) · (1− log (pτx(i, Sk))) · 1τx<∞. (54)

The function f(x) = x(1− log x) is increasing and concave with f(0) = 0. We set y = pτx(i, Sk).
Using optional stopping, (54), Jensen’s inequality, and finally (53), we obtain

E[max
t≥τx

pt(i, Sk)1τx<∞] = E
[
Eτx [max

t≥τx
pt(i, Sk)1τx<∞]

]

(54)

≤ E
[
f(y)

]

≤ f(E[y])

(53)

≤ f(2e−λ/2)

≤ λe−λ/2.

(55)

Setting

C =
L

∗

sk
+ 10 log

(
1

γ1

)√
L

∗

skγ1
,

we use (55), changing variables in (51) from integrating over λ to integrating over x. This yields

the estimate

E

[∫ ∞

C

max
t≥τx

(pt(i, Sk)) · 1τx<∞dx

]
≤
√

L
∗

skγ1

∫ ∞

10 log(1/γ1)

λe−λ/2dλ.
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The integral is bounded by O(1) since γ1 ≤ 1
2

and also 10 log(1/γ1) ≥ 2. (The latter bound

is required because the above estimates only holds for λ > 2, which is due to the condition in

Lemma 9.) Recalling our calculations starting from (50), we find

E




∑

t∈[T ]: i∈Ct

pt(i, Sk)ℓ̄t(i)

pt(i)


 ≤ L

∗

sk
+O


log

(
1

γ1

)√
L
∗

skγ1


 .

This completes the proof.

The next lemma is used also in the log-barrier based regret bound. Recall from (24) that

diamj(F ) is the diameter of F =
∑d

i=1 f(xi) restricted to {x ∈ [0, 1]d,
∑d

i=1 xi = j}.

Lemma 12 Let f be admissible (recall Definition 2), and Rt, Ct be generated by (γ1, γ2) (recall

(38) and below). Let S1 ∪ · · · ∪ Sr = [d] be a rank-order partition. Thompson Sampling for the

semibandit problem satisfies

E[RT ] ≤ E




∑

(t,i):i∈Rt

pt(i)ℓ̄t(i)



+ E




∑

(t,i,k):i∈Ct

pt(i, Sk)(ℓ̄t(i)− ℓ̄t(i, Sk))



 (56)

where

E



∑

(t,i):i∈Rt

pt(i)ℓ̄t(i)


 ≤ min

(
γ2T,md2 log2(L

∗
) + d log(T )

)
; (57)

E




∑

(t,i,k):i∈Ct

pt(i, Sk)(ℓ̄t(i)− ℓ̄t(i, Sk))


 ≤

r∑

k=1

√√√√2 · diam|Sk|(F ) · E
∑

(t,i):i∈Ct

ℓ̄t(i)

pt(i)f ′′(pt(i, Sk))
.

(58)

Proof The inequality (56) is clear while (57) follows from Theorem 6, so we focus on (58). Fix

k ∈ [r] and as before for all i ∈ [d] let

pt(i, Sk) = P
t[i ∈ Sk].
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Then the calculation (whose justification is identical to the m = 1 setting in (34)) goes:

E



∑

(t,i):i∈Ct

pt(i, Sk) · (ℓ̄t(i)− ℓ̄t(i, Sk))




≤ E



∑

(t,i):i∈Ct

pt(i, Sk) · (ℓ̄t(i)− ℓ̄t(i, Sk))+




≤

√√√√E

∑

(t,i):i∈Ct

pt(i)pt(i, Sk)2f ′′(pt(i, Sk))

(
ℓ̄t(i)− ℓ̄t(i, Sk)

)2
+

ℓ̄t(i)

√√√√E

∑

(t,i):i∈Ct

ℓ̄t(i)

pt(i)f ′′(pt(i, Sk))

≤

√√√√E

∑

(t,i)∈[T ]×[d]

pt(i)pt(i, Sk)2f ′′(pt(i, Sk))

(
ℓ̄t(i)− ℓ̄t(i, Sk)

)2
+

ℓ̄t(i)

√√√√E

∑

(t,i):i∈Ct

ℓ̄t(i)

pt(i)f ′′(pt(i, Sk))

Prop.4
≤

√
2
∑

t

Et[F (pt+1(·, Sk))− F (pt(·, Sk))] ·
√√√√E

∑

(t,i):i∈Ct

ℓ̄t(i)

pt(i)f ′′(pt(i, Sk))

≤
√
2 · E

[
F (pT (·, Sk))− F (p1(·, Sk))

]
·
√√√√E

∑

(t,i):i∈Ct

ℓ̄t(i)

pt(i)f ′′(pt(i, Sk))

≤
√√√√2 · diam|Sk|(F ) · E

∑

(t,i):i∈Ct

ℓ̄t(i)

pt(i)f ′′(pt(i, Sk))
. (59)

Here pt(·, Sk) ∈ [0, 1]d is the vector with i-th coordinate pt(i, Sk). This completes the proof.

We now prove Theorem 11 whose statement we recall for the reader’s convenience.

Theorem 11 Suppose that the best combinatorial action almost surely has total loss at most L
∗
.

Then Thompson sampling with semi-bandit feedback obeys the regret estimate

E[RT ] ≤ O
(
log(m)

√
dL

∗
+md2 log2(L

∗
) + d log(T )

)
.

Proof Apply Lemma 12 with f(x) = −x1/2 and Sk the dyadic partition of [m] (recall (49)) so that

|Sk| ≤ 2k = min(Sk). Here we take

(γ1, γ2) =

(
m log2(L

∗
)

L
∗ ,

md log2(L
∗
)

L
∗

)
.

Moreover

f ′′(x) =
1

4x3/2
, and diamj(F ) ≤

√
jd.
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The common arm regret in (58) is at most

E




∑

(t,i,k):i∈Ct

pt(i, Sk)(ℓ̄t(i)− ℓ̄t(i, Sk))


 ≤ O




r∑

k=1

√√√√d1/2 · E
∑

(t,i):i∈Ct

ℓ̄t(i)

pt(i)f ′′(pt(i, Sk))




≤ O




r∑

k=1

√√√√2k/2d1/2 · E
∑

(t,i):i∈Ct

pt(i, Sk)3/2ℓ̄t(i)

pt(i)


 .

Cauchy–Schwarz and pt(i, Sk) ≤ pt(i) now imply:

E

∑

(t,i):i∈Ct

pt(i, Sk)
3/2ℓ̄t(i)

pt(i)
≤


E

∑

(t,i):i∈Ct

pt(i, Sk)ℓ̄t(i)

pt(i)




1/2

·


E

∑

(t,i):i∈Ct

pt(i, Sk)ℓ̄t(i)




1/2

.

Using γ1 =
m log2(L

∗
)

L
∗ and Lemma 11 (where an extra factor of d comes from summing over all

arms) yields:

E

∑

(t,i):i∈Ct

pt(i, Sk)ℓ̄t(i)

pt(i)
= d · O


L

∗

2k
+ log

(
1

γ1

)√
L
∗

2kγ1


 = O

(
dL

∗

2k

)
.

It follows by the definitions that:

E

∑

(t,i):i∈Ct

pt(i, Sk)ℓ̄t(i) ≤ E

∑

(t,i)∈[T ]×[d]

pt(i)ℓ̄t(i)

= E[LT ].

Combining and assuming E[RT ] ≥ 0, the common arm regret is at most:

E




∑

(t,i,k):i∈Ct

pt(i, Sk)(ℓ̄t(i)− ℓ̄t(i, Sk))


 ≤ O




r∑

k=1

√

2k/2d1/2 ·
√

dL∗

2k
· E[LT ]




= O

(
r∑

k=1

√
d(L

∗
+ E[RT ])

)

= O

(
log(m)

√
d(L

∗
+ E[RT ])

)
.

Using the bound (57) for the rare arm regret and combining, we find

E[RT ] ≤ O

(
md2 log2(L

∗
) + d log(T ) + log(m)

√
d · (L∗

+ E[RT ])

)
.

To finish we apply Lemma 8 with:

• R = E[RT ]
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• X = O(md2 log2(L
∗
) + d log(T ))

• Y = O(log(m)
√
d)

• Z = L
∗

The result is as claimed:

E[RT ] ≤ O
(
log(m)

√
dL

∗
+md2 log2(L

∗
) + d log(T )

)
.

6.5 Semi-bandit Regret Bound from Log Barrier

Theorem 12 Thompson sampling with semi-bandit feedback obeys the regret estimate

E[RT ] ≤ O
(√

dE[L∗] log(T ) + d log(T )
)
.

Proof We apply Lemma 12 with f(x) = − log(Tx+1) and (γ1, γ2) = ( 1
T
, d
T
) with no partitioning

scheme, i.e. S1 = [m]. Then

f ′′(x)−1 = (x+ T−1)2 ≤ x2 +
3x

T

for x ≥ T−1. Moreover

diam(F ) ≤ d log(T + 1) = O(d log(T )).

Therefore by (58), the common arm regret is at most

E



∑

(t,i):i∈Ct

pt(i)(ℓ̄t(i)− ℓ̄t(i, i))


 ≤ O



√√√√d log(T ) · E

∑

(t,i):i∈Ct

ℓ̄t(i)

pt(i)f ′′(pt(i))




≤ O



√
d log(T ) · E

∑

(t,i):i∈Ct

(pt(i) + 3T−1)ℓ̄t(i)




≤ O
(√

d log(T ) · (E[LT ] + 3d)
)

≤ O
(√

d log(T ) · E[LT ] + d
√
log(T ))

)
.

The rare arm regret from (57) is at most γ2T = d; this is absorbed into the O(d
√
log(T )) term. In

light of (56), we have established exactly the same estimate as (36) in the proof of in Theorem 9.

The conclusion follows verbatim.
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7 Thresholded Thompson Sampling

Unlike in the full-feedback case, our first-order regret bound for bandit Thompson Sampling has

an additive O(d log(T )) term. Thus, even when an upper bound L∗ ≤ L
∗

is known, the regret is

T -dependent. In fact, some mild T -dependence is inherent for any o(L∗) regret bound as shown

later in Theorem 17.

However, this mild T -dependence can be avoided by using Thresholded Thompson Sampling.

In Thresholded Thompson Sampling, the rare arms are never played, and the probabilities for

the other arms are scaled up correspondingly. In the bandit setting for γ < 1
d
, the γ-thresholded

Thompson Sampling algorithm is defined by letting Rt = {i : pt(i) ≤ γ} and playing at time t
from the distribution

p̂t(i) =

{
0 if i ∈ Rt

pt(i)
1−

∑
j∈Rt

pt(j)
if i ∈ Ct.

In the combinatorial semi-bandit setting, the corresponding definition is as follows. Set

ηt =
∑

A′∈A:
A′ 6⊆Ct

pt(A
′)

(40)

≤ dγ. (60)

Then we set

p̂t(At = A) =

{
0 if A 6⊆ Ct
pt(A)
1−ηt

if A ⊆ Ct.
(61)

The key point is that Thresholded Thompson sampling plays arm i with probability either at least

γ (if i ∈ Ct) or 0 (if i ∈ Rt).

This algorithm parallels the work [LST18] which uses an analogous modification of the EXP3

algorithm to obtain a first-order regret bound. Note that in the semi-bandit setting, for i ∈ Ct it

may be that p̂t(i) < pt(i). However p̂t(i) ≥ γ always holds, ensuring that Theorem 6 applies.

We first give our main guarantee for Thresholded Thompson sampling in the bandit case with

m = 1, which is based on Tsallis entropy. The result below could be slightly refined by incorporat-

ing the Tsallis entropy Hα(p1) into the regret estimate as in Theorem 8, but we have instead elected

for simplicity in the statement. The analysis works also with Shannon entropy (which again gives

a slightly weaker bound), but seemingly not with the log barrier.

Theorem 13 Suppose that L∗ ≤ L
∗

holds almost surely for a constant L
∗
. Thompson Sampling

for bandit feedback, thresholded with γ = log2(L
∗
)

L
∗ ≤ 1

2d
, has expected regret

E[RT ] = O
(√

dL
∗
+ d log2(L

∗
)
)
.

Proof For any t, i ∈ [T ]× [d] it holds from (61) and (60) that

p̂t(i) ≤
pt(i)

1− ηt
≤ pt(i)

1− γd
. (62)
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We again apply Proposition 3, this time in the general setting which allows p̂t 6= pt. The result is:

E[RT ] = E




∑

(t,i)∈[T ]×[d]

p̂t(i)ℓ̄t(i)− pt(i)ℓ̄t(i, i)




= E
[
(p̂t(i)− pt(i))ℓ̄t(i, i)

]
+ E

[
p̂t(i)(ℓ̄t(i)− ℓ̄t(i, i)

]

≤
(

γd

1− γd

)
· E




∑

(t,i)∈[T ]×[d]

pt(i)ℓ̄t(i, i)


+ E



∑

(t,i):i∈Ct

p̂t(i)(ℓ̄t(i)− ℓ̄t(i, i))




≤ 2γd · E




∑

(t,i)∈[T ]×[d]

pt(i)ℓ̄t(i, i)


+ E



∑

(t,i):i∈Ct

p̂t(i)(ℓ̄t(i)− ℓ̄t(i, i))


 .

Here the last step follows from the assumption γ ≤ 1
2d

. The former expectation is

2γd · E




∑

(t,i)∈[T ]×[d]

pt(i)ℓ̄t(i, i)


 = 2γd · E

[
T∑

t=1

ℓt(a
∗)

]

≤ 2γd · L∗

≤ O(d log2(L
∗
)).

The latter can be bounded in the same way as the non-thresholded results. Intuitively, since (62)

implies

p̂t(i) ≤ 2pt(i) ∀i ∈ Ct, (63)

the calculation should be almost the same. To make this precise we imitate (34) (which was the
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same calculation but with p̂t = pt). The result is:

E



∑

(t,i):i∈Ct

p̂t(i) · (ℓ̄t(i)− ℓ̄t(i, i))+




≤

√√√√E

∑

(t,i):i∈Ct

p̂t(i)pt(i)2f ′′(pt(i))

(
ℓ̄t(i)− ℓ̄t(i, i)

)2
+

ℓ̄t(i)
·
√√√√E

∑

(t,i):i∈Ct

p̂t(i)ℓ̄t(i)

pt(i)2f ′′(pt(i))

≤

√√√√E

∑

(t,i)∈[T ]×[d]

p̂t(i)pt(i)2f ′′(pt(i))

(
ℓ̄t(i)− ℓ̄t(i, i)

)2
+

ℓ̄t(i)
·
√√√√E

∑

(t,i):i∈Ct

p̂t(i)ℓ̄t(i)

pt(i)2f ′′(pt(i))

Prop.4
≤

√√√√2

T∑

t=1

Et[F (pt+1)− F (pt)] ·
√√√√E

∑

(t,i):i∈Ct

p̂t(i)ℓ̄t(i)

pt(i)2f ′′(pt(i))

≤
√

2 · E[F (pT )− F (p1)] ·
√√√√E

∑

(t,i):i∈Ct

p̂t(i)ℓ̄t(i)

pt(i)2f ′′(pt(i))

≤
√√√√2 · (Max(F )− F (p1)) · E

∑

(t,i):i∈Ct

p̂t(i)ℓ̄t(i)

pt(i)2f ′′(pt(i))
.

(64)

All justifications are identical to (34) (which is the special case p̂t = pt of the above). We complete

the estimation using Tsallis entropy as in Theorem 8. Set f(x) = −xα so that

f ′′(x) = α(1− α)xα−2;

Max(F ) = −1;

Min(F ) = −d1−α.

By (63), we then have (for cα, c
′
α constants depending on α):

p̂t(i)ℓ̄t(i)

pt(i)2f ′′(pt(i))
= cα ·

(
p̂t(i)ℓ̄t(i)

pt(i)α

)

≤ c′αp̂t(i)
1−αℓ̄t(i).

Then (64) specializes to

E



∑

(t,i):i∈Ct

p̂t(i) · (ℓ̄t(i)− ℓ̄t(i, i))+


 ≤ O(1) ·

√√√√d1−α · E
∑

(t,i):i∈Ct

p̂t(i)ℓ̄t(i)

pt(i)2f ′′(pt(i))

≤ Oα(1) ·
√

d1−α · E
∑

(t,i):i∈Ct

ℓ̄t(i)p̂t(i)1−α.
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Applying Hölder’s inequality in the first step, we find

E

∑

(t,i):i∈Ct

ℓ̄t(i)p̂t(i)
1−α ≤


E

∑

(t,i):i∈Ct

ℓ̄t(i)




α
E

∑

(t,i):i∈Ct

ℓ̄t(i)p̂t(i)




1−α

≤


L

∗
+ 2

(
log

(
1

γ

)
+ 10

)√
L
∗

γ




α

· E[LT ]
1−α

≤ O(dL
∗
)α · E[LT ]

1−α.

(65)

In the second step of (65), the first term is bounded as usual by Theorem 6. Paralleling (35), the

second term is bounded by observing

E



∑

(t,i):i∈Ct

ℓ̄t(i)p̂t(i)


 ≤ E




∑

(t,i)∈[T ]×[d]

ℓ̄t(i)p̂t(i)




= E[LT ].

The last step in (65) again follows from the choice of γ which ensures

L
∗
+ 2

(
log

(
1

γ

)
+ 10

)√
L

∗

γ
≤ O(L

∗
).

Assuming E[RT ] ≥ 0 and combining the above calculations, we find

E[RT ] ≤ Oα

(
d2 log(L

∗
) +

√
d
(
L
∗
+ E[RT ]

))
.

Applying Lemma 8 as in Theorem 8 (but without the log(T ) term) and choosing arbitrary α ∈
(0, 1) completes the proof.

In the semibandit setting, our previous analysis is similarly adapted.

Theorem 14 Suppose that the best combinatorial action almost surely has total loss at most L
∗
.

Thompson Sampling for semi-bandit feedback, thresholded with γ = m log2(L
∗
)

L
∗ ≤ 1

2d
, has expected

regret

E[RT ] = O
(
log(m)

√
dL

∗
+md log2(L

∗
)
)
.

Proof Thresholding at γ removes at most dγ total probability of actions, so as before p̂t(i) ≤ pt(i)
1−γd

.
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The start of the calculation (this time using Proposition 5) goes

E[RT ] = E




∑

(t,i)∈[T ]×[d]

p̂t(i)ℓ̄t(i)− pt(i)ℓ̄t(i, i)





= E
[
(p̂t(i)− pt(i))ℓ̄t(i, i)

]
+ E

[
p̂t(i)(ℓ̄t(i)− ℓ̄t(i, i)

]

≤
(

γd

1− γd

)
· E




∑

(t,i)∈[T ]×[d]

pt(i)ℓ̄t(i, i)



+ E




∑

(t,i):i∈Ct

p̂t(i)(ℓ̄t(i)− ℓ̄t(i, i))





≤ 2γdL
∗
+

r∑

k=1

E



∑

(t,i):i∈Ct

p̂t(i)pt(i, Sk)

pt(i)
(ℓ̄t(i)− ℓ̄t(i, Sk))


 .

(66)

Take the sets Sk as in (49), the dyadic partition of [m], so that |Sk| ≤ 2k = min(Sk). Thresholding

at γ = m log2(L
∗
)

L
∗ , the first term above is

2γdL
∗ ≤ 2md log2(L

∗
). (67)

To control the main sum involving Ct, we combine the analyses of Lemma 12 and Theorem 13.

For each k ∈ [r], similarly to (34), (59), and (64) we obtain:

E




∑

(t,i):i∈Ct

p̂t(i)pt(i, Sk)

pt(i)
· (ℓ̄t(i)− ℓ̄t(i, Sk))+





≤

√√√√E

∑

(t,i):i∈Ct

p̂t(i)pt(i, Sk)2f ′′(pt(i, Sk))

(
ℓ̄t(i)− ℓ̄t(i, Sk)

)2
+

ℓ̄t(i)
·
√√√√E

∑

(t,i):i∈Ct

p̂t(i)ℓ̄t(i)

pt(i)2f ′′(pt(i, Sk))

≤

√√√√E

∑

(t,i)∈[T ]×[d]

p̂t(i)pt(i, Sk)2f ′′(pt(i, Sk))

(
ℓ̄t(i)− ℓ̄t(i, Sk)

)2
+

ℓ̄t(i)
·
√√√√E

∑

(t,i):i∈Ct

p̂t(i)ℓ̄t(i)

pt(i)2f ′′(pt(i, Sk))

Prop.4
≤

√√√√2
T∑

t=1

Et

[
F (pt+1(·, Sk))− F (pt(·, Sk))

]
·
√√√√E

∑

(t,i):i∈Ct

p̂t(i)ℓ̄t(i)

pt(i)2f ′′(pt(i, Sk))

≤
√

2 · E[F (pT (·, Sk))− F (p1(·, Sk))] ·
√√√√E

∑

(t,i):i∈Ct

p̂t(i)ℓ̄t(i)

pt(i)2f ′′(pt(i, Sk))

≤
√√√√2 · (Max|Sk|(F )− F (p1(·, Sk))) · E

∑

(t,i):i∈Ct

p̂t(i)ℓ̄t(i)

pt(i)2f ′′(pt(i, Sk))
. (68)

Here pt(·, Sk) ∈ [0, 1]d is the vector with i-th coordinate pt(i, Sk). We take f(x) = −x1/2 so that

f ′′(x) =
1

4x3/2
, and diamj(F ) ≤

√
jd. (69)
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We continue from (68), now summing over k ∈ [r]. Recall that |Sk| ≤ 2k = min(Sk) = sk and

max
(
pt(i, Sk), p̂t(i)

)
≤ 2pt(i). (70)

We find:

r∑

k=1

E



∑

(t,i):i∈Ct

p̂t(i)pt(i, Sk)

pt(i)
· (ℓ̄t(i)− ℓ̄t(i, Sk))+




(68),(69)

≤ O




r∑

k=1

√√√√
√

|Sk|d · E
∑

(t,i):i∈Ct

p̂t(i)pt(i, Sk)3/2ℓ̄t(i)

pt(i)2




(70)

≤ O




r∑

k=1

√√√√
√
|Sk|d · E

∑

(t,i):i∈Ct

p̂t(i)1/2pt(i, Sk)1/2ℓ̄t(i)

pt(i)1/2




≤ O




r∑

k=1


|Sk|d · E



∑

(t,i):i∈Ct

p̂t(i)ℓ̄t(i)


E



∑

(t,i):i∈Ct

pt(i, Sk)ℓ̄t(i)

pt(i)






1/4

 .

(71)

By definition, the first inner sum is bounded by

E



∑

(t,i):i∈Ct

p̂t(i)ℓ̄t(i)


 ≤ E




∑

(t,i)∈[T ]×[d]

p̂t(i)ℓ̄t(i)




= E[LT ]

Using Lemma 11 for each i ∈ [d] and then the definition of γ, we obtain

E



∑

(t,i):i∈Ct

pt(i, Sk)ℓ̄t(i)

pt(i)


 ≤ d · O


L

∗

sk
+ log

(
1

γ

)√
L
∗

skγ




≤ O

(
dL

∗

sk

)
.

Substituting the previous two displays into (71) and assuming E[RT ] ≥ 0, we find

r∑

k=1

E




∑

(t,i):i∈Ct

p̂t(i)pt(i, Sk)

pt(i)
· (ℓ̄t(i)− ℓ̄t(i, Sk))+



 ≤ O




r∑

k=1

(
|Sk|d · E[LT ] ·

dL
∗

sk

)1/4




≤ O

(
r∑

k=1

√
d(L

∗
+ E[RT ])

)

≤ O

(
log(m)

√
d(L

∗
+ E[RT ])

)
.
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Combining with (66) and (67) we conclude that

E[RT ] ≤ O

(
md log2(L

∗
) + log(m)

√
d(L

∗
+ E[RT ])

)
.

The proof is now concluded via Lemma 8 similarly to the end of proving Theorem 11.

8 Graphical Feedback

We now consider online learning with graphical feedback. This model interpolates between full-

feedback and bandits by embedding the actions as vertices of a (possibly directed) feedback graph

G. Here playing action at = i allows one to observe the losses ℓt(j) for all j such that an edge

i → j exists in G. We assume that all vertices i ∈ [d] have self-loops i → i, i.e. that we always

observe the loss incurred by the action played. Without this assumption, the optimal regret can be

Θ̃(T 2/3) even if every vertex is observable, see [ACBDK15].

Previous work such as [LZS18, TDD17] analyzed the performance of Thompson Sampling

for these tasks, giving O(
√
T )-type regret bounds which scale with certain statistics of the graph.

However, their analyses only applied for stochastic losses rather than adversarial losses. In this

section, we outline why their analysis applies to the adversarial case as well.

Let G be a possibly directed feedback graph on d vertices, with α = α(G) the size of its

maximum independent set. We use the following lemma:

Lemma 13 ([MS11], Lemma 3) For any probability distribution π on V (G) (with the convention

0/0 = 0):
d∑

i=1

π(i)∑
j∈{i}∪N(i) π(j)

≤ α.

Following [LZS18] we now obtain:

Proposition 6 The coordinate information ratio of Thompson Sampling on an undirected graph

G is at most α(G).

Proof Let pt(i) be as usual for a vertex i and qt(i) =
∑

j∈{i}∪N(i) pt(i) the probability to observe

ℓt(i). Then:

α · Ict ≥
(

d∑

i=1

pt(i)

qt(i)

)(
d∑

i=1

p(i)q(i)(ℓt(i)− ℓt(i, i))
2

)
≥ R2.

In the case of a directed graph, a natural analog of α(G) is the maximum value of

d∑

i=1

π(i)∑
j∈{i}∪N in(i) π(j)
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which is equal to mas(G), the size of the maximal acyclic subgraph of G. However, as noted in

[LZS18], if we assume

πt(i) ≥ ε

for all (t, i) ∈ [T ]× [d], then [ACBDK15] gives the upper bound

d∑

i=1

π(i)∑
j∈{i}∪N in(i) π(j)

≤ 4

(
α · log

(
4d

αε

))
. (72)

Of course, ε = (dT )−3 additional exploration has essentially no effect on the expected regret

(as it induces O(T−2) total variation distance betwen the two algorithms and hence adds O(1/T )
regret). By mixing Thompson sampling with an ε = (dT )−3 probability of uniform exploration at

each time, the bound (72) thus applies and we obtain a α-dependent bound for directed graphs as

well.

Theorem 15 Thompson Sampling on a sequence Gt of undirected graphs achieves expected regret

E[RT ] = O




√√√√Hc(p1)

T∑

t=1

α(Gt)


 .

Moreover Thompson Sampling on a sequence Gt of directed graphs achieves expected regret

E[RT ] = O




√√√√Hc(p1) log(dT )
T∑

t=1

α(Gt)


 .

As in [LZS18], this analysis applies even when the Thompson sampling algorithm does not

know the graphs Gt, but only observes the relevant neighborhood feedback after choosing each

action at.

9 Negative Results for Thompson Sampling

Here we present some negative results. First, Theorem 16 states that Thompson Sampling against

an arbitrary prior may have Ω(T ) regret a constant fraction of the time (but will therefore also have

−Ω(T ) regret a constant fraction of the time). By contrast, there exist algorithms which have low

regret with high probability even in the frequentist setting [ACBFS02]. Bridging this gap with a

variant of Thompson Sampling would be very interesting.

Theorem 16 For all T ≥ T0 at least an absolute constant, there exists a prior distribution on

d = 2 arms for which Thompson Sampling incurs at least T
3

regret with probability at least 1
3

(with

either full or bandit feedback).

Proof We construct such a prior distribution with 2 arms. First for t ≤ T/3 we take ℓt(1) = 1
and ℓt(2) = 0 almost surely. Afterward exactly one of the following two possibilities occurs, each

with probability 1
2
.
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1. For t > T/3, we have ℓt(1) = ℓt(2) = 0.

2. For t > T/3, we have ℓt(1) = 0 and ℓt(2) = 1.

In this construction, Thompson Sampling will pick arm 1 with probability 1
2

during each of

the first T/3 rounds. Hence there is an 1 − oT→∞(1) probability to have LT ≥ T
3

. On the other

hand, L∗ = 0 with probability 1
2

from the first case above. Therefore RT ≥ T
3

with probability
1
2
− oT→∞(1). This completes the proof.

Recall that even in Theorem 8 there was an additive d log(T ) term in the expected regret. Of

course, once the player incurs loss L
∗
+1 on arm i, Thompson sampling will never play arm i again.

Therefore the total loss for Thompson sampling (ordinary or Thresholded) can never be more than

d(L
∗
+ 1). Theorem 8 leaves open the possibility that Ω(dL

∗
) regret is eventually reached when

T is extremely large. In other words, our regret bound for ordinary Thompson sampling becomes

trivial for extremely large T when d and L
∗

are fixed. Theorem 17 below shows that this reflects

reality. Namely, there do exist prior distributions for which Ω(dL
∗
) expected regret is incurred by

Thompson sampling for large T .

Theorem 17 Let d ≥ 3. There exist prior distributions against which Thompson Sampling achieves

Ω(dL
∗
) expected regret for very large T with bandit feedback, even given the value L

∗
.

Proof We construct such a prior distribution on d ≥ 3 arms is as follows. First pick a uniformly

random “good” arm a∗ ∈ [d]. For i ∈ [d]\{a∗}, set arm i to be either “bad” or “terrible” uniformly

at random, independently over different arms i. Denote by B and T the sets of bad and terrible

arms, respectively.

The (random) loss sequence (ℓt(i))(t,i)∈[T ]×[d] is constructed as follows. First at time i, we set

ℓt(i) = 1i 6=a∗ , i ∈ [d].

In other words, all arms except a∗ receive a loss. Next for a∗, every subsequent loss ℓt(a
∗) is

uniformly random in {0, 1} until the first time τ with total loss Lτ (a
∗) = L

∗
is reached. For t ≥ τ ,

we set ℓt(a
∗) = 0.

For each bad arm i ∈ B, we do the same with ℓt(i) uniformly random in {0, 1} for t > 1, but

stop at total loss L
∗
+ 1 instead of L

∗
.

For a terrible arm i ∈ T , we let the losses ℓt(i) ∈ {0, 1} for t > 1 be uniformly random for all

time (so e.g. the total loss grows linearly with T ).

If a1 = a∗, then Thompson sampling will observe ℓt(a1) = 0 and thus infer that a∗ = a1.

Hence in this case we have at = a∗ for all t ≥ 1 and there will be no regret. However, suppose

that a1 6= a∗, which holds with probability d−1
d

. We claim that on this event, the player will pay

loss L
∗
+1 on each terrible arm with probability 1− o(1) for sufficiently large T . This implies the

desired result.

Indeed, suppose i ∈ T satisfies i 6= a1 was not played at time 1. Fix a time t and let αi(t) < t
be the most recent time that at̂ = i was played. Moreover suppose that Lt(i) < L

∗
. Then we claim

that pt(i) is uniformly bounded away from 0 until the value αi(t) changes, i.e. until the next time

s > t that as = i.
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To do this we consider the alternative hypothesis for the player which differs from the truth

in that a∗ ∈ B is actually a bad arm, while i is actually the good arm. The former change only

affects the distribution of the sequence (ℓt(a
∗))t≥1 in the value ℓ1(a

∗), which was not observed by

assumption. Moreover the player only makes Bayesian updates regarding the latter change when

at = i is played. Finally this evidence is never conclusive until the player has suffered loss

∑

s≤t

ℓs(i) · 1at=i > L
∗
.

It follows that while αi(t) is constant, the posterior likelihood ratio between this alternative hy-

pothesis and the true arm identities is at least ε(αi(t)) > 0.

Additionally, with probability 1 the player’s probability assigned to the true arm configuration

is bounded away from 0 uniformly in time. Indeed that probability is a martingale, and if this were

false then the probability would have to converge to 0. But the player’s subjective probability of

this (true) statement cannot converge to 0, because revealing more information (i.e. all losses for

all times) would then also assign the true statement probability 0 by the martingale property, a

contradiction.

Since for fixed αi(t) the Bayes factor between the truth and the alternative is bounded, we see

that this alternative with arm i as the good arm has probability at least ε′(αi(t)) > 0 not depending

explicitly on t.
We have just argued that Thompson Sampling with this prior will have a uniformly positive

probability to play such an arm i until the nex time it plays i again. Thus, with probability d−1
d

(for

the first arm not to be good), Thompson Sampling accumulates loss L
∗
+ 1 on every terrible arm

except the first arm it plays when run for an infinite amount of time. By countable exhaustion, the

same holds for sufficiently large finite T with loss L
∗
+ 1 − o(1) ≥ L

∗
. This results in Ω(dL

∗
)

regret since the average number of terrible arms is d−1
2

.

Finally we show that Thompson sampling does not achieve good small-loss bounds for contex-

tual bandits. Recall that abstractly, contextual bandit is equivalent to graph feedback in which:

• The graphs change from round to round.

• All graphs are vertex-disjoint unions of at most K cliques.

• The losses for a round are constant within cliques.

The existence of an algorithm achieving O(
√
L∗) regret for contextual bandits was asked in

[AKL+17] and resolved positively in [AZBL18] with a computationally intractable algorithm, and

later in [FK21] with an efficient algorithm assuming access to a regression oracle. It would be

interesting to design a natural Bayesian algorithm matching these guarantees.

Theorem 18 There exists a prior distribution on which Thompson Sampling achieves, with high

probability, regret Ω(
√
T ) for a contextual bandit problem with L∗ = 0 optimal loss, K = 2

cliques, and d = O(
√
T ) total arms.

Proof Set S =
√
T and fix d ≥ 2S. Form S distinct small cliques, with random but disjoint

sets of d
2S

arms each. Call these cliques C1, . . . , CS. Also generate independent uniformly random
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bits b1, . . . , bS ∈ {0, 1}. For each j ∈ {0, 1, . . . ,
√
T − 1}, consider the set of times Tj = {jS +

1, . . . , (j + 1)S} ⊆ [T ].
For t ∈ Tj , we set the feedback graph Gt consist of the clique Cj and the complementary

clique on [d]\Cj . We take the loss on the small clique Cj to be bi, and 0 on the complement [d]\Cj .

Finally, at the last time T pick at random a single arm a∗ with no loss so far and make the loss

ℓt(i) = 1i 6=a∗ .

(This corresponds to the trivial clique on a∗, and the clique on [d]\{a∗}.) Then clearly L∗ = 0 for

arm a∗.
However Thompson Sampling will incur a constant expected loss for each clique Cj . This is

because until observing a loss on Cj during t ∈ Tj , there is a Θ(T−1/2) probability that a∗ ∈ Cj

eventually holds, and there are |Tj | = Θ(T 1/2) opportunities for Thompson sampling to choose an

arm in Cj . In all, Thompson sampling incurs expected loss Θ(S) = Θ(
√
T ) as claimed.
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[LS19] Tor Lattimore and Csaba Szepesvári. An information-theoretic approach to minimax

regret in partial monitoring. In Conference on Learning Theory, COLT 2019, 25-28

June 2019, Phoenix, AZ, USA, pages 2111–2139, 2019.

[LST18] T. Lykouris, K. Sridharan, and E. Tardos. Small-loss bounds for online learning

with partial information. In Proceedings of the 31st Annual Conference on Learning

Theory (COLT), 2018.

[LTW20] Thodoris Lykouris, Eva Tardos, and Drishti Wali. Feedback graph regret bounds for

Thompson Sampling and UCB. In Proceedings of the 31st International Conference

on Algorithmic Learning Theory (ALT), 2020.

[LZS18] Fang Liu, Zizhan Zheng, and Ness Shroff. Analysis of Thompson Sampling for

Graphical Bandits Without the Graphs. In Proceedings of the 34th Conference on

Uncertainty in Artificial Intelligence (UAI), 2018.

[MS11] Shie Mannor and Ohad Shamir. From bandits to experts: On the value of side-

observations. In Advances in Neural Information Processing Systems, pages 684–

692, 2011.

[RVR16] Daniel Russo and Benjamin Van Roy. An information-theoretic analysis of thomp-

son sampling. The Journal of Machine Learning Research, 17(1):2442–2471, 2016.

51



[TDD17] Aristide CY Tossou, Christos Dimitrakakis, and Devdatt P Dubhashi. Thompson

sampling for stochastic bandits with graph feedback. In AAAI, pages 2660–2666,

2017.

[Tho33] W. Thompson. On the likelihood that one unknown probability exceeds another in

view of the evidence of two samples. Bulletin of the American Mathematics Society,

25:285–294, 1933.

[ZL19] Julian Zimmert and Tor Lattimore. Connections Between Mirror Descent, Thomp-

son Sampling and the Information Ratio. In Advances in Neural Information Pro-

cessing Systems 32 (NIPS), 2019.

A Proof of Theorem 6

Here we prove Theorem 6. Recall the statement:

Theorem 6 Consider an online learning game with arm set [d] and random sequence of losses

ℓt(i), in the Bayes-optimal setting. Assume there always exists an action with total loss at most L
∗
.

Each round, the player plays some action At ∈
(
[d]
m

)
, i.e. a set of m ≥ 1 arms, and pays/observes

the loss for each of them. Moreover suppose a partition (17) exists and the properties above hold

for it. Then the following statements hold for every i ∈ [d].

A) The expected loss incurred by the player from arm i while i ∈ Rt is rare is

E




∑

t∈[T ]: i∈Rt

p̂t(i)ℓt(i)


 ≤ 2γ2L

∗
+ 8 log(T ) + 4.

B) The expected total loss that arm i incurs while i ∈ Ct is common is

E




∑

t∈[T ]: i∈Ct

ℓt(i)


 ≤ L

∗
+ 2

(
log

(
1

γ1

)
+ 10

)√
L

∗

γ1
.

We recall the notations from Table 1, which feature crucially in our proof.

ℓRt (i) = ℓt(i) · 1i∈Rt uR
t (i) =

ℓRt (i)·1i∈At

γ2
LR
t (i) =

∑
s≤t ℓ

R
s (i) UR

t (i) =
∑

s≤t u
R
s (i)

ℓCt (i) = ℓt(i) · 1i∈Ct uC
t (i) =

ℓCt (i)·1i∈At

p̂t(i)
LC
t (i) =

∑
s≤t ℓ

C
s (i) UC

t (i) =
∑

s≤t u
C
s (i)

To control the error of the estimators Ut we rely on Freedman’s inequality ([Fre75]), a refine-

ment of Hoeffding-Azuma which is more efficient for highly asymmetric summands.

Theorem 19 (Freedman’s Inequality) Let St =
∑

s≤t xs be a martingale sequence, so that for

some discrete-time filtration (Ft)t∈Z≥0
,

E[xs|Fs−1] = 0.
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Suppose that a uniform and almost-sure one-sided estimate xs ≤ M holds. Also define the condi-

tional variance

Ws = V ar[Xs|Fs−1]

and set Vt =
∑

s≤tWs to be the total variance accumulated so far.

Then with probability at least 1− e−
a2

2b+Ma , we have St ≤ a for all t with Vt ≤ b.

Martingale concentration is useful to analyze the error of the unbiased estimators UC
t (i). For

the underbiased estimators it is correspondingly helpful to use supermartingale concentration.

Recall that a supermartingale sequence (St)t≥0 relative to a filtration F satisfies

E[St | Ft−1] ≤ St−1,

i.e. it decreases on average. Using a discrete-time Doob-Meyer decomposition (see e.g. [KS12,

Chapter 1.4]) of a bounded supermartingale into the sum of a martingale and a decreasing pre-

dictable process, we obtain the following. (Here “predictable” means that Dt is Ft−1-measurable.)

Corollary 2 Let St =
∑

s≤t xs be a supermartingale sequence for t ≥ 1, so that E[xs|Fs−1] ≤ 0.

Suppose there is a uniform one-sided estimate xs − E[xs|Fs−1] ≤ M . Also define the conditional

variance

Ws = V ar[Xs|Fs−1]

and set Vt =
∑

s≤tWs to be the total variance accumulated so far.

Then with probability at least 1− e−
a2

2b+Ma , we have St ≤ a for all t with Vt ≤ b.

Proof Write St = Mt + Dt as the sum of a martingale Mt and a decreasing predictable process

Dt with D1 = 0. Explicitly,

Mt =
∑

1≤s≤t

Ss −
∑

1≤s≤t−1

E[Ss+1 | Fs];

Dt =
∑

1≤s≤t−1

(Ss − E[Ss+1 | Fs]).

Then apply Theorem 19 to Mt and observe that St ≤ Mt almost surely for all t.

Towards proving the two claims in Theorem 6 we first prove two lemmas. They follow directly

from proper applications of Freedman’s Theorem or its corollary. The second was used previously

in the main body as well.

Lemma 14 In the context of Theorem 6, with probability at least 1− 2
T 2 , for all t with LR

t (i) ≤ L
∗

it holds that

UR
t (i) ≤ 2L

∗
+

8 log T

γ2
.

Lemma 9 Fix an arm i ∈ [d]. In the context of Theorem 6, fix constants λ ≥ 2 and L̃ > 0 and

assume γ1 ≥ 1/L̃. With probability at least 1− 2e−λ/2, for all t such that LC
t (i) ≤ L̃:

UC
t (i) ≤ LC

t (i) + λ

√
L̃

γ1
.
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Remark 2 Lemma 9 has no dependence on L
∗

and holds with L
∗
= ∞. For proving Theorem 6

we will simply take L̃ = L
∗
. However it is necessary to apply Lemma 9 with L̃ 6= L

∗
to analyze

the semi-bandit setting.

Proof of Lemma 14:

We analyze the (one-sided) error in the underestimate UR
t (i) for LR

t (i). Define the super-

martingale St =
∑

s≤t xs for

xs = xs(i) := uR
s (i)− ℓRs (i).

We apply Corollary 2 to this supermartingale, taking

(a, b,M) =


4 log T

γ2
+ 4

√
L

∗
log T

γ2
,
L
∗

γ2
,
1

γ2


 .

For the filtration, we take the loss sequence (ℓt(i))t∈[T ] as known from the start so that the only

randomness is from the player’s choices. Equivalently, we act as the observing adversary; note

that St is still a supermartingale with respect to this filtration. Crucially, this means the conditional

variance is bounded by Wt ≤ ℓRt (i)

γ2
. Therefore Vt ≤ LR

t (i)

γ2
. Note also that with these parameters,

e−
a2

2b+Ma ≤ e−
a2

4b + e−
a

2M ≤ 1

T 2
+

1

T 2
=

2

T 2
.

Therefore by Freedman’s inequality, with probability 1− 2
T 2 , for all t with LR

t (i) ≤ L
∗

we have

St ≤ a =
4 log T

γ2
+ 4

√
L

∗
log T

γ2

and hence

UR
t (i) ≤ LR

t (i) +
4 log T

γ2
+ 4

√
L

∗
log T

γ2

≤ L
∗
+

4 log T

γ2
+ 4

√
L

∗
log T

γ2

≤ 2L
∗
+

8 log T

γ2
.

Proof of Lemma 9:

As discussed previously we use the estimator

UC
t (i) =

∑

s≤t

ℓCs (i) · 1is=i

p̂s(i)
.
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for LC
t (i). We will again apply Freedman’s inequality from the point of view of the adversary, this

time to the martingale sequence St =
∑

s≤t xs for

xs = xs(i) :=

(
uC
s (i)

p̂s(i)
− ℓCs (i)

)
.

We have xs ≤ 1
γ1

= M and Vt ≤ LC
t (i)

γ1
. We use the parameters b = L̃

γ1
and a = λ

√
L̃
γ1

. Using

γ ≥ 1

L̃
in the penultimate inequality and then λ ≥ 2 yields the estimate:

e−
a2

2b+Ma ≤ e−
a2

4b + e−
a

2M ≤ e−
λ2

4 + e−
λ2
√

L̃γ1
2 ≤ e−

λ2

4 + e−
λ
2 ≤ 2e−

λ
2 .

Freedman’s inequality implies that with probability at least 1− 2e−λ/2, for all t with LC
t (i) ≤ L̃,

UC
t (i) ≤ LC

t (i) + λ

√
L̃

γ1
.

Now we use these lemmas to prove Theorem 6. In both halves, the main idea is that if some-

thing holds with high probability for any loss sequence, then the player must assign it high proba-

bility on average.

Proof of Theorem 6A:

Let E be the event that for all t with LR
t (i) ≤ L

∗
we have

UR
t (i) ≤ 2L

∗
+

8 log T

γ2
.

By Lemma 14, P[E] ≥ 1 − 2
T 2 for any fixed loss sequence. The player does not know what the

true loss sequence is, but his prior is a mixture of possible loss sequences, and so the player also

assigns E a probability at least 1− 2
T 2 at the start of the game. Let F denote the event that

Pt[E] ≥ 1− 1

T
, ∀t ∈ [T ].

Since Pt[E] is a martingale, Doob’s inequality implies

P[F ] ≥ 1− 2

T
.

Assume now that F holds, so that Pt[E] ≥ 1− 1
T

at all times. Let τ be the first time at which

UR
τ (i) > 2L

∗
+

8 log T

γ2
.
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(If no such time exists, set τ = +∞.) Then as long as E holds we must have LR
t (i) > L

∗
and so

a∗ 6= i. Therefore, if F holds then for all t ≥ τ ,

Pt[i ∈ At] = pt(i)

= Pt[i ∈ A∗]

≤ Pt

[
LR
t (i) ≤ L

∗
]

≤ 1− Pt[E]

≤ 1/T.

It follows that

1F ·
T∑

t=τ+1

pt(i) ≤ 1. (73)

On the other hand, since P[F ] ≥ 1− 2
T

the leftover contribution from F being false is bounded by

E

[
(1− 1F ) ·

T∑

t=τ+1

pt(i)

]
≤ 2. (74)

To finish, note that

γ2U
R
t (i) =

∑

s≤t

ℓRs (i) · 1i∈As

is exactly the total loss paid by the player from arm i while i ∈ Rt is rare. Therefore τ is the

smallest value satisfying

γ2U
R
τ (i) > γ2

(
2L

∗
+

8 log T

γ2

)
= 2γ2L

∗
+ 8 log T.

Since the increments of UR
t (i) are bounded by 1/γ2, we have almost surely
∑

t≤τ

ℓRt (i)1i∈At = γ2U
R
τ (i)

≤ 2γ2L
∗
+ 8 log(T ) + 1.

Combining with (73) and (74) we finally obtain

E




∑

t∈[T ]: i∈Rt

p̂t(i)ℓt(i)


 = E




∑

t∈[T ]: i∈Rt

ℓt(i)1i∈At




= E



∑

t∈[T ]

ℓRt (i)1i∈At




≤ E

[
∑

t≤τ

ℓRt (i)1i∈At

]
+ E

[
1F

T∑

t=τ+1

ℓRt (i)1i∈At

]

+ E

[
(1− 1F )

T∑

t=τ+1

ℓRt (i)1i∈At

]

≤ 2γ2L
∗
+ 8 log T + 4.
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Proof of Theorem 6B:

For λ ≥ 0, let Eλ be the event that for all t with LC
t (i) ≤ L

∗
,

UC
t (i) ≤ LC

t (i) + λ

√
L
∗

γ1
.

We apply Lemma 9 with L̃ = L
∗
, obtaining

P[Eλ] ≥ 1− 2e−λ/2, ∀λ > 2.

Let τλ be the first time such that

UC
τλ
(i) > L

∗
+ λ

√
L

∗

γ1
.

(If no such time exists, take τλ = +∞.) As before, note that at the start we have

P1[E] ≥ 1− 2e−λ/2

since the initial prior is some mixture of loss sequences. By definition, if Eλ holds and τλ < ∞
then i /∈ A∗. Hence

E[pτλ∧T (i)] ≤ E[1− Pτλ [Eλ]]

= 1− P[Eλ]

≤ 2e−λ/2

by optional stopping (on the martingale pt(i)) since UC
t (i) is computable by the player (i.e. adapted

to the player’s filtration). By Doob’s inequality applied to the same martingale,

P

[
sup

t∈[τλ,T ]

pt(i) > γ1

]
≤ E[pτλ∧T (i)]

γ1

≤ 2e−λ/2

γ1

= 2e−
λ−2 log(1/γ1)

2 .

Now, let λ∗ be such that UC
t (i) = L

∗
+ λ∗

√
L
∗

γ1
at the last time t when pt(i) > γ1. What we have

just shown is equivalent to

P[λ∗ > λ] ≤ 2e−
λ−2 log(1/γ1)

2 .

In other words, λ∗ has tail bounded above by an exponential random variable with half-life 2 log(2)
starting at 2 log(1/γ1) + 2 log(2), and therefore

E[λ∗] ≤ 2 log(1/γ1) + 10.
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However, we always have UC
T (i) = L

∗
+λ∗

√
L
∗

γ1
since after the last time t with pt(i) > γ1, the value

of UC
t (i) cannot change. Recall also that UC

T (i) is an unbiased estimator for LC
T (i). Combining

completes the proof:

E[LC
T (i)] = E[UC

T (i)]

= L
∗
+ E[λ∗]

√
L
∗

γ1

≤ L
∗
+ 2

(
log

(
1

γ1

)
+ 10

)√
L

∗

γ1
.
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