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Abstract—We construct an explicit quantum coding scheme Notwithstanding the complications surrounding the regesa
which achieves a communication rate not less than the cohere  expression, it is already difficult to construexplicit coding
information when used to transmit quantum information over schemes that achieve the coherent information of an arpitra

a noisy quantum channel. For Pauli and erasure channels we ¢ h | d the task b that h hard
also presentefficient encoding and decoding algorithms for this quantum channel, an € tasx becomes that muc araer

communication scheme based on polar codes (essentiallydar in i we also ask forefficientencoding and decoding. Here, a
the blocklength), but which do not require the sender and reeiver  task is termed efficient if it can be completed in a humber
to share any entanglement before the protocol begins. Due the  of steps scaling essentially linearly in the input size, just
existence of degeneracies in the involved error-correctgcodes it polynomially as in the complexity-theoretic setting. Unry

is indeed possible that the rate of the scheme exceeds the ecdmt fl | t nothi K bout licit. effic;
information. We provide a simple criterion which indicates such recently, aimost nothing was known about explicit, emen

performance. Finally we discuss how the scheme can be used fo Provably capacity-achieving classical error-correcting codes,

secret key distillation as well as private channel coding. to say nothing of the quantum case.

Index Terms—Quantum polar codes, coherent information,  Polar codes, introduced in 2008 by Arikafd],[are the
entanglement distillation, privacy amplification, information rec-  first family of classical error-correcting codes which both
onciliation, secret key distillation, private channel codng provably achieve thesymmetric(i.e., X ~ uniform in (1))

classical capacity for any discrete memoryless channel and
have an essentially linear encoding and decoding complexit
[. INTRODUCTION These codes have been generalized to the quantum setup.
HANNON'’S channel coding theorem determines the caVilde and Guha adapted polar codes to transmit classical
pacity of a classical discrete memoryless chaneby information over quantum channels] and gave a scheme for
random coding arguments and finds that it is given by transmitting quantum information over degradable quantum
channels ]1], at the cost of an unknown decoding efficiency.
cWw) = I%iXI(X FW(X)), (1) Three of us showed in Pl how to achieve thesymmet-

where the random variabl&f describes the input to the'lc coherent information(¢" a Bell state in 2)) of any
channel, andPy is its probability distribution {]. Analogous Pauli or erasure chan_nel with efficient encoding and degpdin
random coding arguments for the problem of transmittirfgPerations. In 17, Wilde and Renes extended this method
quantum information over a memoryless quantum chanrig) arbitrary quantum channels and showed that the quantum

NA=B lead to a communication rate given by decoder can be constructed by combining sequential dexoder
for suitable classical-quantum channels (see aisd),[ but
Q1(N) = max I(A)B),, (2)  without providing an efficient decoder.

S o , However, all of these quantum channel coding schemes
wr‘]gre theAqE}glzﬂpn is over all pure, bipartite stat€s",  gyffer from two important drawbacks. The first is the need for
0P = NA7E(6") andI(A)B), := H(B), — H(AB), noiseless entanglement to be shared by the sender andereceiv
is the coherent informationand H the von Neumann en- prior to the start of the protocol. Second, the aforemeetion
tropy [2], [3], [4], [9], [€], [7]. It has been shown th&,(N)  protocols only achieve rates given by the symmetric cotteren
is not generally optimald] and that the quantum capacity isinformation. More details about entanglement-assisteaheu
given by itsregularization tum coding can be found inlf]; a precursor in the field

o1 of quantum key distribution is1f]. In this contribution we
_ : ®k
QW) = klggo le(N ) 3) present an explicit coding scheme that provably achieves th
_ _ _ (true) coherent information for an arbitrary quantum chednn
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require entanglement assistance while achieving higls eatd more capable whed (X" : BY) > 1(xV : EN) for all
an efficient encoding and decoding. N >1[2]].

The paper is structured as follows. Sectioi introduces I the private capacity of the complementary channel is
basic notation and definitions. As our protocol is based @ero, i.e.,C,(N;) = 0, then NV is said to beless noisy
the use of information reconciliation (IR) and stabilizerEquivalently,\ is less noisy ifI (T:BY) > I(T:E"), for
based quantum error-correcting codes, Sectigh provides every N > 1 and for all distributions or(T", XV), where T
background on these topics. Sectit'C recalls two general has finite support an@ —o— X~ - (BY, EV) form a Markov
uncertainty relations needed to establish the rate of tdengo chain [21].
scheme. Sectioiil introduces the classical polarization phe- Finally, a quantum channé!" is calleddegradableif there
nomenon and proves that it also holds for general classicakists a trace-preserving and completely positii& CP)
guantum (cq) state's.Section|V then describes a protocolmap 7 such that7 o A/ = A.. The concepts of a channel
for the problem of entanglement distillation and Sectlén being more capable, less noisy, or degradable were inteztuc
shows that it is computationally efficient for Pauli and erdn a classical framework in2[3] and have recently been
sure channels when using quantum polar codes. It is wgkneralized to the quantum mechanical setup 4. [For
known that an entanglement distillation featuring onlyfard classical channels, it has been shown that being more eapabl
classical communication can be turned into a channel codiisga strictly weaker condition than being less noisy, whigh i
scheme [9], and SectiorVl explains the channel coding viewagain a strictly weaker condition than being degradahig. [
of the scheme in detail. We prove that the communicatidfor quantum channels it is unknown whether these relations
rate of the channel coding scheme is at least as greataas strict P1]. However a degradable (quantum) chanhél
Q1(N), as defined in4), and present an efficient encoder and less noisy ané fortiori more capable. InZ1] it is shown
decoder based on polar codes for Pauli and erasure chanrtbit both the private and quantum capacities of a less noisy
It is possible, but still unproven, that the scheme can aehiechannel\ are equal to the coherent information:
rates beyond the coherent information. Sectidm shows,
however, that the rate expression reduces to the coherent CpN) = QN) = Q:(V), (7)
information when the channel is degradable. Sectidmsand a relation that was first shown for degradable channai§ [
VIII state two different open problems addressing the questioii].
of whether our scheme can achieve rates beyond the coherent
information or even achieve the quantum capacity for chBnn@ |nformation Reconciliation & Stabilizer Codes
where the coherent information is not optimal. In Sectign
it is discussed how the scheme can be used for secret Ifg
distillation.

In this subsection we recall some details about the in-
¥mation reconciliation protocols which form the basis of
our coding schemes. The form of information reconciliation
needed here is an instance of data compression in which the
decoder has access to quantum side information. Consider a
A. Notation and Definitions classical-quantum state of a random variabland a quantum

Let A : T(H4) — T(Hp) be a quantum channel, whereSystemB, which may be writteny”" = 37 p. |2) (2| @2,
T(H) denotes the space of all operators in some Hilbert spatBere p- is the probability distribution ofZ and . are
H that are equipped with the trace norm. We assume that @bitrary states. The goal of information reconciliatientd
underlying state spacé$, and?{p for systems4 andB are compressZ, i.e. apply some function t&, so thatZ itself
finite dimensional. Using the Stinespring dilation(] there ~can be reconstructed (with high probability) by a decodeh wi
exists an “environment” systeri{z and a partial isometry access ta3 and the compressed output.

Il. BACKGROUND

Upp : Ha — Hp @ Hp, such that In quantum language, the decoding step may be regarded
as a measurement of the systems available to the decoder.
N(p) = Trg (UBE P UEE) (4) The probability of error in determining the value of a random

variable Z given measurement of some quantum systeBm

for every p € D(Ha), where D(H4) denotes the space.,, pe expressed as

of all density operators orf{4. Then we may define the

complementary channéb A as Perr (ZAIB)w =1-maxy p.Tr[ABeP], (8
Mz &
_ T
Nelp) = Trp (UBE pUBE) : () where the maximum is taken over all measuremgtts with
B
A quantum channeV/ is more capabléf the quantum capacity &lémentsA’.

Devetak and Winter showed that in the caseNof— oo

of its complementary channel is zero, i.€(N.) = 0. A > k ' )
lat&pries ofy? B, there exist compression functions outputting

Equivalently, the notion of more capable may be formu

AN ®N i
as follows. .For all stateg . On.D(fHA ) let the classical 2Recall that according te!], [27] the private capacity of a quantum channel
random variableX”V denote its eigenvalues amg’ and EV A/ is given by

the quantum outputs under the action &Y. Then\ is 1
Cp(N) = lim = max I(T:Bk) —I(T;Ek) , ®)

k—oo k T,Xk
1Since, to the best of our knowledge, the polarization pheran has thus

far only been generalized to symmetric cg-stat=q. [ whereT—o— X*—o—(B*, EF) form a Markov chain.



roughly NH(Z|B)y + o(N) bits which suffice to reliably C. Generalized Uncertainty Relations

determinez ™ [2€]. Specifically, callingBc the classical com-  the coding scheme introduced in this paper consists of two
pressor output, they constructed a sequence of measu®mMgRlers  hoth performing an information reconciliation mpe
such thatper (Z¥[BY Bo)yex — 0 as N — co. MOTeOVer, o in complementary basésin the derivation of the exact
this compression rate was shown to be optimal. rate expression (cf. Theore®) as well as in the formulation

We shall be interested in information reconciliation o6f the two open problems (cf. Sectiok$l andVIIl') we will
classical information that represents the outcomes of ureas Use entropic uncertainty relations that arise when meaguri
ments on a quantum system in one of two complementagysystem in complementary bases. This subsection gives an
bases, the “amplitude” basis and the “phase” basis. Amyerview about the uncertainty relations we need to prove
basis {|z)}?Z} of a d-dimensional quantum system mayseveral properties of the scheme.

be chosen to be the amplitude basis, and for Concretenfgﬁmal(ReneS&Boileaul' 1). Supposes? is a bipartite
we then take the phase basis to be comprised of elemeé}bcte for which# (74| B), :LO Then

|Z) = ﬁZf;& W |z), wherew = e>7/4, Although the

coding scheme we describe below can be made to work for H(XA|B)¢) = logdim(A) + H(A|B),, . 9)
any finited, there is no real loss of generality in settidig= 2, - _

which we do henceforth. Proof: Let R be a purification ofy4Z; expressing thel

. . e system in the amplitude basis, we may write
For the purposes of information reconciliation in this con-

text, it is convenient that the random coding argument can [/ P R R (10)
be specialized to random linear functions (as, for instaince 2
[27]). Then, since the compressed output is a linear function fr some probability distributiorp. and normalized states
the input, we may regard it as resulting from the measurement 5% gince H(Z4|B) = 0, the statesp? are completely

. . b ' z
of a corresponding set of stabilizer observables. Here aalre distinguishable. Thus, there exists a measurement whieh pr
the basic facts of the stabilizer formalism; for more deta#e (isely determines the value of given B. Let UB—~BC
[2€]. For instance, the result of computing the parity of thge a coherent implementation (Stinespring dilation) of thi

outcome of measuring 3 qubit systems in the amplitude bagigasurement, in which the measurement result is stored in
can just as well be thought of as the result of measuring thgstemc. Then define

observableZ ® Z ® Z, whereZ = diag(1, —1). In general,

any function of the formf(z") = vV - 2V corresponds to !y AT = B BC |y ABR (11)
the stabilizer operatoZ** ® Z"> @ --- ® Z"~. An arbitrary _ A1)\ C BR 12
linear function is just a sequence of functions of the forst ju ; VBl Tl ) (12)

considered, and therefore any linear function corresptmas

. . A B A
sequence of stabilizer operators. As U is a partial isometryH (X “|B)y, = H(X*|BC)y and

] ) . _H(A|B)y = H(A|BC)y . Expressingd in [¢') in the phase
Linear functions of phase basis measurments can be sigisis we have
larly regarded as measurements of stabilizer operatorgyusi

the operatorX = (9}). Since the operatorsX and Z [y ABOR = L SovpzwTmE 1)) e P (13)
anticommute, stabilizers corresponding to vectotsand vy Vd 2

commute when™¥ - v = 0. Thus, it is possible to consider 1 A ryunC | WCBR
simultaneously measuring a compressed output for both the - ﬁ Z )" (Z27%)" 1¥) ’ (14)
amplitude and phase bases. Such a set of commuting stabilize e

operators constitutes a CSS code. whered = dim(A4). Using the chain rule we can write

The measurement of any set of stabilizer operators can bgy(x4|BC),.
accomplished by applying a unitary transformation and then — H(XABC), — H(BC) (15)
performing appropriate measurements on individual qubits v’ v
Each stabilizer measurement necessitates the measurefnent = H(BC|X®)yr + H(X?)y — H(BC)y. (16)

one qubit, so that not every qubit is necessarily measuted afCIearIy H(X4)y = logdim(A), while H(BC|X4), =

the transformation. Due to the linear structure of stabilizH(AB) since all theBC marginals conditioned oX 4 are
observables, this unitary transformation is simultanBoas related% the unitaryz —* and theBC marginal forX4 = 0
mapping of amplitude basis states to themselves, as well ag W>CB}¥2 |w>ABR Finally, H(BC), = H(B), again by

mapping of phase basis states to themselves. the isometry property of/. Therefore

Note that, although we will consider using CSS codes for A .
information reconciliation in the following sections, teede H(X |BC),, = H(BC),, +logdim(A4) — H(B),,, (17)

structure is only used by the encoder. Stabilizer measuremeyhich by the chain rule is the expression we set out to prove.
for recovery operations are not generally used by the decode m
Instead, the coding techniques for information recontiilia

make use of more general measurements, such as the pretBgeca that we denote b4 and Z4 an operatorX and Z acting on a
good measurement. system A.



Lemma 2 (Renes & Boileau49]). Suppose/“5~ is a pure Based on this result, Arikan showed i#] how to construct
state for whichH (Z4|B),, = 0. Then polar codes having the desirable properties mentionedeabov
) Non-binary random variables can be represented by a se-
A A _
H(Z |R)w T H(X |B)w = log dim A. (18) guence of correlated binary random variables, which are the
Proof: The statement follows from Lemniaand the fact encoded separately. Correlated sequences of binary random
that H(A|B)y = H(ZAlB)w — H(ZA|R)w for any stateyp. variables may be polarized using a multilevel construgtion
To see the latter expression, use the chain rule to find as shown in §1.# Given M i.i.d. instances of a sequence
X = (X1, X(2),-.-X(x)) and possibly a correlated random
A A (1) <X(2)s (K)
H(Z |B)w - H(Z |R)¢ variable Y, the basic idea is to first polarizX(f‘f) relative
=H(2"B), - H(B), — H(Z"'R) ,+ H(R), (19) toY", then treatX/|Y as side information in polarizing
— H(B|z*), - H(R|Z*), + H(A|B),. (20) X(QM), and so on. More precisely, definimg’;:f) = GMX(JM) for
¥ ¥ ¥ j =1,...,K, we may define the random and deterministic
Since ABR is pure, the BR marginals conditioned on sets for eaclj as
a projective measurement offl are, too, and therefore RM (X |X
H(B|Z4), = H(R|Z4),. m R XnXG-n,
{ie[M]: H(U(j),i Uit XM ,X(f‘f),YM) >1-¢)

Ill. POLARIZATION PHENOMENON ) (25)

In this section, we introduce thgolarization phenomenon nd
discovered by Arikan, which has been used to construct coc?es
(called polar code} that can be used for channeél] [as well DX (X ()| X =1y, -+ » X(1), Y) :=
as for source coding3[]]. We show how it can be generalized . i1 M M M)
to the setup of classical-quantum (cq) states. {i e [M] H(U(J)’l Ut » Xg-no XY ) = 6(}26)

A. Classical Polarization Phenomenon In principle we could choose differeaparameters for each
but this will not be necessary here. Now, Theorgrapplies

i ibutgs[ |
Pplar codes.have several dgswable atribus[ B, [ ]’. . to the random and deterministic sets for evgryThe sets
[39: they achieve the capacity when used for transmitting ,, XIY) — (RM (XX X YNE - and
information over a discrete memoryless channel (DMC); th wa( V) = ]\ej(j)( @IXG-15--- Xa, )};gzl
can be encoded and decoded efficiently (with a complexity thae (X|_Y) = {De,(j)(X(j)|X(jfl)v e vX(l)’Y)}j:I have
is essentially linear in the blocklength); the error praigh SIZES given by
of the efficient decoder decays exponentially in the squaoe r  |RM (X|Y)|

of the blocklength.

7X(1)5Y) =

K
Let XN be a vector whose entries are i.i.d. Bernop)li( = Z ‘Ré‘,’f(j)(X(j)|X(j,1),...,X(l),Y)‘ (27)
distributed for somep € [0,1] and N = 2" for n € Z*. =
Furthermore, let/"V = Gy XV, whereGy = (1 ?)®l°gN K
denotes the polarization transform and: X — ) be a DMC = ZMH(X(j)’X(l)’ o X(G-1),Y) —o(M) (28)
with a binary input alphabet = {0, 1}, an arbitrary output j=1
alphabetfy and transition probabilitie®/(y|z) for z € X and = MH(X|Y) — o(KM), (29)

y € Y. WY denotes the channel correspondingNouses of
W. ForYN = WN XN ande € (0,1), we define the two sets @"

RN(X|Y) = {i e [N]: HUU"'YN)>1—¢}  (21) IDM(X|Y)

and ‘Déj\j[(j)(X(j)|X(j,1),...,X(l),Y)‘ (30)

The former consists of outputs/; which are essentially
uniformly random, even given all previous outpufé—! as j
well as YV, while the latter set consists of the essentially (31)
deterministic outputs. The polarization phenomenon ig¢ tha = M (K — H(X|Y)) - o(KM). (32)

essentially all outputs are in one of these two subsets, a\ndth followi il mak f both th larizati h
their sizes are given by the conditional entropy of the inpu@ € foflowing we will maxe use ot bo € polarization phe
nomenon in its original form, Theore® and the multilevel

K

-2

DN(X|Y):={ie [N]: HUj|U'YN) <€} (22) 7;1
=D M1~ H(X|Xay,- - Xg-,¥)) =~ o(M)

—

X givenY. . LS .
g extension. To simplify the presentation, we denoteHy the
Theorem 3 (Arikan [9], [30]). For anye € (0,1) K parallel applications of7,; to the K random variables
M
IRN(X[Y)| = NH(X[Y) — o(N) 23) Yo
and 4An alternative approach is given i34, [35], where the polarization

24 phenomenon has been generalized for arbitrary finite fighswill however
( ) focus on the multilevel construction in this paper.

IDN(X|Y)| = N(1 - H(X]Y)) — o(N).



B. Polarization Phenomenon for General cg-States = Z(X|B)i, (43)

In this subsection, we generalize the polarization ph@iere ¢0) uses the multiplicativity of the fidelity under tensor
nomenon to the setup of classical-quantum (cq) states of B]%duct states (i.eF(p ® 0,7 ® v) = F(p,7)F(o,v)) and

form : i
(41) uses the following relation for cg-states
PP = 3" pelr) (2 @pf, (33)
x€{0,1
< F<Zp<x> @) (] @ pay Y pla) o) (2] @ az>
where pg,p1 > 0 such thatpy + p; = 1. We note that the - -
special case wh_erﬁo_ =p = % has been discussed in(]. _ ZP(I)F(W,%)- (44)
We denote the fidelity between the staggsand p; by [36], -
[37 _
. We next prove §8). Note that the fidelity can be expressed
Epo, p1) = llvpov/prll, (34) as the minimum Bhattacharya overlap between distributions
where||A||, denotes thérace normof the operatord, defined induced by a POVM on the statesd
— Tr|V/Af B .
as Al - Tr![ A A}. Furthermore, for a cq stateX? as F(po, p1) = min Z VTt A mpo] Tr[Ampi].  (45)
in (33), we define the quantity {Am}

Z(X|B)p = 2v/Pop1 F(po, p1) = 2v/pop1 |Vpov/pill, - Let A,, denote a POVM that achieves the minimum for
(35) Z(X|B),, we obtain

Fidelity Polarization— Applying Arikan’s transformationd 2(X|B) =9 /55 F 46
Section 1.B] to theX systems of two independent cg-states (X )” = 2vpop1 Flpo, p1) (46)
pXB as defined in%3) gives =2pop1 Y VI [Apo] Tr[Apr].  (47)

= U4 Us Bq Bo
p= 2 Pusubu ) (i @luz) (ol @9l ., @01 We can use the POVMA; ® A,,} to boundZ (U, | By Bs);:

(36)  Z(U1|B1B»),

_ 2
wy D 1 W B Py =2F <Zpu2pu2 @ Pugs Zpuz®1puzpu2€91 ® puz) (48)
\J 1 uz u
-k B, <23 (AT Ao )
lm u
Fig. 1. Notation used to derived the fidelity polarization phenooren 3
(cf. Propositiond), including the classical-quantum chaniél: x — Zpu/pu/@1Tr[(Al @A) (pur1 ® pm)]) (49)
Px- u’
Proposition 4. =2 Z (Z PuTr[Apu] P Tr[Arnpu]
2 lm u
Z(U2|UlBlBg)ﬁ = Z(XlB)p and (37) 1
Z(U\|B1Bs), < 2Z(X|B), - Z(X|B);. (39 > pwerTrlApuwsi] pu/Tr[Ampu/]> . (50)
Proof: Note that this proof is a generalization of the proof _ v _
for the symmetric case (i.epo = p1 = 3) given by Wilde Now introduce the notation,, := poTr[Ampol, B :=

and Guha [0, Proof of Proposition 9]. We first prov&g().  poTr[Aipo], v = p1Tr[Aip1], and 6, := piTr[Ayp1] and
notice thatZ(X|B), = 2> ,vVBivi =2, Vamodn. Then

Z(Ua|Uh B1B2) 5 we can write §0) as
= 2y/pop1 F (Zpul [u) (u1] ® pu, ® po, Z(U1|B1Bz2);

w“ <2 VamBi+ 16w amm + Bidm (51)

l,m
D et [ur) (1] @ puyer ® Pl) (39)
! S 2 Z (\/ amﬂl + 7l5m) (\/ m Y1 + ﬂlém)

= 2y/pop1 I (Zpul [u1) (u1| @ pus , Lm

Ul

=2 Vawfimdm 52
> puen [ur) (w] ® pu1@1> F(po,p1) (40) ; \/TW) (52)

u1

= 4y/pop1 F(popo,p1p1) F(po, p1) (41) =2 (Z((am + 0m) VB + (B +m) Oém5m)
= dpop1 F(po, p1)? (42)

lm



Z /—Z T Using Lemma5 and 6 we can boundH (X |B), in terms
-2 Bl’yl am5m> (53) of Z(X|B)p ’
l m

Proposition 7. For p*% = 37 11y s [2) (z|* @ pP and
=2 <; V By + % vV Wb Z(X|B)p := 2. /Pop1 H\/p_o\/p_1||1' we have
1—log(144/1—Z(X|B)?
EYNRVEEDD \/am5m> (54) o8 < Fyl- 2] )p>
l m 1
— 272(X|B), - Z(X|B)?, (55) < H(X|B), < Hy <§Z(X|B>p) - (63)
where inequality %2) is due to Arikan §, Appendix D]. = Proof: Follows immediately from Lemm&a and6. =

Entropy Polarization— We begin by bounding the entropy Proposition7 serves the purpose of showing that X |B),
H(X|B), in terms of the probability of erraP.(X|B), when is near0 or 1 if and only if Z(X|B), is near0 or 1, respec-
using B to determineX. This is formally defined by tively, i.e., H(X|B), and Z(X|B), polarize simultaneously.

. This is visualized in Figure.
P.(X|B), = min_poTe[Apo] + piTrl(L — A)pi] . (56) g

The error probability can be expressed in terms of a trace H(X|B),
distance, as follows. From the definition it follows immedig 1

that
P.(X|B), = 0211/&21]91 + Tr[A(popo — p1p1)] (57)
= ,Mnin po — Tr[A(popo — p1p1)] - (58)

Letting " := popo — p1p1, the minimum of §7) is achieved
for A = {I"}_, the projector onto the negative part of We } ~ Z(X|B)
thus haveP.(X|B), = p1 + Tr[{T}_T] = po — Tr[{T'} ;T 0.5 1 ’
Averaging the two different expressions leads to

Fig. 2. The lower and upper bound fdli(X|B)p given in ©3). It
P, == (p1 + Tr[{T'}_I'] 4+ po — Tr[{T}+T7) (59) shows thatH (X|B), and Z(X|B), polarize simultaneously.

Il
NN RN -
|
N =N =

=
=

(60)
IV. ENTANGLEMENT DISTILLATION
lpopo — prpally - (61) Inspired by previous work in a purely classical sce-
nario [47], we consider aoncatenatecgntanglement distilla-
tion scheme based on CSS codes. The explicitly concatenated
Lemma 5. _1og(1 _ Pe(XIB)p) < H(X|B)p < structu_re differentiates our approach from. that of Devetak
Hy,(P.(X|B),). and Winter 3], based on Devetak’s CSS-like approach for

. channel coding4].
Proof: Let X denote a guess oX generated by an

optimal measurement, the data processing inequality e®- Protocol

sures thatt (X|B), < H(X|X),. Using Fano's inquality,  The scheme consists of an inner layer which performs in-
e, H(X|X), < Hp(F) + Pelog(|X] — 1) = Hyp(F) formation reconciliation (IR) in the amplitude, &-basis and
proves the upper bound. To prove the lower bound we Ugg outer layer which performs information reconciliation i
Hiin(X|B), = —log(1 — F) [39, Section IC]. According to the phase, oX -basis. Each layer utilizes a quantum stabilizer
[40, Proposition 4.3]H (X|B), > Hmin(X|B), which proves ¢ode, and together the amplitude and phase codes form a CSS
the assertion. . B guantum error-correcting code. Information reconcitiatiat

We next boundZ(X|B),, in terms of 7. the inner layer is performed o/ independent blocks, each

Lemma 6. Let po and p; be two arbitrary density operators consisting ofL input systems. Due to this two-level structure
and po,p1 > 0 such thatpy + p1 = 1. The parameter the scheme has a blocklengih= LA/. Letting K denote the
Z(X|B), := QWHW’_O\/E‘M can be bounded in termsnumber of unmeasured outputs per amplitude block, Figure

Now we have

of error probability P, := 1 — L [[popo — pipi, as depicts thg casd. = 4, M_: 2, _andK = 2. The unmea-
2~ 2 [Poro 11l sured qubits after the amplitude information reconcitiatare
2P, < Z(X|B), < y/1-(1-2F) (62) forwarded to the phase information reconciliation block.

To explain the scheme in more detail, we start with a single
bipartite system)4? shared by Alice and Bob, witd a qubit.
Purifying v42 and expressingl in the amplitude basis gives

Proof: According to §1, Lemma A.2.4] we have
Ipopo —prp1ll; < 1 — Z(X|B)2. Lemma A.2.6 of {]
ensures thal — Z(X|B), < |lpopo — p1p1|. By definition
of P, we havel|popo — p1p1] = 1 —2P. which completes the APE = ST Uz ) )P (64)
proof. | 2€{0,1}
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Fig. 3. The entanglement distillation scheme fore= 4, M = 2 and K = 2.

A source (middle) produces statg®) and distributes thed subsystems to
Alice (left), the B subsystems to Bob (right), and retains thesubsystems.
Alice performs the amplitude information reconciliatiohR) transformation
M times, measures part of the output with respect to the amdplibasis
and sends the outcomes to Bob over a classical channel. Theneasured
qubits are fed to an IR operation in the complementary phaséstand part
of the outcome is again measured and sent to Bob. Using Alice’ssical
information, Bob runs a decoder such that his and Alice’saue—described

by the systemsd and B—are a good approximation to maximally entangled

qubits.

wherep. is some probability distribution anfle.)?} some
set of normalized states, not necessarily orthogonal. iijpeti
to each block of the first layer will be the state

i (T (65)
The amplitude stabilizer code is chosen so that Bob ¢
determinez”, with probability exceedingl — ¢; using his
systemsB” if he is also supplied with the syndromes of th
code. These are determined by Alice and transmitted to h
over a public classical channel. Given a particular denote

by z¢ the syndrome and the encoded information. Since

stabilizer codes are linear codes; determines(z,z°) and
vice versa Moreover, for every stabilizer code dn systems

there exists a unitary operation which maps the stabilinelr a

encoded operators to physical qubits. Call this unitﬁWL;
after applying it, Alice need only measure certain subsyste
to generate the syndrome. Ldf be the systems which are
then measured to yield the syndromes ahdhe remaining
systems (corresponding to encoded qubits). After applitieg
unitary, the joint state becomes

|\IJI>ALBLEL
= yAT p)AT B e (66)
VA _e\AC BLEEL
= Z V/PzL(z,z) |z)" |Z°) ’SDZL(E,EC)> .
(z,z¢)€{0,1}&
(67)

Sendingz© to Bob can be modeled as copyiagto a register
B¢ he controls, plus another one for the environmdii,
(for notational simplicity, we suppress the dependence’of
on (z,z°)):

|\Ij2>ALBLBcELEc

c

N A S Rl O e PR L
(68)

Bob’s decoding operation attempts to determinasing the
information contained in system8%“ and Bc. It can be
thought of as a measurement d&’ conditioned on the
value in the registeB¢; call its eIementsAggc. Performed
coherently, it stores the resulf’ in an extra ancillary system,
say By.. The post-measurement state is then

>

(2,z¢)€{0,1} -

|\Ij3>ALBLBCB’CELEC

A e A e _N\B!
= RV oA e Sl e Bl E
(z,29)€{0,1} £ 2’

AZE o) 9P (69)
Regarding the paifBcB() as the systemC%, a simple

fidelity calculation shows that¥s|¥s) > 1 — ¢;, where

>ALBLCLELEC

3

L L L L
ST VU |G EN ) (2 2 29
(z,z¢)€{0,1}&
(70)

The outer layer performs phase information reconciliation
on M instances of thed systems of the statgls), where
Bob’s side information is given by3”C’ in each instance.

In contrast to the inner layer, here the information to be

reconciled is not a bit, but a sequence of bits. Thereforasé
formalism of stabilizer codes, we either need to comside

codes over larger dimension or multilevel coding schemes.

Either would work for our purposes, but for concreteness let

(18 opt for the latter. Here, Alice and Bob assemble a block
of M systemsA and sequentially run blocksizet phase IR
protocols on the first qubits in each of the then the second,
and so forth. At each step they treat already reconcile@syst
as side information for the current step.

Ultimately the effect of this procedure can be regarded, as
at the inner layer, as applying a unitaW“M and measuring
a subset of the output qubits to obtain the syndromes. These
measurement results are sent to Bob, which is modeled as
copying them to a registeBp he controls, plus another one
for the environment . Remaining at the end of this process
are a set of unmeasured qubits, the encoded qubits$ the
error-correcting code used in phase information recaatiin.

B. Reliability & Rate

Now let us examine the scheme more quantitatively. Asso-
ciated with any set of qubits are a set &fand Z operators
acting on these qubits; abusing notation, let us refer to the
entire collection of these by, for instanc* andZ4 for the
set A. The amplitude IR protocol is chosen to begood,

i.e., perr(ZA"|BEBc)w, < €. Since the scheme used
independent amplitude information reconciliation blgcke
can use the union bound to write

N
Perr (ZA ’BNBg{) < M€1.

QM —
\I}2

(71)



Sidestepping the details of the multilevel coding for the :N—MVH — | A<] (80)
moment, the phase IR protocol is chosen to have N )

N — MLH(Z4|B)y — MH(XA|BLCL),,
B N

Clearly X4 (cf. Figure 3) is a deterministic function of Since we only care about thé register, the copy of® in Ec¢
XA que to the action o’ A". However. since this uni- does not contribute to the entropy in the final term. Thus,

tary implements a linear function in the basis conjugate to H(XA’BLCL) _ H(XA‘BLCL) (82)
the amplitude observablg4" | it also implements a linear 2 vy
function in the amplitude basis itself. (This fact was used {yhere|w}) is as defined in78). Using Lemmal we obtain
show that Arikan’s polar encoding circuit is directly udefu B
the quantum setting inLp].) Therefore,Z4 is a deterministic H(XA|BLCL)
function of ZA" and hence also aZ4" .

Per (XAM‘BNCNBD) < e (72) 5. (81)

vy

) =log|A| + H(A|B"*C"),, (83)
err (X4 BYCVBp) < e; and 73 S
b ( ’ D) = () L (1 —H(ZA|B)¢) + H(A|B*C"),, +o(L), (84)
e (24BN BY) < Me,. 74 ’
b ( ’ C) = (74) where the final step is ensured by the fact that the code is
These conditions ensure that Alice and Bob share a goe@pacity-achieving. We thus can writelj as
approximation to|A| maximally entangled qubit pairs. Al- H(A|BLOL) , I
ice’s part of the distillation process (summarized in the R=— ¥s 4 o(L) (85)
left hand side of Figure3) can be described by a uni- (A BL(,{JL L
tary Uy P PrESED Bobys part is to decode the state - (4) )‘1”3 i o(L) (86)
NN N )
(w)* B E" using BY and the side informatioB By, he L L

receives from Alice. Inequalities’®) and (74) together with Which proves the assertion. u

[ B’NEQF;rirg 1] ensure that there exists a decoding unita®roliary 10. For ¢ as given in(64), the rate is larger than
C D

Ug . It is constructed directly from the two IR or equal to the coherent information, i.e.,
decoders.
To make the reliability statement precise, defiig := R> maX{OaI(A>B)¢}- (87)
AN S ABM BpEYE BYNBYBp—B .
Uy ~TTCTPEeRP Vg = Uy T¢ TP, introduce Proof: Recall that the statelg)) and |¥) are defined in
64) and (78). Let
€() = Trpyp,e~[Ve (Va()Vi)VE] (75) ©9 ‘ )ABCE A|\C| \BE
. W’ = . |2)" |2 2 . 88
a.nd def|n®(’l/1,¢) — %”1/1 _ ¢H1 | > Ze%l}\/_| > | > |(p > ( )
Proposition 8. Let |¢>f3 be a maximally entangled state ofBy definition (cf. (79)) the rate is non-negative. As explained
dimensiond, whered = dim A. Then in the proof of Theoren® we can write
6( é375(\IJANBNEN)) < V265 + \/2Me,. (76) N—MLH(ZA|B)w—MH(XA\BLCL)\P/
R= 2. (89)
Proof: This proposition follows immediately from7g), N
(74) and [44, Theorem 1]. m Using the chain rule we obtain

The rate of the scheme is defined as the number of outpu}i xA| gLl
qubits divided by the number of input qubits (cf. Equa- ( | ) ‘
tion (79)) = H(x*|BrCt) (XY BECEXY) | (90)
Theorem 9. The rate of the scheme is s s

= LH(X*|BC),, — H(X*|BECtxA) . (91)
R:lf(/DBLCL)W, +@, 77) Y ( )\1'3
L 3 L We thus have
h
where R=1-H(z"B), - H(X"|BC),,
i
|\Ij3> H(XAC BLcLXA)
A _c\ A Lpt _ _¢ ck ’
= Z V/PzL(z,z) |Z>A|Z >A SDZL(E,EC)>B " ‘ZL(Z7Z )> . + 7 LE (92)
(z,z¢)€{0,1} &
(78) > max {O,l—H(ZA|B)¢ —H(XA|BC)w,} (93)
Proof: The rate of the scheme is = max {0, —H(A|B)¢} (94)
oA (79) — max {0,7(4)B), } (95)

N



Equality ©4) holds since described in more detail in Sectidi-A . The~unitaryVAM
1 H(ZA|B)¢} B H(XA|BC’)¢J, applied to elements in the phase basis act&d§)7, i.e.,
AM 1 o G atzz |~ ~
=1-H(A|B),, - H(X"[BC), (96) V" = S > (TR ) () (101)

z,x’,z€{0,1} KM

= —H(A|B),, — H(A|BC),, (97) o

— —H(A|B),, — H(C|AB),, (98) = Y |@TE) Gl (102)
T KM

= —H(AC|B),, (99) €01} ) )

=—H(A|B), (100) Where we have usefl7;)~! = Gf;. The frozen qubits are

measured with respect to the phase basis and its outcomes are
where Q7) uses Lemmad. and thatH (Z4|BC), = 0. W sent again to Bob. The remaining qubits form the systém
Coglgtemggi[ntgethse(:htsvrgerglri;ﬁ;;ei Oi%?ggnggkzggr (?z)y C”?r?eorer_n 11. The encoding of the distillation scheme can be
A particularly favorable family of codes are the quanturfone WIthO(XV log N) steps.
polar codes. Using these codes for Pauli or erasure channels Proof: The M polar transformations with respect to the
we know how to build an efficient encoder and decodeimplitude basis can be performedMM L log L) complexity.
having essentially linear complexity and being reliable forhe second polar transform, this time with respect to thespha
large enough blocklength. This will be explained next. basis, hasO(M K log(M K)) complexity, whereK = |A|.

Hence it follows that all the amplitude measurements requir

V. USING QUANTUM POLAR CODES FORPAULI OR O(M(L — K)) operations and all phase measurements can
ERASURE CHANNELS be done withO(MK) complexity. From the polarization

By using polar codes, Alice and Bob can perform the Opeq_henomenon (cf. Theoref) we obtain thats' = O(L) which

ations explained in SectiolV in a computationally efficient proves the assertion. u
manner for state&p)ABE that arise from sending half of an
entangled pair through a Pauli or erasure channel. C. Decoding

Decoding of theB”Y system, with the additional information
A. Code Construction stored in theBY B registers, can be done by combining ideas

Before the protocol starts one must construct the code, i £oM [44 and [17]. As shown schematically in Figure Bob's
determine the qubits comprising the systerfsat the inner operation is constructed by using the classical polar derod

layer and A¢ at the outer layer. (Recall that these are thfé)r amplitude and phase IR in sequence. Note however that

qubits that are measured by Alice and whose measurem e two decoding tasks are not independent as this would
outcomes are sent to Bob.) Constructing the syst&can neglect possible correlations between amplitude and phase

be approximately done in linear time using Tal and Vardy's N the first step Bob perr:(_)rrrrs the amp(l;tude LR deco(;zlmg
algorithm [5] and its adaptation to an asymmetric setuBlper"?‘t'olrmf‘I (]\/([j tlmgs), whic c;)rresdp?n S tgt € stanhar
as explained in 3], or alternatively using the more recent-'@ssical polar decoder as intro ‘_Jce ), [and stores the

. result in an auxiliary systen¥;, ¢ € {1,...,M}. Each

algorithm by Talet al. [46]. ) P . h dina f inf .
To determine the systepA requires more effort. Applying instance ofD 4 requires the corresponding frozen information,

c ich i i inBM
the above algorithm for a “super-source” seen by the out@e valuesz®, which is provided inB¢'. )
layer will not be efficient in the overall blocklength' since ~ BOP next performs the phase IR decoding operaiidn

its alphabet size is exponential fn Nonetheless, due to theusing the information gained from decoding the first layer.

structure of the inner layer, it is perhaps possible that th!loWing [47], we next show how the standard polar decoding
method of approximation by limiting the alphabet siz&][ procedure can be adapted for the outer layer of a two-stage

[4€] can be extended to this case. polar scheme.

Bp——— ]

B. Encoding B
As described in Sectiotiv-A and Figure3, starting with ”
NN N | P .
a state|)* ® F" Alice first appliesM times a unitary BN— 10) Dp—B

VA" to perform amplitude information reconciliation, which Be.s D
. . P . L N
is in the specific case of using quantum polar codes = ’ .
ey |Grzt) (2], where G, = GP5L and G = 0y ———
(1) denotes the Arikan polar transforrti [ Alice measures _ , , o _
the frozen qubits with respect to the amplitude basis andsse Fig. 4. Bob’s task in the entanglement distillation procfssM = 2. With
q p p fthe help of the ancilla system&; and F», the classical decoder® 4 and
the outcome to Bob. . Dp are utilized to distill entanglement.
Alice next applies another polar transfofirit* —this time
with respect to the phase basis—to the systemsA. Here Efficient Concatenated Classical Source Codirg/NVe start
we use a multilevel coding scheme, as mentioned above dndpresenting a concatenated classical coding scheme based
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on polar codes that can be used for efficient source coding. " !
The scheme has been introduced 4i][for efficient channel W 2
coding at the optimal rate. L&t C [L] denote the indices of B

the frozen bits at the inner layer and IEt= L — |Z|. The set sV 3
O C [K M| denotes the indices of the frozen bits at the outer
layer® Figure5, depicts the scheme schematically for the setup
of L=4, M =2,7=1{2,3}, K=2andO = {2}. In the e s
following we prove that there exists an encoder and decoder
that requireO (N log V) steps having an error probability not s g
greater tharO(L2~"") for any 3 < 1. »

#(2 2

T7

e Y 8 s

550 M il Fig. 6. Encoding circuit for the setuf, = 4, M =2, 7 = {2,3},

L K =2andO = {2}. Heresy) denote the frozen bits that are sent
— to the decoder at the inner layer. We have a single frozent lihiea
outer Iayer,t;”, that is sent to the decoder as well. The small gray
dots represent variables in the network and correspond desnn
Fig. 7.

G

Ti;{) el VN LXN YN dec Ti;{)

most O(L log L) steps each9. The outer encoder consists
L of K multiplications with the matrixG,;, each requiring
e O(M log M) operations §]. As justified in SectionV and
% TI ensured by the polarization phenomenon (cf. Theo@m
i K = O(L). We thus conclude that the total encoding requires
O(MLlogL) + O(LMlog M) = O(N log N) steps. [ |
Fig. 5. The source coding scheme fér=4, M = 2, T = {2,3}, The decoding is more challenging. An important feature
K =2andO = {2}. A source produce®' i.i.d. copies of correlated of the decoder is that the inner layer decompressors must
random variable$X, Y')". The encoder first applies/ polarization be interleaved with the outer layer decompressors in owler t
transformsG, to X, obtaining a vecto’ ™. The frozen bits that ensure that all required variables are known at the apptepri
are determined by and denoted bys; ") are sent to the decoder g1ans o jllustrate, we explain in detail how the decodimg i
whereas the remaining bits are encoded by another poia»_nzatdone for the setud — 4, M — 2, T — {2,3}, K — 2 and
transform—performed in a multilevel construction as ekyd in . ! ' O .
SectionllI-A —resulting in a vectof{*). The frozen bits ofr{X) O = {2}. The logical structure of the successive cancellation
(determined by®) are sent to the decoder again. Using the bitdecoder is shown in Figuré Figure 10 of P] depicts a similar
received from the encoder the decoder outpiits”; a guess for representation of the original successive cancellatiaoder.
T](j(). To see the close affinity between the encoding and decoding

process, Figuré visualizes the encoder for the setup defined
As depicted in Figuré the encoder consists of two partsabove.

It first applies M identical inner encoding transforms—it Each node in Figure7 is responsible for computing a
performs M times the polar transfornz;,. The outcome likelihood ratio (LR) arising during the algorithm; the pan-
VXN can be classified into two systems determined by thgers below each node represent the variables involvecein th
code construction. The frozen bits, denoted ;ﬁy‘f%{ are associated LR computation. Starting from the left we trsger
sent to the decoder whereas the others are encoded a setoaddiagram to the right at whose border we can compute
time by the outer encoder. The outer encoder applies anottte¥ LRs. Then we transmit the results back to the left. Here
polarization transform in the multilevel technique expkd in fy) denotes thejth output of theith decompressor at the

Sectionlll-A which outputsZ;.° The frozen bits of\1),  outer layer ands'” denotes thejth frozen input for theith
determined by the code construction, are sent to the decofigfer encoding block which has been sent to the decoder as

| G

SNSS BISISIS

again. explained above.
Lemma 12. The classical encoder explained above has com- The decoding begins by activating notlevhich would like
plexity O (N log N). to compute the LR fole(l) given Y8, For this it needs the

. ) LRs for the first inputs to the two super-channels, and so node
Proof: The inner encoder perform¥/ times a standard | activates node, which is responsible for computing the LR

polar transformG, which has been shown to require afg the first input to the first super-channel. This comportati

5 _ _ _ proceeds exactly as the usual successive cancellatiomeeco

The bits at the outer layer are numbered with respect to thitilenal . . .
structure, i.e., each binary decompressor is numbereceataly. recgrswely combining the LRs of _the physwal channels by

67(%) denotes thgth output of theith binary outer encoder in the sequentialClling nOde?’. and then6. Assembllng their results, node
multifevel structure. can compute its LR and transmits the result to nadasd16.
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Meanwhile, nodd has also requested the LR of nafjevhich each of theM inner encoding blocks requires its own like-

performs the same calculation as n@dir the second super- lihood calculation, as the values taken by~—! can differ

channel, again forwards the result to nodeand 16. Now in each case. Using{ = O(L) which follows from the

nodel is able compute the final desired LR and can therefopelarization phenomenon (cf. Theores), we find that the

guessi. Node16 next guessed,”, which is easy since this decoder has complexit)(N log N). []

is a frozen blt and therefore available at the decoder (he., We next analyze the reliability of the multilevel encodedan

decoder sets2 t2 ) completing first decompressor of thedecoder explained above. Suppose we would like to compress

outer layer. (L instances of)\V4,...,V,,) relative to side informatiorY’,
Node 16 passes control to node in order to compute the by sequentially compressinig relative toV?~'Y". DefineV;

LR for 7. This requires the LR for second inputs to the twé® be the output of the decompressor, Jét be the event

super- channels so nodes (and later21) are called. Node that V; # V; (i.e., that the decompressor makes a mistake

18 finishes the decompression of the first super-channel @h positioni), and let; := Uj_, Ax. Note that Pr[B,] is

the usual way, while nod2l completes the decompression ofhe probability of mcorrectly decoding at least omg for

the second super-channbleither of these can occur until the? € [n]. Let » be a bound on the probability of that we

first outer layer decompressor is finishefter the inner layer decode incorrectly at any step and that the previous steps ar

decompression is complete notfe can guess\® and node all correct: Pr[A; N B5 ;] <r forall j € [n]. Then

24 can finally guesg}”’, completing the second decompressaremma 14. For n € Z+ andr as defined above, we have

of the outer layer. In general, decompression ofthélifferent

kth inputs at the inner layer has to wait for tiie — 1)th Pr[B,] < nr. (103)

decompressor to finish at the outer layer. Proof: The proof proceeds by induction over the case

n = 1 holds by assumption. The induction step is as follows:

Pr[B,+1] = Pr[B, U A,41] (104)
= Pr[B,] + Pr[A,+1 N BE] (105)
< Pr[B,]+r (106)
<(n+1)r (107)

where (L06) follows by assumption andL(7) uses the induc-
tion hypothesis. [ ]
Now the reliability statement follows easily.

Lemma 15. The error probability of the encoder and decoder
introduced above satisfie],,, = O(L 2~ M7 ) forany 8 < 1.

2(1)2 1
b=y, ys, 0507 st
<1*y 5(1)2 ty
©=Ys5,Y7, 952) iy

Proof: For the polar source coding scheme, note that
Pr[A;, N B{_,] + 2 € 0O(2~M"), wherez is the probability
that V; # V; given that a mistake previously occurred, but
where we still give the corredt®~! to the decompressor. We

2(1)2

H _MP
Y Y R WL ) can therefore upper boundin Lemma14 by O(2~*") [3(].
o e T Thus, the pﬂrobabllrty of incorrectly decoding any of theV;
i —M
Fig. 7. Logical structure of the successive cancellation decantethe 1S O(L2 ) u

setupL =4, M =2, 7 = {2,3}, K = 2 and O = {2} (compare We note that for the phase reconciliation task we cannot
with [9, Fig. 10]). Note thati'" denotes thejth output of theith ~directly use that decoder since we have measured some qubits
decompressor at the outer Iayer aqﬁd denotes theth frozen bit at  at the inner layer with respect to the amplitude basis (tlgtgu
the ith inner encoding block. The numbering of the nodes reptesemelonging to the system®), which implies that we do not
the order in which they get activated in the decoding pracess  have knowledge about the phase-basis-measurements ef thes
qubits. In the following we present two different approache
r%o resolve this problem. We first show that the phase-basis
measurements we do not know can be chosen at random
without affecting the decoder’s reliability. Alternatlye we
Proof: Let V; denote theith non-frozen output of an show how to adapt the classical decoding algorithm intreduc
inner encoding block. The decoder proceeds by employirig, [47] such that it does not require the above mentioned
in sequence, thdl decompressors for blocklengfi- com- phase-basis measurements and still remains computdyional
pression ofV; given YZV?~!, This ensures that at all timesefficient.
the decoder has all the required previous ingidts®. Each Choosing Measured Qubits at Inner Layer at Randem
decompressor can be executed usind/ log M) operations, We show that randomly choosing the qubits that have been
given the corresponding likelihood ratio &f|YZVi=1. Al measured with respect to the amplitude basis at the inner
such likelihoods can be computed @(Llog L) steps, and layer does not affect the reliability of the outer IR decoder

Lemma 13. The classical decoder explained above has co
plexity O(N log N).
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for symmetric sources. This implies that the computatignalsame values as the ratios we are looking for. The dependence
efficient decoder introduced inl¥] and explained above canon on z€ is irrelevant. Moreover, the decoder may as well
be used to reliably decode the phase IR. choosezc himself.

Recall that the state Neglecting Measured Qubits at Inner Layer We show

ABCR A \C BR how to efficiently compute the likelihood ratios at the outer
) - Z\/p_z|2> [2)" lp=) (108) layer without us)i/ng thg gubits measured with respect to the

N amplitude basis at the inner layer. L& C [N] denote the
produced by the source is relevant for the phase IR taskngaki, jices of the qubits measured at the inner layer, i.e., thts|

i i izati L -
L copies and applying the polarization transfoéf to A belonging to the/ systemsAS and letF< := [N]\F. For each

D
andC™ gives i C [N] we defineF;) :=[i] N F and Ff, := [i] N F<.
|\I,>ALBLCLRL In order to execute Arikan’s classical SC-decoder at the
L L outer layer, we need to compute for eack [N] such that
INA \C BLYRE N . L .
= > VP |Gr2t)" |GLt)T ) : XA" € Fe the following likelihood ratio
zLe{0,1}& i N
09)  LYON &[FG)) =
ExpressingA” in the conjugate phase basis gives Pr XZ_AN —0 ‘ BN =V, N {XJAN = i, }]
|\IJ>ALBLCLRL 775 . (114)
1 LGzt =L A" AN _ N _ N AN _
= L (—1)% Gz Pr| XA =1|BN =WV, N {X& =3
= > VR |2) [ | AL AT =

xl 2L e{0,1}F

]GLZL>CL I L>BLRL (110) However, since in 114) the qubits measured with respect
i to the amplitude basis at the inner layer are missing in the

L
_ 3 ‘:;;L>AL (ZzL)C €)¢"B R (111) conditioning, it is not straightforward how to compute this
V2L cLe{01}E likelihood ratio efficiently! Using Bayes’' theorem we can
write
where
L L pL crt L pL
TP = 30 W |Get) T le)” 1) e X2 =0 BY =Y, () X7 =)
2Le{0,1}L IEFG
The state o;rBLLC’L conditioned on the value® on A is just N .
(Z=7)C"¢C"BY (Z=")C" | The source is symmetric because = > Pr X/ =0, ) {X,f =xk}‘
the conditional states are all related by unitary actiome e #1,€{0,1} VREF () kEF ()
the C* systems. ) )
~ Dividing A" and C* into two systems4 and A° respec- BN — N, m XJAN _ :Ej} (115)
tively C and C° enables us to write the marginal state of '

LAL ” - I€F G
B*C* conditioned on onlyz as

> ) 70 . .
orc~ L s () e () = (3) S et oo ) e —a

o|A<|

iCe{o,l}W\ Z1€{0,1} VEEF(4) keF )
(113)

Recall that we would like to use the recursive likelihood BN =V, ﬂ {X;“N = j:j} /
formulas in the successive cancellation decoder to determi JEFE,
the likelihoods ofz; given zi~'BECL. Note that for this
likelihoods only the statel) 2" " is relevant—Ac has been Pr| {X]fN — fﬁk} (116)
discarded. kEF;

We can mimic this having this state in the standard polar _ v

. . ALBLOLRL . 1 |]:(%)| N

coding setup as follows. Givehl) , applying a - <_> Z Pr [XiA _ O‘BN — bV,
CPTP map toC'” that randomly performs & operation on 2

A z,€{0,1} VEEF;
each of the qubits ind° yields a state whosB8~C* marginal ’ v

. 1 - . i —1
given X4 is the same a®2" ", Moreover, the bitsic are h {X’-“N B j:} (117)
now uncorrelated wittB~C andz, which can be seen from BN DR
direct calculation:Z* acting onC¢ goes to Z*+*" for a =

randomu, so thez® dependence is eliminated. ~ where (L16) uses that the random variabIE§AN for j € F;
Now proceed with the usual recursive likelihood calculiatio zre independent uniformly distributed, since they havenbee

Nominally, these likelihood (ratios) are functions of thesb'®  measured in the complementary amplitude basis. The element
. However, since these are independent of everything dise, t

ratios computed by the recursion formulas usitighave the  7Arikan’s recursive formula cannot be applied directly.
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of the final sum {17) can be computed efficiently using The inner encoder also adds redundancy. The additional
Arikan’s recursive formulad]. Since the elements of the sumqubits are generated as explained 42, [Section 1l] and sent
in (117) are bounded, we can sample the sum obtainingt@the decoder, before applying the actual encoding tramsfo
(reasonably) good approximation of the true value which carhe encoded data is then transmitted a¥eidentical channels
be done efficiently. N. The decoding is identical to Bob's task in the entanglement
We are now ready to state the main result of this sectiondistillation scenario, explained in Sectidv.
that the distillation scheme introduced in Section for For the code construction, the set of frozen qubits (the
Pauli or erasure channels is efficiently decodable whergusiimdices which determine at which position the redundanttqub
guantum polar codes. are added) at the outer and inner layer have to be determined.
Theorem 16. The decoding of the distillation scheme can b-flz—his can be done efficiently for the i_nl_'ler layer as explained
done withO(N log N) steps. In SectionV. The_ existence of an gfflClent algorithm for the
outer layer remains an open question.
Proof: According to P], the M amplitude recovery
blocks together have a complexity 6¥(M LlogL). Using Bca l
Lemmal3it follows that the phase correction can be done in
O(Nlog N). SinceN = ML, this proves the assertion. B inner
When using quantum polar codes for Pauli or erasure
channels we can derive explicit expressionsdpande, and
hence make a precise statement about the reliability of the>

9) —

distillation scheme. enc

Corollary 17. The reliability of the distillation scheme scheme inner
is as given in Propositior8 with ¢; = O(2*L5) and e; =
O(L2~M") for any B, 8’ < 1

Proof: Let pe,:(D4) denote the error probability of the Bp [ Bee f I
decoding operatioD4 and p...(Dp) the error probabil-
ity of the decoding proces®p. The error probability for Fig. 8. The channel coding view of the scheme for= 4 and M =
all decoding operations with respect to the amplitude ba%sThe outer encoder adds randomly generated qubits in theepha

. . . asis, the identities of which are forwarded to the decodeer(a
is denoted byper (D). According to Propositiors, the classical channel), before applying the actual encodiagstorm. At

trace distance between the scheme's output and a mMaKis inner layer the encoder mimics the extra amplitude higits as
mally entangled state of appropriate dimension is less thexplained in Sectiow|-B (see also42, Section II]) and sends them

\/2perr(DAM) + \/2perr(DP)- Using the union bound we to the Qecoder as well._ Dec_oding i§ the same as for the eetaegit
obtain per(Dan) < Mpew(Da4). Since we use the Standamdlstlllatlon setup explained in Sectidi'.
polar decoderq] for the amplitude error-correction, we have

enc

outer

5)

dec —

enc

EEEE EEEE

_LB 1
Furthermore, according to Lemmia, We show that for Pauli and erasure channels together with
e 1 the use of quantum polar codes an efficient encoder and
Pere (Dp) = O (LQ— ' ) for any 8’ < 3 (119) decoder can be obtained.
which proves the assertion. m Corollary 18. For Pauli channels and the use of polar codes,
there exists an encoder for the scheme described above that
VI. CHANNEL CODING hasO(N log N) complexity.

Bennettet al.[19] showed that any entanglement distillation Proof: The encoder is equivalent to the one introduced

scheme can be turned into a channel coding scheme, Whi'rthectionV. Note that at the outer encoder the frozen qubits

however IS not known_to_ be. computationally efﬁment—pvggre chosen at random as justified above. The inner encoder
if the entanglement distillation protocol we started with Ichoses its frozen qubits as explained i,[Section 1I]. m

efficient. In this section, we show how to modify the entangle In order to explain the decoding strategy we first present an

ment distillation schgme introduced n Sectidh such_that It .efficient concatenated classical channel coding schemedbas
can be used for efficient channel coding. The resulting cg)dnan polar codes

scheme is depicted schematically in Fig8réBefore applying

the actual encoding transformation, the outer encoder adds ) )

redundancy in form of random qubits which are sent to tfe Efficient Concatenated Classical Channel Coding

decoder. As explained in the entanglement distillatioresof In order to explain the decoding strategy we first present an
in the previous section, we know that after the inner layer ttefficient concatenated classical channel coding schemedbas
state is perfectly known with respect to the amplitude basisn polar codes. The scheme achieves the capacity and has been
Therefore, we can choose the additional qubits at randomiimroduced in {7]. It will serve as a building block to prove

the complementary phase basis. the reliability and efficiency of the quantum channel coding
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scheme introduced in Sectiol when using quantum polar UK e UF L X

codes for Pauli and erasure channels.

We consider a discrete memoryless chariet X — )
with a binary input alphabeft = {0,1} and an arbitrary
output alphabed’. The idea for the efficient classical channetig. 10. Generation of an approximation f&* from a uniform input
coding scheme is to run the encoder of the source coditi§f using the shape$y, .. U” is first constructed byRx, ;, from
scheme—introduced in Sectidnh—in reverse and to use thethe uniform input according tal@0). Applying G, gives X*, which
same decoder. One main difficulty that occurs is that we neb@$ nearly the same distribution &s".
to simulate the frozen bits at the inner and outer layer. As
we show next, by cleverly choosing the frozen bits at the
inner layer (we call this in the followinghaping, we can
approximate the source coding case, i.e., the sequenéé o
i.i.d. correlated random variablés, V)V arbitrarily well for
large N (cf. Lemma20). This enables us to prove that the.emma 19. For ¢ > 0 and K such thatH (U;|U"') > 1—¢
efficient decoder introduced in Sectidh for source coding, for all i € £,
can also be used for reliable channel coding. More details
about this approach can be found #V]. 5(XL7XL) <K In2 (121)

Shaping— The idea of how to approximateX,Y)" and 2
hence how to choose the frozen bits at the inner encoding Proof: Let UZ be the L-bit string obtained when using
block is to run an extractor for the distributidX, V)~ we the shaper with uniform input ¥ (cf. Equation120). We have
want to approximate in reverSeA priori it is not clear this XL = ULG; and X~ = ULG}, and, hence,
process can be done efficiently, however luckily we show that

Using the shaper with uniform input® (a K-bit vector
]whose entries are i.i.d. Bernouﬂ%)) generates an approxi-
mation X© := Sk ,(UX) to X* (see also47, Lemma 11]).

L L\ _ rL L
this is the case for extractors based on the source polarizat 6(X , X ) - 5(U U ) : (122)
phenomenon. L We will bound the distance on the right hand side. For
A K-bit polarization extractoE, x for X simply outputs thjs we introduce a family of intermediate distributions
the K bits of UL = X:G for which H({U,|U™!) are p(i) . fori—o0,..., L, defined by
greatest. We denote this (ordered) set of indicesfhyand ~ U1~ UilUis1Ur’ U
the output of the extractor b/ [Ex]. (@) — A AT
P by~ (€x] PUl"'Ui,U'H»l”'UL = Fu, 'UT‘PUiH"'ULlUl"'Ui ’ (123)
X Ut e | Ut [ex] sothatP” . =p. . andP® . = Py ..y, . By the
I G Fr, ) U--Ug . U,---U U,---Ur 1 L
e e triangle inequality, 1
Erx L prL
: 5(0F,U")

Fig. 9. Polarization-based randomness extradfgrx. The input

X is first transformed td/” via the polarization transformation
Gr, and subsequentlff .  filters out theK bits of U™ for which i
H(U;|U™') are greatest.

M=

5(13“*1) P i ) (124)

Ur-Ui—1 Ui UL " Ur-Ui U1 U

1

tgh

< (P“‘” Py ) , (125)

) o U oot o
The aim of randomness extraction is to outgtitapprox- — Ul Us® Pt

imately uniform bits, where the approximation is quantified,ore the Jast line follows from the fact that the variationa
using the variational distance. Recall that for distribos P distance is non-increasing under stochastic mag} (we
A~ L

and @ over the same alphabéf, the variational distance is apply this to the map that generatds, ; ---U;, according
gﬁﬂggdnggg}g-;f iﬁeXr"ltje(?r;n%éﬂ. \;\:?a‘é"l'(lal _Onf;i;ad to the distributionP;; . ,..,)- Each term of the sum
u : ightly wri var : can be written as(Pyi1 Py, pi 1, Pyi-1 Py yi-1) OF, equiv-
its distribution ino. (Puics Py g2, Pue-r Pourir) or, €q
Using £x we define the shaper fax © as follows alently, E¢yi— |:5(PU,L‘U’L’1’PUi|Ui71):|' To bound this, we use
Pinsker’s inequality 49, p.58] as well as the concavity of the
square root,

<.
=

Definition 1. Forl = {0,1}, the shapefk 1. jor XLA is the
map Sgz, : UK — XL taking inputU% to Xt = ULGy,

with EU*L—] |:6(PUT;\Ui*1’PUi|Ui’1)}

A U os (’L) Z S 5}{ n

U, :{ e e S (120) < Epir [\/B2D(Py i [Py )] (126)
wherepos 4(a) denotes the position of the entuyin A. Here < \/mTzEU“ [D(PUAUF1|‘PU.|014)} . (127)
Z; is‘ a random variable generated from the distribution of !
U;|U1, usingU* = XEGp. By construction, the conditional distribution 6f; for all i €

Ex is the uniform distribution, so that

8We only need to show how to approximaté,Y)L since taking M i1
identical blocks then leads to an approximation(&f, Y). Epi— {D(PUJU?‘*1 ||PUi‘Ui—l):| =1- H(Ui’UZ ) (128)
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<e. (129) X = D(W(X),C(X)), then, forX’ = D(W(X’), C(X")),

Furthermore, for alli ¢ £y, the conditional distribution of Pr {X’ # X’} <n+n'. (132)
U; equals Py, -1, so that the corresponding term in the . .
sum (L25) vanishes. The sum can thus be rewritten as Proof: Note that the pairs(X,X) and (X', X’) are
obtained fromX and X’ by applying the stochastic map
6(UL,UL) < )/ B2, (130) that takesz to (x,D(W(x),C(z))). Because the variational
i€k distance is non-increasing under such maps, we have
from which the assertion follows. n 5(()(, X), (X’,X’)) <H(X,X')<7. (133)

Concatenating the shaper with the channel gives the super-
channeW/, ; := WE 0 Sk 1. Monotonicity of the variational Furtrlermore, defining(X, X) to be the random variable
distance gives the following lemma, which is the basis of o, X) with distribution Py ¢ = Pxdx g, we have

Svoedlr?svzcheme. Letting ' := WX (X L) andY® = WE(X1T), 5((X,X), (x. X)) X £ X] <o | (134)
Lemma 20. For ¢ > 0 and K such thatH (U;|U7~1) > 1—e Hence, applying the triangle inequality, we obtain
forall i € &, 3((X,X), (X', X)) <t (135)
5(((}K,}7L), (UL[gK],yL)) <K lnTZE ) (131) Now note that the variational distance can also be written as
5(A, A = > Pyi(a) — Pa(a) . (136)
Proof: Let ¢ = K\/@ then Lemmal9 implies a: Pa(a)< P4 (a)

5(_(XL’y_L)7 (XE,YE)) <€ by the monotonicity of the vazri- Applied to A = (X, X) and A’ = (X', X’), and using that
ational distance .und.e.r stochastic maps. Applying Fo X Pxx(z,#) = 0 for z # &, we immediately obtain
or X~ and marglnahzmg over thp elements notég is also X
a stochastic map, s6((U*[€x],Y"), (UL [Ex], YT)) < €. 5((X, X), (X’,X’)) > ZPX,X,(.T7.%) , (137)
Observing that/“[€x] = UX completes the proof. [ ] -y
Efficient Classical Encoding and Decodirg The encoding Co 5, , ,
for channel coding is the reverse operation of the encodilfjich Implies thatbr[X’ 2 X' < n + /" o -
in the source polarization setup explained in Sectiomnd U_smg Lemmad.4and22the statement of reliability follows
Figure6. The frozen bits which are sent to the decoder in theeasny.
source polarization scenario are simulated by the encodernemma 23. The error probability using the source coding
this setup. The frozen bits at the outer layer are generateddacoder in the classical setup of channel coding as expiaine
explained in B3, Section 1V]. The frozen bits at the inner layerahove isP,,, = O(L 2-M° 4 [2-3L” ) for any 8, 8’ < 1.
are chosen according to our shaper construction explained _ .
above. Note that the frozen bits at the inner and outer layer Proof: For the polar source coding scheme, note that
are forwarded to the decocer. Pr[A}» NB¢ | +2 € O27™"), wherez is the probability
For the decoding we use the source coding decoder intfBat Vi # Vi given that a miSt_i“fe previously occurred, but
duced in Sectiorl. It is therefore clear that it is efficient, Where we still give the corredt” - to the decompressor. We

. Y
however it remains to be shown that it is reliable for channé@n therefore upper boundin Lemmal4 by O(2~") [30].

coding which is done next. Thus, the probability of incorrectly decoding any of tié
] Vi is O(L2*MB); this is ' in Lemma22. Lemma20 and
Corollary 21. The encoder and decoder explained above hayﬁe properties ofK give n — O(LQ,%LB ) for B < %

O(N log N) complexity.

establishing the theorem. [ ]
Proof: This corollary is an immediate consequence of
Lemmal2 and Lemmal3. B C. Decoding

Reliability.— To analyze the reliability of the decoder intro- The decoding is equivalent to Bob’s task in the entanglement
duced above we start with a general lemma on the reliabili(tjp{

X “ N o stillation scheme. Note however that it has a slightly seor
of using the “wrong” compressor / decompressor pair in th%. N . .
) réliability since the coding scheme approximates the eyi¢an
problem of source coding.

ment distillation setup by generating the frozen qubitshat t
Lemma 22. Let X and X’ be arbitrary random variables inner and outer layer as explained above. Recall that therinn
such thaté(X’,X) < n and let W denote an arbitrary and outer encoder forward the values of the frozen qubitsgo t
stochastic map. IC and D are a compressor / decompressodecoder which is necessary to decode reliably and effigientl
pair for (X,W(X)), such thatPr[X # X] < n' where Animmediate corollary of Theorer6 states that

0 _ , _ Corollary 24. For Pauli channels and the use of polar codes,
Recall that we are using the decoder built for source codimg, for

pairs of random variable$X, Y)Y, but we actually have only a (good) the scheme introduced above hasDd\N log V') complexity
approximation of those. decoder.
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It remains to be shown that the efficient encoding and = —LH(A|BC),, —H(ZAC]EL) ) (143)
decoding introduced above is reliable. ¥s

~LH(ABC),, - LH(BC),, — H(Z|E") =~ (144)

Theorem 25. The trace distance between the state produced -

by the decoder and the ideal, maximally entangled statess le A A L
’ =-LH(AC|B),, +LH(Z”|B), —H\Z" |E
thany/2ex++/2Me; wheree; = O(2*LB), €2 = O(L2*MB + (4c1B),, (271 )w ( )“IE% )
145

1 "
r2-3L” ) for 8,8, 8" < 3.

Proof: Similar as in the proof of Corollaryl7 let v,
perr(Da) denote the error probability of the amplitude- (146)
decoding operatiorD4 and p.,.(Dp) the error probability B
of the phase-decoding proceBs. The error probability for Equality (142) uses Lemmad. and thatfl (Z4°|BXCT A) = 0.
all decoding operations with respect to the amplitude badtsjuation (43) uses Lemma. The remaining steps using the
is denoted byp...(D4n). According to Propositior8, the chain rule and the form of)) and|y’). [ ]
trace distance between the scheme’s output and a maxiNote that from the polarization phenomenon (cf. TheoBm
mally entangled state of appropriate dimension is less theee know that|A°| = LH(Z#|B), — o(L) and hence we
V/2Per:(Dant) + v/2pers(Dp). Using the union bound we immediately see that we can bound the rate termRas
obtain perr(Dan) < Mpere(Da). Since we use the standard/(A) B),,. Proposition26 implies that we have an equivalent
polar decoder{] for the amplitude error-correction, we haveformulation of Open Questior, which might be easier to
answer as it is a purely classical problén.

= —LH(AB), + LH(Z*|B),, - H(ZA‘\EL)

1
Pere (D) = O (2—“) for B<=.  (138)
2 Open Question r s it possible that
Furthermore, according to Lemnes, lim L H(ZA|EY)y, < lim 1|A| for R > 0?
o 1 L—oo L 3 L—oo L
Per (Dp) = O(L27M" L2728 ) (139)  Equation {) states that fotess noisychannels the coherent
for any g, 8 < % which proves the assertion. - information is optimal. Therefore we must be able to show tha

R = I(A)B),. Using the less noisy characterization (cf. Sec-
tion II-A), we can writeH (Z*°|EX)y;, > H(Z*|B")y, =
LH(ZA|B)y + o(L), where the last step follows from the
In Coro!lary 10 i_t is shown tha_t the scheme ac_hieves th (;Ia()r:oztztilr(l)?o?hseunﬁ?;?::t(l)ynIg?gzla,‘t?r?altnRTze(j)i?j;)zgv(\}rfii)r’w
coherent mformatl(_)n. How_ever if9§) were not tight the together with Corollaryl0 proves that for less noisy channels
scheme could achieve a higher rate. We formulate a ser{ﬁg rate of our scheme is equal to the coherent information.

of related open questions addressing this point and provideRecent advances in understanding the polarization phe-

possible approaches to answer them. nomenon §1] may be useful to resolve this open question,

C

Open Question 1.Is it possible thatR > I(A)B), for since Questiond’ and 1” when applied to quantum polar
R > 07? codes involve a statement about the structure of the peldriz

. sets (see Sectiohl). A possible indication why our scheme
There are several ways to phrase the question above differ-" . ) -

: . . could indeed achieve rates beyond the coherent informaion
ently. Using 02), an equivalent formulation of Open Ques- : . X
: . L the observation that the outer layer can introduce degeiesra
tion 1 is the following:

for the code at the inner layer. In addition, the states at the

VIl. ACHIEVING RATES BEYOND THE COHERENT
INFORMATION?

Open Question 1 s it possible that inner layer are not product states, which would rule out igvi
lim %H(XA“BLCLXA) >0 for R > 0? a rate beyond the coherent information.
L—o0 v

The following Proposition leads to a different, particljar

clean reformulation of Open Questiofsand 1. VIII. A CHIEVING THE QUANTUM CAPACITY?
Proposition 26. The rate of the scheme introduced above can In this section we state a second open problem which
be written as addresses the question of whether it is possible that oenseh
B A A 1 AN L achieves the quantum capacity for channels where the asthere
R=—H( |B)¢ + H(Z |B)w N ZH(Z E )\1,% : information is not optimal. This question is related to theeo

(140) introduced in SectiovIl before. Whereas Open Questiahs
!/ " H T 1 1 1
Proof: Recall that a possible rate expression is given i1 and 1 as!< if it IS possible tp achieve a rate beyond
) X . the coherent information for certain quantum channels,rOpe

Theorem9. Using the chain rule we can write : S . ) o o
- Question? in this section raises the more specific question if

- H(A]BLCL )\P/ for certain quantum channels our scheme achieves the quantu

3
_ L|pL L acl pL AL 7
= —H(A"[B*CY),, + H(A°|B"C*A),, (141)

10Note that Open Questiah’ is formulated in a purely classical framework

= —LH(A|BC)w, —|—H(XAC BLOLA)\P/ _ ‘Ac| (142) in [50, Section V.A].

1INote that for product states the von Neumann entropy is isddit
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capacity:> As depicted in Figure3, we can define a super- Due to the uncertainty principle, the secrecy of the ampli-
channelV’ : €(H ;) — T(Hper ® Hp.) which consists of tude information from Eve is ensured if Alice and Bob could
an inner encoding block anfi basic channelgy. Then we implement phase IR. Moreover, it is only necessary that@has
have IR could be performed; it is not necessary to actually do it,
and thusS may be used as side information in the procedure,
no matter who holds which parts ¢f [53].

An observableZ4 is approximately secure if the trace

Proof: Recall that as explained in SectibtA, we have distance to the ideal case is small. Therefore we introduce

Pere(Z4|BYBo)w, < €. Using Fano’s inequality we obtain for ¢° = Tr4[¢4°],

Proposition 27. For sufficiently largeL, the channel\V’ is
approximately less noisy, irrespective bt

(153)

1

H(ZA‘BLB(,*)\P SHb(El)—FEl logdlrnfl = E (147) Psecure (ZAls) = % H¢AS— éll@iﬁs‘
2

Recall that we choose the CSS code used in our scheme subigre || M|, := Tr[v MTM]. Note thatpseeure(Z4[S)y < €
that¢ — 0 for L — oo. For example using quantum polarmeans that the actuatsecureZ4 can only be distinguished
codes, we have, = O (227 for 8 < % andlog dim A = from the ideal, a perfect key, with probability at mast

O(L). The assertion then follows fronb(, Lemma 12]. ® Corollary 28. For the scheme explained above we have
Proposition27 and (7) imply that .
Procure (XA ENEYS) < V3 and  (154)

1
lim —Q(N’ i
L-300 LQ(1 ) Peceure (ZA] ENEM ED) < v/2Me;. (155)
— 1 _ !
B Lh—r>I<1>o LQl(N) (148) Proof: We show that 151) and (L52) are satisfied. The

assertion then immediately follows fron34], [53, Theorem

4.1.]. Due to the i.i.d. structure of the scheme and the union
=R, (150) bound, it is sufficient tp show thq_tcrr(ZﬂBLBc) < € in

order to prove 152). This however is a direct consequence of

where the last step follows from Theor&mOur scheme hence Bob’s decoding task for the entanglement distillation peais

achieves the capacity of the super-channel. This raises thgoduced in SectiofV-A .

question of when the super-channé! has the same capacity |nequality (L51) is equivalent to the error probability for the

than the original channéV/, i.e., how much is lost in the first phase decoding Bob performs (as explained in Sedtioh)

.1 -
= lim —maXI(A>BLcL)%,N,A,HBLCL(W/) (149)

L—oo pAA!

layer of our scheme. with the difference that there is extra side informatfm this
Open Question 2. Under which conditions doe%Q(N’) _ case. Fortunat_ely it is st.ralg_htforwar_d to modify the dezrod
Q(N) hold? to the setup with extra side informatiofi(]. [ ]

_ _ . The rate for this scenario can be computed analogously as
Equation7 and Theoren® imply that zQ(N') = Q(N) in SectionlV-A, which leads to
holds if A is less noisy. However, it is not yet known if this

is necessary for the condition to hold. R>1- H(ZA|B)¢, - H(XA|BCS)¢, (156)
=H(z*E), - H(Z|B), . (157)
IX. SECRETKEY DISTILLATION & PRIVATE CHANNEL
CODING The final step uses the exact-uncertainty relation givea$h [
which ensures thatl (Z4|E),, + H(X*|BCS), = 1. Note
that we no longer obtain the coherent informatieff (A|B).,
With minor changes, the above entanglement distillatiagfince E no longer purifiesd B. The reliability of the secret key
scheme also works for secret key distillation in a setup ®hegjistillation scheme is analogous to that of the entanglémen
we have two quantum parties Alice and Bob as well as dstillation scheme (cf. Propositios).
guantum adversary Eve. Consider the scenario in which Alice
and Bob share an additional “shield” systeéim[57], [27]. A
shield is any system not held by the eavesdropper Eve (it
nevertheless cannot be used for amplitude IR by Alice andAs mentioned above the secret key distillation scheme is
Bob, where the amplitude information is used to create thery similar to the entanglement distillation scheme idtroed

A. Scheme, Reliability, Secrecy and Rate

Using Quantum Polar Codes for Pauli or Erasure Channels

secret key. One can show that in SectionlV. More precisely, Alice’s first task, i.e., th&/
A BN AN amplitude information reconciliation blocks are identiees
Perr (X |BYC BDS) <e and (151) in the entanglement distillation. The phase IR step is #ijgh

different as one has to consider side informati®nwhich

leads to a different set of frozen qubits. Furthermore, élic

does not send the outcomes from measuritigto Bob, but

simply keeps them secret from Eve. Alice’s task thus can be
12The existence of a channel fullfiling the condition in Quast2 which ~done WithO(N'log N') complexity as proven in Theorenis

is not less noisy would imply a positive answer to Questibng’ and1”. and 16.

Derr (ZA|BNBé’4) < MEl, (152)

characterizes a state wheZe! can be used as a secret key.
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Bob’s task is also similar to the decoding he performg3] P. W. Shor, “The quantum channel capacity and coherent

in the entanglement distillation setup. He first decodes the information” Presented at the MSRI Workshop —on Quan-
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