
ar
X

iv
:1

30
7.

11
36

v3
  [

qu
an

t-
ph

]  
9 

D
ec

 2
01

5

Efficient Quantum Polar Codes Requiring
No Preshared Entanglement

Joseph M. RenesMember, IEEE, David SutterStudent Member, IEEE,
Frédéric DupuisMember, IEEE, and Renato RennerMember, IEEE

Abstract—We construct an explicit quantum coding scheme
which achieves a communication rate not less than the coherent
information when used to transmit quantum information over
a noisy quantum channel. For Pauli and erasure channels we
also presentefficient encoding and decoding algorithms for this
communication scheme based on polar codes (essentially linear in
the blocklength), but which do not require the sender and receiver
to share any entanglement before the protocol begins. Due tothe
existence of degeneracies in the involved error-correcting codes it
is indeed possible that the rate of the scheme exceeds the coherent
information. We provide a simple criterion which indicates such
performance. Finally we discuss how the scheme can be used for
secret key distillation as well as private channel coding.

Index Terms—Quantum polar codes, coherent information,
entanglement distillation, privacy amplification, information rec-
onciliation, secret key distillation, private channel coding

I. I NTRODUCTION

SHANNON’S channel coding theorem determines the ca-
pacity of a classical discrete memoryless channelW by

random coding arguments and finds that it is given by

C(W) = max
PX

I
(
X : W(X)

)
, (1)

where the random variableX describes the input to the
channel, andPX is its probability distribution [1]. Analogous
random coding arguments for the problem of transmitting
quantum information over a memoryless quantum channel
NA′→B lead to a communication rate given by

Q1(N ) := max
φ

I(A〉B)σ , (2)

where the optimization is over all pure, bipartite statesφAA
′

,
σAB := NA′→B(φAA

′

) andI(A〉B)ρ := H(B)ρ −H(AB)ρ
is the coherent informationand H the von Neumann en-
tropy [2], [3], [4], [5], [6], [7]. It has been shown thatQ1(N )
is not generally optimal [8] and that the quantum capacity is
given by itsregularization

Q(N ) = lim
k→∞

1

k
Q1

(
N⊗k) . (3)
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Notwithstanding the complications surrounding the regularized
expression, it is already difficult to constructexplicit coding
schemes that achieve the coherent information of an arbitrary
quantum channel, and the task becomes that much harder
if we also ask forefficient encoding and decoding. Here, a
task is termed efficient if it can be completed in a number
of steps scaling essentially linearly in the input size, notjust
polynomially as in the complexity-theoretic setting. Until very
recently, almost nothing was known about explicit, efficient,
provably capacity-achieving classical error-correcting codes,
to say nothing of the quantum case.

Polar codes, introduced in 2008 by Arıkan [9], are the
first family of classical error-correcting codes which both
provably achieve thesymmetric(i.e., X ∼ uniform in (1))
classical capacity for any discrete memoryless channel and
have an essentially linear encoding and decoding complexity.
These codes have been generalized to the quantum setup.
Wilde and Guha adapted polar codes to transmit classical
information over quantum channels [10] and gave a scheme for
transmitting quantum information over degradable quantum
channels [11], at the cost of an unknown decoding efficiency.
Three of us showed in [12] how to achieve thesymmet-
ric coherent information(φAA

′

a Bell state in (2)) of any
Pauli or erasure channel with efficient encoding and decoding
operations. In [13], Wilde and Renes extended this method
to arbitrary quantum channels and showed that the quantum
decoder can be constructed by combining sequential decoders
for suitable classical-quantum channels (see also [14]), but
without providing an efficient decoder.

However, all of these quantum channel coding schemes
suffer from two important drawbacks. The first is the need for
noiseless entanglement to be shared by the sender and receiver
prior to the start of the protocol. Second, the aforementioned
protocols only achieve rates given by the symmetric coherent
information. More details about entanglement-assisted quan-
tum coding can be found in [15]; a precursor in the field
of quantum key distribution is [16]. In this contribution we
present an explicit coding scheme that provably achieves the
(true) coherent information for an arbitrary quantum channel
without using any entanglement assistance. Our protocol is
a concatenated two level scheme in which the method of
polar coding is employed separately at each level. For Paulior
erasure channels we show how to perform efficient encoding
and decoding.

Recently, an extension to quantum polar codes that is based
on branching MERA codes has been proposed [17], [18]. It
is claimed (however not yet proven) that these codes do not
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require entanglement assistance while achieving high rates and
an efficient encoding and decoding.

The paper is structured as follows. SectionII-A introduces
basic notation and definitions. As our protocol is based on
the use of information reconciliation (IR) and stabilizer-
based quantum error-correcting codes, SectionII-B provides
background on these topics. SectionII-C recalls two general
uncertainty relations needed to establish the rate of the coding
scheme. SectionIII introduces the classical polarization phe-
nomenon and proves that it also holds for general classical-
quantum (cq) states.1 Section IV then describes a protocol
for the problem of entanglement distillation and SectionV
shows that it is computationally efficient for Pauli and era-
sure channels when using quantum polar codes. It is well
known that an entanglement distillation featuring only forward
classical communication can be turned into a channel coding
scheme [19], and SectionVI explains the channel coding view
of the scheme in detail. We prove that the communication
rate of the channel coding scheme is at least as great as
Q1(N ), as defined in (2), and present an efficient encoder and
decoder based on polar codes for Pauli and erasure channels.
It is possible, but still unproven, that the scheme can achieve
rates beyond the coherent information. SectionVII shows,
however, that the rate expression reduces to the coherent
information when the channel is degradable. SectionsVII and
VIII state two different open problems addressing the question
of whether our scheme can achieve rates beyond the coherent
information or even achieve the quantum capacity for channels
where the coherent information is not optimal. In SectionIX
it is discussed how the scheme can be used for secret key
distillation.

II. BACKGROUND

A. Notation and Definitions

Let N : T(HA) → T(HB) be a quantum channel, where
T(H) denotes the space of all operators in some Hilbert space
H that are equipped with the trace norm. We assume that the
underlying state spacesHA andHB for systemsA andB are
finite dimensional. Using the Stinespring dilation [20] there
exists an “environment” systemHE and a partial isometry
UBE : HA → HB ⊗HE , such that

N (ρ) = TrE

(
UBE ρU

†
BE

)
(4)

for every ρ ∈ D(HA), where D(HA) denotes the space
of all density operators onHA. Then we may define the
complementary channelto N as

Nc(ρ) = TrB

(
UBE ρU

†
BE

)
. (5)

A quantum channelN is more capableif the quantum capacity
of its complementary channel is zero, i.e.,Q(Nc) = 0.
Equivalently, the notion of more capable may be formulated
as follows. For all statesρA

N

on D(H⊗N
A ) let the classical

random variableXN denote its eigenvalues andBN andEN

the quantum outputs under the action ofN⊗N . ThenN is

1Since, to the best of our knowledge, the polarization phenomenon has thus
far only been generalized to symmetric cq-states [10].

more capable whenI(XN : BN ) ≥ I(XN : EN ) for all
N ≥ 1 [21].

If the private capacity of the complementary channel is
zero, i.e.,Cp(Nc) = 0, then N is said to beless noisy.2

Equivalently,N is less noisy ifI
(
T :BN

)
≥ I

(
T :EN

)
, for

everyN ≥ 1 and for all distributions on(T,XN), whereT
has finite support andT−◦−XN−◦−(BN , EN ) form a Markov
chain [21].

Finally, a quantum channelN is calleddegradableif there
exists a trace-preserving and completely positive (TPCP)
map T such thatT ◦ N = Nc. The concepts of a channel
being more capable, less noisy, or degradable were introduced
in a classical framework in [23] and have recently been
generalized to the quantum mechanical setup in [21]. For
classical channels, it has been shown that being more capable
is a strictly weaker condition than being less noisy, which is
again a strictly weaker condition than being degradable [23].
For quantum channels it is unknown whether these relations
are strict [21]. However a degradable (quantum) channelN
is less noisy anda fortiori more capable. In [21] it is shown
that both the private and quantum capacities of a less noisy
channelN are equal to the coherent information:

Cp(N ) = Q(N ) = Q1(N ), (7)

a relation that was first shown for degradable channels [24],
[25].

B. Information Reconciliation & Stabilizer Codes

In this subsection we recall some details about the in-
formation reconciliation protocols which form the basis of
our coding schemes. The form of information reconciliation
needed here is an instance of data compression in which the
decoder has access to quantum side information. Consider a
classical-quantum state of a random variableZ and a quantum
systemB, which may be writtenψZB =

∑
z pz |z〉 〈z|

Z⊗ϕBz ,
where pz is the probability distribution ofZ and ϕz are
arbitrary states. The goal of information reconciliation is to
compressZ, i.e. apply some function toZ, so thatZ itself
can be reconstructed (with high probability) by a decoder with
access toB and the compressed output.

In quantum language, the decoding step may be regarded
as a measurement of the systems available to the decoder.
The probability of error in determining the value of a random
variableZ given measurement of some quantum systemB
can be expressed as

perr
(
ZA|B

)
ψ
:= 1−max

MZ

∑

z

pz Tr
[
ΛBz ϕ

B
z

]
, (8)

where the maximum is taken over all measurementsMZ with
elementsΛBz .

Devetak and Winter showed that in the case ofN → ∞
copies ofψZB , there exist compression functions outputting

2Recall that according to [4], [22] the private capacity of a quantum channel
N is given by

Cp(N ) = lim
k→∞

1

k
max
T,Xk

I
(

T :Bk
)

− I
(

T :Ek
)

, (6)

whereT−◦−Xk−◦−(Bk , Ek) form a Markov chain.
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roughly NH(Z|B)ψ + o(N) bits which suffice to reliably
determineZN [26]. Specifically, callingBC the classical com-
pressor output, they constructed a sequence of measurements
such thatperr(ZN |BNBC)ψ⊗N → 0 asN → ∞. Moreover,
this compression rate was shown to be optimal.

We shall be interested in information reconciliation of
classical information that represents the outcomes of measure-
ments on a quantum system in one of two complementary
bases, the “amplitude” basis and the “phase” basis. Any
basis {|z〉}d−1

z=0 of a d-dimensional quantum system may
be chosen to be the amplitude basis, and for concreteness
we then take the phase basis to be comprised of elements
|x̃〉 = 1√

d

∑d−1
z=0 ω

xz |z〉, whereω = e2πi/d. Although the
coding scheme we describe below can be made to work for
any finited, there is no real loss of generality in settingd = 2,
which we do henceforth.

For the purposes of information reconciliation in this con-
text, it is convenient that the random coding argument can
be specialized to random linear functions (as, for instance, in
[27]). Then, since the compressed output is a linear function of
the input, we may regard it as resulting from the measurement
of a corresponding set of stabilizer observables. Here we recall
the basic facts of the stabilizer formalism; for more details see
[28]. For instance, the result of computing the parity of the
outcome of measuring 3 qubit systems in the amplitude basis
can just as well be thought of as the result of measuring the
observableZ ⊗ Z ⊗ Z, whereZ = diag(1,−1). In general,
any function of the formf(zN) = vN · zN corresponds to
the stabilizer operatorZv1 ⊗ Zv2 ⊗ · · · ⊗ ZvN . An arbitrary
linear function is just a sequence of functions of the form just
considered, and therefore any linear function correspondsto a
sequence of stabilizer operators.

Linear functions of phase basis measurments can be simi-
larly regarded as measurements of stabilizer operators using
the operatorX = ( 0 1

1 0 ). Since the operatorsX and Z
anticommute, stabilizers corresponding to vectorsuN andvN

commute whenuN · vN = 0. Thus, it is possible to consider
simultaneously measuring a compressed output for both the
amplitude and phase bases. Such a set of commuting stabilizer
operators constitutes a CSS code.

The measurement of any set of stabilizer operators can be
accomplished by applying a unitary transformation and then
performing appropriate measurements on individual qubits.
Each stabilizer measurement necessitates the measurementof
one qubit, so that not every qubit is necessarily measured after
the transformation. Due to the linear structure of stabilizer
observables, this unitary transformation is simultaneously a
mapping of amplitude basis states to themselves, as well as a
mapping of phase basis states to themselves.

Note that, although we will consider using CSS codes for
information reconciliation in the following sections, thecode
structure is only used by the encoder. Stabilizer measurements
for recovery operations are not generally used by the decoder.
Instead, the coding techniques for information reconciliation
make use of more general measurements, such as the pretty-
good measurement.

C. Generalized Uncertainty Relations

The coding scheme introduced in this paper consists of two
layers, both performing an information reconciliation opera-
tion in complementary bases.3 In the derivation of the exact
rate expression (cf. Theorem9) as well as in the formulation
of the two open problems (cf. SectionsVII andVIII ) we will
use entropic uncertainty relations that arise when measuring
a system in complementary bases. This subsection gives an
overview about the uncertainty relations we need to prove
several properties of the scheme.

Lemma 1 (Renes & Boileau [29]). SupposeψAB is a bipartite
state for whichH(ZA|B)ψ = 0. Then

H
(
XA|B

)
ψ
= log dim(A) +H(A|B )ψ . (9)

Proof: Let R be a purification ofψAB; expressing theA
system in the amplitude basis, we may write

|ψ〉ABR =
∑

z

√
pz |z〉A |ϕz〉BR (10)

for some probability distributionpz and normalized states
|ϕz〉BR. SinceH(ZA|B) = 0, the statesϕBz are completely
distinguishable. Thus, there exists a measurement which pre-
cisely determines the value ofz given B. Let UB→BC

be a coherent implementation (Stinespring dilation) of this
measurement, in which the measurement result is stored in
systemC. Then define

|ψ′〉ABCR := UB→BC |ψ〉ABR (11)

=
∑

z

√
pz |z〉A |z〉C |ϕz〉BR . (12)

As U is a partial isometry,H(XA|B)ψ = H(XA|BC)ψ′ and
H(A|B)ψ = H(A|BC)ψ′ . ExpressingA in |ψ′〉 in the phase
basis, we have

|ψ′〉ABCR =
1√
d

∑

x,z

√
pz ω

−xz |x̃〉A |z〉C |ϕz〉BR (13)

=
1√
d

∑

x,z

|x̃〉A (Z−x)C |ψ〉CBR , (14)

whered = dim(A). Using the chain rule we can write

H(XA|BC)ψ′

= H(XABC)ψ′ −H(BC)ψ′ (15)

= H(BC|XA)ψ′ +H(XA)ψ′ −H(BC)ψ′ . (16)

Clearly H(XA)ψ′ = log dim(A), while H(BC|XA)ψ′ =
H(AB)ψ since all theBC marginals conditioned onXA are
related by the unitaryZ−x and theBC marginal forXA = 0
is |ψ〉CBR ≃ |ψ〉ABR. Finally,H(BC)ψ′ = H(B)ψ again by
the isometry property ofU . Therefore,

H
(
XA|BC

)
ψ′ = H(BC)ψ + log dim(A)−H(B)ψ , (17)

which by the chain rule is the expression we set out to prove.

3Recall that we denote byXA andZA an operatorX andZ acting on a
system A.
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Lemma 2 (Renes & Boileau [29]). SupposeψABR is a pure
state for whichH(ZA|B)ψ = 0. Then

H
(
ZA|R

)
ψ
+H

(
XA|B

)
ψ
= log dimA. (18)

Proof: The statement follows from Lemma1 and the fact
thatH(A|B)ψ = H(ZA|B)ψ − H(ZA|R)ψ for any stateψ.
To see the latter expression, use the chain rule to find

H
(
ZA|B

)
ψ
−H

(
ZA|R

)
ψ

= H
(
ZAB

)
ψ
−H(B)ψ −H

(
ZAR

)
ψ
+H(R)ψ (19)

= H
(
B
∣∣ZA

)
ψ
−H

(
R
∣∣ZA

)
ψ
+H(A|B )ψ . (20)

Since ABR is pure, theBR marginals conditioned on
a projective measurement ofA are, too, and therefore
H(B|ZA)ψ = H(R|ZA)ψ.

III. POLARIZATION PHENOMENON

In this section, we introduce thepolarization phenomenon
discovered by Arıkan, which has been used to construct codes
(calledpolar codes) that can be used for channel [9] as well
as for source coding [30]. We show how it can be generalized
to the setup of classical-quantum (cq) states.

A. Classical Polarization Phenomenon

Polar codes have several desirable attributes [9], [31], [32],
[33]: they achieve the capacity when used for transmitting
information over a discrete memoryless channel (DMC); they
can be encoded and decoded efficiently (with a complexity that
is essentially linear in the blocklength); the error probability
of the efficient decoder decays exponentially in the square root
of the blocklength.

Let XN be a vector whose entries are i.i.d. Bernoulli(p)
distributed for somep ∈ [0, 1] and N = 2n for n ∈ Z

+.
Furthermore, letUN = GNX

N , whereGN = ( 1 0
1 1 )

⊗ logN

denotes the polarization transform andW : X → Y be a DMC
with a binary input alphabetX = {0, 1}, an arbitrary output
alphabetY and transition probabilitiesW(y|x) for x ∈ X and
y ∈ Y. WN denotes the channel corresponding toN uses of
W. For Y N = WNXN andǫ ∈ (0, 1), we define the two sets

RN
ǫ (X |Y ) :=

{
i ∈ [N ] : H(Ui|U i−1Y N ) ≥ 1− ǫ

}
(21)

and

DN
ǫ (X |Y ) :=

{
i ∈ [N ] : H(Ui|U i−1Y N ) ≤ ǫ

}
. (22)

The former consists of outputsUj which are essentially
uniformly random, even given all previous outputsU j−1 as
well as Y N , while the latter set consists of the essentially
deterministic outputs. The polarization phenomenon is that
essentially all outputs are in one of these two subsets, and
their sizes are given by the conditional entropy of the input
X given Y .

Theorem 3 (Arıkan [9], [30]). For any ǫ ∈ (0, 1)
∣∣RN

ǫ (X |Y )
∣∣ = NH(X |Y )− o(N) (23)

and ∣∣DN
ǫ (X |Y )

∣∣ = N
(
1−H(X |Y )

)
− o(N). (24)

Based on this result, Arıkan showed in [9] how to construct
polar codes having the desirable properties mentioned above.

Non-binary random variables can be represented by a se-
quence of correlated binary random variables, which are then
encoded separately. Correlated sequences of binary random
variables may be polarized using a multilevel construction,
as shown in [31].4 Given M i.i.d. instances of a sequence
X = (X(1), X(2), . . .X(K)) and possibly a correlated random
variable Y , the basic idea is to first polarizeXM

(1) relative
to YM , then treatXM

(1)Y
M as side information in polarizing

XM
(2), and so on. More precisely, definingUM(j) = GMX

M
(j) for

j = 1, . . . ,K, we may define the random and deterministic
sets for eachj as

RM
ǫ,(j)(X(j)|X(j−1), · · · , X(1), Y ) :=

{i ∈ [M ] : H
(
U(j),i

∣∣∣U i−1
(j) , X

M
(j−1), · · · , XM

(1), Y
M
)
≥ 1− ǫ}

(25)

and

DM
ǫ,(j)(X(j)|X(j−1), · · · , X(1), Y ) :=

{i ∈ [M ] : H
(
U(j),i

∣∣∣U i−1
(j) , X

M
(j−1), · · · , XM

(1), Y
M
)
≤ ǫ}.

(26)

In principle we could choose differentǫ parameters for eachj,
but this will not be necessary here. Now, Theorem3 applies
to the random and deterministic sets for everyj. The sets
RM
ǫ (X |Y ) = {RM

ǫ,(j)(X(j)|X(j−1), . . . , X(1), Y )}Kj=1 and
DM
ǫ (X |Y ) = {DM

ǫ,(j)(X(j)|X(j−1), . . . , X(1), Y )}Kj=1 have
sizes given by

|RM
ǫ (X |Y )|

=

K∑

j=1

∣∣∣RM
ǫ,(j)(X(j)|X(j−1), . . . , X(1), Y )

∣∣∣ (27)

=

K∑

j=1

MH
(
X(j)

∣∣X(1), . . . , X(j−1), Y
)
− o(M) (28)

=MH(X |Y )− o(KM), (29)

and

|DM
ǫ (X |Y )|

=

K∑

j=1

∣∣∣DM
ǫ,(j)(X(j)|X(j−1), . . . , X(1), Y )

∣∣∣ (30)

=

K∑

j=1

M
(
1−H

(
X(j)

∣∣X(1), . . . , X(j−1), Y
))

− o(M)

(31)

=M (K −H(X |Y ))− o(KM). (32)

In the following we will make use of both the polarization phe-
nomenon in its original form, Theorem3, and the multilevel
extension. To simplify the presentation, we denote byG̃KM the
K parallel applications ofGM to the K random variables
XM

(j).

4An alternative approach is given in [34], [35], where the polarization
phenomenon has been generalized for arbitrary finite fields.We will however
focus on the multilevel construction in this paper.
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B. Polarization Phenomenon for General cq-States

In this subsection, we generalize the polarization phe-
nomenon to the setup of classical-quantum (cq) states of the
form

ρXB =
∑

x∈{0,1}
px |x〉 〈x|X ⊗ ρBx , (33)

wherep0, p1 ≥ 0 such thatp0 + p1 = 1. We note that the
special case wherep0 = p1 = 1

2 has been discussed in [10].
We denote the fidelity between the statesρ0 andρ1 by [36],
[37]

F (ρ0, ρ1) := ‖√ρ0
√
ρ1‖1 , (34)

where‖A‖1 denotes thetrace normof the operatorA, defined

as ‖A‖1 := Tr
[√

A†A
]
. Furthermore, for a cq stateρXB as

in (33), we define the quantity

Z(X |B )ρ := 2
√
p0p1F (ρ0, ρ1) = 2

√
p0p1 ‖

√
ρ0
√
ρ1‖1 .

(35)
Fidelity Polarization.— Applying Arıkan’s transformation [9,
Section I.B] to theX systems of two independent cq-states
ρXB as defined in (33) gives

ρ̃ =
∑

u1u2

pu1⊕u2pu2 |u1〉 〈u1|U1⊗|u2〉 〈u2|U2⊗ρB1
u1⊕u2

⊗ρB2
u2
.

(36)

W

W

u1

u2

x1

x2

B1

B2

ρx1

ρx2

Fig. 1. Notation used to derived the fidelity polarization phenomenon
(cf. Proposition4), including the classical-quantum channelW : x →
ρx.

Proposition 4.

Z(U2|U1B1B2 )ρ̃ = Z(X |B )2ρ and (37)

Z(U1|B1B2 )ρ̃ ≤ 2Z(X |B )ρ − Z(X |B )
2
ρ . (38)

Proof: Note that this proof is a generalization of the proof
for the symmetric case (i.e.,p0 = p1 = 1

2 ) given by Wilde
and Guha [10, Proof of Proposition 9]. We first prove (37).

Z(U2|U1B1B2 )ρ̃

= 2
√
p0p1 F

(
∑

u1

pu1 |u1〉 〈u1| ⊗ ρu1 ⊗ ρ0,

∑

u1

pu1⊕1 |u1〉 〈u1| ⊗ ρu1⊕1 ⊗ ρ1

)
(39)

= 2
√
p0p1 F

(
∑

u1

pu1 |u1〉 〈u1| ⊗ ρu1 ,

∑

u1

pu1⊕1 |u1〉 〈u1| ⊗ ρu1⊕1

)
F (ρ0, ρ1) (40)

= 4
√
p0p1 F (p0ρ0, p1ρ1)F (ρ0, ρ1) (41)

= 4p0p1 F (ρ0, ρ1)
2 (42)

= Z(X |B )2ρ , (43)

where (40) uses the multiplicativity of the fidelity under tensor
product states (i.e.,F (ρ ⊗ σ, τ ⊗ ν) = F (ρ, τ)F (σ, ν)) and
(41) uses the following relation for cq-states

F

(
∑

x

p(x) |x〉 〈x| ⊗ ρx,
∑

x

p(x) |x〉 〈x| ⊗ σx

)

=
∑

x

p(x)F (ρx, σx) . (44)

We next prove (38). Note that the fidelity can be expressed
as the minimum Bhattacharya overlap between distributions
induced by a POVM on the states [38]

F (ρ0, ρ1) = min
{Λm}

∑

m

√
Tr[Λmρ0] Tr[Λmρ1]. (45)

Let Λm denote a POVM that achieves the minimum for
Z(X |B)ρ, we obtain

Z(X |B )ρ = 2
√
p0p1 F (ρ0, ρ1) (46)

= 2
√
p0p1

∑

m

√
Tr[Λmρ0] Tr[Λmρ1]. (47)

We can use the POVM{Λl ⊗ Λm} to boundZ(U1|B1B2)ρ̃:

Z(U1|B1B2 )ρ̃

= 2F

(
∑

u2

p2u2
ρu2 ⊗ ρu2 ,

∑

u2

pu2⊕1pu2ρu2⊕1 ⊗ ρu2

)
(48)

≤ 2
∑

l,m

(
∑

u

p2uTr[(Λl ⊗ Λm)(ρu ⊗ ρu)]

∑

u′

pu′pu′⊕1Tr[(Λl ⊗ Λm)(ρu′⊕1 ⊗ ρu′)]

) 1
2

(49)

= 2
∑

l,m

(
∑

u

puTr[Λlρu] puTr[Λmρu]

∑

u′

pu′⊕1Tr[Λlρu′⊕1] pu′Tr[Λmρu′ ]

) 1
2

. (50)

Now introduce the notationαm := p0Tr[Λmρ0], βl :=
p0Tr[Λlρ0], γl := p1Tr[Λlρ1], and δm := p1Tr[Λmρ1] and
notice thatZ(X |B)ρ = 2

∑
l

√
βlγl = 2

∑
m

√
αmδm. Then

we can write (50) as

Z(U1|B1B2 )ρ̃

≤ 2
∑

l,m

√
αmβl + γlδm

√
αmγl + βlδm (51)

≤ 2




∑

l,m

(√
αmβl +

√
γlδm

)(√
αmγl +

√
βlδm

)

−2
∑

l,m

√
αmβlγlδm


 (52)

= 2



∑

l,m

(
(αm + δm)

√
βlγl + (βl + γl)

√
αmδm

)
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−2
∑

l

√
βlγl

∑

m

√
αmδm

)
(53)

= 2

(
∑

l

√
βlγl +

∑

m

√
αmδm

−2
∑

l

√
βlγl

∑

m

√
αmδm

)
(54)

= 2Z(X |B )ρ − Z(X |B )
2
ρ , (55)

where inequality (52) is due to Arıkan [9, Appendix D].
Entropy Polarization.— We begin by bounding the entropy

H(X |B)ρ in terms of the probability of errorPe(X |B)ρ when
usingB to determineX . This is formally defined by

Pe(X |B)ρ := min
0≤Λ≤1

p0Tr[Λρ0] + p1Tr[(1− Λ)ρ1] . (56)

The error probability can be expressed in terms of a trace
distance, as follows. From the definition it follows immediately
that

Pe(X |B)ρ = min
0≤Λ≤1

p1 +Tr[Λ(p0ρ0 − p1ρ1)] (57)

= min
0≤Λ≤1

p0 − Tr[Λ(p0ρ0 − p1ρ1)] . (58)

Letting Γ := p0ρ0 − p1ρ1, the minimum of (57) is achieved
for Λ = {Γ}−, the projector onto the negative part ofΓ. We
thus havePe(X |B)ρ = p1 + Tr[{Γ}−Γ] = p0 − Tr[{Γ}+Γ].
Averaging the two different expressions leads to

Pe =
1

2
(p1 +Tr[{Γ}−Γ] + p0 − Tr[{Γ}+Γ]) (59)

=
1

2
− 1

2
‖Γ‖1 (60)

=
1

2
− 1

2
‖p0ρ0 − p1ρ1‖1 . (61)

Now we have

Lemma 5. − log
(
1 − Pe(X |B)ρ

)
≤ H(X |B )ρ ≤

Hb

(
Pe(X |B)ρ

)
.

Proof: Let X̂ denote a guess ofX generated by an
optimal measurement, the data processing inequality en-
sures thatH(X |B)ρ ≤ H(X |X̂)ρ. Using Fano’s inquality,
i.e., H(X |X̂)ρ ≤ Hb(Pe) + Pe log(|X | − 1) = Hb(Pe)
proves the upper bound. To prove the lower bound we use
Hmin(X |B)ρ = − log(1−Pe) [39, Section IC]. According to
[40, Proposition 4.3],H(X |B)ρ ≥ Hmin(X |B)ρ which proves
the assertion.

We next boundZ(X |B)ρ in terms ofPe.

Lemma 6. Let ρ0 and ρ1 be two arbitrary density operators
and p0, p1 ≥ 0 such that p0 + p1 = 1. The parameter
Z(X |B)ρ := 2

√
p0p1

∥∥√ρ0√ρ1
∥∥
1

can be bounded in terms
of error probabilityPe := 1

2 − 1
2 ‖p0ρ0 − p1ρ1‖1 as

2Pe ≤ Z(X |B )ρ ≤
√
1− (1 − 2Pe)2. (62)

Proof: According to [41, Lemma A.2.4] we have
‖p0ρ0 − p1ρ1‖21 ≤ 1 − Z(X |B)2ρ. Lemma A.2.6 of [41]
ensures that1 − Z(X |B)ρ ≤ ‖p0ρ0 − p1ρ1‖. By definition
of Pe we have‖p0ρ0 − p1ρ1‖ = 1−2Pe which completes the
proof.

Using Lemma5 and 6 we can boundH(X |B)ρ in terms
of Z(X |B)ρ.

Proposition 7. For ρXB =
∑

x∈{0,1} px |x〉 〈x|
X ⊗ ρBx and

Z(X |B)ρ := 2
√
p0p1

∥∥√ρ0√ρ1
∥∥
1
, we have

1− log

(
1 +

√
1− Z(X |B )

2
ρ

)

≤ H(X |B )ρ ≤ Hb

(
1

2
Z(X |B )ρ

)
. (63)

Proof: Follows immediately from Lemma5 and6.
Proposition7 serves the purpose of showing thatH(X |B)ρ

is near0 or 1 if and only if Z(X |B)ρ is near0 or 1, respec-
tively, i.e.,H(X |B)ρ andZ(X |B)ρ polarize simultaneously.
This is visualized in Figure2.

0.5 1

0.5

1

Z(X |B)ρ

H(X |B)ρ

Fig. 2. The lower and upper bound forH(X|B )ρ given in (63). It
shows thatH(X|B)ρ andZ(X|B)ρ polarize simultaneously.

IV. ENTANGLEMENT DISTILLATION

Inspired by previous work in a purely classical sce-
nario [42], we consider aconcatenatedentanglement distilla-
tion scheme based on CSS codes. The explicitly concatenated
structure differentiates our approach from that of Devetak
and Winter [43], based on Devetak’s CSS-like approach for
channel coding [4].

A. Protocol

The scheme consists of an inner layer which performs in-
formation reconciliation (IR) in the amplitude, orZ-basis and
an outer layer which performs information reconciliation in
the phase, orX-basis. Each layer utilizes a quantum stabilizer
code, and together the amplitude and phase codes form a CSS
quantum error-correcting code. Information reconciliation at
the inner layer is performed onM independent blocks, each
consisting ofL input systems. Due to this two-level structure
the scheme has a blocklengthN = LM . LettingK denote the
number of unmeasured outputs per amplitude block, Figure3
depicts the caseL = 4, M = 2, andK = 2. The unmea-
sured qubits after the amplitude information reconciliation are
forwarded to the phase information reconciliation block.

To explain the scheme in more detail, we start with a single
bipartite systemψAB shared by Alice and Bob, withA a qubit.
PurifyingψAB and expressingA in the amplitude basis gives

|ψ〉ABE =
∑

z∈{0,1}

√
pz |z〉A |ϕz〉BE , (64)
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V Ā
M

Ph.

IR

V A
L

Am.

IR

V A
L

Am.

IR

dec B̂

Â

Āc

Ā

Ā

Āc

Âc

Source

|Ψ〉A
NBNEN

VA VB

BC,1

BC,2BD

Fig. 3. The entanglement distillation scheme forL = 4, M = 2 andK = 2.
A source (middle) produces states|Ψ〉 and distributes theA subsystems to
Alice (left), theB subsystems to Bob (right), and retains theE subsystems.
Alice performs the amplitude information reconciliation (IR) transformation
M times, measures part of the output with respect to the amplitude basis
and sends the outcomes to Bob over a classical channel. The non-measured
qubits are fed to an IR operation in the complementary phase basis and part
of the outcome is again measured and sent to Bob. Using Alice’s classical
information, Bob runs a decoder such that his and Alice’s outcome—described
by the systemŝA andB̂—are a good approximation to maximally entangled
qubits.

wherepz is some probability distribution and{|ϕz〉BE} some
set of normalized states, not necessarily orthogonal. The input
to each block of the first layer will be the state

|Ψ〉A
LBLEL

=
(
|ψ〉ABE

)⊗L
. (65)

The amplitude stabilizer code is chosen so that Bob can
determinezL, with probability exceeding1 − ǫ1 using his
systemsBL if he is also supplied with the syndromes of the
code. These are determined by Alice and transmitted to him
over a public classical channel. Given a particularzL, denote
by z̄c the syndrome and̄z the encoded information. Since
stabilizer codes are linear codes,zL determines(z̄, z̄c) and
vice versa. Moreover, for every stabilizer code onL systems
there exists a unitary operation which maps the stabilizer and
encoded operators to physical qubits. Call this unitaryV A

L

;
after applying it, Alice need only measure certain subsystems
to generate the syndrome. Let̄Ac be the systems which are
then measured to yield the syndromes andĀ the remaining
systems (corresponding to encoded qubits). After applyingthe
unitary, the joint state becomes

|Ψ1〉A
LBLEL

= V A
L |Ψ〉A

LBLEL

(66)

=
∑

(z̄,z̄c)∈{0,1}L

√
pzL(z̄,z̄c) |z̄〉Ā |z̄c〉Ā

c ∣∣ϕzL(z̄,z̄c)

〉BLEL

.

(67)

Sendingz̄c to Bob can be modeled as copyingz̄c to a register
BC he controls, plus another one for the environment,EC
(for notational simplicity, we suppress the dependence ofzL

on (z̄, z̄c)):

|Ψ2〉A
LBLBCE

LEC

=
∑

(z̄,z̄c)∈{0,1}L

√
pzL |z̄〉Ā |z̄c〉Ā

c

|z̄c〉BC |z̄c〉EC |ϕzL〉B
LEL

.

(68)

Bob’s decoding operation attempts to determinez̄ using the
information contained in systemsBL and BC . It can be
thought of as a measurement onBL conditioned on the
value in the registerBC ; call its elementsΛB

L

z̄;z̄c . Performed
coherently, it stores the resultzL in an extra ancillary system,
sayB′

C . The post-measurement state is then

|Ψ3〉A
LBLBCB

′
CE

LEC

=
∑

(z̄,z̄c)∈{0,1}L

∑

z̄′

√
pzL |z̄〉Ā |z̄c〉Ā

c

|z̄c〉BC |z̄′〉B
′
C

√
ΛB

L

z̄′;z̄c |ϕzL〉
BLEL

|z̄c〉EC . (69)

Regarding the pair(BCB′
C) as the systemCL, a simple

fidelity calculation shows that〈Ψ3|Ψ̂3〉 ≥ 1− ǫ1, where
∣∣∣Ψ̂3

〉ALBLCLELEC

=
∑

(z̄,z̄c)∈{0,1}L

√
pzL |(z̄, z̄c)〉A

L

|ϕzL〉B
LEL

|(z̄, z̄c)〉C
L

|z̄c〉EC .

(70)

The outer layer performs phase information reconciliation
on M instances of theĀ systems of the state|Ψ3〉, where
Bob’s side information is given byBLCL in each instance.
In contrast to the inner layer, here the information to be
reconciled is not a bit, but a sequence of bits. Therefore, touse
the formalism of stabilizer codes, we either need to consider
codes over larger dimension or multilevel coding schemes.
Either would work for our purposes, but for concreteness let
us opt for the latter. Here, Alice and Bob assemble a block
of M systemsĀ and sequentially run blocksize-M phase IR
protocols on the first qubits in each of thēA, then the second,
and so forth. At each step they treat already reconciled systems
as side information for the current step.

Ultimately the effect of this procedure can be regarded, as
at the inner layer, as applying a unitaryV Ā

M

and measuring
a subset of the output qubits to obtain the syndromes. These
measurement results are sent to Bob, which is modeled as
copying them to a registerBD he controls, plus another one
for the environmentED. Remaining at the end of this process
are a set of unmeasured qubits, the encoded qubitsÂ of the
error-correcting code used in phase information reconciliation.

B. Reliability & Rate

Now let us examine the scheme more quantitatively. Asso-
ciated with any set of qubits are a set ofX andZ operators
acting on these qubits; abusing notation, let us refer to the
entire collection of these by, for instance,XĀ andZĀ for the
set Ā. The amplitude IR protocol is chosen to beǫ1-good,
i.e., perr(ZA

L |BLBC)Ψ2 ≤ ǫ1. Since the scheme usesM
independent amplitude information reconciliation blocks, we
can use the union bound to write

perr

(
ZA

N
∣∣∣BNBMC

)

Ψ⊗M
2

≤Mǫ1. (71)
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Sidestepping the details of the multilevel coding for the
moment, the phase IR protocol is chosen to have

perr

(
XĀM

∣∣∣BNCNBD
)
≤ ǫ2. (72)

Clearly XÂ (cf. Figure 3) is a deterministic function of
XĀM

due to the action ofV Ā
M

. However, since this uni-
tary implements a linear function in the basis conjugate to
the amplitude observableZĀ

M

, it also implements a linear
function in the amplitude basis itself. (This fact was used to
show that Arıkan’s polar encoding circuit is directly useful in
the quantum setting in [12].) Therefore,ZÂ is a deterministic
function ofZĀ

M

and hence also ofZA
N

.

perr

(
XÂ
∣∣∣BNCNBD

)
≤ ǫ2 and (73)

perr

(
ZÂ
∣∣∣BNBMC

)
≤Mǫ1. (74)

These conditions ensure that Alice and Bob share a good
approximation to|Â| maximally entangled qubit pairs. Al-
ice’s part of the distillation process (summarized in the
left hand side of Figure3) can be described by a uni-

tary UA
N→ÂBM

C BDE
M
C ED

A . Bob’s part is to decode the state

|Ψ〉A
NBNEN

usingBN and the side informationBMC BD he
receives from Alice. Inequalities (73) and (74) together with
[44, Theorem 1] ensure that there exists a decoding unitary

U
BNBM

C BD→B̂
B . It is constructed directly from the two IR

decoders.
To make the reliability statement precise, defineVA :=

U
AN→ÂBM

C BDE
M
C ED

A , VB := U
BNBM

C BD→B̂
B , introduce

E(·) := TrEM
C
EDEN [VB

(
VA(·)V †

A

)
V †
B ] (75)

and defineδ(ψ, φ) = 1
2‖ψ − φ‖1.

Proposition 8. Let |φ〉ÂB̂d be a maximally entangled state of
dimensiond, whered = dim Â. Then

δ
(
φÂB̂d , E

(
ΨA

NBNEN )) ≤
√
2ǫ2 +

√
2Mǫ1. (76)

Proof: This proposition follows immediately from (73),
(74) and [44, Theorem 1].

The rate of the scheme is defined as the number of output
qubits divided by the number of input qubits (cf. Equa-
tion (79)).

Theorem 9. The rate of the scheme is

R =
1

L
I
(
Ā〉BLCL

)
Ψ′

3
+
o(L)

L
, (77)

where

|Ψ′
3〉

=
∑

(z̄,z̄c)∈{0,1}L

√
pzL(z̄,z̄c) |z̄〉Ā|z̄c〉Ā

c ∣∣ϕzL(z̄,z̄c)

〉BLEL ∣∣zL(z̄, z̄c)
〉CL

.

(78)

Proof: The rate of the scheme is

R :=

∣∣Â
∣∣

N
(79)

=
N −M

∣∣Āc

∣∣−
∣∣Âc

∣∣
N

(80)

=
N −MLH(ZA|B)ψ −MH(XĀ|BLCL)Ψ̂3

N
. (81)

Since we only care about thēA register, the copy of̄zc in EC
does not contribute to the entropy in the final term. Thus,

H
(
XĀ
∣∣BLCL

)

Ψ̂3

= H
(
XĀ
∣∣BLCL

)

Ψ′
3

, (82)

where|Ψ′
3〉 is as defined in (78). Using Lemma1 we obtain

H
(
XĀ
∣∣BLCL

)

Ψ′
3

= log |Ā|+H
(
Ā
∣∣BLCL

)
Ψ′

3
(83)

= L
(
1−H

(
ZA|B

)
ψ

)
+H

(
Ā
∣∣BLCL

)
Ψ′

3

+ o(L), (84)

where the final step is ensured by the fact that the code is
capacity-achieving. We thus can write (81) as

R = −
H
(
Ā
∣∣BLCL

)
Ψ′

3

L
+
o(L)

L
(85)

=
I
(
Ā〉BLCL

)
Ψ′

3

L
+
o(L)

L
, (86)

which proves the assertion.

Corollary 10. For ψ as given in(64), the rate is larger than
or equal to the coherent information, i.e.,

R ≥ max
{
0, I(A〉B)ψ

}
. (87)

Proof: Recall that the states|ψ〉 and |Ψ′
3〉 are defined in

(64) and (78). Let

|ψ′〉ABCE =
∑

z∈{0,1}

√
pz |z〉A |z〉C |ϕz〉BE . (88)

By definition (cf. (79)) the rate is non-negative. As explained
in the proof of Theorem9 we can write

R =

N −MLH
(
ZA|B

)
ψ
−MH

(
XĀ
∣∣BLCL

)

Ψ′
3

N
. (89)

Using the chain rule we obtain

H
(
XĀ
∣∣BLCL

)

Ψ′
3

= H
(
XAL∣∣BLCL

)

Ψ′
3

−H
(
XĀc

∣∣∣BLCLXĀ
)

Ψ′
3

(90)

= LH
(
XA|BC

)
ψ′ −H

(
XĀc

∣∣∣BLCLXĀ
)

Ψ′
3

. (91)

We thus have

R = 1−H
(
ZA|B

)
ψ
−H

(
XA|BC

)
ψ′

+

H
(
XĀc

∣∣∣BLCLXĀ
)

Ψ′
3

L
(92)

≥ max
{
0, 1−H

(
ZA|B

)
ψ
−H

(
XA|BC

)
ψ′

}
(93)

= max
{
0,−H(A|B )ψ

}
(94)

= max
{
0, I(A〉B)ψ

}
. (95)
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Equality (94) holds since

1−H
(
ZA|B

)
ψ
−H

(
XA|BC

)
ψ′

= 1−H(A|B )ψ′ −H
(
XA|BC

)
ψ′ (96)

= −H(A|B )ψ′ −H(A|BC )ψ′ (97)

= −H(A|B )ψ′ −H(C|AB )ψ′ (98)

= −H(AC|B )ψ′ (99)

= −H(A|B )ψ , (100)

where (97) uses Lemma1 and thatH(ZA|BC)ψ′ = 0.
Note that the scheme presented above works for any CSS

code meeting the two reliability conditions (73) and (74).
A particularly favorable family of codes are the quantum
polar codes. Using these codes for Pauli or erasure channels,
we know how to build an efficient encoder and decoder
having essentially linear complexity and being reliable for
large enough blocklength. This will be explained next.

V. USING QUANTUM POLAR CODES FORPAULI OR

ERASURE CHANNELS

By using polar codes, Alice and Bob can perform the oper-
ations explained in SectionIV in a computationally efficient
manner for states|ψ〉ABE that arise from sending half of an
entangled pair through a Pauli or erasure channel.

A. Code Construction

Before the protocol starts one must construct the code, i.e.,
determine the qubits comprising the systemsĀc at the inner
layer andÂc at the outer layer. (Recall that these are the
qubits that are measured by Alice and whose measurement
outcomes are sent to Bob.) Constructing the systemĀc can
be approximately done in linear time using Tal and Vardy’s
algorithm [45] and its adaptation to an asymmetric setup
as explained in [33], or alternatively using the more recent
algorithm by Talet al. [46].

To determine the system̂Ac requires more effort. Applying
the above algorithm for a “super-source” seen by the outer
layer will not be efficient in the overall blocklengthN since
its alphabet size is exponential inL. Nonetheless, due to the
structure of the inner layer, it is perhaps possible that the
method of approximation by limiting the alphabet size [45],
[46] can be extended to this case.

B. Encoding

As described in SectionIV-A and Figure3, starting with
a state|Ψ〉A

NBNEN

, Alice first appliesM times a unitary
V A

L

to perform amplitude information reconciliation, which
is in the specific case of using quantum polar codesV A

L

=∑
zL∈{0,1}L

∣∣GLzL
〉 〈
zL
∣∣, whereGL = G⊗ logL and G =

( 1 1
0 1 ) denotes the Arıkan polar transform [9]. Alice measures

the frozen qubits with respect to the amplitude basis and sends
the outcome to Bob.

Alice next applies another polar transformV Ā
M

—this time
with respect to the phase basis—to theM systemsĀ. Here
we use a multilevel coding scheme, as mentioned above and

described in more detail in SectionIII-A . The unitaryV Ā
M

applied to elements in the phase basis acts as(G̃KM )T , i.e.,

V Ā
M

=
1

2KM

∑

x,x′,z∈{0,1}KM

(−1)x
′·G̃K

Mz+x·z |x̃′〉 〈x̃| (101)

=
∑

x∈{0,1}KM

∣∣∣(G̃KM )T x̃
〉
〈x̃| , (102)

where we have used(G̃KM )−1 = G̃KM . The frozen qubits are
measured with respect to the phase basis and its outcomes are
sent again to Bob. The remaining qubits form the systemÂ.

Theorem 11. The encoding of the distillation scheme can be
done withO(N logN) steps.

Proof: TheM polar transformations with respect to the
amplitude basis can be performed inO(ML logL) complexity.
The second polar transform, this time with respect to the phase
basis, hasO(MK log(MK)) complexity, whereK = |Ā|.
Hence it follows that all the amplitude measurements require
O(M(L − K)) operations and all phase measurements can
be done withO(MK) complexity. From the polarization
phenomenon (cf. Theorem3) we obtain thatK = O(L) which
proves the assertion.

C. Decoding

Decoding of theBN system, with the additional information
stored in theBMC BD registers, can be done by combining ideas
from [44] and [12]. As shown schematically in Figure4, Bob’s
operation is constructed by using the classical polar decoders
for amplitude and phase IR in sequence. Note however that
these two decoding tasks are not independent as this would
neglect possible correlations between amplitude and phase.

In the first step Bob performs the amplitude IR decoding
operationDA (M times), which corresponds to the standard
classical polar decoder as introduced in [9], and stores the
result in an auxiliary systemFi, i ∈ {1, . . . ,M}. Each
instance ofDA requires the corresponding frozen information,
the values̄zc, which is provided inBMC .

Bob next performs the phase IR decoding operationDP ,
using the information gained from decoding the first layer.
Following [42], we next show how the standard polar decoding
procedure can be adapted for the outer layer of a two-stage
polar scheme.

DA

DA

|0〉F1

|0〉F2

B̂

BD
BC,1

BN

BC,2

DP

Fig. 4. Bob’s task in the entanglement distillation processfor M = 2. With
the help of the ancilla systemsF1 andF2, the classical decodersDA and
DP are utilized to distill entanglement.

Efficient Concatenated Classical Source Coding.— We start
by presenting a concatenated classical coding scheme based
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on polar codes that can be used for efficient source coding.
The scheme has been introduced in [42] for efficient channel
coding at the optimal rate. LetI ⊆ [L] denote the indices of
the frozen bits at the inner layer and letK = L− |I|. The set
O ⊆ [KM ] denotes the indices of the frozen bits at the outer
layer.5 Figure5, depicts the scheme schematically for the setup
of L = 4, M = 2, I = {2, 3}, K = 2 andO = {2}. In the
following we prove that there exists an encoder and decoder
that requireO(N logN) steps having an error probability not
greater thanO(L2−M

β

) for any β < 1
2 .

G̃KM

GL

GL

dec T̂
(K)
MT

(K)
M

S
(1)
1

S
(1)
2

S
(2)
2

S
(2)
1

T
(1)
2

XN Y NV N

enc

Fig. 5. The source coding scheme forL = 4, M = 2, I = {2, 3},
K = 2 andO = {2}. A source producesN i.i.d. copies of correlated
random variables(X,Y )N . The encoder first appliesM polarization
transformsGL to XL, obtaining a vectorV N . The frozen bits that
are determined byI and denoted byS(M)

L−K are sent to the decoder
whereas the remaining bits are encoded by another polarization
transform—performed in a multilevel construction as explained in
SectionIII-A —resulting in a vectorT (K)

M . The frozen bits ofT (K)
M

(determined byO) are sent to the decoder again. Using the bits
received from the encoder the decoder outputsT̂

(K)
M ; a guess for

T
(K)
M .

As depicted in Figure5 the encoder consists of two parts.
It first applies M identical inner encoding transforms—it
performsM times the polar transformGL. The outcome
V N can be classified into two systems determined by the
code construction. The frozen bits, denoted byS(M)

L−K , are
sent to the decoder whereas the others are encoded a second
time by the outer encoder. The outer encoder applies another
polarization transform in the multilevel technique explained in
SectionIII-A which outputsT (K)

M .6 The frozen bits ofT (K)
M ,

determined by the code construction, are sent to the decoder
again.

Lemma 12. The classical encoder explained above has com-
plexityO (N logN).

Proof: The inner encoder performsM times a standard
polar transformGL which has been shown to require at

5The bits at the outer layer are numbered with respect to the multilevel
structure, i.e., each binary decompressor is numbered sequentially.

6T
(i)
j denotes thejth output of theith binary outer encoder in the sequential

multilevel structure.

x1

x2

x3

x4

x5

x6

x7

x8

s
(1)
1

s
(1)
2

s
(2)
1

s
(2)
2

t
(1)
1

t
(1)
2

t
(2)
1

t
(2)
2

Fig. 6. Encoding circuit for the setupL = 4, M = 2, I = {2, 3},
K = 2 andO = {2}. Heres(i)j denote the frozen bits that are sent
to the decoder at the inner layer. We have a single frozen bit at the
outer layer,t(1)2 , that is sent to the decoder as well. The small gray
dots represent variables in the network and correspond to nodes in
Fig. 7.

mostO(L logL) steps each [9]. The outer encoder consists
of K multiplications with the matrixGM , each requiring
O(M logM) operations [9]. As justified in SectionV and
ensured by the polarization phenomenon (cf. Theorem3),
K = O(L). We thus conclude that the total encoding requires
O(ML logL) +O(LM logM) = O(N logN) steps.

The decoding is more challenging. An important feature
of the decoder is that the inner layer decompressors must
be interleaved with the outer layer decompressors in order to
ensure that all required variables are known at the appropriate
steps. To illustrate, we explain in detail how the decoding is
done for the setupL = 4, M = 2, I = {2, 3}, K = 2 and
O = {2}. The logical structure of the successive cancellation
decoder is shown in Figure7. Figure 10 of [9] depicts a similar
representation of the original successive cancellation decoder.
To see the close affinity between the encoding and decoding
process, Figure6 visualizes the encoder for the setup defined
above.

Each node in Figure7 is responsible for computing a
likelihood ratio (LR) arising during the algorithm; the param-
eters below each node represent the variables involved in the
associated LR computation. Starting from the left we traverse
the diagram to the right at whose border we can compute
the LRs. Then we transmit the results back to the left. Here
t̂
(i)
j denotes thejth output of theith decompressor at the

outer layer ands(i)j denotes thejth frozen input for theith
inner encoding block which has been sent to the decoder as
explained above.

The decoding begins by activating node1, which would like
to compute the LR forT (1)

1 given Y 8
1 . For this it needs the

LRs for the first inputs to the two super-channels, and so node
1 activates node2, which is responsible for computing the LR
for the first input to the first super-channel. This computation
proceeds exactly as the usual successive cancellation decoder,
recursively combining the LRs of the physical channels by
calling node3 and then6. Assembling their results, node2
can compute its LR and transmits the result to nodes1 and16.
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Meanwhile, node1 has also requested the LR of node9, which
performs the same calculation as node2 for the second super-
channel, again forwards the result to nodes1 and 16. Now
node1 is able compute the final desired LR and can therefore
guesŝt(1)1 . Node16 next guesseŝt(1)2 , which is easy since this
is a frozen bit and therefore available at the decoder (i.e.,the
decoder setŝt(1)2 = t

(1)
2 ), completing first decompressor of the

outer layer.
Node16 passes control to node17 in order to compute the

LR for T (2)
1 . This requires the LR for second inputs to the two

super-channels, so nodes18 (and later21) are called. Node
18 finishes the decompression of the first super-channel in
the usual way, while node21 completes the decompression of
the second super-channel.Neither of these can occur until the
first outer layer decompressor is finished. After the inner layer
decompression is complete, node17 can guesŝt(2)1 and node
24 can finally guesŝt(2)2 , completing the second decompressor
of the outer layer. In general, decompression of theM different
kth inputs at the inner layer has to wait for the(k − 1)th
decompressor to finish at the outer layer.

1 2 3 4

5

6 7

8

9 10 11

12

13 14

15

16

17 18

19

20

21

22

2324
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y2
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y6
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y8

y1, y3

y2, y4

y4
1y8

1

y8
5

y5, y7

y6, y8

⊲

y2, y4, s
(1)
1

⊳
y8
1 , t̂

(1)2
1

y8
1 , t̂

(1)2
1 , t̂

(2)
1

⋄

y6, y8, s
(2)
1y8

5 , s
(2)2
1 , t̂

(1)2
1

⊲ = y1, y3, t̂
(1)2
1 , s

(1)
1

⊳ = y4
1 , s

(1)2
1 , t̂

(1)2
1

⋄ = y5, y7, s
(2)
1 , t̂

(1)
2

Fig. 7. Logical structure of the successive cancellation decoder for the
setupL = 4, M = 2, I = {2, 3}, K = 2 andO = {2} (compare
with [9, Fig. 10]). Note that̂t(i)j denotes thejth output of theith

decompressor at the outer layer ands
(i)
j denotes thejth frozen bit at

the ith inner encoding block. The numbering of the nodes represents
the order in which they get activated in the decoding process.

Lemma 13. The classical decoder explained above has com-
plexityO(N logN).

Proof: Let Vi denote theith non-frozen output of an
inner encoding block. The decoder proceeds by employing,
in sequence, theK decompressors for blocklength-M com-
pression ofVi given Y LV i−1. This ensures that at all times
the decoder has all the required previous inputsV i−1. Each
decompressor can be executed usingO(M logM) operations,
given the corresponding likelihood ratio ofVi|Y LV i−1. All
such likelihoods can be computed inO(L logL) steps, and

each of theM inner encoding blocks requires its own like-
lihood calculation, as the values taken byV i−1 can differ
in each case. UsingK = O(L) which follows from the
polarization phenomenon (cf. Theorem3), we find that the
decoder has complexityO(N logN).

We next analyze the reliability of the multilevel encoder and
decoder explained above. Suppose we would like to compress
(L instances of)(V1, . . . , Vn) relative to side informationY ,
by sequentially compressingVi relative toV i−1Y . Define V̂i
to be the output of the decompressor, letAi be the event
that V̂i 6= Vi (i.e., that the decompressor makes a mistake
at position i), and letBi := ∪ik=1Ak. Note that Pr[Bn] is
the probability of incorrectly decoding at least oneVi for
i ∈ [n]. Let r be a bound on the probability of that we
decode incorrectly at any step and that the previous steps are
all correct: Pr

[
Aj ∩ Bcj−1

]
≤ r for all j ∈ [n]. Then

Lemma 14. For n ∈ Z
+ and r as defined above, we have

Pr[Bn] ≤ nr. (103)

Proof: The proof proceeds by induction overn; the case
n = 1 holds by assumption. The induction step is as follows:

Pr[Bn+1] = Pr[Bn ∪ An+1] (104)

= Pr[Bn] + Pr[An+1 ∩ Bcn] (105)

≤ Pr[Bn] + r (106)

≤ (n+ 1)r. (107)

where (106) follows by assumption and (107) uses the induc-
tion hypothesis.

Now the reliability statement follows easily.

Lemma 15. The error probability of the encoder and decoder
introduced above satisfiesPerr = O(L 2−M

β

) for anyβ < 1
2 .

Proof: For the polar source coding scheme, note that
Pr
[
Ai ∩ Bci−1

]
+ x ∈ O(2−M

β

), wherex is the probability
that V̂i 6= Vi given that a mistake previously occurred, but
where we still give the correctV i−1 to the decompressor. We
can therefore upper boundr in Lemma14 by O(2−M

β

) [30].
Thus, the probability of incorrectly decoding any of theK Vi
is O(L2−M

β

).
We note that for the phase reconciliation task we cannot

directly use that decoder since we have measured some qubits
at the inner layer with respect to the amplitude basis (the qubits
belonging to the system̄Ac), which implies that we do not
have knowledge about the phase-basis-measurements of these
qubits. In the following we present two different approaches
to resolve this problem. We first show that the phase-basis
measurements we do not know can be chosen at random
without affecting the decoder’s reliability. Alternatively, we
show how to adapt the classical decoding algorithm introduced
in [42] such that it does not require the above mentioned
phase-basis measurements and still remains computationally
efficient.

Choosing Measured Qubits at Inner Layer at Random.—
We show that randomly choosing the qubits that have been
measured with respect to the amplitude basis at the inner
layer does not affect the reliability of the outer IR decoder
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for symmetric sources. This implies that the computationally
efficient decoder introduced in [42] and explained above can
be used to reliably decode the phase IR.

Recall that the state

|ψ〉ABCR =
∑

z

√
pz |z〉A |z〉C |ϕz〉BR (108)

produced by the source is relevant for the phase IR task. Taking
L copies and applying the polarization transformGL to AL

andCL gives

|Ψ〉A
LBLCLRL

=
∑

zL∈{0,1}L

√
pzL

∣∣GLzL
〉AL ∣∣GLzL

〉CL

|ϕzL〉B
LRL

.

(109)

ExpressingAL in the conjugate phase basis gives

|Ψ〉A
LBLCLRL

=
1√
2L

∑

xL,zL∈{0,1}L

√
pzL(−1)x

L·GLz
L ∣∣x̃L

〉AL

∣∣GLzL
〉CL

|ϕzL〉B
LRL

(110)

=
1√
2L

∑

xL∈{0,1}L

∣∣x̃L
〉AL (

Zx
L
)CL

|ξ〉C
LBLRL

, (111)

where

|ξ〉C
LBLRL

=
∑

zL∈{0,1}L

√
pzL

∣∣GLzL
〉CL

|ϕzL〉B
LRL

. (112)

The state ofBLCL conditioned on the valuexL onAL is just
(Zx

L

)C
L

ξC
LBL

(Zx
L

)C
L

. The source is symmetric because
the conditional states are all related by unitary action, here on
theCL systems.

Dividing AL andCL into two systemsĀ and Āc respec-
tively C̄ and C̄c enables us to write the marginal state of
BLCL conditioned on onlȳx as

ΘB
LCL

x̄ =
1

2|Āc|
∑

x̄c∈{0,1}|Āc|

(
Z x̄
)C̄(

Z x̄
c

)C̄c

ξC
(
Z x̄
)C̄(

Z x̄
c

)C̄c

.

(113)
Recall that we would like to use the recursive likelihood
formulas in the successive cancellation decoder to determine
the likelihoods of x̄i given x̄i−1BLCL. Note that for this
likelihoods only the state|Ψ〉ĀB

LCL

is relevant—̄Ac has been
discarded.

We can mimic this having this state in the standard polar
coding setup as follows. Given|Ψ〉A

LBLCLRL

, applying a
CPTP map toCL that randomly performs aZ operation on
each of the qubits in̄Ac yields a state whoseBLCL marginal
givenXĀ is the same asΘB

LCL

x̄ . Moreover, the bits̄xc are
now uncorrelated withBLCL andx̄, which can be seen from
direct calculation:Z x̄

c

acting on C̄c goes toZu+x̄
c

for a
randomu, so thex̄c dependence is eliminated.

Now proceed with the usual recursive likelihood calculation.
Nominally, these likelihood (ratios) are functions of the bits x̄c

. However, since these are independent of everything else, the
ratios computed by the recursion formulas usingx̄c have the

same values as the ratios we are looking for. The dependence
on on x̄c is irrelevant. Moreover, the decoder may as well
choosex̄c himself.

Neglecting Measured Qubits at Inner Layer.— We show
how to efficiently compute the likelihood ratios at the outer
layer without using the qubits measured with respect to the
amplitude basis at the inner layer. LetF ⊆ [N ] denote the
indices of the qubits measured at the inner layer, i.e., the qubits
belonging to theM systemsĀc and letF c := [N ]\F . For each
i ⊆ [N ] we defineF(i) := [i] ∩ F andF c

(i) := [i] ∩ F c.
In order to execute Arıkan’s classical SC-decoder at the

outer layer, we need to compute for eachi ∈ [N ] such that
XAN

i ∈ F c the following likelihood ratio

L(i)(bN , x̂[F c

(i)]) :=

Pr

[
XAN

i = 0
∣∣∣BN = bN ,

⋂
j∈F c

(i)

{
XAN

j = x̂j

}]

Pr

[
XAN

i = 1
∣∣BN = bN ,

⋂
j∈F c

(i)

{
XAN

j = x̂j
}
] . (114)

However, since in (114) the qubits measured with respect
to the amplitude basis at the inner layer are missing in the
conditioning, it is not straightforward how to compute this
likelihood ratio efficiently.7 Using Bayes’ theorem we can
write

Pr



XAN

i = 0
∣∣∣BN = bN ,

⋂

j∈F c

(i)

{
XAN

j = x̂j

}




=
∑

x̂k∈{0,1} ∀k∈F(i)

Pr


XAN

i = 0,
⋂

k∈F(i)

{
XAN

k = x̂k

} ∣∣∣∣

BN = bN ,
⋂

j∈F c

(i)

{
XAN

j = x̂j

}

 (115)

=

(
1

2

)|F(i)| ∑

x̂k∈{0,1} ∀k∈F(i)

Pr



XAN

i = 0,
⋂

k∈F(i)

{
XAN

k = x̂k

} ∣∣

BN = bN ,
⋂

j∈F c

(i)

{
XAN

j = x̂j

}


 /

Pr



⋂

k∈F(i)

{
XAN

k = x̂k

}

 (116)

=

(
1

2

)|F(i)| ∑

x̂k∈{0,1} ∀k∈F(i)

Pr
[
XAN

i = 0
∣∣BN = bN ,

i−1⋂

j=1

{
XAN

j = x̂j

}

 , (117)

where (116) uses that the random variablesXAN

j for j ∈ Fj
are independent uniformly distributed, since they have been
measured in the complementary amplitude basis. The elements

7Arıkan’s recursive formula cannot be applied directly.
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of the final sum (117) can be computed efficiently using
Arıkan’s recursive formula [9]. Since the elements of the sum
in (117) are bounded, we can sample the sum obtaining a
(reasonably) good approximation of the true value which can
be done efficiently.

We are now ready to state the main result of this section—
that the distillation scheme introduced in SectionIV for
Pauli or erasure channels is efficiently decodable when using
quantum polar codes.

Theorem 16. The decoding of the distillation scheme can be
done withO(N logN) steps.

Proof: According to [9], the M amplitude recovery
blocks together have a complexity ofO(ML logL). Using
Lemma13 it follows that the phase correction can be done in
O(N logN). SinceN =ML, this proves the assertion.

When using quantum polar codes for Pauli or erasure
channels we can derive explicit expressions forǫ1 andǫ2 and
hence make a precise statement about the reliability of the
distillation scheme.

Corollary 17. The reliability of the distillation scheme scheme
is as given in Proposition8 with ǫ1 = O(2−L

β

) and ǫ2 =

O(L2−M
β′

) for any β, β′ < 1
2 .

Proof: Let perr(DA) denote the error probability of the
decoding operationDA and perr(DP ) the error probabil-
ity of the decoding processDP . The error probability for
all decoding operations with respect to the amplitude basis
is denoted byperr(DAM ). According to Proposition8, the
trace distance between the scheme’s output and a maxi-
mally entangled state of appropriate dimension is less than√
2perr(DAM ) +

√
2perr(DP ). Using the union bound we

obtain perr(DAM ) ≤ Mperr(DA). Since we use the standard
polar decoder [9] for the amplitude error-correction, we have

perr (DA) = O
(
2−L

β
)

for β <
1

2
. (118)

Furthermore, according to Lemma15,

perr (DP ) = O
(
L2−M

β′)
for anyβ′ <

1

2
, (119)

which proves the assertion.

VI. CHANNEL CODING

Bennettet al. [19] showed that any entanglement distillation
scheme can be turned into a channel coding scheme, which
however is not known to be computationally efficient—even
if the entanglement distillation protocol we started with is
efficient. In this section, we show how to modify the entangle-
ment distillation scheme introduced in SectionIV such that it
can be used for efficient channel coding. The resulting coding
scheme is depicted schematically in Figure8. Before applying
the actual encoding transformation, the outer encoder adds
redundancy in form of random qubits which are sent to the
decoder. As explained in the entanglement distillation scheme
in the previous section, we know that after the inner layer the
state is perfectly known with respect to the amplitude basis.
Therefore, we can choose the additional qubits at random in
the complementary phase basis.

The inner encoder also adds redundancy. The additional
qubits are generated as explained in [42, Section II] and sent
to the decoder, before applying the actual encoding transform.
The encoded data is then transmitted overN identical channels
N . The decoding is identical to Bob’s task in the entanglement
distillation scenario, explained in SectionIV.

For the code construction, the set of frozen qubits (the
indices which determine at which position the redundant qubits
are added) at the outer and inner layer have to be determined.
This can be done efficiently for the inner layer as explained
in SectionV. The existence of an efficient algorithm for the
outer layer remains an open question.

outer

enc

inner

enc

N
N
N
N

inner

enc

N
N
N
N

dec
∣∣∣φ̂
〉

|φ〉

BC,1

BC,2BD

Fig. 8. The channel coding view of the scheme forL = 4 andM =
2. The outer encoder adds randomly generated qubits in the phase
basis, the identities of which are forwarded to the decoder (over a
classical channel), before applying the actual encoding transform. At
the inner layer the encoder mimics the extra amplitude basisqubits as
explained in SectionVI-B (see also [42, Section II]) and sends them
to the decoder as well. Decoding is the same as for the entanglement
distillation setup explained in SectionIV.

A. Encoding

We show that for Pauli and erasure channels together with
the use of quantum polar codes an efficient encoder and
decoder can be obtained.

Corollary 18. For Pauli channels and the use of polar codes,
there exists an encoder for the scheme described above that
hasO(N logN) complexity.

Proof: The encoder is equivalent to the one introduced
in SectionV. Note that at the outer encoder the frozen qubits
are chosen at random as justified above. The inner encoder
choses its frozen qubits as explained in [42, Section II].

In order to explain the decoding strategy we first present an
efficient concatenated classical channel coding scheme based
on polar codes

B. Efficient Concatenated Classical Channel Coding

In order to explain the decoding strategy we first present an
efficient concatenated classical channel coding scheme based
on polar codes. The scheme achieves the capacity and has been
introduced in [42]. It will serve as a building block to prove
the reliability and efficiency of the quantum channel coding
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scheme introduced in SectionVI when using quantum polar
codes for Pauli and erasure channels.

We consider a discrete memoryless channelW : X → Y
with a binary input alphabetX = {0, 1} and an arbitrary
output alphabetY. The idea for the efficient classical channel
coding scheme is to run the encoder of the source coding
scheme—introduced in SectionV—in reverse and to use the
same decoder. One main difficulty that occurs is that we need
to simulate the frozen bits at the inner and outer layer. As
we show next, by cleverly choosing the frozen bits at the
inner layer (we call this in the followingshaping), we can
approximate the source coding case, i.e., the sequence ofN
i.i.d. correlated random variables(X,Y )N arbitrarily well for
largeN (cf. Lemma20). This enables us to prove that the
efficient decoder introduced in SectionV for source coding,
can also be used for reliable channel coding. More details
about this approach can be found in [42].

Shaping.— The idea of how to approximate(X,Y )N and
hence how to choose the frozen bits at the inner encoding
block is to run an extractor for the distribution(X,Y )N we
want to approximate in reverse.8 A priori it is not clear this
process can be done efficiently, however luckily we show that
this is the case for extractors based on the source polarization
phenomenon.

A K-bit polarization extractorEL,K for XL simply outputs
the K bits of UL = XLGL for which H(Ui|U i−1) are
greatest. We denote this (ordered) set of indices byEK and
the output of the extractor byUL[EK ].

GL FL,K
XL UL UL[EK ]

EL,K

Fig. 9. Polarization-based randomness extractorEL,K . The input
XL is first transformed toUL via the polarization transformation
GL, and subsequentlyFL,K filters out theK bits of UL for which
H(Ui|U

i−1) are greatest.

The aim of randomness extraction is to outputK approx-
imately uniform bits, where the approximation is quantified
using the variational distance. Recall that for distributionsP
andQ over the same alphabetX , the variational distance is
defined byδ(P,Q) := 1

2

∑
x∈X |P (x) −Q(x)|. We will often

abuse notation slightly and write a random variable insteadof
its distribution inδ.

Using EK we define the shaper forXL as follows

Definition 1. For U = {0, 1}, the shaperSK,L for XL is the
map SK,L : UK → XL taking inputUK to X̂L = ÛLGL,
with

Ûi =

{
UposEK

(i) i ∈ EK
Zi else

, (120)

whereposA(a) denotes the position of the entrya in A. Here
Zi is a random variable generated from the distribution of
Ui|U i−1, usingUL = XLGL.

8We only need to show how to approximate(X, Y )L since takingM
identical blocks then leads to an approximation of(X, Y )N .

RK,L GL
ŨK ÛL X̂L

SK,L

Fig. 10. Generation of an approximation toXL from a uniform input
ŨK using the shaperSK,L. ÛL is first constructed byRK,L from
the uniform input according to (120). Applying GL givesX̂L, which
has nearly the same distribution asXL.

Using the shaper with uniform input̃UK (a K-bit vector
whose entries are i.i.d. Bernoulli

(
1
2

)
) generates an approxi-

mationX̂L := SK,L(Ũ
K) to XL (see also [47, Lemma 11]).

Lemma 19. For ǫ ≥ 0 andK such thatH
(
Ui
∣∣U i−1

)
≥ 1− ǫ

for all i ∈ EK ,

δ
(
X̂L, XL

)
≤ K

√
ln 2

2
ǫ . (121)

Proof: Let ÛL be theL-bit string obtained when using
the shaper with uniform input̃UK (cf. Equation120). We have
XL = ULGL andX̂L = ÛLGL and, hence,

δ
(
X̂L, XL

)
= δ
(
ÛL, UL

)
. (122)

We will bound the distance on the right hand side. For
this, we introduce a family of intermediate distributions
P

(i)

U1···UiÛi+1···ÛL

, for i = 0, . . . , L, defined by

P
(i)

U1···UiÛi+1···ÛL

:= PU1···Ui
PÛi+1···ÛL|Û1···Ûi

, (123)

so thatP (0)

Û1···ÛL
= PÛ1···ÛL

andP (L)
U1···UL

= PU1···UL
. By the

triangle inequality,

δ
(
ÛL, UL

)

≤
L∑

i=1

δ
(
P

(i−1)

U1···Ui−1Ûi···ÛL

, P
(i)

U1···UiÛi+1···ÛL

)
(124)

≤
L∑

i=1

δ
(
P

(i−1)

U1···Ui−1Ûi

, P
(i)
U1···Ui−1Ui

)
, (125)

where the last line follows from the fact that the variational
distance is non-increasing under stochastic maps [48] (we
apply this to the map that generatesÛi+1 · · · ÛL according
to the distributionPÛi+1···ÛL|Û1···Ûi

). Each term of the sum
can be written asδ(PUi−1PÛi|Ûi−1 , PUi−1PUi|Ui−1) or, equiv-

alently,EUi−1

[
δ(PÛi|Ûi−1 , PUi|Ui−1)

]
. To bound this, we use

Pinsker’s inequality [49, p.58] as well as the concavity of the
square root,

EUi−1

[
δ
(
PÛi|Ûi−1 , PUi|Ui−1

)]

≤ EUi−1

[√
ln 2
2 D(PUi|Ui−1‖PÛi|Ûi−1)

]
(126)

≤
√

ln 2
2 EUi−1

[
D(PUi|Ui−1‖PÛi|Ûi−1)

]
. (127)

By construction, the conditional distribution of̂Ui for all i ∈
EK is the uniform distribution, so that

EUi−1

[
D(PUi|Ui−1‖PÛi|Ûi−1)

]
= 1−H

(
Ui
∣∣U i−1

)
(128)
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≤ ǫ . (129)

Furthermore, for alli /∈ EK , the conditional distribution of
Ûi equalsPUi|Ui−1 , so that the corresponding term in the
sum (125) vanishes. The sum can thus be rewritten as

δ
(
ÛL, UL

)
≤
∑

i∈EK

√
ln 2
2 ǫ , (130)

from which the assertion follows.
Concatenating the shaper with the channel gives the super-

channelW′
K,L := WL ◦SK,L. Monotonicity of the variational

distance gives the following lemma, which is the basis of our
coding scheme. LettinĝY L := WL(X̂L) andY L = WL(XL),
we have

Lemma 20. For ǫ ≥ 0 andK such thatH
(
Ui
∣∣U i−1

)
≥ 1− ǫ

for all i ∈ EK ,

δ
((
ŨK , Ŷ L

)
,
(
UL[EK ], Y L

))
≤ K

√
ln 2

2
ǫ . (131)

Proof: Let ǫ′ = K
√

ln 2
2 ǫ, then Lemma19 implies

δ((X̂L, Ŷ L), (XL, Y L)) ≤ ǫ′ by the monotonicity of the vari-
ational distance under stochastic maps. ApplyingGL to XL

or X̂L and marginalizing over the elements not inEK is also
a stochastic map, soδ((ÛL[EK ], Ŷ L), (UL[EK ], Y L)) ≤ ǫ′.
Observing that̂UL[EK ] = ŨK completes the proof.

Efficient Classical Encoding and Decoding.— The encoding
for channel coding is the reverse operation of the encoding
in the source polarization setup explained in SectionV and
Figure6. The frozen bits which are sent to the decoder in the
source polarization scenario are simulated by the encoder in
this setup. The frozen bits at the outer layer are generated as
explained in [33, Section IV]. The frozen bits at the inner layer
are chosen according to our shaper construction explained
above. Note that the frozen bits at the inner and outer layer
are forwarded to the decocer.

For the decoding we use the source coding decoder intro-
duced in SectionV. It is therefore clear that it is efficient,
however it remains to be shown that it is reliable for channel
coding which is done next.

Corollary 21. The encoder and decoder explained above have
O(N logN) complexity.

Proof: This corollary is an immediate consequence of
Lemma12 and Lemma13.

Reliability.— To analyze the reliability of the decoder intro-
duced above we start with a general lemma on the reliability
of using the “wrong” compressor / decompressor pair in the
problem of source coding.9

Lemma 22. Let X and X ′ be arbitrary random variables
such that δ(X ′, X) ≤ η and let W denote an arbitrary
stochastic map. IfC andD are a compressor / decompressor
pair for (X,W(X)), such thatPr[X̂ 6= X ] ≤ η′ where

9Recall that we are using the decoder built for source coding,i.e., for
pairs of random variables(X, Y )N , but we actually have only a (good)
approximation of those.

X̂ = D(W(X),C(X)), then, forX̂ ′ = D(W(X ′),C(X ′)),

Pr
[
X̂ ′ 6= X ′

]
≤ η + η′. (132)

Proof: Note that the pairs(X, X̂) and (X ′, X̂ ′) are
obtained fromX and X ′ by applying the stochastic map
that takesx to (x,D(W(x),C(x))). Because the variational
distance is non-increasing under such maps, we have

δ
((
X, X̂

)
,
(
X ′, X̂ ′)) ≤ δ(X,X ′) ≤ η . (133)

Furthermore, defining(X,X) to be the random variable
(X, X̄) with distributionPXX̄ = PXδXX̄ , we have

δ
((
X,X

)
,
(
X, X̂

))
= Pr[X̂ 6= X ] ≤ η′ . (134)

Hence, applying the triangle inequality, we obtain

δ
((
X,X

)
,
(
X ′, X̂ ′)) ≤ η + η′ . (135)

Now note that the variational distance can also be written as

δ(A,A′) =
∑

a:PA(a)≤PA′ (a)

PA′(a)− PA(a) . (136)

Applied to A = (X,X) andA′ = (X ′, X̂ ′), and using that
PXX(x, x̂) = 0 for x 6= x̂, we immediately obtain

δ
((
X,X

)
,
(
X ′, X̂ ′)) ≥

∑

x 6=x̂
PX′X̂′(x, x̂) , (137)

which implies thatPr[X̂ ′ 6= X ′] ≤ η + η′.
Using Lemmas14and22the statement of reliability follows

easily.

Lemma 23. The error probability using the source coding
decoder in the classical setup of channel coding as explained
above isPerr = O(L 2−M

β

+ L2−
1
2L

β′

) for any β, β′ < 1
2 .

Proof: For the polar source coding scheme, note that
Pr
[
Ai ∩ Bci−1

]
+ x ∈ O(2−M

β

), wherex is the probability
that V̂i 6= Vi given that a mistake previously occurred, but
where we still give the correctV i−1 to the decompressor. We
can therefore upper boundr in Lemma14 by O(2−M

β

) [30].
Thus, the probability of incorrectly decoding any of theK
Vi is O(L2−M

β

); this is η′ in Lemma 22. Lemma 20 and

the properties ofK give η = O(L2−
1
2L

β′

) for β′ < 1
2 ,

establishing the theorem.

C. Decoding

The decoding is equivalent to Bob’s task in the entanglement
distillation scheme. Note however that it has a slightly worse
reliability since the coding scheme approximates the entangle-
ment distillation setup by generating the frozen qubits at the
inner and outer layer as explained above. Recall that the inner
and outer encoder forward the values of the frozen qubits to the
decoder which is necessary to decode reliably and efficiently.
An immediate corollary of Theorem16 states that

Corollary 24. For Pauli channels and the use of polar codes,
the scheme introduced above has aO(N logN) complexity
decoder.
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It remains to be shown that the efficient encoding and
decoding introduced above is reliable.

Theorem 25. The trace distance between the state produced
by the decoder and the ideal, maximally entangled state is less
than

√
2ǫ2+

√
2Mǫ1 whereǫ1 = O(2−L

β

), ǫ2 = O(L2−M
β′

+

L2−
1
2L

β′′

) for β, β′, β′′ < 1
2 .

Proof: Similar as in the proof of Corollary17 let
perr(DA) denote the error probability of the amplitude-
decoding operationDA and perr(DP ) the error probability
of the phase-decoding processDP . The error probability for
all decoding operations with respect to the amplitude basis
is denoted byperr(DAM ). According to Proposition8, the
trace distance between the scheme’s output and a maxi-
mally entangled state of appropriate dimension is less than√
2perr(DAM ) +

√
2perr(DP ). Using the union bound we

obtain perr(DAM ) ≤ Mperr(DA). Since we use the standard
polar decoder [9] for the amplitude error-correction, we have

perr (DA) = O
(
2−L

β
)

for β <
1

2
. (138)

Furthermore, according to Lemma23,

perr (DP ) = O(L2−M
β′

+ L2−
1
2L

β′′

) (139)

for any β′, β′′ < 1
2 , which proves the assertion.

VII. A CHIEVING RATES BEYOND THE COHERENT

INFORMATION?

In Corollary 10 it is shown that the scheme achieves the
coherent information. However if (93) were not tight the
scheme could achieve a higher rate. We formulate a series
of related open questions addressing this point and provide
possible approaches to answer them.

Open Question 1. Is it possible thatR > I(A〉B)ψ for
R > 0?

There are several ways to phrase the question above differ-
ently. Using (92), an equivalent formulation of Open Ques-
tion 1 is the following:

Open Question 1′. Is it possible that
lim
L→∞

1
LH
(
XĀc

∣∣∣BLCLXĀ
)

Ψ′
3

> 0 for R > 0?

The following Proposition leads to a different, particularly
clean reformulation of Open Questions1 and1′.

Proposition 26. The rate of the scheme introduced above can
be written as

R = −H(A|B )ψ +H
(
ZA|B

)
ψ
− 1

L
H
(
ZĀ

c
∣∣EL

)

Ψ′
3

.

(140)

Proof: Recall that a possible rate expression is given in
Theorem9. Using the chain rule we can write

−H
(
Ā
∣∣BLCL

)
Ψ′

3

= −H
(
AL
∣∣BLCL

)
Ψ′

3
+H

(
Āc

∣∣BLCLĀ
)
Ψ′

3
(141)

= −LH(A|BC )ψ′ +H
(
XĀc

∣∣BLCLĀ
)

Ψ′
3

−
∣∣Āc

∣∣ (142)

= −LH(A|BC )ψ′ −H
(
ZĀ

c
∣∣EL

)

Ψ′
3

(143)

= −LH(ABC)ψ′ − LH(BC)ψ′ −H
(
ZĀ

c
∣∣EL

)

Ψ′
3

(144)

= −LH(AC|B )ψ′ + LH
(
ZA|B

)
ψ
−H

(
ZĀ

c
∣∣EL

)

Ψ′
3

(145)

= −LH(A|B )ψ + LH
(
ZA|B

)
ψ
−H

(
ZĀ

c
∣∣EL

)

Ψ′
3

.

(146)

Equality (142) uses Lemma1 and thatH(ZĀ
c |BLCLĀ) = 0.

Equation (143) uses Lemma2. The remaining steps using the
chain rule and the form of|ψ〉 and |ψ′〉.

Note that from the polarization phenomenon (cf. Theorem3)
we know that |Āc| = LH(ZA|B)ψ − o(L) and hence we
immediately see that we can bound the rate term asR ≥
I(A〉B)ψ . Proposition26 implies that we have an equivalent
formulation of Open Question1, which might be easier to
answer as it is a purely classical problem.10

Open Question 1′′. Is it possible that
lim
L→∞

1
LH(ZĀ

c |EL)Ψ′
3
< lim

L→∞
1
L |Āc| for R > 0?

Equation (7) states that forless noisychannels the coherent
information is optimal. Therefore we must be able to show that
R = I(A〉B)ψ . Using the less noisy characterization (cf. Sec-
tion II-A ), we can writeH(ZĀ

c |EL)Ψ′
3
≥ H(ZĀ

c |BL)Ψ′
3
=

LH(ZA|B)ψ + o(L), where the last step follows from the
polarization phenomenon as stated in Theorem3. Using (143),
we obtain for sufficiently largeL, thatR ≤ I(A〉B)ψ which
together with Corollary10 proves that for less noisy channels
the rate of our scheme is equal to the coherent information.

Recent advances in understanding the polarization phe-
nomenon [51] may be useful to resolve this open question,
since Questions1′ and 1′′ when applied to quantum polar
codes involve a statement about the structure of the polarized
sets (see SectionIII ). A possible indication why our scheme
could indeed achieve rates beyond the coherent informationis
the observation that the outer layer can introduce degeneracies
for the code at the inner layer. In addition, the states at the
inner layer are not product states, which would rule out having
a rate beyond the coherent information.11

VIII. A CHIEVING THE QUANTUM CAPACITY?

In this section we state a second open problem which
addresses the question of whether it is possible that our scheme
achieves the quantum capacity for channels where the coherent
information is not optimal. This question is related to the one
introduced in SectionVII before. Whereas Open Questions1,
1′ and 1′′ ask if it is possible to achieve a rate beyond
the coherent information for certain quantum channels, Open
Question2 in this section raises the more specific question if
for certain quantum channels our scheme achieves the quantum

10Note that Open Question1′′ is formulated in a purely classical framework
in [50, Section V.A].

11Note that for product states the von Neumann entropy is additive.
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capacity.12 As depicted in Figure8, we can define a super-
channelN ′ : T(HĀ) → T(HB⊗L ⊗ HBC

) which consists of
an inner encoding block andL basic channelsN . Then we
have

Proposition 27. For sufficiently largeL, the channelN ′ is
approximately less noisy, irrespective ofN .

Proof: Recall that as explained in SectionIV-A , we have
perr(ZĀ|BLBC)Ψ2 ≤ ǫ1. Using Fano’s inequality we obtain

H
(
ZĀ
∣∣BLBC

)

Ψ2

≤ Hb(ǫ1) + ǫ1 log dim Ā =: ξ. (147)

Recall that we choose the CSS code used in our scheme such
that ξ → 0 for L → ∞. For example using quantum polar
codes, we haveǫ1 = O

(
2−L

β
)

for β < 1
2 and log dim Ā =

O(L). The assertion then follows from [50, Lemma 12].
Proposition27 and (7) imply that

lim
L→∞

1

L
Q(N ′)

= lim
L→∞

1

L
Q1(N ′) (148)

= lim
L→∞

1

L
max
φĀĀ′

I
(
Ā〉BLCL

)
Ψ3, N ′Ā′→BLCL

(φĀĀ′)
(149)

= R, (150)

where the last step follows from Theorem9. Our scheme hence
achieves the capacity of the super-channel. This raises the
question of when the super-channelN ′ has the same capacity
than the original channelN , i.e., how much is lost in the first
layer of our scheme.

Open Question 2.Under which conditions does1LQ(N ′) =
Q(N ) hold?

Equation7 and Theorem9 imply that 1
LQ(N ′) = Q(N )

holds if N is less noisy. However, it is not yet known if this
is necessary for the condition to hold.

IX. SECRET KEY DISTILLATION & PRIVATE CHANNEL

CODING

A. Scheme, Reliability, Secrecy and Rate

With minor changes, the above entanglement distillation
scheme also works for secret key distillation in a setup where
we have two quantum parties Alice and Bob as well as a
quantum adversary Eve. Consider the scenario in which Alice
and Bob share an additional “shield” systemS [52], [27]. A
shield is any system not held by the eavesdropper Eve but
nevertheless cannot be used for amplitude IR by Alice and
Bob, where the amplitude information is used to create the
secret key. One can show that

perr

(
XÂ|BNCNBDS

)
≤ ǫ2 and (151)

perr

(
ZÂ|BNBMC

)
≤Mǫ1, (152)

characterizes a state whereZÂ can be used as a secret key.

12The existence of a channel fullfilling the condition in Question 2 which
is not less noisy would imply a positive answer to Questions1, 1′ and1′′.

Due to the uncertainty principle, the secrecy of the ampli-
tude information from Eve is ensured if Alice and Bob could
implement phase IR. Moreover, it is only necessary that phase
IR could be performed; it is not necessary to actually do it,
and thusS may be used as side information in the procedure,
no matter who holds which parts ofS [53].

An observableZA is approximately secure if the trace
distance to the ideal case is small. Therefore we introduce
for ψS = TrA[ψ

AS ],

psecure
(
ZA|S

)
:= 1

2

∥∥ψAS − 1
d1⊗ ψS

∥∥
1
, (153)

where‖M‖1 := Tr[
√
M †M ]. Note thatpsecure(ZA|S)ψ ≤ ǫ

means that the actualǫ-secureZA can only be distinguished
from the ideal, a perfect key, with probability at mostǫ.

Corollary 28. For the scheme explained above we have

psecure

(
XÂ
∣∣ENEMC S

)
≤

√
2ǫ2 and (154)

psecure

(
ZÂ
∣∣ENEMC ED

)
≤
√
2Mǫ1. (155)

Proof: We show that (151) and (152) are satisfied. The
assertion then immediately follows from [54], [53, Theorem
4.1.]. Due to the i.i.d. structure of the scheme and the union
bound, it is sufficient to show thatperr(ZĀ|BLBC) ≤ ǫ1 in
order to prove (152). This however is a direct consequence of
Bob’s decoding task for the entanglement distillation setup, as
introduced in SectionIV-A .

Inequality (151) is equivalent to the error probability for the
phase decoding Bob performs (as explained in SectionIV-A )
with the difference that there is extra side informationS in this
case. Fortunately it is straightforward to modify the decoder
to the setup with extra side information [30].

The rate for this scenario can be computed analogously as
in SectionIV-A , which leads to

R ≥ 1−H
(
ZA|B

)
ψ
−H

(
XA|BCS

)
ψ

(156)

= H
(
ZA|E

)
ψ
−H

(
ZA|B

)
ψ
. (157)

The final step uses the exact-uncertainty relation given in [29],
which ensures thatH(ZA|E)ψ + H(XA|BCS)ψ = 1. Note
that we no longer obtain the coherent information−H(A|B)ψ,
sinceE no longer purifiesAB. The reliability of the secret key
distillation scheme is analogous to that of the entanglement
distillation scheme (cf. Proposition8).

B. Using Quantum Polar Codes for Pauli or Erasure Channels

As mentioned above the secret key distillation scheme is
very similar to the entanglement distillation scheme introduced
in SectionIV. More precisely, Alice’s first task, i.e., theM
amplitude information reconciliation blocks are identical as
in the entanglement distillation. The phase IR step is slightly
different as one has to consider side informationS, which
leads to a different set of frozen qubits. Furthermore, Alice
does not send the outcomes from measuringÂc to Bob, but
simply keeps them secret from Eve. Alice’s task thus can be
done withO(N logN) complexity as proven in Theorems11
and16.
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Bob’s task is also similar to the decoding he performs
in the entanglement distillation setup. He first decodes the
amplitudeZA

N

, which can be done with a standard classical
polar decoder. He next computes the value ofZÂ using the
details of the phase IR code. Hence Bob’s decoding operation
hasO(N logN) complexity.

The reliability and secrecy are as given in Proposition8 and
Corollary 28 with ǫ1 = O(2−L

β′

) and ǫ2 = O(L2−M
β

) for
any β, β′ < 1

2 .
The secret key distillation scheme described above also

works in a purely classical setup, since the phase IR protocol
can be turned into a privacy amplification protocol needing
only classical operations as shown in [50]. Our scheme for
classical one-way secret key agreement improves practically
efficient protocols where the eavesdropper has no prior knowl-
edge [55] or/and degradability assumptions are required [56].

C. Private Communication

The quantum coding scheme can be used for efficient private
channel coding at a high rate (as given in (156) and (157)).
As in SectionVI , the idea is to run key distillation in reverse,
simulating the measurement outputs with appropriately-chosen
random inputs. These are then the frozen bits. The frozen bits
of the inner and outer encoder can be sent over an insecure
channel to Bob, since privacy is ensured by the outer layer
whose frozen bits are uncorrelated to the message bits since
the corresponding protocol produces entanglement.

In [50], it is shown how to use a similar scheme in a purely
classical scenario for private channel coding at the secrecy
capacity such that there exists an encoding and decoding
operation that have an essentially linear complexity. Our
scheme improves previous work on efficient wiretap coding,
where either only weak secrecy could be proven [57] or/and
degradability assumptions are required [58].

X. CONCLUSION

We have constructed a protocol that can be used to perform
reliable entanglement distillation or quantum communication
at a rate equal to (or possibly larger than) the coherent
information. Compared to previous work in this area, our
scheme does not require any preshared entanglement and
achieves the coherent information also for asymmetric chan-
nels (whereφAA

′

in (2) is not necessarily a Bell state). When
communicating over a Pauli or erasure channel using polar
codes, encoding and decoding can be performed with a number
of operations essentially linear in the blocklength. We have
also shown how the protocol can be modified for efficient,
high-rate secret key distillation and private channel coding.
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