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Entropy accumulation with improved
second-order term

Frédéric Dupuis and Omar Fawzi

Abstract

The entropy accumulation theorem [1] states that the smooth min-entropy of an n-partite system A = (A1, . . . , An) is
lower-bounded by the sum of the von Neumann entropies of suitably chosen conditional states up to corrections that are sublinear
in n. This theorem is particularly suited to proving the security of quantum cryptographic protocols, and in particular so-called
device-independent protocols for randomness expansion and key distribution, where the devices can be built and preprogrammed
by a malicious supplier [2]. However, while the bounds provided by this theorem are optimal in the first order, the second-order
term is bounded more crudely, in such a way that the bounds deteriorate significantly when the theorem is applied directly to
protocols where parameter estimation is done by sampling a small fraction of the positions, as is done in most QKD protocols.
The objective of this paper is to improve this second-order sublinear term and remedy this problem. On the way, we prove various
bounds on the divergence variance, which might be of independent interest.

Index Terms

Quantum information theory, Cryptography

I. INTRODUCTION

There are many protocols in quantum cryptography, such as quantum key distribution, that work by generating randomness.
Such protocols usually proceed as follows: we perform a basic subprotocol n times (for example, sending a photon in a random
polarization from Alice to Bob), we then gather statistics about the protocol run (for example, we compute the error rate from
a randomly chosen sample of the rounds), and we then conclude that the final state contains a certain amount of randomness,
which can then be processed further. Mathematical tools that can quantify the amount of randomness produced by quantum
processes therefore constitute the centerpiece of many security proofs in quantum cryptography. The entropy accumulation
theorem [1] provides such a powerful tool that applies to a very general class of protocols, including device-independent
protocols.

Informally, the main result of [1] is the following. Suppose we have an n-step quantum process like the one depicted in
Figure 1, in which we start with a bipartite state ρR0E and the R0 share of the state undergoes an n step process specified
by the quantum channels M1 to Mn. At step i of the process, two quantum systems Ai and Bi are produced, from which
one can extract a classical random variable Xi. The goal is then to bound the amount of randomness present in An

1 given
Bn

1 , conditioned on the string Xn
1 being in a certain set Ω. The Xi’s are meant to represent the data we do statistics on, for

example Xi might tell us that there is an error at position i, and we want to condition on the observed error rate being below
some threshold. Stated informally, the statement proven in [1] is then

Hε
min(A

n
1 |Bn

1E,Xn
1 ∈ Ω)ρ > n

(

inf
q∈Ω

f(q)

)

−√
nc. (1)

Here, the smooth min-entropy Hε
min represents the amount of extractable randomness (see Definition II.8), the tradeoff function

f(q) quantifies the worst-case amount of entropy produced by one step of the process for an input state that is consistent with
observing the statistics q, and c is a number that depends on ε, the event Ω and the tradeoff function f but not on n. One
would then apply this theorem by replacing the Mi’s by one step of the cryptographic protocol to obtain the desired bound.
This is done, for example, in [2], [3] for device-independent randomness expansion and quantum key distribution.

While this method yields optimal bounds in the first order, the second-order term which scales as
√
n is bounded more

crudely, and for some applications, this term can become dominant very quickly. This is particularly the case in applications
which estimate the amount of entropy produced by testing a small fraction of the positions, which includes a large number
of protocols of interest. The reason for this is that the value of c in Equation (1) is proportional to the gradient of f . Now,
suppose that we have a protocol where we are testing positions with probability O(1/n); in general this will make the gradient
of f proportional to n1 and therefore the second-order term will become Ω(n3/2) and overwhelm the first-order term. This is
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1Without getting into details, the tradeoff function f often takes the form f(p) = g(p(1)

γ
), where p is a distribution on {0, 1} and γ is the testing probability

and g is a fixed affine function. As such if γ = O( 1
n
), the gradient of f is Ω(n). We refer the reader to [2], [3] or Section VI of this paper for more details

on this.
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Fig. 1. Illustration of the type of process that the entropy accumulation theorem applies to.

worse than we would expect: when we perform the analysis using conventional tools such as Chernoff-Hoeffding bounds in
cases that are amenable to it, we obtain a much better scaling behavior, and in particular we still expect a non-trivial bound
when the testing rate is O(1/n). As a further indication that the second-order term can be improved, we also note that in [2,
Appendix B], they resort to applying the entropy accumulation theorem to blocks rather than single rounds in order to obtain
a good dependence on the testing rate.

The goal of this paper is therefore to improve the second-order term in (1). Analyzing second-order correction terms is
already commonplace in information theory ever since the 60s, with the work of Volker Strassen [4] who gave second-order
bounds for hypothesis testing and channel coding. This topic has also seen a revival more recently [5]–[7]. Quantum versions
of such bounds have been proven as well since then; for example, Li [8] and Tomamichel and Hayashi [9] have shown a
second-order expansion for quantum hypothesis testing, and [9] additionally gives second-order expansions for several other
entropic quantities of interest. Other more recent developments can also be found in [10]–[16].

Most of these results go one step further than we will in this paper, in that they pin down the O(
√
n) term exactly, usually

by employing some form of the Berry-Esseen theorem to a carefully designed classical random variable. Unfortunately, this
approach seems to fail here, and we must resort to slightly weaker bounds that nevertheless give the right scaling behavior for
protocols with infrequent sampling, and that are largely good enough in practice.

a) Paper organization: : In Section II, we give the notation used and some preliminary facts needed for the rest of the
paper, including the Rényi entropy chain rule that powers the original entropy accumulation result in Section II-C. Section III
then introduces the divergence variance which governs the form of the second-order term, and discusses some of its properties.
In Section IV, we present a new bound for the Rényi entropy in terms of the von Neumann entropy, and then apply it to the
entropy accumulation theorem in Section V, with specific bounds for the case of protocols with infrequent sampling in Section
V-A. We then compute finite-block-size bounds for the particular application of device-independent randomness expansion in
Section VI and conclude with some open problems in Section VII.

II. PRELIMINARIES

A. Notation

In the table below, we summarize some of the notation used throughout the paper:
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Symbol Definition

A,B,C, . . . Quantum systems, and their associated Hilbert spaces
L(A,B) Set of linear operators from A to B
L(A) L(A,A)
XAB Operator in L(A ⊗B)
IA Identity map from L(A) to itself

MA→B The subscript A → B is to indicate that M is a linear map from L(A) to L(B)
D(A) Set of normalized density operators on A

XA > YA XA − YA is positive semidefinite
Aj

i (with j > i) Given n systems A1, . . . , An, this is a shorthand for Ai, . . . , Aj

An Often used as shorthand for A1, . . . , An

log(x) Logarithm of x in base 2
Var(X) Variance of the random variable X

Cov(X,Y ) Covariance of the random variables X and Y
Dα(ρ‖σ) Sandwiched Rényi divergence (Definition II.3)
D′

α(ρ‖σ) Petz Rényi divergence (Definition II.4)
Hα(A|B)ρ −Dα(ρAB‖idA ⊗ ρB)
H↑

α(A|B)ρ − infσB
Dα(ρAB‖idA ⊗ σB)

H ′
α(A|B)ρ −D′

α(ρAB‖idA ⊗ ρB)
Dmin(ρ‖σ) D 1

2
(ρ‖σ)

Dmax(ρ‖σ) D∞(ρ‖σ)
V (·) Various divergence variance measures; see Section III

B. Entropic quantities

The central mathematical tools used in this paper are entropic quantities, i.e. various ways of quantifying the amount of
uncertainty present in classical or quantum systems. In this section, we give definitions for the quantities that will play a role
in our results.

Definition II.1 (Relative entropy). For any positive semidefinite operators ρ and σ, the relative entropy is defined as

D(ρ‖σ) =
{

1
tr[ρ] tr[ρ(log ρ− log σ)] if supp(ρ) ⊆ supp(σ)

∞ otherwise
.

Definition II.2 (von Neumann entropy). Let ρAB ∈ D(AB) be a bipartite density operator. Then, the conditional von Neumann

entropy is defined as
H(A|B)ρ = −D(ρAB‖idA ⊗ ρB).

Our proofs heavily rely on two versions of the Rényi relative entropy: the one first introduced by Petz [17], and the
“sandwiched” version introduced in [18], [19]. We define both of these here:

Definition II.3 (Sandwiched Rényi divergence). Let ρ be a quantum state, let σ be positive semidefinite, and let α ∈ [ 12 ,∞].
Then, the sandwiched Rényi divergence is defined as

Dα(ρ‖σ) =























1
α−1 log tr

[(

σ−α′

2 ρσ−α′

2

)α]

if α < 1 or α > 1 and supp(ρ) ⊆ supp(σ)

log inf{λ : ρ 6 λσ} if α = ∞
D(ρ‖σ) if α = 1

∞ otherwise,

(2)

where α′ := α−1
α . Note D∞ is also referred to as Dmax and D 1

2
as Dmin.

Definition II.4 (Petz Rényi divergence). Let ρ be a quantum state, let σ be positive semidefinite, and let α ∈ [0, 2]. Then, the
Petz Rényi divergence is defined as

D′
α(ρ‖σ) =



















1
α−1 log tr

[

ρασ1−α
]

if 0 < α < 1 or 1 < α 6 2 and supp(ρ) ⊆ supp(σ)

− log tr[Πsupp(ρ)σ] if α = 0

D(ρ‖σ) if α = 1

∞ otherwise,

(3)
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where Πsupp(ρ) is the projector on the support of ρ.

These relative entropies can be used to define a conditional entropy:

Definition II.5 (Sandwiched Rényi conditional entropy). For any density operator ρAB and for α ∈ [ 12 ,∞] the sandwiched

α-Rényi entropy of A conditioned on B is defined as

Hα(A|B)ρ = −Dα(ρAB‖idA ⊗ ρB).

Note that we also refer to H∞(A|B)ρ as Hmin(A|B)ρ|ρ.

It turns out that there are multiple ways of defining conditional entropies from relative entropies. Another variant that will
be needed in this work is the following:

Definition II.6. For any density operator ρAB and for α ∈ [ 12 , 1) ∪ (1,∞], we define

H↑
α(A|B)ρ = − inf

σB

Dα(ρAB‖idA ⊗ σB)

where the infimum is over all subnormalized density operators on B. Note that we also refer to H↑
∞(A|B)ρ as Hmin(A|B)ρ,

called the min-entropy, and to H↑
1
2

(A|B)ρ as Hmax(A|B)ρ, called the max-entropy.

Finally, in the case of the min- and max-entropy, we will also need “smooth” versions. These are versions of the min- and
max-entropy where we compute the entropy for the best state within ε of the actual state, where the distance is given by the
purified distance. We begin by defining the purified distance [20]–[25]:

Definition II.7 (Purified distance). Let ρ and σ be two subnormalized density operators. Then, the purified distance between
ρ and σ is given by

P (ρ, σ) :=

√

1−
(

‖√ρ
√
σ‖1 +

√

(1− tr[ρ])(1 − tr[σ])
)2

.

Note that this reduces to P (ρ, σ) =
√

1− ‖√ρ
√
σ‖21 whenever either ρ or σ is normalized. We are now ready to define the

smooth min- and max-entropy:

Definition II.8. For any density operator ρAB and for ε ∈ [0, 1] the ε-smooth min- and max-entropies of A conditioned on B
are given by:

Hε
min(A|B)ρ = sup

ρ̃:P (ρ,ρ̃)6ε

Hmin(A|B)ρ̃

Hε
max(A|B)ρ = inf

ρ̃:P (ρ,ρ̃)6ε
Hmax(A|B)ρ̃.

respectively, where ρ̃ is any subnormalized density operator that is ε-close to ρ in terms of the purified distance [24], [25].

C. Chain rule for Rényi entropies

In [1], the central piece of the proof was a chain rule for Rényi entropies. As our proof largely follows the same steps,
we reproduce the most relevant statement here for the reader’s convenience. For the proofs, we refer the reader to [1]. An
important property of a tripartite state ρABC that we will be using throughout the paper is the Markov chain condition written
A ↔ B ↔ C and defined by I(A : C|B)ρ = 0.

Corollary II.9 (Corollary 3.4 in [1]). Let ρ0RA1B1
be a density operator on R ⊗ A1 ⊗ B1 and M be a trace-preserving

completely-positive map from L(R) to L(A2 ⊗B2). Assuming that ρA1B1A2B2 = (M⊗IA1B1)(ρ
0
RA1B1

) satisfies the Markov

condition A1 ↔ B1 ↔ B2, we have for α ∈ [ 12 ,∞)

inf
ω

Hα(A2|B2A1B1)M(ω) 6 Hα(A1A2|B1B2)M(ρ0) −Hα(A1|B1)ρ0 6 sup
ω

Hα(A2|B2A1B1)M(ω)

where the supremum and infimum range over density operators ωRA1B1 on R ⊗ A1 ⊗ B1. Moreover, if ρ0RA1B1
is pure then

we can optimise over pure states ωRA1B1 .
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Fig. 2. Plot of v(q) = V (X), where X is a Bernoulli RV with Pr[X = 0] = q. It peaks at around v(0.083) ≈ 0.9142.

III. THE QUANTUM DIVERGENCE VARIANCE AND ITS PROPERTIES

The second-order term in our main result will be governed by a quantity called the quantum divergence variance, defined
as follows:

Definition III.1 (Quantum divergence variance). Let ρ, σ be positive semidefinite operators such that D(ρ‖σ) is finite
(i.e. supp(ρ) ⊆ supp(σ)). Then, the quantum divergence variance V (ρ‖σ) is defined as:

V (ρ‖σ) := 1

tr[ρ]
tr
[

ρ(log ρ− log σ − idD(ρ‖σ))2
]

=
1

tr[ρ]
tr
[

ρ(log ρ− log σ)2
]

−D(ρ‖σ)2.

This was already defined in [9] and [8] under the names “quantum information variance” and “quantum relative variance”
respectively; we instead choose a different name to clearly mark its relation to the divergence and to avoid confusion with the
other variances that we are about to define.

Definition III.2 (Quantum conditional entropy variance). Let ρAB be a bipartite quantum state. Then, the quantum conditional
entropy variance V (A|B)ρ is given by:

V (A|B)ρ := V (ρAB‖idA ⊗ ρB).

Likewise, this was already defined in [9] under the name “quantum conditional information variance”. Of course, the system
in the conditioning can be omitted in the unconditional case. Finally, we define the quantum mutual information variance, first
defined in [26]:

Definition III.3 (Quantum mutual information variance). Let ρAB be a bipartite quantum state. Then, the quantum mutual
information variance V (A;B)ρ is given by:

V (A;B)ρ := V (ρAB‖ρA ⊗ ρB).

These various quantities have a number of elementary properties that we prove here. First, to get a sense of what the
divergence variance looks like in a simple case, we plot the divergence variance of a single bit X with Pr[X = 0] in Figure 2.
We also note that the divergence variance does not satisfy the data processing inequality, even in the classical case; in other
words, it is not true in general that V (ρ‖σ) > V (E(ρ)‖E(σ)) for a quantum channel E . To see this, consider the following
counterexample: let ρ = |0〉〈0|, σ = id, and let E be a binary symmetric channel in the computational basis with error rate
0.083. Then, we can see from the plot in Figure 2 that V (E(ρ)‖E(σ)) > V (ρ‖σ). It is also easy to see that the opposite
inequality is also false in general.

Now, we show that the divergence variance obeys the following basic bounds:
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Lemma III.4 (General bounds). For any positive semidefinite operators ρ, σ, with supp(ρ) ⊆ supp(σ), and any ν ∈ (0, 1),

V (ρ‖σ) ≤ 1

ν2
log2

(

2−νD(ρ‖σ)+νD′
1+ν(ρ‖σ) + 2νD(ρ‖σ)−νD′

1−ν (ρ‖σ) + 1
)

. (4)

Proof. First, without loss of generality, we restrict the space to the support of σ. We then proceed in a way similar to [27,
Lemma 8]. We introduce X = 2−D(ρ‖σ)ρ ⊗ (σ−1)T , |ϕ〉 = (

√
ρ ⊗ id)|γ〉 with |γ〉 = ∑i |i〉 ⊗ |i〉. We then have V (ρ‖σ) =

1
ln2 2

〈ϕ| ln2 X |ϕ〉. Observe that we have for ν ∈ (0, 1) and any t > 0

ln2 t =
1

ν2
ln2 tν

≤ 1

ν2

(

ln

(

tν +
1

tν

))2

≤ 1

ν2

(

ln

(

tν +
1

tν
+ 1

))2

,

where in the first inequality, we used the fact that ln(x)2 ≤ ln(x + 1
x)

2 for any x > 0 and in the second inequality the fact
that x+ 1

x > 1. As a result, we have that

(Πsupp(ρ) ⊗ id) ln2 X(Πsupp(ρ) ⊗ id) 6
1

ν2
(Πsupp(ρ) ⊗ id)

(

ln

(

Xν +
id

Xν
+ id

))2

(Πsupp(ρ) ⊗ id)

and therefore

〈ϕ| ln2 X |ϕ〉 ≤ 1

ν2
〈ϕ|
(

ln

(

Xν +
id

Xν
+ id

))2

|ϕ〉,

We now use the fact that the function s 7→ ln2(s) is concave on the interval [e,+∞) and that |ϕ〉 is in the span of the
eigenvectors of Xν + id

Xν + id with eigenvalues in [3,∞)) to get

〈ϕ| ln2 X |ϕ〉 ≤ 1

ν2
ln2
(

〈ϕ|Xν |ϕ〉+ 〈ϕ| id
Xν

|ϕ〉+ 1

)

.

But observe that
〈ϕ|Xν|ϕ〉 = 2−νD(ρ‖σ)tr(ρ1+νσ−ν) = 2−νD(ρ‖σ)+νD′

1+ν (ρ‖σ)

and

〈ϕ| id
Xν

|ϕ〉 = 2+νD(ρ‖σ)tr(ρ1−νσν) = 2+νD(ρ‖σ)−νD′
1−ν (ρ‖σ) .

This leads to the following bounds for the conditional entropy variance and the mutual information variance:

Corollary III.5. For any density operator ρAB , we have

V (A|B)ρ ≤ log2(2d2A + 1)

V (A;B)ρ ≤ 4 log2(2dA + 1) .

Moreover, if the system A is classical, then the upper bounds can be improved to

V (A|B)ρ ≤ log2(2dA + 1)

V (A;B)ρ ≤ 4 log2(2
√

dA + 1) .

Proof. For the upper bound on V (A|B)ρ = V (ρAB‖idA ⊗ ρB), using (4) for ν ∈ (0, 1), we get:

V (A|B)ρ ≤ 1

ν2
log2

(

2−νD(ρAB‖idA⊗ρB)+νD′
1+ν(ρAB‖idA⊗ρB) + 2νD(ρAB‖idA⊗ρB)−νD′

1−ν(ρAB‖idA⊗ρB) + 1
)

=
1

ν2
log2

(

2ν(H(A|B)ρ−H′
1+ν(A|B)ρ) + 2ν(−H(A|B)ρ+H′

1−ν (A|B)ρ) + 1
)

≤ 1

ν2
log2

(

2d2νA + 1
)

,

where the first inequality uses Lemma III.4 and the last inequality uses the fact that all the entropy terms are bounded by
− log dA 6 H⋆(A|⋆) 6 log dA (see e.g., [28, Lemma 5.2]). Taking the limit ν → 1, we get the desired result. In the case
where ρAB is separable, we have instead 0 6 H⋆(A|⋆) 6 log dA which leads to the improved bound.
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For the bound on V (A;B) = V (ρAB‖ρA ⊗ ρB), we use (4) with ν = 1
2 to have an upper bound of the form

V (A;B)ρ ≤ 4 log2
(

2
− 1

2D(ρAB‖ρA⊗ρB)+ 1
2D

′
3
2
(ρAB‖ρA⊗ρB)

+ 2
1
2D(ρAB‖ρA⊗ρB)− 1

2D
′
1
2
(ρAB‖ρA⊗ρB)

+ 1

)

≤ 4 log2
(

2
1
2D

′
3
2
(ρAB‖ρA⊗ρB)

+ dA + 1

)

,

where we used the fact that D(ρAB‖ρA⊗ ρB) and D′
1
2

(ρAB‖ρA ⊗ ρB) are nonnegative and D(ρAB‖ρA ⊗ ρB) ≤ 2 log dA. To
conclude, it suffices to show that D′

3
2

(ρAB‖ρA ⊗ ρB) ≤ 2 log dA. To do this, let ρABC be a purification of ρ. We then have
that:

D′
3
2
(ρAB‖ρA ⊗ ρB) 6 D′

3
2
(ρABC‖ρA ⊗ ρBC)

= 2 log tr
[

ρ
3
2

ABC(ρA ⊗ ρBC)
− 1

2

]

6 2 log

√

tr
[

ρ
3
2

ABCρ
−1
A

]

tr
[

ρ
3
2

ABCρ
−1
BC

]

= log
[

tr
[

ρABCρ
−1
A

]

tr
[

ρABCρ
−1
BC

]]

6 log dA + log dim supp(ρBC)

6 2 log dA.

We remark that the choice of looking at D′
3
2

is not arbitrary. In fact, D′
1+ν(ρAB‖ρA ⊗ ρB) for ν > 1

2 may be arbitrarily

large as can be seen with the following example. Let |Φ(λ)〉AB =
√
λ|00〉AB +

√
1− λ|11〉AB for λ ∈ [0, 1]. We set

ρAB = |Φ(λ)〉〈Φ(λ)|AB . Then, we can compute

D′
1+ν(ρAB‖ρA ⊗ ρB) =

1

ν
log tr

[

λ1−2ν |00〉〈00|+ (1 − λ)1−2ν |11〉〈11|
]

,

which diverges as λ → 0 for ν > 1
2 .

When the system A is classical, then we have D′
3
2

(ρAB‖ρA⊗ρB) ≤ log dA. In fact, we write ρAB =
∑

a p(a)|a〉〈a|A⊗ρB(a),
where {p(a)}a is a probability distribution and ρB(a) are density operators. Then, we compute

D′
3
2
(ρAB‖ρA ⊗ ρB) = 2 log

∑

a

tr
[(

p(a)
3
2 |a〉〈a| ⊗ ρB(a)

3
2

)

(p(a)−
1
2 |a〉〈a| ⊗ ρ

− 1
2

B )
]

= 2 log
∑

a

tr
[

p(a)ρB(a)
3
2 ρ

− 1
2

B

]

.

Now note that for any a, ρB ≥ p(a)ρB(a), and thus by operator monotonicity of x 7→ −x− 1
2 , we have ρ

− 1
2

B ≤ p(a)−
1
2 ρB(a)

− 1
2 ,

we get

D′
3
2
(ρAB‖ρA ⊗ ρB) 6 2 log

∑

a

p(a)
1
2

6 log dA.

Next, we show that the divergence variance is additive, in the following sense:

Lemma III.6 (Additivity of the divergence variance). Let ρ, τ be density operators and σ, ω be positive semidefinite operators.

Then,

V (ρ⊗ τ‖σ ⊗ ω) = V (ρ‖σ) + V (τ‖ω).
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Proof. We have that

V (ρ⊗ τ‖σ ⊗ ω)

= tr
[

(ρ⊗ τ) (log(ρ⊗ τ)− log(σ ⊗ ω)− idD(ρ‖σ)− idD(τ‖ω))2
]

= tr
[

(ρ⊗ τ) (log ρ⊗ id + id⊗ log τ − log σ ⊗ id− id⊗ logω − idD(ρ‖σ)− idD(τ‖ω))2
]

= tr
[

(ρ⊗ τ) (log ρ⊗ id− log σ ⊗ id− idD(ρ‖σ))2
]

+ tr
[

(ρ⊗ τ) (id⊗ log τ − id⊗ logω − idD(τ‖ω))2
]

+ tr [(ρ⊗ τ) (log ρ⊗ id− log σ ⊗ id− idD(ρ‖σ)) (id⊗ log τ − id⊗ logω − idD(τ‖ω))]
+ tr [(ρ⊗ τ) (id⊗ log τ − id⊗ logω − idD(τ‖ω)) (log ρ⊗ id− log σ ⊗ id− idD(ρ‖σ))]

= V (ρ‖σ) + V (τ‖ω)
+ 2tr [ρ(log ρ− log σ − idD(ρ‖σ))] tr [τ(log τ − logω − idD(τ‖ω))]

= V (ρ‖σ) + V (τ‖ω).

We also show that a conditional entropy variance with a classical variable X in the conditioning admits a decomposition in
terms of the possible values of X :

Lemma III.7. Let ρABX be a tripartite state with X classical. Then,

V (A|BX)ρ =
∑

x

pxV (A|B,X = x) + Var(W )

where W is a random variable that takes value H(A|B,X = x) with probability px. In particular,

V (A|BX)ρ >
∑

x

pxV (A|B,X = x).

Proof. We have that

V (A|BX)ρ = tr
[

ρABX (log ρABX − idA ⊗ log ρBX)
2
]

−H(A|BX)2

=
∑

x

pxtr
[

ρAB|X=x

(

log ρAB|X=x + id log px − idA ⊗ log ρB|X=x − id log px
)2
]

−H(A|BX)2

=
∑

x

pxtr
[

ρAB|X=x

(

log ρAB|X=x − idA ⊗ log ρB|X=x

)2
]

−
(

∑

x

pxH(A|B,X = x)

)2

=
∑

x

px
(

V (A|B,X = x) +H(A|B,X = x)2
)

−
(

∑

x

pxH(A|B,X = x)

)2

=
∑

x

pxV (A|B,X = x) −
(

∑

x

pxH(A|B,X = x)

)2

+
∑

x

pxH(A|B,X = x)2

=
∑

x

pxV (A|B,X = x) − (EW )
2
+ E[W 2]

=
∑

x

pxV (A|B,X = x) + Var(W ).

We will also need the following decomposition of the conditional entropy variance for Markov chains:

Lemma III.8. Let ρABCDX be a quantum state with X classical satisfying the Markov chain AC ↔ X ↔ BD; i.e. I(AC :
BD|X) = 0. Then,

V (AB|CDX) = V (A|CX) + V (B|DX) + 2Cov(W1,W2),
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where W1 and W2 are random variables that take value H(A|C,X = x) and H(B|D,X = x) according to the value of X ,

respectively. In particular, this shows that for a trivial B system, V (A|CDX) = V (A|CX).

Proof. We perform the computation as follows:

V (AB|CDX)

=
∑

x

pxV (AB|CD,X = x) + Var(W1 +W2)

=
∑

x

px(V (A|C,X = x) + V (B|D,X = x)) + Var(W1) + Var(W2) + 2Cov(W1,W2)

= V (A|CX) + V (B|DX) + 2Cov(W1,W2),

where the first equality follows from Lemma III.7, and the second equality from Lemma III.6.

Finally, the following more specialized lemmas will be needed in the proof of our main result:

Lemma III.9. Let ρACDD̄X be a quantum state with X classical that can be written as
∑

x

px|x〉〈x|X ⊗ ρ
(x)
AC ⊗ τ

(x)

DD̄

with τ
(x)

D̄
= idD̄

dD̄
for all x. Then,

V (ADX |CD̄) 6 V (AX |C) + V (D|XD̄) + 2
√

V (AX |C)V (D|XD̄).

Proof. First, note that the chain rule together with the form of the state in the lemma gives H(ADX |CD̄) = H(AX |C) +
H(D|XD̄). We can then proceed as follows:

V (ADX |CD̄) =
∑

x

pxtr
[

ρ
(x)
AC ⊗ τ

(x)

DD̄

(

log pxρ
(x)
AC ⊗ idDD̄

+ idAC ⊗ log τ
(x)

DD̄
− idADD̄ ⊗ log ρC + idACDD̄ log dD̄ + idH(ADX |CD̄)

)2]

=
∑

x

pxtr
[

ρ
(x)
AC ⊗ τ

(x)

DD̄

(

log pxρ
(x)
AC ⊗ idDD̄ − idADD̄ ⊗ log ρC + idH(AX |C)

)2]

+
∑

x

pxtr
[

ρ
(x)
AC ⊗ τ

(x)

DD̄

(

idAC ⊗ log τ
(x)

DD̄
+ idACDD̄ log dD̄ + idH(D|XD̄)

)2]

+ 2
∑

x

pxtr
[

ρ
(x)
AC ⊗ τ

(x)

DD̄

(

log pxρ
(x)
AC ⊗ idDD̄ − idADD̄ ⊗ log ρC + idH(AX |C)

)

(

idAC ⊗ log τ
(x)

DD̄
+ idABDD̄ log dD̄ + idH(D|XD̄)

)]

= V (AX |C) + V (D|XD̄) + 2 · crossterm,

where we used in the second equality the fact that
(

log pxρ
(x)
AC ⊗ idDD̄ − idADD̄ ⊗ log ρC + idH(AX |C)

)

and
(

log τ
(x)

DD̄
⊗

idAC + idABDD̄ log dD̄ + idH(D|XD̄)
)

commute. To get the last equality, we observe that

∑

x

pxtr
[

ρ
(x)
AC ⊗ τ

(x)

DD̄

(

log pxρ
(x)
AC ⊗ idDD̄ − idADD̄ ⊗ log ρC + idH(AX |C)

)2]

=
∑

x

pxtr
[

ρ
(x)
AC

(

log pxρ
(x)
AC − idA ⊗ log ρC + idH(AX |C)

)2]

= V (AX |C),

and
∑

x

pxtr
[

ρ
(x)
AC ⊗ τ

(x)

DD̄

(

log τ
(x)

DD̄
⊗ idAC + idACDD̄ log dD̄ + idH(D|XD̄)

)2]

= tr

[

∑

x

px|x〉〈x| ⊗ τ
(x)

DD̄

(

log

(

∑

x

px|x〉〈x| ⊗ τ
(x)

DD̄

)

− idD ⊗ log

(

∑

x

px|x〉〈x| ⊗ τ
(x)

D̄

)

+ idXDD̄H(D|XD̄)

)2]

= V (D|D̄X),
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We are now going to bound the cross term by applying the Cauchy-Schwarz inequality. Using the cyclicity of the trace for
(ρ

(x)
AC)

1/2, we have

crossterm = tr

[(

∑

x

√
px|x〉〈x| ⊗ (ρ

(x)
AC)

1/2
(

log pxρ
(x)
AC − idA ⊗ log ρC + idH(AX |C)

)

⊗ (τ
(x)

DD̄
)1/2

)

·
(

∑

x

√
px|x〉〈x| ⊗ (ρ

(x)
AC)

1/2 ⊗ (τ
(x)

DD̄
)1/2

(

log τ
(x)

DD̄
+ idDD̄ log dD̄ + idH(D|XD̄)

)

)]

6

√

tr(Y Y †)tr(ZZ†),

where Y =
∑

x

√
px|x〉〈x| ⊗ (ρ

(x)
AC)

1/2
(

log pxρ
(x)
AC − idA ⊗ log ρC + idH(AX |C)

)

⊗ (τ
(x)

DD̄
)1/2 and Z =

∑

x

√
px|x〉〈x| ⊗

(ρ
(x)

AC̄
)1/2 ⊗ (τ

(x)

DD̄
)1/2

(

log τ
(x)

DD̄
+ idDD̄ log dD̄ + idH(D|XD̄)

)

. We conclude by observing that tr(Y Y †) = V (AX |C) and

tr(ZZ†) = V (D|XD̄).

Lemma III.10. For any state ρABC , we have

V (AC|B)ρ = V (A|B)ρ + V (C|BA)ρ

+ tr (ρABC(log ρAB − log ρB +H(A|B))(log ρABC − log ρAB +H(C|BA)))

+ tr (ρABC(log ρABC − log ρAB +H(C|BA))(log ρAB − log ρB +H(A|B))) . (5)

Proof. Direct calculation.

Lemma III.11. Let ρXAB be of the form ρXAB =
∑

x∈X |x〉〈x|X ⊗ ρAB,x with tr(ρAB,xρAB,x′) = 0 when x 6= x′. Then we

have

V (AX |B)ρ = V (A|B)ρ . (6)

In other words, if the states ρAB,x are orthogonal for different values of x, then this effectively makes the subsystem X
redundant for the purpose of computing the conditional entropy variance.

Proof. Using Lemma III.10, it suffices to show only the first term of (5) remains. In fact, we have H(X |BA) = 0 and

V (X |BA)ρ = tr
(

ρXAB(log ρXAB − log ρAB)
2
)

=
∑

x

tr



|x〉〈x|X ⊗ ρAB,x

(

∑

x′

|x′〉〈x′|X ⊗ log ρAB,x′ − idX ⊗
∑

x′

log ρAB,x′

)2




=
∑

x

tr

(

|x〉〈x|X ⊗ ρAB,x

(

∑

x′

(|x′〉〈x′|X − idX)2 ⊗ log2 ρAB,x′

))

=
∑

x

tr
(

|x〉〈x|X(|x〉〈x|X − idX)2 ⊗ ρAB,x log
2 ρAB,x

)

= 0 .

In addition, the other terms are also zero:

tr (ρXAB(log ρAB − log ρB +H(A|B))(log ρXAB − log ρAB))

=
∑

x

tr

(

(|x〉〈x| ⊗ ρAB,x)(idX ⊗ (log ρAB − log ρB + idABH(A|B)))(|x〉〈x| ⊗ log ρAB,x

− idX ⊗
∑

x′

log ρAB,x′)

)

=
∑

x

tr



ρAB,x(log ρAB − log ρB + idABH(A|B))(
∑

x′ 6=x

log ρAB,x′)





= 0 ,
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using the orthogonality of ρAB,x and ρAB,x′ , and

tr [ρXAB(log ρXAB − log ρAB)(log ρAB − log ρB +H(A|B))]

=
∑

x

tr [(|x〉〈x| ⊗ ρAB,x)(|x〉〈x| ⊗ ρAB,x − idX ⊗ ρAB)(log ρAB − log ρB + idXABH(A|B))]

=
∑

x

tr [(|x〉〈x| ⊗ ρAB,x)(|x〉〈x| ⊗ ρAB,x − idX ⊗ ρAB,x)(log ρAB − log ρB + idXABH(A|B))]

= 0,

where we have used the fact that ρAB,xρAB = ρ2AB,x by the orthogonality conditions.

IV. CONTINUITY BOUNDS FOR RÉNYI DIVERGENCES

A critical step in the proof is an explicit continuity bound for Dα when α approaches 1. One such bound is given [28,
Section 4.2.2]. However, this bound does not give explicit values for the remainder term. The following lemma computes an
explicit remainder term for the case of classical probability distributions. As in [28, Section 4.4.2], we will then apply this
lemma to Nussbaum-Szkoła distributions to get a similar result for the Petz divergence D′

α between quantum states.

Lemma IV.1. Let ρ be a density operator and σ be a not necessarily normalized positive semidefinite operator. Let α > 1
and µ ∈ (0, 1). Then, we have that

Dα(ρ‖σ) 6 D′
α(ρ‖σ) 6 D(ρ‖σ) + (α− 1) ln 2

2
V (ρ‖σ) + (α− 1)2Kρ,σ,

where

Kρ,σ(α, µ) =
1

6µ3 ln 2
2(α−1)(D′

α(ρ‖σ)−D(ρ‖σ)) ln3
(

2(α+µ−1)(D′
α+µ(ρ‖σ)−D(ρ‖σ)) + e2

)

.

Proof. As mentioned above, we start by proving the statement for classical probability distributions. For this proof, it will be
more convenient for us to do everything using natural logarithms; we will therefore use the “hatted” quantities D̂ and V̂ for
all relative entropies and variances to denote their counterparts defined using the natural logarithm. Let P be a probability
distribution and Q be a not necessarily normalized distribution. Define the random variable X with distribution P , and let
Z = e−D̂(P‖Q) P (X)

Q(X) . Note that for any ν > 0, we have

E[Zν ] = e−νD̂(P‖Q)
∑

x

P (x)1+νQ(x)−ν (7)

= e−ν(D̂(P‖Q)−D̂1+ν(P‖Q)). (8)

Now, letting ν = α− 1, we have

D̂α(P‖Q) =
1

ν
ln (E[Zν ]) + D̂(P‖Q). (9)

Applying Taylor’s inequality to the function ν 7→ E[Zν ] we have

E[Zν ] ≤ 1 + νE[lnZ] +
ν2

2
E[ln2 Z] +

ν3

6
sup

0<γ6ν
E[Zγ ln3 Z]. (10)

Using the fact that E[lnZ] = 0 and

E[ln2 Z] =
∑

x

P (x)

(

ln
P (x)

Q(x)
− D̂(P‖Q)

)2

(11)

= V̂ (P‖Q), (12)

together with the inequality ln(1 + x) 6 x, we get

D̂α(P‖Q) 6 D̂(P‖Q) +
ν

2
V̂ (P‖Q) +

ν2

6
sup

0<γ6ν
E[Zγ ln3 Z]. (13)

We now need to bound the remainder term. We want to use the concavity of ln3, but it is only concave on [e2,∞). Hence,
we start by using the fact that ln3 is nondecreasing and Zγ > 0 to get

E[Zγ ln3 Z] =
1

µ3
E[Zγ ln3(Zµ)] (14)

6
1

µ3
E[Zγ ln3(Zµ + e2)] (15)

=
1

µ3
E[Zγ ]

E[Zγ ln3(Zµ + e2)]

E[Zγ ]
, (16)
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for any µ ∈ (0, 1]. Then we use the concavity of the function t 7→ ln3(t+ e2) on [0,∞) and get

E[Zγ ln3 Z] 6
1

µ3
E[Zγ ] ln3

(

E[Zγ(Zµ + e2)]

E[Zγ ]

)

(17)

=
1

µ3
E[Zγ ] ln3

(

E[Zµ+γ ]

E[Zγ ]
+ e2

)

(18)

=
1

µ3
eγ(D̂1+γ(P‖Q)−D̂(P‖Q)) ln3

(

e(µ+γ)(D̂1+µ+γ(P‖Q)−D̂(P‖Q))

eγ(D̂1+γ(P‖Q)−D̂(P‖Q))
+ e2

)

(19)

6
1

µ3
eγ(D̂1+γ(P‖Q)−D̂(P‖Q)) ln3

(

e(µ+γ)(D̂1+µ+γ(P‖Q)−D̂(P‖Q)) + e2
)

, (20)

where we used the fact that D̂1+γ(P‖Q)− D̂(P‖Q) > 0. As this last expression is nondecreasing in γ, we get that

sup
0<γ6ν

E[Zγ ln3 Z] 6
1

µ3
eν(D̂1+ν(P‖Q)−D̂(P‖Q)) ln3

(

e(µ+ν)(D̂1+µ+ν(P‖Q)−D̂(P‖Q)) + e2
)

. (21)

This proves that

D̂α(P‖Q) 6 D̂(P‖Q) +
(α− 1)

2
V̂ (P‖Q) +

(α − 1)2

6
(RHS of (21)) (22)

and therefore, after converting back to base 2, that

Dα(P‖Q) 6 D(P‖Q) +
(α − 1) ln 2

2
V (P‖Q) + (α− 1)2KP,Q(α, µ) (23)

with KP,Q(α, µ) =
1

6µ3 ln 22
(α−1)(Dα(P‖Q)−D(P‖Q)) ln3

(

2(α+µ−1)(Dα+µ(P‖Q)−D(P‖Q)) + e2
)

.
Now in order to get the general statement, we use the fact that the Petz divergence between states ρ and σ is equal to the

α-divergence of Nussbaum-Szkoła distributions [29], i.e., for all α > 0

D′
α(ρ‖σ) = Dα(P

[ρ,σ]‖Q[ρ,σ]) ,

where P [ρ,σ](x, y) = λx|〈ex|fy〉|2 and Q[ρ,σ](x, y) = µy|〈ex|fy〉|2 where {λx, |ex〉}x are the eigenvalues and eigenvectors of
ρ and {µy, |fy〉}y are the eigenvalues and eigenvectors of σ. Note that P [ρ,σ] and Q[ρ,σ] only depend on ρ and σ and not on α,
and P [ρ,σ] and Q[ρ,σ] have the same normalization as ρ and σ, respectively. Note that by taking the limit α → 1, we also get
D(ρ‖σ) = D(P [ρ,σ]‖Q[ρ,σ]). In addition, by taking the derivative at α = 1, we get that V (ρ‖σ) = V (P‖Q) [28, Proposition
4.9]. Applying inequality (23) to P [ρ,σ] and Q[ρ,σ], we get the desired result.

To obtain a quantitative continuity for Hα(A|B)ρ at α = 1, it suffices to use Lemma IV.1 with ρ = ρAB , σ = idA ⊗ ρB
together with the fact that Dα(ρ‖σ) 6 D′

α(ρ‖σ). In addition, to simplify the statement, we set µ = 2− α.

Corollary IV.2. Let ρAB be a density operator. Then we have for any α ∈ (1, 2),

Hα(A|B)ρ > H(A|B)ρ −
(α− 1) ln 2

2
V (A|B)ρ − (α− 1)2K(α) ,

where K(α) = 1
6(2−α)3 ln 2 · 2(α−1)(−H′

α(A|B)ρ+H(A|B)ρ) ln3
(

2−H′
2(A|B)ρ+H(A|B)ρ + e2

)

.

V. ENTROPY ACCUMULATION WITH IMPROVED SECOND ORDER

We start by recalling the framework for the entropy accumulation theorem [1]. For i ∈ {1, . . . , n}, let Mi be a TPCP map
from Ri−1 to XiAiBiRi, where Ai is finite-dimensional and where Xi represents a classical value from an alphabet X that
is determined by Ai and Bi together. More precisely, we require that, Mi = Ti ◦M′

i where M′
i is an arbitrary TPCP map

from Ri−1 to AiBiRi and Ti is a TPCP map from AiBi to XiAiBi of the form

Ti(WAiBi
) =

∑

y∈Y,z∈Z
(ΠAi,y ⊗ΠBi,z)WAiBi

(ΠAi,y ⊗ΠBi,z)⊗ |t(y, z)〉〈t(y, z)|Xi
, (24)

where {ΠAi,y} and {ΠBi,z} are families of mutually orthogonal projectors on Ai and Bi, and where t : Y × Z → X is a
deterministic function.

The entropy accumulation theorem stated below will hold for states of the form

ρAn
1 B

n
1 Xn

1 E = trRn
(Mn ◦ · · · ◦M1 ⊗ IE)(ρ0R0E) (25)

where ρ0R0E
∈ D(R0 ⊗ E) is a density operator on R0 and an arbitrary system E. In addition, we require that the Markov

conditions

Ai−1
1 ↔ Bi−1

1 E ↔ Bi (26)
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be satisfied for all i ∈ {1, . . . , n}; i.e. I(Ai−1
1 ;Bi|Bi−1

1 E)ρ = 0.
Let P be the set of probability distributions on the alphabet X of Xi, and let R be a system isomorphic to Ri−1. For any

q ∈ P we define the set of states

Σi(q) =
{

νXiAiBiRiR = (Mi ⊗ IR)(ωRi−1R) : ω ∈ D(Ri−1 ⊗R) and νXi
= q
}

, (27)

where νXi
denotes the probability distribution over X with the probabilities given by 〈x|νXi

|x〉. In other words, Σi(q) is the
set of states that can be produced at the output of the channel Mi and that have a reduced state on the Xi system equal to q.

Definition V.1. A real function f on P is called a min-tradeoff function (or simply tradeoff function for short) for Mi if it
satisfies

f(q) 6 min
ν∈Σi(q)

H(Ai|BiR)ν .

Note that if Σi(q) = ∅, then f(q) can be chosen arbitrarily. Our result will depend on some simple properties of the tradeoff
function, namely the maximum and minimum of f , the minimum of f over valid distributions, and the maximum variance of
f :

Max(f) := max
q∈P

f(q)

Min(f) := min
q∈P

f(q)

MinΣ(f) := min
q:Σi(q) 6=∅

f(q)

Var(f) := max
q:Σi(q) 6=∅

∑

x∈X
q(x)f(δx)

2 −
(

∑

x∈X
q(x)f(δx)

)2

,

where δx stands for the distribution with all the weight on element x.
We write freq(Xn

1 ) for the distribution on X defined by freq(Xn
1 )(x) = |{i∈{1,...,n}:Xi=x}|

n . We also recall that in this
context, an event Ω is defined by a subset of Xn and we write ρ[Ω] =

∑

xn
1∈Ω tr(ρAn

1 B
n
1 E,xn

1
) for the probability of the event

Ω and

ρXn
1 An

1B
n
1 E|Ω =

1

ρ[Ω]

∑

xn
1∈Ω

|xn
1 〉〈xn

1 | ⊗ ρAn
1 B

n
1 E,xn

1

for the state conditioned on Ω.

Theorem V.2. Let M1, . . . ,Mn and ρAn
1 B

n
1 Xn

1 E be such that (25) and the Markov conditions (26) hold, let h ∈ R, let f be an

affine min-tradeoff function for M1, . . . ,Mn, and let ε ∈ (0, 1). Then, for any event Ω ⊆ Xn that implies f(freq(Xn
1 )) > h,

Hε
min(A

n
1 |Bn

1E)ρ|Ω
> nh− c

√
n− c′ (28)

holds for

c =
√
2 ln 2

(

log(2d2A + 1) +
√

2 + Var(f)
)

√

1− 2 log(ερ[Ω])

c′ =
35(1− 2 log(ερ[Ω]))

(

log(2d2A + 1) +
√

2 + Var(f)
)2 2

2 log dA+Max(f)−MinΣ(f) ln3
(

22 log dA+Max(f)−MinΣ(f) + e2
)

where dA is the maximum dimension of the systems Ai.

While the above give reasonable bounds in the general case, in order to obtain better finite n bounds in a particular case of
interest, we advise the user to instead use the following bound for an α ∈ (1, 2) that is either chosen carefully for the problem
at hand or computed numerically:

Hε
min(A

n
1 |Bn

1E)ρ|Ω
> nh− n

(α− 1) ln 2

2
V 2 − 1

α− 1
log

2

ε2ρ[Ω]2
− n(α− 1)2Kα , (29)

with

V =
√

Var(f) + 2 + log(2d2A + 1) (30)

Kα =
1

6(2− α)3 ln 2
· 2(α−1)(2 log dA+(Max(f)−MinΣ(f)) ln3

(

22 log dA+(Max(f)−MinΣ(f)) + e2
)

. (31)

Note that in general the optimal choice of α will depend on n; in Theorem V.2 we have chosen α so that α − 1 scales as
Θ(1/

√
n), but other choices are possible. As described in the proof, in the case where the systems Ai are classical, we can
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replace 2 log dA by log dA in (31), this comes from the fact that Hα(Ai|C) ≥ 0 whenever Ai is classical but can only be
lower bounded by − log dA in the general case. This bound holds under the exact same conditions as Theorem V.2 and for any
α ∈ (1, 2), and this is the bound we use to obtain the numerical results presented in the application presented in Section VI.
The choice of α made to get Theorem V.2 is not the optimal one, but it was chosen to have a relatively simple expression
showing the dependence on the main parameters without optimizing the constants.

The proof structure is the same as in [1]. The only difference is when using the continuity of Dα, we use the more
precise estimate in Lemma IV.1, and we use the various properties of the entropy variance proven in Section III to bound the
second-order term.

Proposition V.3. Let M1, . . . ,Mn and ρAn
1B

n
1 Xn

1 E be such that (25) and the Markov conditions (26) hold, let h ∈ R, and

let f be an affine min-tradeoff function f for M, . . . ,Mn. Then, for any event Ω which implies f(freq(Xn
1 )) > h,

H↑
α(A

n
1 |Bn

1E)ρ|Ω
> nh− n

(α− 1) ln 2

2
V 2 − α

α− 1
log

1

ρ[Ω]
− n(α− 1)2Kα (32)

holds for α satisfying α ∈ (1, 2), and V =
√

Var(f) + 2+log(2d2A+1), where dA is the maximum dimension of the systems Ai

and Kα is defined in (31).

Proof. The first step of the proof is to construct a state that will allow us to lower-bound H↑
α(A

n
1 |Bn

1E)ρ|Ω
using a chain rule

similar to the one in Corollary II.9, while ensuring that the tradeoff function is taken into account. In order to achieve this, we
proceed as in [1] and introduce an additional D system that can be thought of as an entropy price that encodes the tradeoff
function. More precisely, for every i, let Di : Xi → XiDi, be a TPCP map defined as

Di(WXi
) =

∑

x∈X
〈x|WXi

|x〉 · |x〉〈x|Xi
⊗ τ(x)Di

,

where τ(x) is such that H(Di)τ(x) = Max(f)− f(δx) (here δx stands for the distribution with all the weight on element x).
This is possible because Max(f)−f(δx) ∈ [0,Max(f)−Min(f)] and we choose the dimension of the systems Di to be equal to
dD =

⌈

2Max(f)−Min(f)
⌉

. More precisely, we fix τ(x) to be a mixture between a uniform distribution on {1, . . . , ⌊2Max(f)−f(δx)⌋}
and a uniform distribution on {1, . . . , ⌈2Max(f)−f(δx)⌉}. We note that compared to [1], our choice of state τ(x) is different.
In fact, in [1], an additional system D̄ was added to the conditioning and τ(x) was an appropriate mixture of a maximally
entangled state on D ⊗ D̄ and a maximally mixed state on D⊗ D̄. This choice is not adapted here because we will need the
entropy variance of τ(x) to be small, for this reason we choose τ(x) to be basically uniform on a set of size 2Max(f)−f(δx).

Now, let

ρ̄ := (Dn ◦ · · · ◦ D1)(ρ) .

Exactly as in the corresponding claim in [1], we can relate conditional entropy H↑
α(A

n
1 |Bn

1E)ρ|Ω
to the conditional entropy of

the constructed state ρ̄:

H↑
α(A

n
1 |Bn

1E)ρ|Ω
> H↑

α(A
n
1D

n
1 |Bn

1E)ρ̄|Ω
− nMax(f) + nh . (33)

The next step is to relate the entropies on the conditional state ρ|Ω to those on the unconditional state. To do this, we use
Lemma A.1 applied to ρ̄ = ρ[Ω]ρ̄|Ω + (ρ̄− ρ[Ω]ρ̄|Ω), together with the fact that H↑

α > Hα, and obtain

H↑
α(A

n
1 |Bn

1E)ρ|Ω
> Hα(A

n
1D

n
1 |Bn

1E)ρ̄ −
α

α− 1
log

1

ρ[Ω]
− nMax(f) + nh . (34)

To show the desired inequality (32), it now suffices to prove that Hα(A
n
1D

n
1 |Bn

1E)ρ̄ is lower bounded by (roughly) nMax(f).
In order to lower bound Hα(A

n
1D

n
1 |Bn

1E)ρ̄, we are now going to use the chain rule for Rényi entropies in Corollary II.9
n times on the state ρ̄, with the following substitutions at step i:

• A1 → Ai−1
1 Di−1

1

• B1 → Bi−1
1 E

• A2 → AiDi

• B2 → Bi.
To check that the Markov chain condition holds, observe that I(Ai−1

1 Di−1
1 : Bi|Bi−1

1 E) = I(Ai−1
1 : Bi|Bi−1

1 E) + I(Di−1
1 :

Bi|Bi−1
1 EAi−1

1 ). Using (26), we have that I(Ai−1
1 : Bi|Bi−1

1 E) = 0 and as Di−1
1 is determined by Ai−1

1 Bi−1
1 , we also have

I(Di−1
1 : Bi|Bi−1

1 EAi−1
1 ) = 0. Thus, Corollary II.9 gives

Hα(A
n
1D

n
1 |Bn

1E)ρ̄

>
∑

i

inf
ωRi−1R

Hα(AiDi|BiR)(Di◦Mi)(ω)

>
∑

i

inf
ωRi−1R

(

H(AiDi|BiR)(Di◦Mi)(ω) −
(α− 1) ln 2

2
V (AiDi|BiRi)(Di◦Mi)(ω) − (α− 1)2K(α)

)

, (35)
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where we have invoked Corollary IV.2 in the second inequality. Here,

K(α) =
1

6(2− α)3 ln 2
· 2(α−1)(−η1+η0) ln3

(

2−η2+η0 + e2
)

.

with η1 = H ′
α(AiDi|BiRi)(Di◦Mi)(ω), η0 = H(AiDi|BiRi)(Di◦Mi)(ω) and η2 = H ′

2(AiDi|BiRi)(Di◦Mi)(ω).
For any such state ωRi−1R, we have

H(AiDi|BiR)(Di◦Mi)(ω) = H(AiXiDi|BiR)(Di◦Mi)(ω)

= H(AiXi|BiR)Mi(ω) +H(Di|Xi)(Di◦Mi)(ω)

= H(Ai|BiR)Mi(ω) +
∑

x

q(x)H(Di)τ(x)

= H(Ai|BiR)Mi(ω) +
∑

x

q(x)
(

Max(f)− f(δx)
)

= H(Ai|BiR)Mi(ω) +Max(f)− f(q) ,

where q = Mi(ω)Xi
denotes the distribution of Xi on X obtained from the state Mi(ω). The third equality comes from

the fact that Xi is determined by AiBi. The last equality holds because f is affine. Using the fact that f is a min-tradeoff
function, we get that H(Ai|BiR)Mi(ω) > f(q) and therefore:

Max(f) 6 H(AiDi|BiR)(Di◦Mi)(ω) 6 log dAi
+Max(f)− f(q) .

The lower bound allows us to lower bound the first term in Eq. (35). The upper bound will allow us to bound the last term in
Eq. (35). In fact, as the systems Di are classical, we have η1, η2 > − log dAi

by Lemma A.2 (and in the case where Ai are
classical, we have η1, η2 > 0) and thus

K(α) 6
1

6(2− α)3 ln 2
· 2(α−1)(log dA+log dA+Max(f)−f(q)) ln3

(

2log dA+log dA+Max(f)−f(q) + e2
)

6
1

6(2− α)3 ln 2
· 2(α−1)(2 log dA+Max(f)−MinΣ(f)) ln3

(

22 log dA+Max(f)−MinΣ(f) + e2
)

,

as by definition Σi(q) is not empty (it contains Mi(ω)).
We now analyze the second term of Eq. (35). Using Lemma III.11 and then Lemma III.9 we have

V (AiDi|BiRi)(Di◦Mi)(ω) = V (AiXiDi|BiRi)(Di◦Mi)(ω) (36)

6

(√

V (Ai|BiRi)(Di◦Mi)(ω) +
√

V (Di|Xi)(Di◦Mi)(ω)

)2

. (37)

We bound the first term by the dimension of A using Corollary III.5.

V (Ai|BiRi)(Di◦Mi)(ω) 6 log2(2d2A + 1).

For the second term, using the notation q = Mi(ω)Xi
, we have using Lemma III.7

V (Di|Xi)(Di◦Mi)(ω) =
∑

x∈X
q(x)V (Di)τ(x) +Var(W ) ,

where W takes the value H(Di)τ(x) = Max(f)− f(δx) with probability q(x). We have

Var(W ) =
∑

x∈X
q(x)(Max(f)− f(δx))

2 −
(

∑

x

q(x)(Max(f)− f(δx))

)2

6 sup
ω,q=Mi(ω)Xi

∑

x∈X
q(x)f(δx)

2 −
(

∑

x

q(x)f(δx)

)2

6 Var(f) .

To bound V (Di)τ(x) recall that τ(x) is a mixture between the uniform distribution on {1, . . . , ⌊2Max(f)−f(δx)⌋} and the
uniform distribution on {1, . . . , ⌈2Max(f)−f(δx)⌉}. Note that if 2Max(f)−f(δx) is an integer, τ(x) is uniformly distributed and
thus V (Di)τ(x) = 0. Assuming 2Max(f)−f(δx) is not an integer, let ⌊2Max(f)−f(δx)⌋ = k. Then τ(x) is a distribution on
{1, . . . , k + 1} and we have for some p and p′ ≤ p, 〈j|τ(x)|j〉 = p for all j ∈ {1, . . . , k} and 〈k + 1|τ(x)|k + 1〉 = p′. The
normalization condition is kp + p′ = 1 and thus, p′ = 1 − kp. We can now observe that the entropy variance V (Di)τ(x) is
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simply Var(− log p+Z) = Var(Z), where Z is a random variable that is equal to 0 with probability 1−p′ and to log p− log p′

with probability p′. This variance can then be computed as

Var(Z) = E[Z2]− E[Z]2

= p′(log p− log p′)2 − p′
2
(log p− log p′)2

= p′(1 − p′) log2
(

p

p′

)

.

Now, we use the fact that log2 z 6 2z and continue:

Var(Z) 6 2p′(1− p′)
p

p′
6 2.

As a result,

V (Di|Xi)(Di◦Mi)(ω) ≤ 2 + Var(f) .

Putting everything together, Eq. (34) becomes

H↑
α(A

n
1 |Bn

1E)ρ|Ω
> nh− n

(α− 1) ln 2

2

(

log(2d2A + 1) +
√

2 + Var(f)
)2

− n(α− 1)2Kα − α

α− 1
log

1

ρ[Ω]
.

Theorem V.2 is then obtained from Proposition V.3 by choosing α appropriately.

Proof of Theorem V.2. We start by lower-bounding the smooth min-entropy by a Rényi entropy: for α ∈ (1, 2] (see e.g., [28,
Proposition 6.5]), we have

Hε
min(A

n
1 |Bn

1E)ρ|Ω
> H↑

α(A
n
1 |Bn

1E)ρ|Ω
− log(2/ε2)

α− 1
. (38)

Then Proposition V.3 yields for α ∈ (1, 1 + 1
2 ln 2 )

Hε
min(A

n
1 |Bn

1E)ρ|Ω
> nh− n

(α− 1) ln 2

2
V 2 − α

α− 1
log

1

ρ[Ω]
− n(α− 1)2Kα − log(2/ε2)

α− 1
(39)

> nh− n
(α− 1) ln 2

2
V 2 − 1

α− 1
log

2

ε2ρ[Ω]2
− n(α− 1)2K ,

where for the first inequality, Kα is as in (31) and in the second inequality, we used the fact that α 6 1 + 1
2 ln 2 and defined

K = 12 · 2(2 log dA+(Max(f)−MinΣ(f)) ln3
(

22 log dA+(Max(f)−MinΣ(f)) + e2
)

.

To make the terms in α− 1 and 1
α−1 match, we choose

α := 1 +

√

2 log 2
ρ[Ω]2ε2√

n ln 2V
. (40)

Assuming that n >
8 ln 2 log 2

ε2ρ[Ω]2

V 2 to have α 6 1 + 1
2 ln 2 , we obtain

Hε
min(A

n
1 |Bn

1E)ρ > nh−√
nV

√

(2 ln 2) log
2

ρ[Ω]2ε2
−

2 log 2
ρ[Ω]2ε2

V 2 ln 2
K. (41)

Note that if n <
8 ln 2 log 2

ε2ρ[Ω]2

V 2 then

√
nV

√

(2 ln 2) log
2

ρ[Ω]2ε2
>

1

2
nV 2.

As we may assume h ≤ log dA (otherwise the event Ω will have zero probability) and using the definition of V , we have that

n

(

h− 1

2
V 2

)

6 n log dA − 1

2
(
√
2 + log(2d2A + 1))2n

6 −n log dA

which implies that (28) is true in a trivial way.
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A. EAT channels with infrequent sampling

This section can be seen as a user guide to apply the entropy accumulation result presented here in the very common setting
where the “testing” is only done in a few rounds that are sampled at random. From the entropy accumulation point of view,
the reason for testing is to restrict the optimization involved in the tradeoff function to states ωRi−1R satisfying the output
statistics (27), e.g., winning the CHSH game with a certain probability. However, testing can be costly in terms of randomness
or rate and for this reason, the probability of testing, denoted γ is often chosen to be small. We start by defining “channels
with infrequent sampling”, which formalizes the concept of a protocol in which we test only a few positions:

Definition V.4 (Channel with infrequent sampling). A channel with testing probability γ ∈ [0, 1] is an EAT channel Mi,Ri−1→XiAiBiRi

such that X = X ′ ∪ {⊥} and that can be expressed as

Mi,Ri−1→XiAiBiRi
(·) = γMtest

i,Ri−1→XiAiBiRi
(·) + (1 − γ)Mdata

i,Ri−1→AiBiRi
(·)⊗ |⊥〉〈⊥|Xi

,

where Mtest
i never outputs the symbol ⊥ on Xi.

The following lemma gives a general way of constructing a tradeoff function f for the map Mi using a sort of “crossover”
tradeoff function g for the map Mi but using the statistics from Mtest

i only. More precisely, the function g is defined by
restricting the input of the map Mi to be ones that are consistent with the output statistics given by the map Mtest

i . The
lemma also gives general bounds on the relevant properties of f as a function of γ and simple properties of g.

Lemma V.5. Let Mi = MRi−1→XiAiBiRi
be a channel with testing probability γ as defined above. Assume that the affine

function g : P(X ′) → R satisfies for any q ∈ P(X ′)

g(q′) 6 min
ω∈D(Ri−1⊗R)

{H(Ai|BiR)(Mi⊗IR)(ωRi−1R) :
(

(Mtest
i ⊗ IR)(ωRi−1R)

)

Xi
= q′

}

. (42)

Note that if the set {ω ∈ D(Ri−1 ⊗ R) :
(

(Mtest
i ⊗ IR)(ωRi−1R)

)

Xi
= q′} is empty, the minimum is set to +∞ or in other

words, there is no constraint on g(q′). Then, the affine function f : P(X ) → R defined by

f(δx) = Max(g) +
1

γ
(g(δx)−Max(g)) ∀x ∈ X ′

f(δ⊥) = Max(g)

is a min-tradeoff function for Mi. Moreover,

Max(f) = Max(g)

Min(f) =

(

1− 1

γ

)

Max(g) +
1

γ
Min(g)

MinΣ(f) > Min(g)

Var(f) ≤ 1

γ
(Max(g)−Min(g))

2
.

Proof. The value for Min(f) and Max(f) follow directly from the definition.
To prove that f is a tradeoff function for Mi, we first determine Σi(q) (see Definition V.1). If q is not of the form

q(x) = γq′(x) when x ∈ X ′ and q(⊥) = (1 − γ) for some q′ ∈ P(X ′), then we know that Σi(q) = ∅. So it suffices to focus
on distributions q that have this form. Then we have

f(q) =
∑

x∈X ′

q(x)

(

Max(g) +
1

γ
(g(δx)−Max(g))

)

+ (1− γ)Max(g)

= Max(g) +
∑

x∈X ′

q′(x)(g(δx)−Max(g))

= g(q′) .

Using the condition (42), we get

f(q) = g(q′) ≤ min
ω∈D(Ri−1⊗R)

{H(Ai|BiR)(Mi⊗IR)(ωRi−1R) :
(

(Mtest
i ⊗ IR)(ωRi−1R)

)

Xi
= q′

}

≤ min
ν∈Σi(q)

H(Ai|BiR)ν ,

where for the last inequality, we used the fact that for a ν ∈ Σi(q), there exists an ωRi−1R such that (Mi⊗IR)(ωRi−1R) = ν
and

(

(Mtest
i ⊗ IR)(ωRi−1R)

)

Xi
= q′. Thus, f is a min-tradeoff function.
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Now for MinΣ(f), we have

MinΣ(f) = min
q:Σi(q) 6=∅

f(q)

> min
q′∈P(X ′)

g(q′)

= Min(g) .

Finally, for the variance, we have for q such that Σi(q) 6= ∅,

∑

x∈X
q(x)

(

f(δx)−
∑

x∈X
q(x)f(δx)

)2

=
∑

x∈X ′

γq′(x)

(

Max(g) +
1

γ
(g(δx)−Max(g))− g(q′)

)2

+ (1 − γ)(Max(g)− g(q′))2

=
1

γ

∑

x∈X ′

q′(x) ((Max(g)− g(δx))− γ(Max(g)− g(q′)))
2
+ (1− γ)(Max(g)− g(q′))2 .

We can expand the first term and get

1

γ

∑

x∈X ′

q′(x) ((Max(g)− g(δx))− γ(Max(g)− g(q′)))
2

=
∑

x∈X ′

q′(x)

γ

(

(Max(g)− g(δx))
2 − 2γ(Max(g)− g(δx))(Max(g)− g(q′)) + γ2(Max(g)− g(q′))2

)

=
∑

x∈X ′

q′(x)

γ
(Max(g)− g(δx))

2 − 2(Max(g)− g(q′))2 + γ(Max(g)− g(q′))2

6
1

γ
(Max(g)−Min(g))

2 − (2− γ)(Max(g)− g(q′))2.

As a result,

Var(f) 6
1

γ
(Max(g)−Min(g))

2
.

Applying Theorem V.2 for a map with infrequent sampling, we get a lower bound on the min-entropy of the following form:

Hε
min > nh− c1

√

n

γ
− c2 ,

where c1 and c2 are constants that only depend on ε, ρ[Ω], dA and the properties of g but not on n or the testing probability γ
(in the expression of c′ in Theorem V.2 the variance Var(f) can always be lower bounded by 0). Note that such a bound will
be non-trivial as soon as γ >

c
n for some constant c (which corresponds to testing a constant number of rounds). This is to

be contrasted with the original entropy accumulation theorem [1] that instead gives a bound of the form nh− c1
√
n
γ − c2 and

hence will give a trivial bound when γ = o
(

1√
n

)

.

VI. SAMPLE APPLICATION: DEVICE-INDEPENDENT RANDOMNESS EXPANSION

We now apply our result to one of the main problems to which the original EAT was applied, namely randomness
expansion [2], [30]–[34]. This was done using the original EAT in [2], and, to simplify matters, the protocol we will consider
here will be essentially the same. The basic task is the following: we are given a pair of devices from a malicious manufacturer;
these devices might have been preprogrammed arbitrarily by the manufacturer, but once we have them, they cannot communicate
back to the manufacturer. Our goal is to use those devices to generate a uniformly random string, independent from any other
data in the universe, and in particular independent from the quantum data the manufacturer might have kept about our devices.
It turns out to be impossible to do this without having a little bit of randomness to begin with, but it is possible to expand a
small random string into a much longer one.

We give a security proof for the DI-RE protocol based on the CHSH game described in the box below. Recall that the
CHSH game works as follows: a referee chooses uniformly random bits X and Y as inputs for the two devices, and the two
devices must respond with A,B ∈ {0, 1} respectively without communicating with each other after the questions have been
received. The devices win the game if A XOR B = XY and lose otherwise. The best winning probability for devices using a
classical strategy is 3/4, while the optimal quantum strategy wins with probability cos2(π/8) ≈ 0.85. In [2, Equation (12)]
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(based on [35, Section 2.3]), they give a bound on the amount of randomness produced by the devices assuming that they are
using a strategy that allows them to win with probability at least ω; this bound is given by:

H(AB|TE,X = x, Y = y) > g∗(ω) := 1− h

(

1

2
+

1

2

√

16ω(ω − 1) + 3

)

(43)

for any inputs x, y ∈ {0, 1} and ω ∈ [ 34 , cos
2(π/8)]. This bound is zero at ω = 3/4, one at ω = cos2(π/8), and becomes

nontrivial as soon as ω > 3/4. The devices are initialized in an arbitrary state by the manufacturer, and at every round of the
protocol, we play the game with the devices. To ensure that only a small amount of randomness is consumed by the process of
generating the inputs, we randomly choose a small number of test positions (by generating a bit T equal to 1 for test rounds
and 0 otherwise), and generate X and Y uniformly at random only for those positions. For the other rounds (that we call the
“data” rounds), we always fix the inputs to X = 0 and Y = 0. In the parameter estimation step of the protocol, the number of
test rounds for which A XOR B = XY is computed. For mathematical convenience, we will choose the positions of the test
rounds in an iid manner; i.e. each individual round will have a probability γ of being a test round.

CHSH-based DI-RE protocol

Protocol arguments

n ∈ N : number of rounds
γ ∈ (0, 1) : probability that a given position is part of the test set
e ∈ [0, 1] : minimum fraction of games won that is tolerated
r ∈ R+ : generation rate

1) Distribution: For i ∈ {1, . . . , n}:

a) Generate a random bit Ti such that Pr[Ti = 1] = γ.
b) If Ti = 0, set Xi = 0, Yi = 0, otherwise, generate Xi and Yi uniformly over {0, 1}.
c) Obtain outputs Ai and Bi from the two devices.

2) Parameter estimation: Count the number of indices l in the test set for which Ai XOR Bi 6= XiYi. If l > (1− e)γn,
then the protocol is aborted.

3) Randomness extraction: Apply some fixed randomness extractor F : {0, 1}k × A n × Bn → {0, 1}rn to a uniform
k-bit seed and the string (An

1 , B
n
1 ); output the result as the final string.

Fig. 3. Description of the CHSH-based DI-RE protocol.

We model the behavior of the devices as follows. We let σME be the initial state of the device, M is the system that represents
the internal memory of the devices, and E is some reference system that may be in the possession of the manufacturer. Now,
let Mi : M → MTiXiYiAiBi be the TPCP map that is applied by the devices in round i. We assume that each of these is
of the form depicted in Figure 4, with the position subscript i added to the appropriate systems. The state at the end of step
2 of the protocol is thus:

ρMTn
1 Xn

1 Y n
1 An

1 B
n
1 E = (Mn ◦ · · · ◦M1) (σME) ,

and we have computed

l := |{i : Ti = 1, Ai XOR Bi 6= XiYi}| .
Furthermore, we define Ω as the event that we do not abort after step 2; or, in other words, it is the event that l 6 (1− e)γn.
To apply the entropy accumulation theorem to this setting, we need a min-tradeoff function for the Mi’s. Since Theorem
V.2 demands an affine tradeoff function, the natural choice is to pick the tangent to g∗ in (43) at a suitably chosen point
ω ∈ (34 , cos

2(π8 )). Note that we must also check that the tradeoff function is defined appropriately for all possible distributions
we might observe.2

We are now going to use entropy accumulation to prove Theorem VI.1 below, which gives a bound on the randomness
generation rate r, i.e., the ratio of uniform bits that can be generated per round of CHSH. To get a feeling for the sort of
entropy production rates that can be expected of this protocol, we have plotted the final rate obtained (i.e. the lower bound on
1
nH

ε
min(A

n
1B

n
1 |ET n

1 X
n
1 Y

n
1 )) as a function of the number of rounds n when we fix the threshold e to 0.8, and when we vary

the sampling probability γ. The result is in Figure 5. We note that the bounds in the figure are not obtained using the bound
stated in Theorem V.2 directly but rather we used (29) with an α optimized numerically for each point on the curve.

2For instance, we might observe a winning rate strictly above cos2(π/8) on the testing rounds: if the true winning probability of the devices is very close
to optimal, then statistical fluctuations might push us slightly over the edge.
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Fig. 4. Circuit diagram of M : M → MTXY AB. For every round of the protocol, a circuit of this form is applied, where A and B are arbitrary TPCP
maps with classical output systems A and B, respectively, C and D are arbitrary TPCP maps, T is a bit equal to 1 with probability γ, and X and Y are
generated uniformly at random whenever T = 0, and are fixed to 0, 0 otherwise.

Theorem VI.1. For any device fulfilling the above conditions and for any ε ∈ (0, 1), testing probability γ ∈ (0, 1) and
3
4 < e < cos2(π8 ), after step 2 of the CHSH-based DI-RE protocol, it is the case that either:

1) The min-entropy of ρ|Ω satisfies:

Hε
min(A

n
1B

n
1 |ET n

1 X
n
1 Y

n
1 )ρ|Ω

> ng∗(e)−
√

n

γ
c− c′,

where c =
√
2 ln 2

(

log 33 +

√

2 + 1
γ

(

dg∗

dω (e)
)2
)

√

1− 4 log(ε) and c′ is a constant only depending on ε and dg∗

dω (e),

or

2) The protocol aborts with probability at least 1− ε.

First note that applying a Chernoff bound, it is simple to see that provided e < cos2(π/8), there exist devices that abort the
protocol with probability 2−Ω(γn). In addition, provided one is in the first case, one can obtain a secure random string of length
roughly ng∗(e) by choosing the extractor F to be some quantum-proof randomness extractor, such as those presented in [36].
The protocol uses approximately (h(γ) + 2γ)n random bits, to decide about the testing rounds and to choose the inputs of
the players on those rounds and O(log3 n) random bits for the seed of the randomness extractor. By taking γ = Θ( logn

n ) for
instance we have used a polylogarithmic (in n) number of random bits and generated a linear number of bits n, thus achieving
exponential randomness expansion. We refer the reader to [34], [37] for further discussions on the way to generate the random
bits needed for the protocol.

Proof. We apply Theorem V.2 on ρ with the substitutions Ai → AiBi, Bi → TiXiYi, and Xi → Ci, where

Ci =











⊥ if Ti = 0

1 if Ti = 1 and Ai XOR Bi = XiYi

0 if Ti = 1 and Ai XOR Bi 6= XiYi.

Note that Ci is a deterministic function of the classical registers AiBiXiYiTi and the Markov conditions are clearly satisfied.
Note that the maps Mi correspond to infrequent sampling maps with testing probability γ. As such, to compute a tradeoff

function, we use the approach proposed in Lemma V.5. We start by determining a function g : P({0, 1}) → R satisfying
the property (42). Note that a distribution q ∈ P({0, 1}) can be uniquely specified by q(1) ∈ [0, 1]. For this reason, we will
interpret g as a function g : [0, 1] → R. Note that the map Mtest

i is of the form in Figure 4 except that T is fixed to 1 and thus
X and Y are chosen uniformly at random, whereas Mdata

i corresponds to T being fixed to 0. The inequality (43) mentioned
above shows that g∗ satisfies the property (42) when q′(1) ∈ [ 34 , cos

2(π8 )]. However, g∗ is not an affine function. Nonetheless,
g∗ is convex so any tangent provides a lower bound and also satisfies the property (42). We consider the function obtained by
taking the tangent at the point pb ∈ (34 , cos

2(π8 )): for p ∈ [0, 1]

gpb
(p) = g∗(pb) + (p− pb)

dg∗

dω
(pb) . (44)
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Fig. 5. Plot of the final entropy rate achieved as a function of the number of rounds n for several values of the sampling probability γ, when fixing the
winning threshold e to 0.8, for both this paper (solid lines) and using the blocking technique of [2, Appendix B, rates given by equation (36)] (dashed lines).
In decreasing order, we have γ = 1, γ = 0.1, γ = 0.01, γ = 0.001, γ = 0.0001, and the last point is γ = 3 × 10−5. We point out that the blocking
technique of [2] only gives positive rates in this regime when γ = 1 and γ = 0.1. Here, we fixed ε = 10−5 and assumed that ρ[Ω] > 10−5. The black
dashed line at the top corresponds to the first-order rate of roughly 0.3461, i.e. when n → ∞.

Note that gpb
satisfies property (42) required by Lemma V.5: when p ∈ [ 34 , cos

2(π8 )] it follows from the fact that gpb
(p) ≤ g∗(p),

when p ∈ [0, 3
4 ] from the fact that gpb

(p) 6 0 and recall that for p > cos2(π/8), the right hand side of (42) is +∞. To get the
bound stated in the theorem, we simply take pb = e, but we note that choosing pb < e can lead to better bounds depending
on the values of γ and n. Note that Max(gpb

) = gpb
(1) and Min(gpb

) = gpb
(0). Applying Lemma V.5, we get a min-tradeoff

function f defined by f(δ0) = gpb
(1) + 1

γ (gpb
(0) − gpb

(1)), f(δ1) = f(δ⊥) = gpb
(1) and satisfies MinΣ(f) > gpb

(0) and
Var(f) ≤ 1

γ (gpb
(1)− gpb

(0))2.
As previously mentioned Ω is defined to be the event of not aborting, i.e. using the notation of the EAT we have

Ω = {xn
1 ∈ {0, 1,⊥}n : |{i : xi = 0}| ≤ (1− e)γn}.

Observe that we have for xn
1 ∈ Ω,

f(freq(xn
1 )) = freq(xn

1 )(0)f(δ0) + freq(xn
1 )(1)f(δ1) + freq(xn

1 )(⊥)f(δ⊥)

= freq(xn
1 )(0)

(

gpb
(1)− 1

γ
(gpb

(1)− gpb
(0))

)

+ (1− freq(xn
1 )(0))gpb

(1)

> gpb
(1) + (1− e)(gpb

(0)− gpb
(1))

= gpb
(e) .

Note that if Pr[Ω] < ε, then we are in case 2 of the theorem, so we will assume that ρ[Ω] = Pr[Ω] > ε. Applying Theorem V.2,
we get

Hε
min(A

n
1B

n
1 |ET n

1 X
n
1 Y

n
1 )ρ|Ω

> ngpb
(e)−

√

n

γ
c− c′,

where c =
√
2 ln 2

(

log 33 +

√

2 + 1
γ

(

dg∗

dω (pb)
)2
)

√

1− 4 log(ε) and c′ is a constant only depending on ε and dg∗

dω (pb).

VII. CONCLUSION AND OPEN PROBLEMS

The new version of the entropy accumulation theorem presented here can now be applied directly to protocols with infrequent
sampling (or to other situations where the entropy variance is significantly different from the local dimension) without paying
too heavy a price. In particular, in the infrequent sampling case, the scaling in the sampling frequency γ roughly matches what
we would expect in the classical i.i.d. case from Chernoff-type bounds.

As we noted earlier, another way to obtain this scaling in the infrequent sampling case is by the blocking technique used
in [2, Appendix B]: instead of applying the (original) EAT to individual rounds, they apply it to blocks of size O( 1γ ), which
ensures that each block has roughly one test round. By doing this, one gets a tradeoff function (which now acts on blocks)
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whose gradient scales correctly. There are multiple advantages of our method over this technique. First, it is more general, since
it can gracefully handle cases beyond infrequent sampling, where Var(f) is substantially different from the local dimension
for other reasons. It is also more natural and simpler to use, there is no need to handle the additional parameters related to the
blocking. Furthermore, it appears to lead to significantly better bounds: the numerical results we obtain for the protocol given
in Section VI are substantially better (see the dashed lines in Figure 5 for the bounds obtained using the blocking method),
and there is no particular reason to think that this case is not representative.

While the results given here are largely good enough in practice, there are still open questions remaining. First: can we find
a version of the theorem with an optimal second-order term? Ideally, we could hope for a second-order term that matches what
we see in the i.i.d. case, which would look like

√
nV Φ−1(ε2) (e.g., in [9]), where Φ is the cumulative distribution function of

a Gaussian distribution, and V would be an appropriate entropy variance term. Here we fall short of this in two ways: first,
our V quantity is the result of applying some inequalities in the proof (see Equation (37)) that are not always tight; this may
however be unavoidable if one wants to have a clean expression in terms of Var(f). The second issue is that the dependence
in ε does not match the Φ−1(ε) or Φ−1(ε2) that is usually seen in second-order expansions, but is instead similar to what is
done in the fully quantum AEP of [27] and in the original EAT. This also seems very difficult to overcome in our situation,
since these terms usually arise from an application of the Berry-Esseen theorem, which quantifies how much a sum of iid
random variables diverges from a normal distribution, and therefore depends very strongly on the iid assumption which we do
not have here.

We could also scale back our goals a bit and try to improve the last term, namely the c′ in Equation (28). As it stands, this
term arises from a sequence of ad-hoc inequalities that could very well be improved. It would be particularly interesting to
understand which parameters this term should “really” depend on: for example, the expression we give here depends on ρ[Ω]
and ε, but this may well be an artifact of our choice of α in the proof. We thus leave these questions as open problems.

APPENDIX

Lemma A.1 (Lemma B.5 in [1]). Let ρAB be a quantum state of the form ρ =
∑

x pxρAB|x, where {px} is a probability

distribution over X . Then, for any x ∈ X and any α ∈ (1,∞),

H↑
α(A|B)ρ −

α

α− 1
log

(

1

px

)

6 H↑
α(A|B)ρ|x

. (45)

and for α ∈ (0, 1),

H↑
α(A|B)ρ −

α

α− 1
log

(

1

px

)

> H↑
α(A|B)ρ|x

. (46)

Lemma A.2. Let ρABX =
∑

x pxρAB(x) ⊗ |x〉〈x|X be a quantum state with X classical. Then, for any α ∈ (0, 1) ∪ (1, 2],
we have

H ′
α(AX |B) > − log dA.

Proof. First, let us define the extension ρABXX′ =
∑

x pxρAB(x) ⊗ |xx〉〈xx|XX′ , and observe that by data processing,
H ′

α(AX |B) > H ′
α(AX |BX ′). Thus,

ραABXX′ρ1−α
BX′ =

∑

x

pxρAB(x)
αρB(x)

1−α ⊗ |xx〉〈xx|XX′

and therefore

H ′
α(AX |B) > H ′

α(AX |BX ′)

=
1

1− α
log
∑

x

px2
(1−α)H′

α(A|B,X=x)ρ

>
1

1− α
log
∑

x

px2
(α−1) log dA

> − log dA.
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