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Abstract

We explore the fundamental limits of heterogeneous distributed detection in an anonymous sensor network with

n sensors and a single fusion center. The fusion center collects the single observation from each of the n sensors

to detect a binary parameter. The sensors are clustered into multiple groups, and different groups follow different

distributions under a given hypothesis. The key challenge for the fusion center is the anonymity of sensors – although

it knows the exact number of sensors and the distribution of observations in each group, it does not know which

group each sensor belongs to. It is hence natural to consider it as a composite hypothesis testing problem. First,

we propose an optimal test called mixture likelihood ratio test, which is a randomized threshold test based on the

ratio of the uniform mixture of all the possible distributions under one hypothesis to that under the other hypothesis.

Optimality is shown by first arguing that there exists an optimal test that is symmetric, that is, it does not depend

on the order of observations across the sensors, and then proving that the mixture likelihood ratio test is optimal

among all symmetric tests. Second, we focus on the Neyman-Pearson setting and characterize the error exponent

of the worst-case type-II error probability as n tends to infinity, assuming the number of sensors in each group is

proportional to n. Finally, we generalize our result to find the collection of all achievable type-I and type-II error

exponents, showing that the boundary of the region can be obtained by solving a convex optimization problem.

Our results elucidate the price of anonymity in heterogeneous distributed detection, and can be extended to M -ary

hypothesis testing with heterogeneous observations generated according to hidden latent variables. The results are

also applied to distributed detection under Byzantine attacks, which hints that the conventional approach based on

simple hypothesis testing might be too pessimistic.

I. INTRODUCTION

In wireless sensor networks, the cost of identifying individual sensors increases drastically as the number of

sensors grows. For distributed detection [1], when the observations follow identical and independent distributions

(i.i.d.) across all sensors, identifying individual sensors is not very important. When the fusion center can fully access
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the observations, the empirical distribution (types) of the collected observation is a sufficient statistic. When the

communication between each sensor and the fusion center is limited, for binary hypothesis testing it is asymptotically

optimal to use the same local decision function at all sensors [2]. Hence, anonymity is not a critical issue for the

classical (homogeneous) distributed detection problem.

However, when the joint distribution of the observations is heterogeneous, that is, marginal distributions of

observations vary across sensors, sensor anonymity may deteriorate the performance of distributed detection, even for

binary hypothesis testing. One such example is distributed detection under Byzantine attack [3], where a fixed number

of sensors are compromised by malicious attackers and report fake observations following certain distributions. Even

if the fusion center is aware of the number of compromised sensors and the attacking strategy that renders worst-

case detection performance (the least favorable distribution as considered in [4]–[6]), it is more difficult to detect

the hidden parameter when the fusion center does not know which sensors are compromised.

In this paper, we aim to quantify the performance loss due to sensor anonymity in heterogeneous distributed

detection, with n sensors and a single fusion center. Each sensor (say sensor i, i ∈ {1, ..., n}) has a single random

observation Xi. The goal of the fusion center is to estimate the hidden parameter θ ∈ {0, 1} (that is, binary

hypothesis testing) from the collected observations. The distributions of the observations, however, are heterogeneous

– observations at different sensors may follow different sets of distributions. In particular, we assume that these n

sensors are clustered into K groups {I1, ..., IK}, and group Ik ⊆ {1, ..., n} comprises nk sensors, for k = 1, ...,K.

Under hypothesis Hθ, θ ∈ {0, 1},
Xi ∼ Pθ;k, for i ∈ Ik.

Moreover, the sensors are anonymous, that is, the collected observations at the fusion center are unordered. In

other words, although the fusion center is fully aware of the heterogeneity of it observation, including the set of

distributions {Pθ;k | θ ∈ {0, 1}, k = 1, ...,K} and {nk | k = 1, ...,K}, it does not know what distribution each

individual sensor will follow.

To address the lack of knowledge about the exact distributions of the observations, we formulate the detection

problem as a composite hypothesis testing problem, where the vector observation of length n follows a product

distribution within a finite class of n-letter product distributions under a given parameter θ. The class consists of
(

n
n1,...,nK

)
possible product distributions, each of which follows one of the

(
n

n1,...,nK

)
possible partitions of the

sensors. The fusion center takes all the possible partitions into consideration when detecting the hidden parameter.

We mainly focus on a Neyman-Pearson setting, where the goal is to minimize the worst-case type-II error probability

such that the worst-case type-I error probability is not larger than a constant. Towards the end of this paper, we

also extend our results to a Bayesian setting, where a binary prior distribution is laid on H0 and H1.

Our main contribution comprises three parts. First, we develop an optimal test, termed mixture likelihood ratio

test (MLRT), for the anonymous heterogeneous distributed detection problem. MLRT is a randomized threshold

test based on the ratio of the uniform mixture of all the possible distributions under hypothesis H1 to the uniform

mixture of those under H0. To prove the optimality, we first argue that there exists an optimal test that is symmetric,

that is, it does not depend on the order of observations across the sensors, and thus we only need to consider tests
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which depend on the histogram of observations. In other words, the histogram of observations contains sufficient

information for optimal detection. Moreover, all possible distributions over the space of observations Xn under H0

(or H1) turn out to be the same one over the space of its histogram, so if we test the hypothesis according to the

histogram, the original composite hypothesis testing problem boils down to a simple hypothesis testing problem.

The one-to-one correspondence between symmetric tests and tests defined on the histogram is the key to derive

optimal test. This result extends to M -ary hypothesis testing with heterogeneous observations generated according

to hidden latent variables, each of which is associated to a observation, but the decision maker only knows the

histogram of the latent variables.

Second, for the case that the alphabet X is a finite set, we characterize the error exponent of the minimum

worst-case type-II error probability as n→∞ with the ratios nk
n → αk ∀ k = 1, ...,K. The optimal error exponent

turns out to be the minimization of a linear combination of Kullback-Leibler divergences (KL divergences) with the

k-th term being D (Uk ‖P1;k) and αk being the coefficient, for k = 1, ...,K. The minimization is over all possible

distributions U1, ..., UK such that
∑K
k=1 αkUk =

∑K
k=1 αkP0;k. In a simple hypothesis testing problem with i.i.d.

observations, a standard approach to derive the type-II error exponent is invoking a strong converse lemma (see, for

example, Chapter 12 in [7]) to relate the type-I and type-II error probability of an optimal test, and then applying

the large deviation toolkit on the optimal test to single-letterize and find the exponent. In contrast, in our problem,

neither can the mixture distributions in the optimal test be decomposed into a product form, nor can the acceptance

region be bounded by a large deviation event, making this approach fail to characterize the error exponent. To

circumvent the difficulties, we turn to the method of types and use bounds on types (empirical distributions) for

single-letterization.

For achievability, instead of the optimal MLRT which is difficult to single-letterize, we employ a simpler test

that resemble Hoeffding’s test [8]. For the converse, we use an argument based on the method of types. We propose

a generalized divergence Dα1,...,αK (P1, ..., PK ;Q1, ..., QK) from a group of distributions {Q1, ..., QK} to another

group of distributions {P1, ..., PK}, which plays a similar role as KL divergence in simple hypothesis testing

problems. The key to the characterization of the optimal error exponent is to prove a generalized Sanov Theorem

for the composite setting we considered. Based on the characterized error exponent, given the number of bits that a

sensor can send to the fusion center, one can also formulate an optimization problem to find the best local decision

functions, as in the homogeneous case [2].

Finally, we extend our results from the Neyman-Pearson setting to a Bayesian setting, minimizing the average

probability of error (that is, combining type-I and type-II error). It can be shown that the optimal test is com-

putationally infeasible, since it involves summation over all possible permutations. To overcome the complexity

issue, we propose an asymptotically optimal test based on information geometry, which achieves the same error

exponent of the average probability of error. We also study the exponent region R, the collection of all pairs of

achievable type-I and type-II error exponents. In particular, we propose a way to parametrize the contour of R
based on information projection. However, the closed-form expression of R involves an explicit solution of a convex

optimization problem, which remains unsettled.

As a by-product, we apply our results for K = 2 to the distributed detection problem under Byzantine attack
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and further obtain bounds on the worst-case type-II error exponent. Compared with the worst-case exponent in

an alternative Bayesian formulation [3] where the observation of sensors are assumed to be i.i.d. according to a

mixture distribution, it is shown that the worst-case exponent in the composite testing formulation is strictly larger.

This hints that the conventional approach taken in [3] might be too pessimistic.

Related Works

Decentralized detection is a classical topic, and attracts extensive attention in recent years due to its application

in wireless sensor networks. See, for example, [1], [2], [6], [9]. Most works in decentralized detection are focused

on finding optimal local decision function in both Neyman-Pearson and Bayesian regime. Under some assumptios

on the distribution of a given hypothesis, optimal design criteria of local decision function and the decision rule at

the fusion center are given. Unlike the anonymous setting considered in our work, the above-mentioned classical

works assume fusion centers, as well as the local sensors, have perfect knowledge about the joint distribution, and

hence the decision rules are designed according to it. This is termed an “informed" setting in our paper and is

used as a baseline to compare with and see the price of anonymity. On the other hand, in our setting, the fusion

center collects observations without knowing the exact index of each one, and thus the problem is formulated into

a composite hypothesis testing problem.

Composite hypothesis testing is a long-standing problem in statistics, and is notoriously difficult to find an optimal

test. In general, the uniform most powerful (UMP) test does not exist, see, for example, Section 8.3 in [10]. Even if

we relax the performance evaluation to the minimax regime, the general form of the optimal test is still unknown,

except for some special case. For example, [5] considered the case that the composite hypothesis class Hθ is

formed by all ε-contaminated distributions of Pθ, that is, {(1− ε)Pθ + εQ | ∀ possible distributions Q}. Under this

structure, Huber showed that a censored version of likelihood ratio test is optimal in the minimax regime. Other

works such as [8], [11] followed the idea of Hoeffding’s test [8] and proposed an universal asymptotically optimal

test when the null hypothesis is simple. Meanwhile, in our setting, neither the parameter space of the considered

distributions is continuous, nor the null hypothesis is simple, making their approaches hard to extend. Another

common test for composite hypothesis testing is the generalized likelihood ratio test (GLRT). The optimality of

GLRT is guaranteed under some circumstances, see, for example, [12]. However, the results in [12] hold only for

simple null and composite alternative. In contrast, our result indicates that GLRT is not optimal in our setting.

The concept of Byzantine attack can be traced back to [13] (known as the “Byzantine Generals Problem”), in

which reliability of a computer system with malfunctioned components is studied. After that, Byzantine model

is developed and generalized by several research areas, especially in communication security. For example, the

distributed detection with Byzantine attack is studied under the Neyman-Pearson formulation in [3] and under the

Bayesian setting in [14]. In their settings, each sensor is assumed to be compromised with probability α, so the

observation turns out to be drawn identically and independently from an mixture distribution, making the hypothesis

testing problem simple, and thus Neyman-Pearson lemma can be applied. In contrast, in our work we assume the

number of Byzantine sensors is fixed and is αn, where n is the total number of sensors, and thus the problem falls

into a composite hypothesis testing instead of the mixture setting.
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This work is presented in part at ISIT 2018. In the conference version [15], upper and lower bounds on the type-II

error exponent were given, where the lower bound (achievability) is based on an modified version of Hoeffding’s

test, and the upper bound (converse) is derived by relaxing the original problem into a simple hypothesis testing.

In this journal version, we show that the achievability bound in the conference version is indeed tight, closing the

gap between the upper and lower bounds.

The rest of this paper is organized as follows. In Section II, we formulate the composite hypothesis testing

problem for anonymous heterogeneous distributed detection and provide some background. In Section III, the main

results are provided, where the proofs are delegated to Section IV and V. In Section VI, we generalize the results

to the Bayesian setting, and in Section VII, we briefly discuss the case when X is not finite, and the case when

partial information about the group assignment is available at the fusion center. Finally, we conclude the paper with

some further directions and open questions in Section VIII.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Setup

Following the description of the setting in Section I, let us formulate the composite hypothesis testing problem.

Let σ(i) denote the label of the group that sensor i belongs to. This labeling σ(·), however, is not revealed to

the fusion center. Hence, the fusion center needs to consider all
(

n
n1,...,nK

)
possible σ : {1, ..., n} → {1, ...,K}

satisfying

|{i | σ(i) = k}| = nk, ∀ k = 1, ...,K, (1)

and decides whether the hidden θ is 0 or 1. For notational convenience, let ν denote the vector [n1 ... nK ]ᵀ, and

let Sn,ν denote the collection of all labelings satisfying (1).

Hence, the fusion center is faced with the following composite hypothesis testing problem, where the goal is to

infer the parameter θ:

Hθ : Xn ∼ Pθ;σ ,
∏n
i=1 Pθ;σ(i), for some σ ∈ Sn,ν .

As mentioned in Section I, throughput the paper we consider binary hypothesis testing, that is, θ ∈ {0, 1}.
Let each single observation take values from some measurable space (X ,F), where F is a σ-algebra on X . Hence

Pθ;k ∈ PX for all θ ∈ {0, 1} and k ∈ {1, ...,K}, where PX denotes the collection of all possible distributions over

(X ,F). The vector observation xn is defined on the space (Xn,F⊗n), where F⊗n is the tensor product σ-algebra

of F , that is, the smallest σ-algebra contains the following collection of events:

{E1 × E2 × · · · × En | Ei ∈ F} .

A (randomized) test is a measurable function φ : (Xn,F⊗n) → ([0, 1],B), where B denotes the Borel σ-field

on R. The worst-case type-I and type-II error probabilities of a decision rule φ are defined as

PF
(n)(φ) , max

σ∈Sn,ν
EP0;σ [φ(Xn)] (Type I)

PM
(n)(φ) , max

σ∈Sn,ν
EP1;σ [1− φ(Xn)] (Type II).

July 31, 2018 DRAFT



6

Our focus is on the Neyman-Pearson setting: find a decision rule φ satisfying PF
(n)(φ) ≤ ε such that PM

(n)(φ) is

minimized. Let β(n)(ε,ν) denote the minimum type-II error probability.

For the asymptotic regime, we assume that the ratio nk
n → αk as n→∞ for all k = 1, ...,K, and

∑K
k=1 αk = 1.

We aim to explore if β(n)(ε,ν) decays exponentially fast as n → ∞, and characterize the corresponding error

exponent. For notational convenience, we define upper and lower bounds on the exponent:

E
∗
(ε,α) , lim supn→∞

{
− 1
n log2 β

(n)(ε,ν)
}
,

E∗(ε,α) , lim infn→∞
{
− 1
n log2 β

(n)(ε,ν)
}
,

where in taking the limits, we assume that limn→∞
nk
n = αk, for all k = 1, ...,K. If the upper and lower bound

match, we simply denote it as E∗(ε,α).

Remark 2.1. The original distributed detection problem [1], [2], [6] involves local decision functions at the sensors

to address the limited communication between each sensor and the fusion center. In order to focus on the impact

of anonymity, we first absorb them into the distributions {Pθ;k : k = 1, ...,K} because they are symbol-by-symbol

maps. Later, we will discuss how to find the best local decision functions according to the characterized error

exponent.

B. Notations

Let us introduce notations that will be used throughout this paper.

• n denotes the total number of observations, and K denotes the number of groups of sensors.

• ν , [n1 ... nK ]ᵀ denotes the number of sensors in the K groups. That is, nk ≥ 0, nk ∈ Z, and
∑K
k=1 nk = n.

• α , [α1 ... αK ]ᵀ denotes the fraction of each group of sensors in all sensors in the asymptotic regime. That

is, αk ≥ 0, and
∑K
k=1 αk = 1.

• σ : {1, ..., n} → {1, ...,K} is the labeling function which assigns the index of each sensor to a group. We

also denote the collection of indices of sensors in group k as

Ik = σ−1(k) , {i | σ(i) = k} . (2)

• Let Sn,ν be the collection of all σ satisfying (2). We also use Sn to denote the collection of length-n

permutations:

Sn ,
{
τ : {1, 2, ..., n} 1−1→ {1, 2, ..., n}

}
.

Note that the cardinalities of the two sets are

|Sn,ν | =
(

n

n1, n2, ..., nK

)
, |Sn| = n!.

• We usually write Pθ as the vector of {Pθ;k}:

Pθ ,




Pθ;1

Pθ;2
...

Pθ;K



.
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C. Method of Types

For a sequence xn ∈ Xn, where X = {a1, a2, ..., ad}, its type (empirical distribution) is defined as

Πxn = [π(a1|xn), π(a2|xn), ..., π(ad|xn)] ,

where π(ai|xn) is the frequency of ai in the sequence xn, that is,

π(ai|xn) =
1

n

n∑

j=1

1{xj=ai}.

For a given length n, we use Pn to denote the collection of possible types of length-n sequences. In other words,

Pn ,

{[
i1
n
,
i2
n
, ...,

id
n

] ∣∣∣∣∀i1, ..., id ∈ N ∪ {0}, i1 + i2 + · · ·+ id = n

}
.

Let U ∈ Pn be an n-type. The type class Tn(U) is the set of all length-n sequences with type U ,

Tn(U) , {xn ∈ Xn | Πxn = U} .

Let us introduce some useful lemmas about type.

Lemma 2.1 (Cardinality Bound of Pn).

|Pn| ≤ (n+ 1)|X |.

In words, |Pn| grows polynomial in n.

Lemma 2.2 (Probability of Type Class). Let P ∈ Pn, Q ∈ PX . Then

1

(n+ 1)|X |
2−nD(Q ‖P ) ≤ Q⊗n(Tn(P )) ≤ 2−nD(Q ‖P ).

For finite X , PX can be viewed as a subspace in Rd endowed with Euclidean metric and standard topology. The

following theorem, developed by Sanov, depicts the probability of a large deviation event.

Lemma 2.3 (Sanov’s Theorem). Let Γ ⊆ PX . Then we have

− inf
T∈int Γ

D (T ‖Q) ≤ lim inf
n→∞

1

n
logQ {xn : Πxn ∈ Γ} ≤ lim sup

n→∞

1

n
logQ {xn : Πxn ∈ Γ} ≤ − inf

T∈cl Γ
D (T ‖Q) ,

(3)

where int Γ and and cl Γ respectively denote the interior and the closure of Γ, with respect to the standard topology

on Rd. In particular, if the infimum on the right-hand side is equal to the infimum on the left-hand side in (3), we

have

lim
n→∞

1

n
logQ {xn : Πxn ∈ Γ} = − inf

T∈Γ
D (T ‖Q) .

Proofs of the lemmas mentioned above can be found in standard information theory textbooks, Chapter 11 in

[16] for example. Alternatively, a more rigorous proof of Sanov’s theorem Lemma 2.3 can be found in [17].
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III. MAIN RESULTS

As mentioned in Section II, the observations come from the measurable space (Xn,F⊗n). Throughout the rest

of the paper, we assume that X is a totally ordered set, and F⊗n satisfies the following two assumptions:

1) F⊗n contains the following set:

X̃n , {(x1, x2, ..., xn) | x1 ≥ x2 ≥ ... ≥ xn} . (4)

2) F⊗n is closed under permutation. That is, if A ∈ F⊗n, for any length-n permutation τ : {1, ..., n} →
{1, ..., n},

Aτ ,
{(
xπ(1), ..., xπ(n)

)
| (x1, ..., xn) ∈ A

}
∈ F . (5)

Remark 3.1. We assume that X is a totally ordered set in order to set the condition such that X̃ is measurable.

The purpose to require X̃ to be measurable is to preserve the measurability of the ordering map Π(·), as later

defined in Definition 4.1. In general, if X is not totally ordered, we can still require the collection of representatives

in the equivalent classes induced by Π−1 to be measurable. However, the regularity assumptions on F⊗ need to

be carefully concerned in that case.

Remark 3.2. The second assumption always holds for tensor σ-fields. The first assumption typically holds too. For

example, if X is finite, we can simply choose F as the power set 2X , and if X ⊆ R, we can choose F as the Borel

σ-field. In particular, for X being a finite set, it is straightforward to define a total order over it, and hence it is a

totally ordered set. Moreover, the above two assumptions are automatically satisfied.

A. Main Contributions

Our first contribution is the characterization of the optimal test:

Theorem 3.1 (Optimal Test). Define the mixture likelihood ratio `(xn):

`(xn) ,

∑
σ∈Sn,ν P1;σ(xn)

∑
σ∈Sn,ν P0;σ(xn)

. (6)

Suppose F⊗n satisfies the two assumptions (4), (5). Then an optimal tests φ∗(xn) takes the following form:

φ∗(xn) =





1, if `(xn) > τ

γ, if `(xn) = τ

0, if `(xn) < τ.

(7)

That is, for any test φ, we have

PF(φ) ≤ PF(φ∗)⇒ PM(φ) ≥ PM(φ∗).

Remark 3.3. We see that the optimal test, MLRT, is the likelihood ratio test between two uniform mixture

distributions
1

|Sn,ν |
∑

σ∈Sn,ν
Pθ;σ, θ ∈ {0, 1}.
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Interestingly, the optimality of MLRT indicates that the widely used decision rule, generalized likelihood ratio test

(GLRT), which is defined as the randomized thresholded test according to the following likelihood ratio

`GLRT(xn) ,
supσ∈Sn,ν P1;σ(xn)

supσ∈Sn,ν P0;σ(xn)
,

is strictly sub-optimal in the anonymous hypothesis testing problem.

Sketch of proof: The proof consists of two steps. In the first step, we introduce symmetric tests (as later

defined in Definition 4.2), which do not depend on the order of the observations. Then, we show that among all

symmetric tests, (7) is optimal. The key is to reduce the original composite hypothesis testing problem into a simple

one through the ordering map Π(xn) in Definition 4.1, and then apply Neyman-Pearson lemma.

In the second step, we prove that for any test ψ, one can always symmetrize it and construct a symmetric one φ

which is as good as ψ, so (7) is optimal among all tests. However, ψ is constructed by assigning values on each

equivalence classes introduced by the ordering map Π(·), so the measurability of ψ need to be carefully examined.

For the detailed proof, please refer to Section IV.

Our second result specifies the exponent of type-II error in Neyman-Pearson formulation, which does not depend

on the type-I error probability ε:

Theorem 3.2 (Asymptotic Behavior). Let us consider the case |X | <∞, The exponent of type-II error probability

is characterized as follows.

E∗(ε,α) = min
U∈(PX )K

∑K

k=1
αkD (Uk ‖P1;k)

subject to αᵀU = αᵀP0.

(8)

Remark 3.4. A standard way to derive the exponent of type-II error probability is to identify the acceptance region

(of H0) of the optimal test (7) as an large-deviation event under H1, and further apply a strong converse lemma

to obtain a bound. However, notice that the mixture measure,
∑
σ Pθ;σ, θ ∈ {0, 1}, cannot be factorized into a

product form, which makes it hard to single-letterize. Instead, if we add an additional assumption that X is finite,

then we can utilize method of types, such as Sanov’s theorem, to circumvent the difficulties.

Sketch of proof: For the achievability part, we propose a sub-optimal test based on Hoeffding’s result [8], in

which we accept observations xn satisfying D (Πxn ‖M0(α)) ≤ ε for some threshold ε. We apply tools in method

of types to bound the type-I and type-II error probabilities, showing that (8) is achievable.

For the converse part, given an arbitrary test, we define its acceptance region as A (if the given test is randomized,

we can round the test by 1/2 and make it determinstic, that is, we accept H1 if φ(xn) > 1/2) and consider another

high-probability set B. We analyze the probability of P1;σ {A ∩ B}, and show that the exponent cannot be greater

than (8), which concludes the converse part. For the detailed proof, please refer to Section V.

Finally, we give a structural result of the error exponent.

Proposition 3.1. For the case |X | <∞, the type-II error exponent E∗(ε,α) as characterized in Theorem 3.2 only

depends on α. Moreover, it is a convex function of α.
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Proof: See Appendix A.

B. Numerical Evaluations

To quantify the price of anonymity, note that when the sensors are not anonymous (termed the “informed” setting),

it becomes a simple hypothesis testing problem, and the error exponent of the type-II probability of error in the

Neyman-Pearson setting is straightforward to derive:

E∗Informed(ε,α) =
∑K
k=1 αkD (P0;k ‖P1;k) .

For ease of illustration, in the following we restrict to the special case of binary alphabet, that is, |X | = 2, and

K = 2 groups. Let Pθ;1 = Ber(pθ) and Pθ;2 = Ber(qθ), for θ = 0, 1, where Ber(p) is the Bernoulli distribution

with parameter p. Since there are only two groups, we set α ≡
[
1− α α

]ᵀ
. Numerical examples are given in

Figure 1 to illustrate the price of anonymity versus the mixing parameter α. In general, anonymity may cause

significant performance loss. In certain regimes, the type-II error exponent can even be pushed to zero.

0 0.25 0.5 0.75 1
0.1

0.28

0.46

0.64

(p0, p1) = (0.6, 0.8), (q0, q1) = (0.3, 0.8)

α

E(ϵ,α)
Informed
Anonymous

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

(p0, p1) = (0.3, 0.8), (q0, q1) = (0.8, 0.2)

α

E(ϵ,α)
Informed
Anonymous

Fig. 1: Price of anonymity

C. Distributed Detection with Byzantine Attacks

Let us apply the results to distributed detection under Byzantine attacks, where the sensors are partitioned into

two groups. One group consists of n(1−α) honest sensors reporting true i.i.d. observations, while the other consists

of nα Byzantine sensors reporting fake i.i.d. observations. Here we again neglect the local decision function and

assume that each sensor can report its observation to the fusion center. The true observations follow Pθ i.i.d. across

honest sensors, while the compromised ones follow Qθ i.i.d. across Byzantine sensors, for θ = 0, 1. In general,

Qθ is unknown to the fusion center, but in terms of error exponent, one can find the least favorable pair Q0, Q1

which minimize the error exponent. Hence, our results can be applied here and arrive the worst-case type-II error

exponent as follows:

min
Q0,Q1,U,V ∈PX

(1− α)D (U ‖P1) + αD (V ‖Q1)

subject to (1− α)U + αV = (1− α)P0 + αQ0.

(9)
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In [3], it assumes that each sensor can be compromised with probability α, and hence it becomes a homogeneous

distributed detection problem, where the observation of each sensor follows a mixture distribution (1−α)Pθ+αQθ

under hypothesis θ, i.i.d. across all sensors. The worst-case exponent of type-II error probability, as derived in [3],

is hence

min
Q0,Q1∈PX

D ((1− α)P0 + αQ0 ‖(1− α)P1 + αQ1) . (10)

We see that the achievable type-II error exponent (9) in our setting is always greater than that in the i.i.d. scenario

(10) (and is strictly larger for some α) due to the convexity of KL divergence. This implies the i.i.d. mixture model

[3] might be too pessimistic. Figure 2 shows a numerical evaluation.

Adversary Power (α)
0 0.2 0.4 0.6 0.8

E
rr
o
r
E
x
p
o
n
en
t

0

0.55

1.1

1.65

(p0, p1) = (0.1, 0.9)

i.i.d model
anonymous model

Fig. 2: Comparison between i.i.d. and our setting

IV. PROOF OF THEOREM 3.1

Before proving Theorem 3.1, let us introduce some definitions that help the exposition.

Definition 4.1 (Ordering Map). The ordering map Π(·) : (Xn,F⊗n) →
(
X̃n, F̃

)
, where X̃n is from (4) and

F̃ , F⊗n ∩ X̃n, is defined as follows:

Π(xn) , (xi1 , xi2 , ..., xin), such that xi1 ≥ xi2 ≥ ... ≥ xin .

The measurability of Π is easy to check.

Remark 4.1. If |X | <∞, the mapping Π maps a sample xn to its type, and the space X̃n is equivalent to PX .

Remark 4.2. We will use Π−1 to denote the pre-image of Π. That is, for all Ẽ ⊆ X̃n,

Π−1
(
Ẽ
)
,
{
xn ∈ Xn | Π(xn) ∈ Ẽ

}
.

Notice that the measurability of Π implies for any Ẽ ∈ F̃ , we have Π−1
(
Ẽ
)
∈ F⊗n.

Definition 4.2 (Symmetric Test). We say a test φ(xn) is symmetric, if it is σ(Π(Xn))-measurable, that is, it can

be represented as a composition

φ(xn) = φ̃ ◦Π(xn),
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for some measurable function φ̃ : X̃n → [0, 1]. This implies the test φ maps a sequence of observations xn and all

its permutations to the same value.

Lemma 4.1. Among all symmetric test, φ∗(xn), as defined in (7), is optimal.

proof of Lemma 4.1: To show the optimality of φ∗, we first transform the original composite hypothesis

testing problem to another one in the auxiliary space X̃n through the ordering mapping Π(·), which turns out to

be a simple hypothesis testing problem. Hence, applying Neyman-Pearson lemma, we obtain the optimal test. See

Figure 3 for illustration of the relation between the original space and the auxiliary space.

(
X n, F⊗n

)
(
X̃ n, F̃

)

(R, B)

φ(·)

Π(·)

φ̃(·)

Fig. 3: Illustration of the auxiliary space

Part 1. First, we claim that for all σ ∈ Sn,ν , the probability measure P0;σ ◦ Π−1, defined on (X̃n, F̃), does not

depend on σ anymore. Thus we can define the probability measure P̃0 , P0;σ ◦Π−1, such that for all σ,

(
P0;σ,F⊗n,Xn

) Π(·)−→
(
P̃0, F̃ , X̃n

)
.

This claim is quite intuitive, since the labeling σ corresponds to the order of observations, and the ordering map

removes the order.

To show this claim, we first observe that for all E ∈ F̃ , its pre-image

Π−1(E) =
⋃

τ∈Sn
Eτ , (11)

where Eτ ,
{

(xτ(1), ..., xτ(n)) | (x1, ..., xn) ∈ E
}

. Therefore, for any two σ, σ′ ∈ Sn,ν , we can write σ′ = π ◦ σ
for some π ∈ Sn, and thus have

P0;σ ◦Π−1 {E} =P0;σ

{ ⋃

τ∈Sn
Eτ
}

(a)
= P0;σ

{ ⋃

τ∈Sn
Eτ◦π

}

=P0;π◦σ

{ ⋃

τ∈Sn
Eτ
}

= P0;σ′ ◦Π−1 {E} ,

where the equality (a) holds due to the following fact:

∀π ∈ Sn, Sn ◦ π , {τ ◦ π | τ ∈ Sn} = Sn.

Following the same argument, P̃1 , P1;σ ◦Π−1 does not depend on σ either.
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Part 2. Second, let us we consider an auxiliary hypothesis testing problem on X̃n:



H̃0 : Z ∼ P̃0

H̃1 : Z ∼ P̃1,

(12)

and let φ̃ : X̃n → [0, 1] be a test with type-I and type-II error probabilities as follows:



PF(φ̃) , EP̃0

[
φ̃(Z)

]

PM(φ̃) , EP̃1

[
1− φ̃(Z)

]
.

We claim that for any symmetric test φ(xn) = φ̃ (Π(xn)) as defined in Definition 4.2, the following holds:



PF(φ̃) = PF(φ)

PM(φ̃) = PM(φ).

To show this, note that a direct calculation gives

PF(φ) = max
σ

EP0;σ
[φ(Xn)]

= max
σ

EP0;σ

[
φ̃ (Π(Xn))

]

= max
σ

∫
φ̃ (Π(xn))P0;σ(dxn)

= max
σ

∫
φ̃ (z)P0;σ(Π−1(dz))

= EP̃0

[
φ̃(Z)

]
= PF(φ̃).

For the same reason, PM(φ) = PM(φ̃). Therefore, for any symmetric test on Xn, the corresponding φ̃ has exactly

the same type-I and type-II error probability. Notice that the auxiliary hypothesis testing problem (12) is simple, so

by Neyman-Pearson lemma, we have readily seen that the optimal symmetric test on the original problem should

be

φ∗(xn) =





1, if `′(xn) > τ

γ, if `′(xn) = τ

0, if `′(xn) < τ,

where `′(xn) is defined as

`′(xn) =
P̃1 (Π(xn))

P̃0 (Π(xn))
=

P1;σ

{
Π−1 (Π(xn))

}

P0;σ {Π−1 (Π(xn))]
.

Part 3. Finally, we show that `′(xn) is indeed the mixture likelihood ratio `(xn), as defined in (6). With a slight

abuse of notation, let Πxn , Π−1 (Π(xn)) =
{
xτ(1), ..., xτ(n) | τ ∈ Sn

}
. In words, Πxn is the collection of xn

and all its permutations. We observe that

P1;σ

{
Π−1 (Π(xn))

}
=

∑

yn∈Πxn

P1;σ (yn)

(a)
=

(∑

τ∈Sn
P1;σ (τ(xn))

)
c1(xn)
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(b)
=


 ∑

σ′∈Sn,ν
P1;σ′ (x

n)


 c1(xn)c2(σ).

The constant c1(xn) in (a) is due to the fact that xn = (x1, ..., xn) might not be all distinct, so summing over

the set {τ(xn) | τ ∈ Sn} may count an element yn ∈ Πxn multiple times. Note that if xn are all distinct, then

c1(xn) = 1. (b) holds because P1;σ(τ(xn)) = P1;σ◦τ (xn) and Sn,ν = Sn,ν ◦ τ , {σ ◦ τ | σ ∈ Sn,ν}. Again, the

summation counts σ repeatedly, so we normalize by the constant c2(σ). Following the same reason,

P0;σ

{
Π−1 (Π(xn))

}
=


 ∑

σ′∈Sn,ν
P0;σ′ (x

n)


 c1(xn)c2(σ).

Hence,

`′(xn) =
P1;σ

{
Π−1 (Π(xn))

}

P0;σ {Π−1 (Π(xn))}

=

(∑
σ′∈Sn,ν P1;σ′ (x

n)
)
c1(xn)c2(σ)

(∑
σ′∈Sn,ν P0;σ′ (xn)

)
c1(xn)c2(σ)

=

∑
σ P1;σ(xn)∑
σ P0;σ(xn)

= `(xn),

which establishes the claim.

Lemma 4.2. For any general (measurable) test ψ(xn) : Xn → [0, 1], there exists a symmetric test φ(xn) whose

performance is not worse than ψ. That is,



PF(φ) ≤ PF(ψ)

PM(φ) ≤ PM(ψ).

(13)

proof of Lemma 4.2: With a slight abuse of notation, let τ(xn) denote the coordinate-permutation function

with respect to τ ∈ Sn, i.e. τ(xn) = (xτ(1), ..., xτ(n)). Then we construct φ(xn) as follows:

φ(xn) ,
1

n!

∑

τ∈Sn
ψ ◦ τ(xn).

We claim the following two facts:

1) φ(xn) is symmetric, and thus can be written as φ̃ ◦Π(xn) for some F̃-measurable φ̃.

2) (13) holds for the constructed φ.

Part 1. To see that φ(xn) = φ̃ ◦ Π(xn), we observe that for any yn, zn ∈ Π−1(x̃n), there exists a permutation

π ∈ Sn such that yn = π(zn). Hence it suffices to verify that for all π ∈ Sn, φ(xn) = φ(π(xn)).

φ(π(xn)) =
1

n!

∑

τ∈Sn
ψ ◦ τ (π(xn))

=
1

n!

∑

τ∈Sn
ψ ◦ τ ◦ π(xn)

(a)
=

1

n!

∑

τ ′∈Sn
ψ ◦ τ ′ (xn) = φ(xn).
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The equality (a) holds due to the fact that

Sn ◦ π , {τ ◦ π | τ ∈ Sn} = Sn.

Therefore, φ(xn) can be decomposed into φ̃ ◦Π(xn).

Next, we check the measurability of φ̃. Notice that φ is F⊗-measurable, since both ψ and τ are measurable. The

measurability of τ follows from the τ -permuted closedness assumption of F⊗n:

∀A ∈ F⊗n,Aτ , {τ(xn) | xn ∈ A} ∈ F⊗n.

Observe that for all Borel-measurable set B, we have

φ−1 {B} = Π−1
{
φ̃−1 {B}

}
∈ F⊗n ⇔

⋃

τ∈Sn
Eτ ∈ F⊗n,

where we use E to denote event φ̃−1 {B}, and Eτ to denote the τ -permuted event of E , as defined in (5). Notice

here we use the fact given by (11). Therefore it suffices to check

∀E ⊆ X̃n,
⋃

τ∈Sn
Eτ ∈ F⊗n ⇒ E ∈ F⊗n ∩ X̃n = F̃ .

We claim that indeed, { ⋃

τ∈Sn
Eτ
}
∩ X̃n = E ,

for every E ⊆ X̃n. This is because

1) Since E ⊆ X̃n, we have E = E ∩ X̃n ⊆
{⋃

τ∈Sn Eτ
}
∩ X̃n.

2) For any τ and for any xn ∈ Eτ ∩X̃n, xn ∈ E . Hence, ∀τ ∈ Sn, Eτ ∩X̃n ⊆ E , that is,
{⋃

τ∈Sn Eτ
}
∩X̃n ⊆ E .

Hence,
⋃

τ∈Sn
Eτ ∈ F⊗n =⇒ E =

{ ⋃

τ∈Sn
Eτ
}
∩ X̃n ∈ F⊗n ∩ X̃n = F̃ ,

showing that φ̃ is F̃−measurable.

Part 2. We show that φ(xn) cannot be worse than ψ(xn). Observe that for all τ ∈ Sn, we have

PF(ψ ◦ τ) = max
σ∈Sn,ν

EP0;σ
[ψ (τ(Xn))] = max

σ∈Sn,ν
EP0;σ◦τ−1 [ψ(Xn)] = max

σ′∈Sn,ν
EP0;σ′ [ψ(Xn)] = PF(ψ).

Again, the third equality holds due to the fact

Sn,ν ◦ τ−1 ,
{
σ ◦ τ−1 | σ ∈ Sn,ν

}
= Sn,ν .

Therefore, we have

PF(φ) = max
σ

EP0;σ

[
1

n!

∑

τ∈Sn
ψ ◦ τ(Xn)

]

≤ 1

n!

∑

τ∈Sn
max
σ

EP0;σ [ψ ◦ τ(Xn)]

=
1

n!

∑

τ∈Sn
PF(ψ ◦ τ) = PF(ψ).
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Following the same argument, we obtain PM(φ) ≤ PM(ψ), and the proof completes.

Finally, the proof of Theorem 3.1 directly follows from Lemma 4.1 and Lemma 4.2.

Proof of Theorem 3.1: From Lemma 4.2, we only need to consider symmetric tests. From Lemma 4.1, we

see that the optimal test among all symmetric tests is the mixture likelihood test, as defined in (7). This establishes

Theorem 3.1.

Remark 4.3. Notice that in the above proof, we do not make use of assumptions on the distribution of Xn, such

as independence. Indeed, the proof indicates that for the anonymous composite hypothesis testing problem, under

the minimax criterion (i.e. to minimize the worst case error), we should always design tests based on the empirical

distribution of Xn (i.e. as a function of Π(xn)). This principle also holds for other statistical inference problems,

such as M -ary hypothesis testing.

V. PROOF OF THEOREM 3.2

For the case |X | <∞, the auxiliary space X̃ is equivalent to the space of all probability measures on X , that is,

PX , and the mapping Π(xn) maps a sequence of samples to its type Πxn . According to Lemma 4.2, the optimal

test is symmetric, which implies that we only need to consider tests depending on the type. For tests depending only

on the empirical distribution, it is natural to view their acceptance region as a collection of empirical distribution,

that is, a (measurable) subset of PX . This motivates us to apply Sanov’s theorem. We begin with the following

generalization of Sanov’s result:

Lemma 5.1 (Generalized Sanov Theorem). Let |X | <∞, and Γ ⊆ PX be a collection of distributions on X . Then

for all σ ∈ Sn,ν and θ ∈ {0, 1}, we have

− inf
[U1 ... UK ]ᵀ∈(PX )K

αᵀU∈int Γ

K∑

k=1

αkD (Uk ‖Pθ;k) (14)

≤ lim inf
n→∞

1

n
logPθ;σ {Πxn ∈ Γ} (15)

≤ lim sup
n→∞

1

n
logPθ;σ {Πxn ∈ Γ} (16)

≤− inf
[U1 ... UK ]ᵀ∈(PX )K

αᵀU∈cl Γ

K∑

k=1

αkD (Uk ‖Pθ;k) , (17)

where in taking the limits, we assume that limn→∞
nk
n = αk, for all k = 1, ...,K. In particular, if the infimum in

the right-hand side is equal to the infimum in the left-hand side, then we have

lim
n→∞

1

n
logPθ;σ {Πxn ∈ Γ} = − inf

[U1 ... UK ]ᵀ∈(PX )K

αᵀU∈cl Γ

∑

k

αkD (Uk ‖Pθ;k) .

The proof is a direct extension of Lemma 2.3, except that we replace the i.i.d. measure with the product of

independent non-identical ones, Pθ;σ . For the detailed proof, please refer to Appendix B.
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Motivated by the generalized Sanov Theorem, we further define the following generalized divergence to measure

how far from one set of distributions Q , [Q1 ... QK ]ᵀ to another set of distributions P , [P1 ... PK ]ᵀ:

Definition 5.1. Let P = [P1 ... PK ]ᵀ and Q = [Q1 ... QK ]ᵀ are both in (PX )
K . Let α = [α1 ... αK ]ᵀ be a

K-tuple probability vector. Define

Dα(P ;Q) , inf
U∈(PX )K

∑K

k=1
αkD (Uk ‖Qk)

subject to αᵀU = αᵀP

. (18)

Thus (14) in Lemma 5.1 can be rewritten as

− inf
αᵀU∈int Γ

Dα(U ;Pθ) ≤ lim inf
n→∞

1

n
logPθ;σ {Πxn ∈ Γ} ≤ lim sup

n→∞

1

n
logPθ;σ {Πxn ∈ Γ} ≤ − inf

αᵀU∈cl Γ
Dα(U ;Pθ).

Also, the result of Theorem 3.2, (8), is equivalent to the following statement:

E∗(ε,α) = Dα(P0;P1).

Remark 5.1. Intuitively, Dα(P ;Q) measures how far between P and Q. However, Dα(·; ·) is not a divergence,

since Dα(P ;Q) = 0 does not always imply P = Q.

Notice that for any fixed Q ∈ (PX )
K , Dα(P ;Q) can be regarded as a function of P . Moreover, this function

depends only on the mixture of P , say, αᵀP . Therefore, for notional convenience, let us use fQ(·) : PX →
R ∪ {+∞} to denote this function:

fQ(T ) , inf
U∈(PX )K

∑K

k=1
αkD (Uk ‖Qk)

subject to αᵀU = T

.

In other words,

fQ(αᵀP ) = Dα(P ;Q).

Before entering the main proof of Theorem 3.2, let us introduce some properties of fQ(·).

Lemma 5.2. Let Q ∈ (PX )
K and fQ(·) : PX → R ∪ {+∞} be defined as Definition 5.1 and above. Then,

1) fQ(αᵀQ) = 0

2) The collection of all T ∈ PX such that fQ(T ) <∞, denoted as

CQ , {T ∈ PX : fQ(T ) <∞} ,

is a compact, convex subset of PX .

3) fQ(T ) is a convex, continuous function of T on CQ (and by the compactness of CQ, fQ(T ) is also uniformly

continuous).

Proof of Lemma 5.2 can be found in Appendix C.

proof of Theorem 3.2:
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Part 1 (Achievability). Let δ > 0 and consider the test :

φ(xn) , 1{xn:D(Πxn ‖M0(α))>δ}.

Denote the acceptance region of φ as Γ , {T ∈ PX : D (T ‖M0(α)) > δ}. Then the exponent of type-I error

probability PF(φ) can be bounded by

lim inf
n→∞

1

n
logEP0;σ

[φ(Xn)]

= lim inf
n→∞

1

n
logP0;σ {Πxn ∈ Γ}

(a)
≥ inf
T∈cl Γ

fP0(T )

(b)
≥ δ,

where (a) holds by Lemma 5.1, and be holds due to the the convexity of KL divergence:

D (T ‖M0(α)) ≤ min
U∈(PX )K

∑K

k=1
αkD (Uk ‖P0;k) = fP0

(T )

subject to αᵀU = T

.

Notice that for any δ > 0, as n large enough, we must have

PF(φ) < ε.

On the other hand, the exponent of type-II error probability E∗(ε,α) can be bounded by

lim inf
n→∞

1

n
logEP1;σ

[φ(Xn)]

= lim inf
n→∞

1

n
logP1;σ {Xn : D (ΠXn ‖M0(α)) ≤ δ}

≥ inf
T∈cl Γc

fP1
(T ), (19)

By Pinsker’s inequality (Theorem 6.5 in [7]), we have

cl (Γc) = {T ∈ PX : D (T ‖M0(α)) ≤ δ} ⊆
{
T ∈ PX : ‖T −M0(α)‖1 ≤

√
2δ
}
, B√2δ(M0(α)),

so (19) can be further lower bounded by

inf
T∈cl Γc

fP1
(T ) ≥ inf

T∈B√2δ(M0(α))
fP1

(T ).

Also, by the continuity (Lemma 5.2) of fP1
(·),

inf
T∈B√2δ(M0(α))

fP1(T ) = fP1 (M0(α)) + ∆(δ),

with

lim
δ→0

∆(δ) = 0.

Finally, since δ can be chosen arbitrarily small, we have

E∗(ε,α) ≥ fP1
(M0(α)) = Dα (P0;P1) . (20)

July 31, 2018 DRAFT



19

Part 2 (Converse). We have shown that symmetric test is optimal in Lemma 4.2. Hence, in the following, it suffices

to consider symmetric tests.

For an arbitrary symmetric test ψ : Pn → [0, 1] such that its type-I error probability PF(ψ) < ε, we shall lower

bound its type-II error probability as follows. Let A(n) , {T ∈ Pn : ψ(T ) ≤ 1/2}, and recall that

P̃0 , P0;σ ◦Π−1

is a probability measure independent of σ. Then, we have

ε > EP̃0
[ψ(T )] =

∑

T∈Pn
P̃0(T )ψ(T ) ≥

∑

T∈(A(n))
c

P̃0(T )ψ(T )

(a)
>

1

2

∑

T∈(A(n))
c

P̃0(T ) =
1

2

(
1− P̃0

{
A(n)

})
,

(a) holds since for all T /∈ A(n), ψ(T ) > 1/2. In other words, we have

P̃0

{
A(n)

}
> 1− 2ε.

On the other hand, let B(n) , {T ∈ Pn | D (T ‖M0(α)) ≤ δ}. Then, according to the analysis in type-I error

probability in the achievability part, we have

P̃0

{
B(n)

}
> 1− ε.

Applying union bound, we see that

P̃0

{
A(n) ∩ B(n)

}
> 1− 3ε,

and hence for ε < 1
3 , A(n) ∩ B(n) is non-empty.

Let V ∗n ∈ A(n) ∩ B(n) and define P̃1 , P1;σ ◦Π−1 (which is also independent of σ). Again we have

PF(ψ) = EP̃1
[1− ψ(T )]

≥
∑

T∈A(n)

(1− ψ(T )) P̃1 {T}

≥ 1

2
P̃1 {V ∗n } .

We further estimate P̃1 {V ∗n } by

P̃1 {V ∗n } =P1;σ {Tn(V ∗n )}

=
∑

Uk∈Pnk :∑
k αkUk=V ∗n

K∏

k=1

P⊗nk1;k {Tnk(Uk)}

=
∑

Uk∈Pnk :∑
k αkUk=V ∗n

2−
∑
k nkD(Uk ‖P1;k)

≥ max
Uk∈Pnk :∑
k αkUk=V ∗n

2−
∑
k nkD(Uk ‖P1;k)

=2−nD̃n ,
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where

D̃n , min
Uk∈Pnk :∑
k αkUk=V ∗n

(∑

k

nk
n
D (Uk ‖P1;k)

)
.

Notice that since V ∗n ∈ B(n), so we have

D (V ∗n ‖M0(α)) ≤ δ.

Since δ can be chosen arbitrarily small, as δ → 0 and n→∞ (with nk
n → αk), we have

E
∗
(ε,α) ≤ lim

n→∞
D̃n

= min
Uk∈PX :∑

k αkUk=M0(α)

(∑

k

αkD (Uk ‖P1;k)

)

= fP1 (M0(α))

= Dα (P0;P1) ,

which completes the proof.

VI. A GEOMETRICAL PERSPECTIVE IN CHERNOFF’S REGIME

So far, for asymptotic regime, we have been focusing on Neyman-Pearson’s formulation, in which we minimize

the worst-case type-II error probability, subject to the worst-case type-I error probability not being larger than a

constant ε. It is natural to extend the result from Section III to Chernoff’s regime, where we aim to minimize the

average probability of error:

Pe
(n)(φ) , π0PF

(n) + π1PM
(n).

Note that π0 and π1 are the prior distributions of H0 and H1 and do not scale with n. As suggested by Theorem 3.1,

the optimal test is the mixture likelihood ratio test, so we only need to specify the corresponding threshold τ .

However, the mixture likelihood ratio involves summation over Sn,ν , making the computation complexity extremely

high. Even for the case |X | <∞, the computation still takes Θ
(
n|X |

)
operations and thus is difficult to implement.

To break the computational barrier, we propose an asymptotically optimal test, based on information projection,

which achieves the optimal exponent of the average probability of error. Moreover, the result can be generalized to

determine the achievable exponent region R, the collection of all achievable pairs of exponents:

R ,
{

(E0, E1) | there exists a test φ, such that PF
(n)(φ) � 2−nE0 , PM

(n)(φ) � 2−nE1

}
,

where a sequence an � 2−nE0 means an decays to zero at the rate faster than E0 , that is,

− lim inf
n→∞

1

n
log an ≥ E0.
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A. Asymptotically Optimal Test in Chernoff’s Regime

Theorem 6.1 (Efficient Test). Recall the function fP (T ) : PX → R ∪ {+∞} defined in Defintion 5.1. Consider

the following test based on the function fP0
(·) and fP1

(·):

φeff(x
n) ,





0, if fP1
(Πxn) > fP0

(Πxn)

1, else fP1
(Πxn) ≤ fP0

(Πxn).

(21)

Then φeff is asymptotically optimal in Chernoff’s regime. That is, for all priors π0, π1, for all tests φ, and for all

n large enough,

− 1

n
log (Pe(φ)) ≤ − 1

n
log (Pe(φeff)) .

Remark 6.1. From the convexity of KL-divergence and the space PX , the function fP (·) is indeed the minimization

of a convex function. Hence the proposed test in Theorem 6.1 can be computed efficiently.

Proof: Let us set some notations. For each P ∈ (PX )K , we use Br(P ) ⊆ PX to denote the r-ball centered

at T with respect to fP (·):

Br(P ) , {T ∈ PX | fP (T ) < r} .

By the continuity of fP (·) (from Lemma 5.2), Br(P ) is an open set. Then, define the largest packing radius

between P0,P1 as follows:

r∗ , sup
r
{Br(P0) ∩Br(P1) = ∅} .

See Figure 4 for illustration.

·

·

PX

r∗
P0

P1

r∗

Br∗(P0)

Fig. 4: Illustration of Br(·) and r∗

The rest of the proof will be organized as follows: we first show that φeff has error exponent at least r∗ (the

achievability part):

− lim
n→∞

1

n
log (Pe(φeff)) ≥ r∗.

Then, we will prove that for all tests, the error exponent will be at most r∗ (the converse part).
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Part 1 (Achievability). Define

A , {T ∈ PX | fP1
(T ) ≤ fP0

(T )} ,

and notice that 


PF

(n)(φeff) = P0;σ {Πxn ∈ A}

PM
(n)(φeff) = P1;σ {Πxn ∈ Ac} ,

for any arbitrary σ (recall that φeff depends only on the empirical distribution and therefore is symmetrical, so the

error is independent of the choice of a specific σ).

By the generalized Sanov’s theorem (Lemma 5.1), we see that the exponent of PF
(n)(φeff) is lower bounded by

infT∈cl A fP0
(T ). Similarly, the exponent of PM

(n)(φeff) is lower bounded by infT∈cl Ac fP1
(T ). It is not hard to

see that indeed,

inf
T∈cl A

fP0
(T ) = inf

T∈A
fP0

(T ), (22)

and

inf
T∈cl Ac

fP1
(T ) = inf

T∈Ac
fP1

(T ). (23)

Equation (22) holds since A is a closed set (it is a pre-image of a continuous function from a closed set), so

cl A = A. For the equation (23), we notice that Ac is open, and hence the infimum of a continuous function on

Ac is actually equal to the infimum on cl Ac.
Hence, it suffices to show that

inf
T∈A

fP0(T ) ≥ r∗, inf
T∈Ac

fP1(T ) ≥ r∗.

·

·

PX

P0

P1 A

Ac

Fig. 5: Relation between A, Ac and Br∗(P0), Br∗(P1)

It is straightforward to see that Ac contains Br∗(P0) and A contains Br∗(P1), since we must have

1) ∀T ∈ Br∗(P0), fP0(T ) < fP1(T ),

2) ∀T ∈ Br∗(P1), fP0
(T ) > fP1

(T ).
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Otherwise Br∗(P0) intersects Br∗(P1), violating our assumption on r∗. Also notice that A, Ac are disjoint, so

Ac ∩Br∗(P0) = A ∩Br∗(P1) = ∅,

implying that

Ac ⊆ Br∗(P1)c, A ⊆ Br∗(P0)c.

Therefore, we have 



infT∈A fP0(T ) ≥ infT∈Br∗ (P0)c fP0
(T ) ≥ r∗

infT∈Ac fP1
(T ) ≥ infT∈Br∗ (P1)c fP1

(T ) ≥ r∗,

proving the achievability part.

Part 2 (Converse). We show that for any test φ(n), the exponent of the average probability of error greater than r∗

leads to contradiction. Suppose the type-I and type-II error exponents of φ(n) are r1, r2 respectively, and r1 > r∗,

r2 > r∗. By Lemma 4.2, we only need to consider symmetric tests, that is, tests depend only on the type. Therefore,

we can write the acceptance region of H0, H1 as



B(n)

1 =
{

Πxn : φ(n)(xn) = 1
}

B(n)
0 =

{
Πxn : φ(n)(xn) = 0

}
.

The exponents of type-I and type-II errors thus are greater then r1, r2 respectively, we have




lim inf
n→∞

{
min
T∈B(n)

1

fP0
(T )

}
= r1 > r∗

lim inf
n→∞

{
min
T∈B(n)

0

fP1(T )

}
= r2 > r∗.

(24)

Define min {r1, r2} = r̃, and δ , (r̃ − r∗) /2 > 0. By (24), there exists M large enough, such that for all n > M ,




min
T∈B(n)

1

fP0
(T ) > r̃ − δ > r∗

min
T∈B(n)

0

fP1(T ) > r̃ − δ > r∗.

We further define 



B1 =
⋃

n>M

B(n)
1

B0 =
⋃

n>M

B(n)
0 .

We see that

1) B0 ∪ B1 are dense in PX , since

B(n)
0 ∪ B(n)

1 = Pn,

and
⋃

n>M

Pn is dense in PX . So we have

(cl B0 ∪ cl B1)
c

= (cl B0)
c ∩ (cl B1)

c
= ∅. (25)
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2) By construction, 



inf
T∈B1

fP0(T ) = min
T∈cl B1

fP0(T ) > r̃ − δ > r∗

inf
T∈B0

fP1
(T ) = min

T∈cl B0

fP1
(T ) > r̃ − δ > r∗.

(26)

From (26), we have 


B(r̃−δ)(P0) ⊆ (cl B1)

c

B(r̃−δ)(P1) ⊆ (cl B0)
c
,

and by (25) B(r̃−δ)(P0)∩B(r̃−δ)(P1) = ∅. However, this violates our assumption that r∗ is the supreme of radius

such that the two sets do not overlap. This proves the converse part.

Remark 6.2. In Theorem 6.1, we provide an asymptotically optimal test based on an information-geometric

perspective. However, we do not specify the exact error exponent. As stated in the proof, the optimal exponent

of average probability of error can be obtain by solving the information projection problem:

min
T∈A

fP0
(T ),

where A is the acceptance region of φeff. The optimization problem, though convex, is hard to obtain a closed-form

expression, but we can still evaluate it numerically.

B. Characterization of Achievable Exponent Region R

One can generalize the result from Theorem 6.1. Define the following test:

φλ(xn) , 1{fP0
(Πxn )−fP1

(Πxn )≥λ},

where λ ∈ [−fP1
(M0(α)) , fP0

(M1(α))]. Following a similar idea in the proof of Theorem 6.1, one can show

that φλ is optimal in a sense that for any test φ and ∀λ,

E0(φ) ≥ E0(φλ)⇒ E1(φ) ≤ E1(φλ),

and

E1(φ) ≥ E1(φλ)⇒ E0(φ) ≤ E0(φλ),

where (E0(φ), E1(φ)) are the error exponents with respect to test φ :



E0(φ) , lim inf

n→∞

{
− 1
n logPF

(n)(φ)
}

E1(φ) , lim inf
n→∞

{
− 1
n logPM

(n)(φ)
}
.

To obtain a parametrization of the boundary of R, it suffices to solve the following information projection problem:



E0(λ) , infT∈Aλ fP0(T )

E1(λ) , infT∈(Aλ)c fP1
(T ),
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fP0
(M1(α))

fP1
(M0(α))·

·

E0

E1

R

(E0(λ), E1(λ))

Fig. 6: Illustration of (E0(λ), E1(λ))

where Aλ , {fP0
(Πxn)− fP1

(Πxn) ≥ λ} is the acceptance region of φλ. Therefore, (E0(λ), E1(λ)) parametrizes

the boundary of R, for λ ∈ [−fP1 (M0(α)) , fP0 (M1(α))].

In particular, we see that for the corners λ = fP0 (M1(α)) and λ = −fP1 (M0(α)), we obtain the same results

as in Neyman-Pearson regime (Theorem 3.2). Note that although the information-projection problem is a convex

optimization problem, the closed-form expression remains unknown.

VII. DISCUSSION

A. Extension to Polish X

Theorem 3.1 characterizes the optimal test in the anonymous detection problem, where only a few conditions

on the σ-field F are required. In Theorem 3.2, we further assume the alphabet X is finite, in order to apply large

deviation tools based on the method of types (see Remark 3.4 for discussion). However, the the optimal exponent

of the type-II error probability, given by the result of Theorem 3.2, depends only on the possible distributions under

Hθ, and hence it is interesting to see if one can remove the assumption that X being finite. Recall that in the proof,

the main tool we employed is the generalized version of Sanov’s theorem (see Lemma 5.1), and thus the question

turns out to be whether it is possible to prove Lemma 5.1 without using method of types. Surprisingly, the answer

is yes if X is a Polish space (a completely separable metrizabla topological space). If X is Polish, the space of

all probability measures on X (PX ) is also Polish, equipped with weak-topology induced by weak convergence.

One can choose, for example, Levy-Prokhorov metric on PX . The proof of standard Sanov’s Theorem on Polish

X , however, is far more complicated than the case of finite X , see [18], [19] for detailed proof. Lemma 5.1 for

Polish X can be proved with similar techniques. Nevertheless, in order not to digress further from the subject, we

only present a proof for finite X in this paper.

B. The Benefit of Partial Information about the Group Assignment

From Figure 1, we see that in some cases, the type-II error exponent can be pushed to zero, making reliable

detection no longer possible. If each sensor is allowed to transmit a few bits of information to partially reveal their
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groups, how such partial information can improve the type-II error exponent? Formally speaking, we assume that

the total number of groups is K, and each sensor can transmit L bits (with L < logK) through a noiseless channel

to the fusion center, providing partial information about the group that it belongs to.

Unsurprisingly, the optimal strategy is the cluster-and-detect approach, that is, we first cluster the K groups into

2L super-groups, and each sensor sends L bits to indicate which super-groups it belongs to. Inside each super-

group, we adopt the optimal anonymous hypothesis testing, and between super-groups, the problem boils down to

the equivalent informed hypothesis testing, and hence standard likelihood ratio test can be applied there.

However, the difficulty lies in the clustering step: even the fusion center knows the distribution of each group,

the optimal clustering algorithm is indeed a discrete optimization problem and thus NP-hard. When the group

number K is large enough, it is intractable to find the optimal clustering. Nevertheless, some suboptimal algorithms

suggested by heuristic do demonstrate that this partial information can significantly ameliorate the performance loss

caused by anonymity. Below is a numerical example, showing the benefit of partial information.

In the example, we assume their are totally K = 1024 (210) groups, and each group accounts for 1/K proportion

of total sensors, that is, α = [ 1
K , ...,

1
K ]ᵀ. For the sensors in the k-th group, their observations follow i.i.d. distribution

Ber(θk) under H0, and follow i.i.d. Ber(1 − θk) under H1, with θk = k
K , k = 1, ...,K. Suppose there are L bits

available for each sensor to partially inform the fusion center the group it belongs to, then as the clustering-detection

algorithm suggests, we first cluster the K groups into 2L super-groups and then apply anonymous hypothesis testing

inside each super-group. As the numerical evaluation in Figure 7 illustrates, even with few bits, say, L = 1 or 2,

type-II error exponents are significantly improved.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L(bits)

E(ϵ,α)

Fig. 7: Exponents with Partial Information
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VIII. CONCLUSION

In this paper, we explore the heterogeneous distributed detection problem with sensor anonymity. To address

sensor anonymity, a composite hypothesis testing approach is taken. Focusing on the Neyman-Pearson setting, we

provide an optimal test, and characterize the exponent of type-II error probability for the case that X is finite. Unlike

the settings considered in robust hypothesis testing literatures [4]–[6], since the hypothesis classes considered in

our framework are discrete, the least favorable distribution might not exist. To circumvent the difficulty, we map

the original problem into an auxiliary space by employing the symmetric property of the hypothesis classes, in

which the original composite hypothesis testing problem becomes a simple hypothesis testing problem. Therefore,

Neyman-Pearson lemma can be applied to obtain an optimal test, which is a randomized threshold test based on the

ratio of the uniform mixture of all the possible distributions under H0 to the uniform mixture of those under H1.

For the asymptotic regime, we analyze the type-II error exponent using method of types and show that the optimal

exponent is the minimization of linear combination of KL-divergences, with the k-th term being D (Uk ‖P1;k) and

αk being the coefficient, for k = 1, ...,K. The minimization is over all possible distributions U1, ..., UK such that
∑K
k=1 αkUk =

∑K
k=1 αkP0;k. We further extend our result to Chernoff’s regime, and indicate that the exponent

region can be obtained by solving a convex optimization problem.

There are still many open problems in anonymous heterogeneous hypothesis testing. For example, the closed-

form expression for the exponents in asymptotic regime, even in Neyman-Pearson formulation, are still unknown.

Besides, the solution of information projection is conjectured to have similar form like tilted-distributions, as the

classical results in simple hypothesis testing suggested. In addition to hypothesis testing, it is also interesting to

investigate other problems such as regression, estimation, or pattern recognition under the anonymous setting.
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APPENDIX A

PROOF OF PROPOSITION 3.1

proof of Proposition 3.1: Since the optimal type-II exponent does not depend on ε, we denote it as E∗(α)

and for simplicity. It suffices to show

E∗(λα1 + (1− λ)α2) ≤ λE∗(α1) + (1− λ)E∗(α2), ∀λ ∈ [0, 1].

First, let

E∗(α1) =

K∑

k=1

α1kD (U∗1k ‖P1;k)

E∗(α2) =

K∑

k=1

α2kD (U∗2k ‖P1;k)

where α1 = [α11, ..., α1K ]ᵀ,α2 = [α21, ..., α2K ]ᵀ, and U∗1 , [U∗11, ..., U
∗
1K ],U∗2 , [U∗21, ..., U

∗
2K ] are the minimiz-

ers of (8). Then, by the convexity of KL divergence, we have

λE∗(α1) + (1− λ)E∗(α2) =

K∑

k=1

λα1kD (U∗1k ‖P1;k) + (1− λ)α2kD (U∗2k ‖P1;k)

≥
K∑

k=1

(λα1k + (1− λ)α2k)D

(
λα1kU

∗
1k + (1− λ)α2kU

∗
2k

λα1k + (1− λ)α2k

∥∥∥∥P1;k

)
(27)

Now we claim that Ũ ,
(
λα1kU

∗
1k+(1−λ)α2kU

∗
2k

λα1k+(1−λ)α2k

)
k=1,...,K

satisfies

(λα1 + (1− λ)α2)ᵀŨ = (λα1 + (1− λ)α2)ᵀP0, (28)

and thus

(27) =
∑K

k=1
(λα1k + (1− λ)α2k)D

(
Ũk

∥∥∥P1;k

)

≥ min
U∈(PX )K

(λα1+(1−λ)α2)ᵀU=(λα1+(1−λ)α2)ᵀP0

∑K

k=1
(λα1k + (1− λ)α2k)D (Uk ‖P1;k)

=E∗(λα1 + (1− λ)α2).
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To show (28), we notice that U∗1 , U∗2 satisfy the constraints

αᵀ
1U
∗
1 = αᵀ

1P0, α
ᵀ
2U
∗
2 = αᵀ

2P0. (29)

Then we have

(λα1 + (1− λ)α2)ᵀŨ

=

K∑

k=1

(λα1k + (1− λ)α2k)

(
λα1kU

∗
1k + (1− λ)α2kU

∗
2k

λα1k + (1− λ)α2k

)

=

K∑

k=1

λα1kU
∗
1k + (1− λ)α2kU

∗
2k

=λαᵀ
1U
∗
1 + (1− λ)αᵀ

2U
∗
2

=(λα1 + (1− λ)α2)ᵀP0,

which completes the proof.

APPENDIX B

PROOF OF LEMMA 5.1

proof of Lemma 5.1: First, observe that since int Γ is open, the set

Γ̃ , {(U1, ..., UK) | αᵀU ∈ int Γ} ⊂ (PX )
K

is open too. This is because the mapping g(U) = αᵀU is continuous, so the pre-image preserves the openness

(under standard topology). Therefore, we can find a sequence
{
U (n) ∈ (Pn1 × · · · × PnK ) ∩ Γ̃

}
,

such that
∑

k

αkD
(
U

(n)
k

∥∥∥Pθ;k
)
→ − inf

(U1,...,UK)∈(PX )K

αᵀU∈int Γ

∑

k

αkD (Uk ‖Pθ;k) ,

where the limit is taken such that nk
n → αk. So we have

Pθ;σ {Πxn ∈ Γ} =
∑

(U1,...,UK)∈Pn1
×···×PnK

αᵀU∈Γ

K∏

k=1

P⊗nkθ;k {Tnk(Uk)}

≥
∑

(U1,...,UK)∈Pn1
×···×PnK

αᵀU∈int Γ

K∏

k=1

P⊗nkθ;k {Tnk(Uk)}

≥ max
(U1,...,UK)∈Pn1

×···×PnK
αᵀU∈int Γ

K∏

k=1

P⊗nkθ;k

{
Tnk

(
U

(n)
k

)}

(a)

≥ max
(U1,...,UK)∈Pn1

×···×PnK
αᵀU∈int Γ

(
1

(nk + 1)|X |

)
2
∑K
k=1 nkD

(
U

(n)
k

∥∥∥Pθ;k),
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where inequality (a) holds by Lemma 2.2. Thus we have

1

n
logPθ;σ {Πxn ∈ Γ} ≥ − min

(U1,...,UK)∈Pn1
×···×PnK

αᵀU∈int Γ

(
K∑

k=1

nk
n
D
(
U

(n)
k

∥∥∥Pθ;k
)

+ o(1)

)
.

As n→∞ such that nk
n → αk, we see that

− inf
(U1,...,UK)∈(PX )K

αᵀU∈int Γ

∑

k

αkD (Uk ‖Pθ;k) ≤ lim inf
n→∞

1

n
logPθ;σ {Πxn ∈ Γ} .

On the other hand, for the upper bound, consider

Pθ;σ {Πxn ∈ Γ} =
∑

(U1,...,UK)∈Pn1
×···×PnK

αᵀU∈Γ

K∏

k=1

P⊗nkθ;k {Tnk(Uk)}

(a)

≤
∑

(U1,...,UK)∈Pn1×···×PnK
αᵀU∈Γ

2
∑K
k=1D

(
U

(n)
k

∥∥∥Pθ;k)

≤
(∏

k

|Pnk |
)

2
∑K
k=1 nkD

(
U

(n)
k

∥∥∥Pθ;k)

(b)
= 2

(∑K
k=1 nkD

(
U

(n)
k

∥∥∥Pθ;k)+o(1)
)
,

where where inequality (a) holds by Lemma 2.2, and (b) holds due to the cardinality bound Lemma 2.1.

As n→∞ and nk
n → αk, we have

lim sup
n→∞

1

n
logPθ;σ {Πxn ∈ Γ} ≤ − inf

(U1,...,UK)∈(PX )K

αᵀU∈Γ

∑

k

αkD (Uk ‖Pθ;k) .

Notice that for the case X finite, the infimum takes over Γ is equal to that one takes in the closure of Γ, since we

can use standard topology to find a sequence approaching to the limit point. Thus the proof is complete.

APPENDIX C

PROOF OF LEMMA 5.2

proof of Lemma 5.2: Let Q ∈ (PX )
K be a K-tuple of probability measure on X . We first show that

CQ , {T ∈ PX : fQ(T ) <∞}

is a compact set.

Part 1 (Compactness). Observe that fQ(T ) < ∞ if and only if there exists a P = (P1, ..., PK) ∈ (PX )
K , such

that

1) αᵀP = T

2) for all i = 1, ...,K, Pi � Qi.

Therefore, let us denote

MQ ,
{
P ∈ (PX )

K
: Pi � Qi, ∀i = 1, ...,K

}
⊆ (PX )

K
.
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We claim that MQ is a compact set, and thus

CQ = {αᵀP | P ∈MQ}

is also compact, since αᵀP is a linear mapping from (PX )
K to PX so compactness is preserved. To prove the

claim, it suffices to show that MQ is a closed set, because the boundness is directly followed by the boundness of

(PX )
K . It is equivalent to show

MC
Q =

{
P ∈ (PX )

K
: Pi 6� Qi, for some i

}

is open. Notice that
{
P ∈ (PX )

K
: Pi 6� Qi, for some i

}
=

K⋃

i=1

{
P ∈ (PX )

K
: Pi 6� Qi

}
,

so it suffices to show
{
P ∈ (PX )

K
: Pi 6� Qi

}
is open for all i. Assume Pi 6� Qi. Then there must exist some

measurable event E ⊂ X , such that Qi(E) = 0, and Pi(E) = ε > 0. Therefore, if X is finite and thus PX equipped

with total-variation distance (i.e. one norm), then obviously for any Q̃ such that ‖Q̃ − Pi‖ < ε
2 , Q̃ 6� Qi. Hence

MC
Q is open, proving the claim.

Remark 3.1. If X is Polish, then PX is equipped with Prokhorov’s metric, and one can use similar argument to

show that MC
Q is open.

Next, we show that fQ(·) is a convex function, so the convexity of CQ follows: for all T1, T2 ∈ CQ,

fQ(λT1 + (1− λ)T2) ≤ λfQ(T1) + (1− λ)fQ(T2) <∞, (30)

implying λT1 + (1− λ)T2 ∈ CQ.

Part 2 (Convexity). To show (30), we observe

λfQ(T1) + (1− λ)fQ(T2)

= inf
U :αᵀU=T1

λ
∑

k

αkD (Uk ‖Pk) + inf
V :αᵀV =T2

(1− λ)
∑

k

αkD (Vk ‖Pk)

(a)

≥ inf
U ,V :αᵀU=T1,αᵀU=T2

∑

k

αkD (λUk + (1− λ)Vk ‖Pk)

(b)

≥ inf
P :αᵀP=λT1+(1−λ)T2

∑

k

αkD (Qk ‖Pk)

=fQ(λT1 + (1− λ)T2),

where (a) is due to the convexity of KL-divergence, and (b) is because

αᵀU = T1,α
ᵀV = T2 ⇒ αᵀ (λU + (1− λ)V ) = λT1 + (1− λ)T2.

Therefore, we conclude that fQ(·) is a convex function and CQ is a convex set.

At the final step, we show fQ(·) is a continuous function on CQ. Notice that the convexity of fQ(·) only

guarantees the continuity on the interior of CQ, and thus we need to additionally check the boundary points.
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Remark 3.2. Note that in general, the interior of CQ may be an empty set since it may lie in a subspace of PX .

Alternatively, we can define a point P being interior, if it can be written as

λU + (1− λ)V , for some λ ∈ (0, 1), and some V ,U ∈ CQ.

Part 3 (Continuity). First, if the interior of CQ is empty, then by the convexity, either CQ is a empty set, or it is

a singleton. For both cases, the continuity holds obviously. Hence without losing of generality, we assume that the

interior of CQ is non-empty, and T0 is an interior point.

Then for any T ∈ CQ, we can construct a sequence Tn ∈ CQ, Tn → T . For example, one can let Tn =

λnT0 + (1− λn)T , with λn → 0. Let U (n) = (U
(n)
1 , ..., U

(n)
K ) ∈ (PX )

K be a sequence such that

1) αᵀU (n) = Tn

2) U (n) achieves the infimum of fQ(Tn) :

K∑

k=1

αkD
(
U

(n)
k

∥∥∥Pk
)

= inf
V :αᵀV =Tn

K∑

k=1

αkD (Vk ‖Pk) = fQ(Tn).

Notice that the infimum can always be achieved since g(V ) ,
∑K
k=1 αkD (Vk ‖Pk) is a continuous function

over the compact set MQ.

By construction,U (n) is a sequence in a compact setMQ, and hence by Bolzano-Weierstrass theorem (see Chapter 1

in [20], for example), there exists a convergent subsequence U (ni), and let us denote the convergent point

lim
i→∞

U (ni) = U .

Since αᵀU (ni) = Tni , and Tni → T , we have

αᵀU = T.

Notice that the function f(V ) ,
∑K
k=1 αkD (Vk ‖Pk) is a continuous function over the compact setMQ, we must

have

lim
n→∞

fQ(Tn) = lim
i→∞

fQ(Tni) =

K∑

k=1

αkD (Uk ‖Pk) ,

and therefore

fQ(T ) = inf
U :αᵀV =T

K∑

k=1

αkD (Vk ‖Pk) ≤
K∑

k=1

αkD (Uk ‖Pk) = lim
n→∞

fQ(Tn).

On the other hand, by the convexity of fQ(·), we must have

fQ(T ) ≥ fQ(Tn), for all n large enough.

Otherwise

fQ(λT0 + (1− λ)T ) > λfQ(T0) + (1− λ)fQ(T ),

for some λ small enough, which violates the fact that fQ(·) is a convex function.
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