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Abstract

We begin by presenting a simple lossy compressor operating at near-zero rate: The encoder merely 

describes the indices of the few maximal source components, while the decoder’s reconstruction is 

a natural estimate of the source components based on this information. This scheme turns out to be 

near optimal for the memoryless Gaussian source in the sense of achieving the zero-rate slope of 

its distortion-rate function. Motivated by this finding, we then propose a scheme comprised of 

iterating the above lossy compressor on an appropriately transformed version of the difference 

between the source and its reconstruction from the previous iteration. The proposed scheme 

achieves the rate distortion function of the Gaussian memoryless source (under squared error 

distortion) when employed on any finite-variance ergodic source. It further possesses desirable 

properties, and we, respectively, refer to as infinitesimal successive refinability, ratelessness, and 

complete separability. Its storage and computation requirements are of order no more than (n2)/

(logβ n) per source symbol for β > 0 at both the encoder and the decoder. Though the details of its 

derivation, construction, and analysis differ considerably, we discuss similarities between the 

proposed scheme and the recently introduced Sparse Regression Codes of Venkataramanan et al.

Index Terms

Complete separability; extreme value theory; infinitesimal successive refinability; order statistics; 
rate distortion code; rateless code; spherical distribution; uniform random orthogonal matrix

I. Introduction

Consider an independent and identically distributed (i.i.d.) standard Gaussian source Xn = 

(X1, X2,…,Xn). It is well known [1] that the maximum value concentrates on , i.e., 

. This fact suggests a simple lossy source coding scheme for the 

Gaussian source under quadratic distortion. The encoder sends the index of the maximum 

value and the decoder reconstructs  according to
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(1)

For the meager log n nats that it requires, this simple scheme achieves essentially optimum 

distortion (in a sense made concrete in Section II) and has obviously modest storage and 

computational requirements. We can generalize this scheme by describing the indices of the 

kn largest values, and the scheme still achieves optimum distortion for its operating rate. 

Note that this scheme can be considered a special case of a permutation code [2], where the 

encoder sends a rough ordering of the source. It can perform as well as the best entropy-

constrained scalar quantizer (ECSQ) but cannot achieve the optimum distortion-rate function 

at general positive rates [3]. In [2], the authors mentioned the kn = 1 case explicitly as being 

asymptotically optimum under the expected distortion criterion. Our focus is more on the 

excess distortion probability than the expected distortion. Furthermore, we establish a more 

general result where kn grows sub-linearly in n.

We generalize this idea to a scheme we refer to as Coding with Random Orthogonal 

Matrices (CROM), which achieves the distortion-rate function at all rates. Let A be a 

random n by n matrix uniformly drawn from the set of all n by n orthogonal matrices, i.e., 

for any n-dimensional vector Yn, the random vector AYn is uniformly distributed on the 

sphere with radius ‖Yn ‖. Since a random vector uniformly distributed on a high-dimensional 

sphere is close in distribution to an i.i.d. Gaussian random vector, we can expect the 

behavior of  to be similar to that of an i.i.d. Gaussian random vector. 

Therefore, we can apply the above scheme again to describe a lossy version of it, using 

another log n nats, and so on. In this paper, we show that this iterative scheme achieves the 

Gaussian rate distortion function for any finite-variance ergodic source under quadratic 

distortion, while enjoying additional properties such as a strong notion of successive 

refinability and polynomial complexity.

One nice property of CROM is ratelessness. Similar to the rateless codes in the channel 

coding setting, CROM is able to reconstruct a source with partial messages while the 

optimum distortion for that rate is achieved. More precisely, suppose the decoder received 

first fraction ν of the messages for some 0 < ν < 1, then it can reconstruct a source with a 

distortion DG (ν R). Thanks to the ratelessness, the encoder does not have to determine the 

rate ahead of encoding. However, unlike in many rateless channel coding settings, CROM 

requires that the bits observed are the first fraction ν bits, rather than that number of bits 

gleaned from any set of locations along the stream.

Much work has been dedicated to reducing the complexity of rate-distortion codes (cf. [4]–

[6] and references therein). In particular, Venkataramanan et al. proposed the sparse 

regression code (SPARC) that achieves the Gaussian distortion-rate function with low 

complexity [7], [8]. SPARC and CROM have similarities, which we discuss in detail.

The paper is organized as follows. In Section II, we present the simple zero-rate scheme and 

the sense in which it is optimal for Gaussian sources. CROM is described, along with some 

No and Weissman Page 2

IEEE Trans Inf Theory. Author manuscript; available in PMC 2018 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of its properties and performance guarantees, in Section III. We compare our scheme with 

SPARC in Section IV. We test CROM via simulation in Section V. We also discuss dual 

channel coding results in Section VI. Section VII provides proofs of our main results and we 

conclude the paper in Section VIII.

Notation: Both Xn and X denote an n-dimensional random vector (X1, X2,…,Xn). We let X(i) 

denote the i-th largest element of Xn. We denote an n by n random orthogonal matrix by A, 

and a non-random orthogonal matrix by A. We denote the distortion rate-function of the 

memoryless standard Gaussian source by DG (R). Finally, we use nats instead of bits and log 

denotes logarithm to the natural base unless specified otherwise.

II. Optimum Zero-Rate Gaussian Source Coding Scheme

In this section, we propose a simple zero-rate lossy compressor which is essentially optimal 

for the i.i.d. standard Gaussian source under quadratic distortion. Before that, let us be more 

rigorous regarding our notion of “zero-rate optimum source coding” for a Gaussian source 

under squared error distortion. Consider a scheme using a number of nats for the lossy 

description of the source which is sub-linear in the block length n, i.e., the rate Rn of the 

scheme converges to zero. Suppose the scheme achieves a distortion Dn (ε), where the target 

excess distortion probability is ε, i.e.,

(2)

We further define D(n, 0, ε) to be the minimum distortion achievable over all possible 

strictly zero-rate schemes when the target excess distortion probability is ε. Following 

lemma shows that the best reconstruction is the all zero vector 0 = (0, 0,…, 0) for the i.i.d. 

standard Gaussian source under squared error distortion.

Lemma 1

Let Xn be the i.i.d. standard Gaussian source. Then, for any xn ∈ ℝn and D > 0, the 

following inequality holds.

(3)

Proof

Since Xn has spherically symmetric distribution, namely AXn is also i.i.d. standard Gaussian 

for any orthogonal matrix A, Pr[‖Xn − xn‖2>D] only depends on ‖xn‖. Let ‖xn‖ = a, then

(4)
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(5)

(6)

(7)

(8)

□

Therefore,

(9)

It is not hard to show that

(10)

Finally, we say that a sequence of zero-rate schemes achieves the zero-rate optimum if

(11)

for all ε > 0, where D′G (0) = −2 is the slope of the Gaussian distortion-rate function at zero 

rate. Equivalently,

(12)

This definition is reminiscent of the finite block length result in lossy compression [9], [10], 

where the authors showed the minimum distortion D(n, R, ε) among all possible schemes for 

given rate R, target excess distortion probability ε, and block length n is
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(13)

Recall that DG(R) denotes the Gaussian distortion-rate function of memoryless standard 

Gaussian source.

We are now ready to propose the simple zero-rate optimum source coding scheme. Let Xn = 

(X1, X2,…, Xn) be an i.i.d. standard normal random process. The encoder simply sends the 

index of the maximum value, m = arg max1≤i≤n Xi, and the decoder reconstructs  as

(14)

where αn > 0 is naturally chosen as . Note that the encoder only describes 

the index of the maximum entry but not its value. This scheme works because the unsent 

value of the maximum entry concentrates on the specific value near , i.e., 

, which is a well-known fact from extreme value theory [1].

The rate of this scheme is  nats per symbol, and it is not hard to show that the 

distortion is reduced by  (plus lower order terms), which is twice the rate we are 

using. Therefore, it is natural to suspect that such a scheme is zero-rate optimum.

We can generalize this scheme to send more than one index: The encoder sends the indices 

of the kn largest values of Xn, and the decoder reconstructs  as

(15)

Here we will choose kn = ⌈logβ n⌉ for some β > 0 and αn to be roughly the expected value 

of the kn-th largest value of Xn, i.e., .

Clearly this scheme has rate  where limn→∞ Rn = 0. The following theorem 

shows that this scheme is optimal at zero rate.

Theorem 2

For any β ≥ 0 and kn = ⌈logβ n⌉, there is an αn > 0 such that the above scheme achieves the 

zero-rate optimum. More precisely, for any ε > 0, the scheme achieves
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(16)

where

(17)

Since , we can say that the above scheme is zero-rate optimum.

The proof is given in Section VII-B. We note that the encoding and decoding can be done in 

almost linear time. Moreover, we do not need to store an entire codebook, but only the single 

real number αn needs to be stored.

Remark 3

Note that Verdù [11] also considered the slope of the rate-distortion function at Dmax as a 

counterpart to the capacity per unit cost. However, our requirements for zero-rate optimum 

scheme is more stronger since we incorporates the second order (or dispersion) term 

.

Remark 4

The above scheme only describes the index of the largest element. However, the encoder can 

send indices of both the maximum and the minimum, which is also the zero-rate optimum. 

Note that the minimum value will be close to , and therefore we can expect the 

similar behavior.

III. Coding With Random Orthogonal Matrices

A. Preliminaries

Before presenting the scheme, we briefly review some key ingredients: random orthogonal 

matrices and spherical distributions.

Let  be the set of all n by n orthogonal matrices. We write  to denote 

that A is a random n by n orthogonal matrix uniformly drawn from . This uniform 

distribution is with respect to Haar measure, cf. [12]. More precisely, the random matrix A is 

uniformly distributed on  if and only if B × A has the same distribution with A for any 

orthogonal matrix . QR decomposition of random matrix with i.i.d. Gaussian 

entries provides a uniformly distributed random orthogonal matrix. There is a more efficient 

methods called subgroup algorithm to generate such matrices [13], [14]. Now, let us recall 

the definition of a radially symmetric random vector and its relation with uniform random 

orthogonal matrices.
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Definition 5—An n-dimensional random vector Xn has a spherical distribution if and only 

if Xn and AXn has the same distribution for all orthogonal matrices .

One nice property of a spherically distributed random vector Xn is that its characteristic 

function is radially symmetric [15], i.e., 

for some g(·). Therefore, it is enough to consider the norm  for a spherically 

distributed random vector Xn. It is clear that an i.i.d. Gaussian random vector has a spherical 

distribution. The following lemma shows how to symmetrize a vector with a uniform 

random orthogonal matrix.

Algorithm 1

CROM

Set X(1) = A1 Xn.

for i = 1 to Ln do

 Let .

 Let  where

U j
(i) =

n − kn
nkn

if m j
(i) = 1

−
kn

n(n − kn) otherwise.
(18)

 Let X(i+1) = Ai+1 (X(i) − αiU(i)).

end for

Send .

Lemma 6—Suppose A is a uniform random orthogonal matrix on . For any random 

vector Xn, the random vector AXn has a spherical distribution.

The lemma is direct consequence of the respective definitions of a uniform random 

orthogonal matrix and a spherical distribution.

B. Coding With Random Orthogonal Matrices

For notational convenience, define gk : ℝn →{0, 1}n to be the function that finds the k 
largest values of the input. If there is an ambiguity, the function picks the smallest index 

first. Specifically, if zn = gk(xn), then zi = 1 if and only if xi is one of the k largest entries of 

xn and zi = 0 otherwise. Let  be orthogonal matrices, 

 be scalars, and assume that kn is a positive integer smaller than n. We are 

now ready to describe the iterative scheme.
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The unit vector U(i) indicates the kn largest values of X(i), and αi’s are scaling factors which 

depend on the norm of X(i) and will be specified later. Since , the inverse of the 

recursion is  for all i. This implies

(19)

Therefore, when the decoder receives (m(1), m(2),…, m(i)) for some i ≤ Ln, it outputs the 

reconstruction

(20)

The decoder can sequentially generate reconstructions using the relation 

. Note that the decoder can compute  efficiently 

according to

(21)

Since we need log  nats to store (send) m(i), rate R corresponds to  number 

of iterations. We are ready to state our main theorem asserting that Algorithm 1 achieves the 

Gaussian distortion-rate function.

Theorem 7—Suppose Xn is emitted by an ergodic source of marginal second moment σ2. 

For any β ≥ 0, let kn = ⌈(log n)β⌉ and suppose the rate is R > 0. If we take

(22)

and small enough scalar γn ≡ γ > 0, there exists orthogonal matrices 

 such that Algorithm 1 satisfies

(23)

where

(24)
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Recall that (23) holds for any small enough γn ≡ γ > 0 for any ergodic Xn. If we have 

stronger assumptions that Xn is i.i.d. distributed with , then we can find 

vanishing  that satisfies (23).

The proof of Theorem 7 is given in Section VII-C with full details regarding the choice of 

γn.

Remark 8—Theorem 7 implies that (23) holds for any fixed β. In terms of complexity, 

large β is preferred since it implies small number of iteration which results in lower 

complexity. On the other hand, our result relies on the concentration of kn = (log n)β largest 

values of n i.i.d. Gaussian random vector. If β is too big, then the kn largest values may 

deviate too much. We will see the trade-off with simulation results in Section V.

C. Discussion

1) Role of Orthogonal Matrices—It is known that an i.i.d. Gaussian random vector has 

a spherical distribution and the variance of its norm is very small. Therefore, if a random 

vector Xn has a spherical distribution and the variance of its norm is small enough, Xn can 

be thought of as an approximately i.i.d. Gaussian random vector. In the proof of CROM, we 

employ a randomization argument. Specifically, we assume that A1, A2,…, Ai+1 are drawn 

i.i.d. Unif  and show that equation (23) holds when the probability is averaged over 

this ensemble of random matrices. The source at i-th iteration X(i) = Ai (X(i−1) − αi−1 U(i−1)) 

has spherical distribution by Lemma 6, and we can therefore expect X(i) to be a near 

Gaussian source, where we indirectly show that the norm of X(i) has small variance. This 

shows that multiplying by uniformly distributed random matrices can be thought of as a way 

to not only symmetrize but also Gaussianize the random vector so that we can apply the idea 

of Theorem 2 iteratively.

Note that the conditional distribution of AXn is no longer similar to Gaussian when the 

matrix A is known to both the encoder and the decoder. However, in the proof, we implicitly 

showed that the maximum element of AXn is very close to  with high probability as 

if it is i.i.d. Gaussian random vector.

A similar idea can be found in the work of Asnani et al. [16]. The authors showed that any 

coding scheme for a Gaussian network source coding problem can be adapted to perform 

well for other network source coding problems that are not necessarily Gaussian but have 

the same covariances. The key idea of the paper is applying an orthogonal transformation to 

the sources which basically “Gaussianizes” them so that the coding scheme for Gaussian 

sources are applicable in the transform domain.

2) Storage and Computational Complexity—Unlike the zero-rate scheme of Section 

II, this scheme requires the storage of matrices (and scalars). Since 

, both the encoder and decoder must keep 
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 real values to store matrices . In terms of computation, the 

encoder finds the kn largest entries of an n dimensional vector and performs a matrix-vector 

multiplication for each iteration. The dominant cost is O(n2), the cost of matrix-vector 

multiplication. Therefore, the overall computational complexity is of order .

Instead of storing , it is also possible to store random seeds at both encoder 

and decoder to generate them. In this case, the CROM requires O(1) storage space. However, 

generating a uniform random orthogonal matrix takes O(n3) [13], and therefore the overall 

computational complexity will be of order .

3) Infinitesimal Successive Refinability—Suppose the decoder gets only the first i 

messages (m(1), m(2),⋯, m(i)). Note it needs to have seen only the first  nats for that. 

With this partial message set, the decoder is able to reconstruct  which achieves a 

distortion

(25)

where the theorem guarantees  is arbitrarily negligible for large enough n. In other 

words, the decoder essentially achieves a distortion , which is the Gaussian 

distortion-rate function at rate . Evidently, CROM can be viewed as a successive 

refinement coding scheme with Ln stages. Since we have a growing number of stages (in n), 

the rate increment at each stage is negligible (i.e., sub-linear number of additional nats per 

stage) and this is a key difference from classical successive refinement problems where the 

number of stages is fixed. Note that Theorem 7 implies that the probability of excess 

distortion beyond the relevant point on the distortion-rate curve at any of the successive 

refinement stages is negligible. Therefore, if the source is i.i.d. Gaussian, our coding scheme 

simultaneously achieves every point on the optimum distortion-rate curve. This infinitesimal 
successive refinability can be considered a strengthened version of successive refinement. In 

other words, to implement and operate CROM, the value of the rate R need not be known or 

set in advance, a point we will expound in Section III-C4.

In [17], the similar property called “incremental refinements” was discussed. The paper 

discovered a new limiting behavior of additive rate-distortion function at zero-rate, and 

proposed a refinement idea. However, additive rate-distortion function is a mutual 

information between the input and the output of the Gaussian test channel, where it is not 

clear how to achieve it. On the other hand, we proposed a concrete scheme that achieves 

rate-distortion function.
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4) (Near) Ratelessness—In the channel coding setting, it is well-known that rateless 

coding schemes, including Raptor codes, achieve the capacity of erasure channels. In this 

setting, the rate R does not have to be specified in advance, and the receiver is able to decode 

a message upon observing sufficiently many packets (or bits), regardless of their order. As 

we have discussed above, CROM has a similar property in that a rate R does not need to be 

specified in advance of the code design. This is because  is a function of n only, and 

therefore αi’s are independent to R. Furthemore, we will see in the proof that γn depends 

only on n. If the source is i.i.d. , the decoder can achieve a distortion DG(νR) upon 

observing fraction ν of the message bits. This is similar to a rateless code in channel coding 

because the decoder can achieve the optimum as soon as it collects sufficiently many of the 

message bits. However, the CROM decoder needs its observed bits to be a contiguous 

sequence at the beginning of the message bit stream while it is enough to have any 

combination of channel output observations in the rateless channel coding setting.

Note that our scheme can be considered as a progressive coder where “progressive” refers to 

the refinability. However, it is often the case that the refinement layer of progressive code is 

often useless without the base layer, where refinement layers of CROM are useful by 

themselves. More precisely, the decoder can have the following reconstruction based only on 

,

(26)

where with  the reconstruction would be

(27)

5) Complete Separability—In the classical separation scheme, the source encoder must 

know the channel capacity C in order to design the source coding scheme with rate R(D) < C 
where the source encoder often does not have this prior knowledge. However, if the source is 

Gaussian, the proposed scheme achieves the optimum distortion without channel 

information. Let C0 be a sufficiently large constant and say the encoder uses the proposed 

scheme with rate R = C0. When the decoder receives the first C/C0 fraction of message bits 

and performs the reconstruction, we achieve the distortion D that satisfies RG(D) = C due to 

the infinitesimal successive refinability. Since we can achieve the optimum performance 

using a simple scheme while the source encoder is blind to the capacity of the link, we can 

call this property complete separability.

Another interesting example is a relay network without a direct link, as described in Figure 

1, where the source is i.i.d. Gaussian. Both the links from the encoder to the relay node and 

the relay node to the decoder are noiseless with capacity C1 and C2 respectively, when we 
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assume that C1 > C2. If the encoder knows the capacity of both links, then the problem is 

equivalent to the successive refinement problem. However, consider the case where the 

encoder only knows C1. If the encoder is optimized only for the first link, the relay node has 

to decode the whole message and compress it again with rate C2. However, if we use 

CROM, the relay node can simply send the first  fraction of messages to the decoder and 

the decoder will be able to have optimal reconstruction with respect to its own link capacity.

6) Convergence Rate—After the i-th iteration, the decoder can achieve a distortion

(28)

(29)

Recall that the Gaussian distortion-rate function at rate  is , and 

therefore the gap between the achieved distortion and  is uniformly bounded by 

 at all stages. Note that if the source is i.i.d. with bounded , we can 

choose vanishing  such that the probability of error decays on the order 

of .

IV. Comparison to SPARC

Recall that CROM can be viewed as a nonzero-rate generalization of the zero-rate scheme 

introduced in Section II. on the other hand, SPARC implements the idea of describing a 

codeword with a linear combination of sub-codewords. Though the derivations of these two 

schemes were based on different ideas, they share several similarities. In this section, we 

outline the similarities and differences.

A. Sparse Linear Regression Codes

Let us briefly review SPARC. Let Xn be the first n components of an ergodic source with 

mean 0 and variance 1. Define L sub-codebooks , where each sub-codebook 

has M sub-codewords. Sub-codewords are generated independently according to the 

standard normal distribution. Parameters M and L are chosen to be ML = enR, where R is the 

rate of the scheme, and define constants c1, c2,…,cL appropriately. Then, the following 

algorithm exhibits the main structure of the sparse linear regression code (SPARC), which

was presented in [7] and shown to achieve the Gaussian distortion-rate function for any 

ergodic source (under appropriate choice of parameters).
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Algorithm 2

SPARC

Set X(1) = Xn.

for i = 1 to L do

 Let , Un > and m(i) be the index

 of U(i).

 Let X(i+1) = X(i) − ciU(i).

end for

Send (m(1), m(2),…, m(Ln)).

Note that there is another version of SPARC [8] where encoding is not done sequentially but 

is done by exhaustive search. Since we are focusing on efficient lossy compressors, we only 

consider the SPARC described in Algorithm 2 throughout the paper.

B. Main Differences

In SPARC, the codebook consists of L sub-codebooks where each sub-codebook has M 

codewords. Our proposed iterative scheme is similar to SPARC with  and M = n; 

finding the sub-codeword that achieves the maximum inner product can be viewed as finding 

the maximum entries after multiplying the matrix in our iterative scheme.

There are, however, two main differences. The first is that our scheme finds the kn largest 

values at each iteration. This implies that one iteration of our proposed encoding scheme is 

equivalent to kn iterations of SPARC’s encoding. In Section III-C.2, we have seen that 

CROM requires  operations per symbol, for an arbitrarily chosen β > 0. The 

gap between the distortion and DG(R) is . In SPARC, the gap between the 

distortion and DG(R) is . In order to calibrate with CROM, we can set M = n. 
However, ML operation per symbol is required for SPARC encoding where ML = enR, and 

therefore the number of operations for SPARC is . Thus, SPRAC requires logβ n 
times more operations. The same relation holds when we consider the storage complexity. 

CROM requires to store  real numbers, where the SPARC encoder and 

decoder have to store  real numbers.

The second difference is the structure of the sub-codebook. The columns of orthogonal 

matrix are orthogonal to each other, and this implies that CROM is similar to SPARC with 
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structured sub-codewords. For example, if kn = 1, all sub-codewords of CROM are 

orthogonal to each other, where SPARC draws sub-codewords according to i.i.d. Gaussian.

C. Key Lemma

As we discussed in Section IV-B, sub-codewords in CROM is drawn from the surface of the 

sphere while sub-codewords in SPARC are drawn according to the i.i.d. Gaussian 

distribution. Under this difference, we would like to introduce some dualities. For example, 

consider the following lemma used in the proof of SPARC.

Lemma 9 ([7, Lemma 1])—Let Z1,…,ZN be independent random vectors with i.i.d. 

standard Gaussian elements. Then for any random vector B supported on the n dimensional 

unit sphere and independent of the Zi’s, the inner products  are i.i.d. standard 

Gaussian random variables that are independent of B.

On the other hand, recall Lemma 6, which asserts that any random vector multiplied by 

uniform random orthogonal matrix has a spherical distribution.

D. Successive Refinability

That SPARC possesses the successive refinability property was briefly mentioned by the 

authors, however, the main theorem in [7] only guarantees that the probability of error at the 

end of the process will vanish. On the other hand, we have seen that CROM has uniform 

convergence rates, uniformly and simultaneously on all points on the rate distortion curve, in 

Section III-C6.

V. Simulation Results

We performed some simulations over memoryless Gaussian sources to assess the 

performance of CROM. In the simulation, we tweaked the parameter which provides a lower 

expected distortion.

(30)

All results are averaged over 100 random trials.

Figure 2 shows the performance of CROM and SPARC of block length 256. In the figure, x-

axis shows the rate in nats, and the y-axis represents the averaged distortion over 100 

simulations. We simulated SPARC with M = 128, 256 where the corresponding CROM is 

with kn = 1. The performance of CROM is similar to the performance of SPARC. Note that 

the optimum curve is the distortion rate function of memoryless Gaussian source.

As we discussed in Remark 8, CROM has lower complexity when kn is large, however, the 

performance will be worse with large kn. Figure 3 shows distortion rate curves of CROM 

with different kn values where block length is 1024.
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To simulate CROM of higher block length, we propose structured orthogonal matrices to 

reduce the storage and computational complexity. The idea is that any orthogonal matrix is a 

product of  Givens rotations which are matrices of the form

(31)

This suggests to construct sparse orthogonal matrices using Givens rotations as a building 

block. Suppose n be the power of 2, i.e., n = 2s. We recursively define the sparse orthogonal 

matrices  for 1 ≤ r ≤ s. If r = 1,

(32)

where

(33)

(34)

Note that diag (x1, …, xn) is a diagonal matrix with entries x1, …, xn. On the other hand, if r 
> 1,

(35)

where

(36)
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(37)

The following matrices (38), (39), (40), as shown at the bottom of this page, are three types 

of sparse orthogonal matrices when n = 8.

Each matrix  is a product of n/2 Givens rotations. Therefore, the product of log n 

consecutive sparse orthogonal matrices is equivalent to the product of  Givens 

rotations. If we draw angles uniformly randomly, the distribution of this product should have 

similar distribution to uniform random orthogonal matrix. Since each row has exactly two 

non-zero elements, the matrix multiplication requires O (n) operations. Also, the storage 

complexity is O (n).

Another well-known orthogonal matrix is discrete cosine transform matrix of type-II (DCT-

II). We can use Fast Fourier Transform (FFT) algorithm to multiply DCT matrix efficiently. 

Also, DCT matrix requires O (1) of storage space.

Instead of original CROM with uniform random orthogonal matrices, we propose two 

modified version of CROM using

(38)

(39)
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(40)

the above structured orthogonal matrices. First, we can use  for the 

orthogonal matrix of i-th iteration, where i ≡ r (mod s), and  are uniformly 

sampled from [0, 2π]. The next idea is using  where ADCT 

denotes the DCT-II matrix. Figure 4 shows performances of two modified algorithms of 

block length 1024 and kn = 1. Note that the performance of sparse orthogonal matrices is 

worse than uniformly generated orthogonal matrices. On the other hand, the performance of 

sparse orthogonal matrices with DCT-II matrix is comparable to the original CROM with 

uniform orthogonal matrices.

Since modified CROM has lower complexity, we also tested CROM of larger block length. 

Figure 5 shows the distortionrate curve of modified CROM with both sparse orthogonal 

matrices with DCT-II matrix where block length is 65536 and kn = 1. Compare to the 

performance of original CROM of block length 1024, we have better distortion-rate curve.

VI. Channel Coding Dual

In [18], we can find a dual result in the Gaussian channel coding problem. In this section, we 

briefly review the idea of [18] (with slightly changed notation). Consider the AWGN 

channel Yi = Xi + Zi where Zn is an i.i.d. standard normal random vector. Suppose the 

number of messages is n, i.e., the rate of the scheme is  nats per channel use. 

Based on message m ∈ {1, 2, …, n}, the encoder simply sends Xn where 

 and  if i ≠ m. Then, the decoder finds the 

index of the maximum value of Yn and recovers the message, i.e., . The 

average power that the encoder uses is . We will specify εn such 

that limn→∞ εn = 0.

Before considering the probability of error , let us introduce the following useful lemma.

No and Weissman Page 17

IEEE Trans Inf Theory. Author manuscript; available in PMC 2018 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lemma 10

Let Zn be an i.i.d. standard normal random vector, then

(41)

Proof

(42)

(43)

(44)

(45)

(46)

(47)

where Φ(x) is a standard normal cumulative distribution function and Q(x) = 1 − Φ(x). We 

used the fact that  where f (x) is a probability density function of standard 

normal random variable. □

Now we are ready to bound . Without loss of generality, we can assume that m = 1.

(48)
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(49)

(50)

(51)

(52)

If we choose εn such that , then  goes to infinity as n 
grows. Therefore,

(53)

Since Pn converges to zero as n grows, we can approximate the capacity by 

. It is clear that  converges to one as n 
grows, i.e.,

(54)

This is reminiscent of the definition of a zero-rate optimal scheme in the source coding 

problem. We can say that this scheme is zero-rate optimal in the channel coding setting. We 

further note that the encoding and decoding can be done in almost linear time, and 

essentially no extra information needs to be stored.

However, unlike CROM, we could not find an iterative scheme building on this zero-rate one 

that achieves reliable communication at a positive rate. The main challenge is that the tail 

behavior on the left side is very different from the right side. In the source coding problem, a 

small maximum value (which corresponds to the left tail) yields an error, while it is a large 

maximum value (which corresponds to the right tail) that yields an error in the channel 

coding problem. More precisely, the cumulative distribution function of the maximum of 

Gaussian random variables converges to exp (−e−x) with normalizing constants. This 

function decays double-exponentially as x decreases, which allows a small cumulative error 
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for our iterative scheme CROM. However, exp (−e−x) converges to one only exponentially as 

x grows. Therefore, in the similar channel coding scheme, the cumulative error does not 

remain negligible when we employ the scheme iteratively. We believe that for similar 

reasons a channel coding analog of SPARC with efficient encoding would not work.

Note that Erez et al. discussed rateless coding for Gaussian channels [19]. The goal of the 

paper “Rateless Coding for Gaussian Channels seems design a channel code where the 

transmitter can be blind to the channel gain and the variance of the noise. Note that the 

proposed rateless code requires the base code that achieves the capacity. On the other hand, 

we would like to design a concrete coding scheme that achieves the channel capacity when 

the channel information is known.

VII. Proofs

A. Extreme Value of Gaussian Random Variables

Before providing proofs, consider the following lemma which shows the probabilistic bound 

of Z(i) when Zn is an i.i.d. standard normal random vector.

Lemma 11—Let ε > 0. If positive integers n and i satisfy , then

(55)

where  is a standard normal cumulative distribution function.

Proof—Since Φ(Z1), Φ(Z2),…, Φ(Zn) are i.i.d. uniform random variables, Φ(Z(i)) can be 

considered as the i-th largest value of an n dimensional i.i.d. uniform random vector. The 

probability density function of Φ(Z(i)) is . Therefore,

(56)

(57)

(58)
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(59)

(60)

(61)

(62)

This concludes the proof.□

B. Proof of Theorem 2

In the proof, we use α = αn for simplicity. By the definition of , we have

(63)

Let γn and δn be positive real numbers where we specify their values later. Then,

(64)

(65)

where

(66)

Consider the first term of (65). Let , then we have
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(67)

(68)

In (67), we used Berry-Esseen theorem [20]:

(69)

where  and .

Consider the second term of (65).

(70)

(71)

Let , where

(72)

(73)

(74)

Then, we have
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(75)

(76)

(77)

By Lemma 11, . Since  has a Gaussian distribution with zero 

mean and variance ,

(78)

Therefore,

(79)

With (68), we have

(80)

Now, let consider the bound on 1 + γn − δn. It is clear that the inequality 

 holds for large enough n, and therefore

(81)
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(82)

(83)

which implies

(84)

On the other hand, it is not hard to show that

(85)

Now, we are ready to bound Dn = 1 + γn − δn. Since , we have

(86)

(87)

(88)

(89)
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(90)

This concludes the proof.

C. Proof of Theorem 7

Throughout the proof, we will let σ2 = 1 and use L instead of Ln for simplicity. Also, instead 

of choosing specific orthogonal matrices A1,…, AL+1, we employ a randomization 

argument. More precisely, we assume that A1, A2,…,Ai+1 are drawn i.i.d.  and 

show that equation (23) holds when the probability is averaged over this ensemble of 

random matrices. Let Si = ‖X(i)‖ and X(i) = Si B(i) where B(i) is uniformly distributed on the 

n-dimensional unit sphere and independent to Si. Since we draw random matrices 

independently, random variables B(1),…, B(L+1) are also independent. Recall (19) and (20), 

we have , and this implies that the distortion after the i-th 

iteration coincides with  divided by n. We further let  be a chi-distributed random 

variable with degrees of freedom n and independent to all B(i)’s, i.e., . Using union 

bound, we can obtain an upper bound on the excess distortion probability. For simplicity, 

denote .

(91)

(92)

From the definition of X(i+1), we have

(93)
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(94)

(95)

where (m(i))T X(i) is a sum of kn largest value of X(i). Let 

, then Vi and Si are independent. We can 

now rewrite (95) as

(96)

It is not hard to show that  is an increasing function in Si when 

 and . Therefore,

(97)

(98)

which is equivalent to

(99)

This implies

(100)

Recall that we took
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(101)

and it can be easily shown that

(102)

(103)

(104)

Thus, we have

(105)

(106)

(107)

Since B(i) is uniformly distributed on a unit sphere and it is independent of , we have 

 where Z is an n dimensional i.i.d. standard normal random vector. Furthermore,
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(108)

(109)

If we have  where pn and qn were defined as (73) and (74), 

then we can apply the similar technique from the proof of Theorem 2. I.e.,

(110)

(111)

(112)

Recall that  and . Therefore, it is easy to check that

(113)

(114)

Firstly, if γn is equal to any constant γ > 0, due to the stationarity of the source, we have

(115)
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Therefore,

(116)

(117)

Suppose the source is i.i.d. distributed with , then we can let 

such that

(118)

and still have

(119)

We would like to point out that the right hand side of (118) is independent to the choice of 

R. Finally, it is clear that

(120)

(121)

This concludes the proof.

VIII. Conclusions

Our starting point (and inspiration for the subsequent main scheme and result) was an 

extremely simple scheme that achieves the optimum zero-rate distortion for the Gaussian 
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source. We then generalized it to CROM, a lossy source coding scheme that simultaneously 

achieves the distortion-rate function of the Gaussian memoryless source for all rates when 

operating on any ergodic source. The merit of CROM over classical random coding schemes 

is its low storage and computational complexity, as well as the fact that the encoding can be 

oblivious to the rate desired while the decoding is essentially sequential (sub-linear 

lookahead) and simultaneously achieves all points on the distortion-rate curve.

Acknowledgments

This work was supported by the NSF Center for Science of Information under Grant CCF-0939370.

Biographies

Albert No (S’12) received a B.Sc. in both Electrical Engineering and Mathematics from 

Seoul National University, in 2009, and a M.Sc. and Ph.D. in Electrical Engineering from 

Stanford University in 2012 and 2015 respectively. He is now a Data Scientist at Roche. His 

research interests include the relation between information and estimation theory, lossy 

compression, joint source-channel coding and bioinformatics.

Tsachy Weissman (S’99–M’02–SM’07–F’12) graduated summa cum laude with a B.Sc. in 

electrical engineering from the Technion in 1997, and earned his Ph.D. at the same place in 

2001. He then worked at Hewlett Packard Laboratories with the information theory group 

until 2003, when he joined Stanford University, where he is currently Professor of Electrical 

Engineering and incumbent of the STMicroelectronics chair in the School of Engineering. 

He has spent leaves at the Technion, and at ETH Zurich. Tsachy’s research is focused on 

information theory, compression, communication, statistical signal processing, the interplay 

between them, and their applications. He is recipient of several best paper awards, and prizes 

for excellence in research and teaching. He served on the editorial board of the IEEE 

TRANSACTIONS ON INFORMATION Theory from Sept. 2010 to Aug. 2013, and 

currently serves on the editorial board of Foundations and Trends in Communications and 
Information Theory. He is Founding Director of the Stanford Compression Forum.

References

1. Gnedenko B. Sur la distribution limite du terme maximum d’une serie aleatoire. Ann Math. 1943; 
44(3):423–453.

2. Berger T, Jelinek F, Wolf J. Permutation codes for sources. IEEE Trans Inf Theory. Jan; 1972 18(1):
160–169.

3. Goyal VK, Savari SA, Wang W. On optimal permutation codes. IEEE Trans Inf Theory. Nov; 2001 
47(7):2961–2971.

4. Gioran C, Kontoyiannis I. Complexity-compression tradeoffs in lossy compression via efficient 
random codebooks and databases. Problems Inf Transmiss. 2012; 48(4):376–394.

5. Gupta A, Verdú S, Weissman T. Rate-distortion in nearlinear time. Proc IEEE Int Symp Inf Theory 
(ISIT). Jul.2008 :847–851.

6. Korada SB, Urbanke RL. Polar codes are optimal for lossy source coding. IEEE Trans Inf Theory. 
Apr; 2010 56(4):1751–1768.

7. Venkataramanan R, Sarkar T, Tatikonda S. Lossy compression via sparse linear regression: 
Computationally efficient encoding and decoding. IEEE Trans Inf Theory. Jun; 2014 60(6):3265–
3278.

No and Weissman Page 30

IEEE Trans Inf Theory. Author manuscript; available in PMC 2018 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8. Venkataramanan R, Joseph A, Tatikonda S. Lossy compression via sparse linear regression: 
Performance under minimum-distance encoding. IEEE Trans Inf Theory. Jun; 2014 60(6):3254–
3264. [Online]. Available: http://dx.doi.org/10.1109/TIT.2014.2313085. 

9. Wang, D., Ingber, A., Kochman, Y. The dispersion of joint source-channel coding. 2011. [Online]. 
Available: https://arxiv.org/abs/1109.6310

10. Kostina V, Verdú S. Fixed-length lossy compression in the finite blocklength regime. IEEE Trans 
Inf Theory. Jun; 2012 58(6):3309–3338.

11. Verdú S. On channel capacity per unit cost. IEEE Trans Inf Theory. Sep; 1990 36(5):1019–1030.

12. Halmos, PR. Measure Theory. Vol. 2. New York, NY, USA: Van Nostrand; 1950. 

13. Stewart GW. The efficient generation of random orthogonal matrices with an application to 
condition estimators. SIAM J Numer Anal. 1980; 17(3):403–409. [Online]. Available: http://
www.jstor.org/stable/2156882. 

14. Diaconis P, Shahshahani M. The subgroup algorithm for generating uniform random variables. 
Probab Eng Inf Sci. 1987; 1(1):15–32.

15. Schoenberg IJ. Metric spaces and completely monotone functions. Ann Math. 1938; 39(4):811–
841.

16. Asnani H, Shomorony I, Avestimehr AS, Weissman T. Network compression: Worst-case analysis. 
Proc IEEE Int Symp Inf Theory (ISIT). Jul.2013 :196–200.

17. Østergaard J, Zamir R. Incremental refinement using a Gaussian test channel. Proc IEEE Int Symp 
Inf Theory (ISIT). Jul-Aug;2011 :2233–2237.

18. Polyanskiy Y, Poor HV, Verdú S. Minimum energy to send k bits through the Gaussian channel 
with and without feedback. IEEE Trans Inf Theory. Aug; 2011 57(8):4880–4902.

19. Erez U, Trott MD, Wornell GW. Rateless coding for Gaussian channels. IEEE Trans Inf Theory. 
Feb; 2012 58(2):530–547.

20. Berry AC. The accuracy of the Gaussian approximation to the sum of independent variates. Trans 
Amer Math Soc. Jan; 1941 49(1):122–136.

No and Weissman Page 31

IEEE Trans Inf Theory. Author manuscript; available in PMC 2018 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1109/TIT.2014.2313085
https://arxiv.org/abs/1109.6310
http://www.jstor.org/stable/2156882
http://www.jstor.org/stable/2156882


Fig. 1. 
Relay network.
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Fig. 2. 
Distortion-rate curves of CROM and SPARC.

No and Weissman Page 33

IEEE Trans Inf Theory. Author manuscript; available in PMC 2018 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Distortion-rate curves of CROM with different kn values.
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Fig. 4. 
Distortion-rate curves of CROM with different structured orthogonal matrices.
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Fig. 5. 
Distortion-rate curves of CROM with different block length.
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