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Abstract

The problem of distributed data compression for functiompaotation is considered, where (i) the function to
be computed is not necessarily symbol-wise function andtl{g information source has memory and may not be
stationary nor ergodic. We introduce the class of smoothcesuand give a sufficient condition on functions so that
the achievable rate region for computing coincides with3kepian-Wolf region (i.e., the rate region for reproducing
the entire source) for any smooth sources. Moreover, fobsjawise functions, the necessary and sufficient condition
for the coincidence is established. Our result for the fidesnformation case is a generalization of the result by
Ahlswede and Csiszar to sources with memory; our dichoteh®orem is different from Han and Kobayashi's
dichotomy theorem, which reveals an effect of memory inritisted function computation. All results are given
not only for fixed-length coding but also for variable-lemgtoding in a unified manner. Furthermore, for the full
side-information case, the error probability in the motiei@eviation regime is also investigated.

Index Terms

distributed computing, information-spectrum method,p&ie-Wolf coding

I. INTRODUCTION

We study the problem of distributed data compression foction computation described in Figl 1 and Hig. 2,
where the function to be computed is not necessarily symis#-function. In [1], Kérner and Marton revealed
that the achievable rate region for computing modulo-sustristly larger than the rate region that can be achieved
by first applying Slepian-Wolf coding [2] and then computihg functior] Since then, distributed coding schemes
that are tailored for some classes of functions were stu@iegl, seel[3, Chapter 21]). These results are the cases
such that the structure of functions can be utilized forritisted coding. However, not all functions have such nice

structures, and even for some classes of functions, it isvhrtbat the Slepian-Wolf region cannot be improved at
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IMore precisely, the modulo-sum function is a sensitive fiamc explained later, and the individual rates cannot berawgd from the
Slepian-Wolf coding rates. In fact, Kérner and Marton eded that the sum rate can be improved from the Slepian-Wilfng sum rate.
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all 4], [5], i.e., reproducing function value is as diffitws reproducing the entire source. Thus, it is important to
understand what makes distributed computation difficutiiclv is the main theme of this paper. This direction of

research has been studied for i.i.d. sources, which willdveewed next.

X" fa (X, YT)

Fig. 2. Distributed computing with full-

Fig. 1. Distributed computing

side-information

In [4], Ahlswede and Csiszar investigated distributed iegdfor function computation when the full side-
information is available at the decoder (see Eig. 2); thésoduced the concept afensitive functionsand showed
that the achievable rate for computing sensitive functionsicides with the achievable rate of Slepian-Wolf
coding (with full side-information) provided that the soaris an i.i.d. source satisfying the positivity conditton.
Surprisingly, the class of sensitive functions includesiacfion such that the image size is just one bit. Later, El
Gamal gave a simple proof of Ahlswede and Csiszar's re§iilt [

In [5], Han and Kobayashi investigated distributed codiagffinction computation with two-encoders case (see
Fig.[D); they considered the class of symbol-wise functi@m&l derived the necessary and sufficient condition of
functions such that the achievable rate region coincidek tiat of Slepian-Wolf coding for any i.i.d. sources
satisfying the positivity condition. In the rest of the pgp&e shall call functions satisfying Han and Kobayashi's
conditionHK functions

For the class of i.i.d. sources satisfying the positivitpdibion, the above mentioned two result$ [4], [5] showed

some classes of functions that are difficult to compute v&rithuted coding. Then, a natural question is:
(#) Are functions in those classes difficult to compute evenviiader classes of sources that have memory
and may not be stationary nor ergodic?
In order to answer this question in a unified manner, we studlyilolted computation problem by information-

spectral approach[[7].[8]. Our contributions are sumneatias follows.

A. Contributions

First, we introduce a class of sources which we cafiewoth sourc% other than the smooth condition, we do
not impose any condition on sources, i.e., we consider géseurces. Roughly speaking, the smooth condition

says that the probability of a sequence does not changdisagtly when we flip a symbol of the sequence. When

2They also introduced the concept lifjhly sensitive functionand showed the same result under a slightly weaker conditiothe source.

3We may call this class “stable”, but we avoid to use “stablieits it is sometimes used to describe another concept inapilitly theory
(eg. [9]). In an earlier version of this paper, we also calleid class “slowly varying”, but we decided to call it “smabtsince it describes the

property of the sources more accurately.
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we restrict sources to be i.i.d., then the smooth conditioimades with the positivity condition studied inl[4],
[5]. However, the class of smooth sources is much wider thanctass of i.i.d. sources satisfying the positivity
condition. In fact, it includes Markov sources with positiransition matrices or mixtures of i.i.d. sources saitigfy
positivity condition.

Next, we introduce the concept @int sensitivity a function f,, is said to be jointly sensitive if,,(x,y) #
fa(Z,9) wheneverr # & andy # g. Then, we introduce the class tiftally sensitivefunctions as the set of all
functions that are sensitive in the senselof [4] and alsdljoBensitive. When we restrict functions to be symbol-
wise, the class of totally sensitive functions is a stridist of the class of HK functions. However, totally sensitiv
functions are not necessarily symbol-wise. The inclusalation among the classes of functions is summarized in
Fig.[3.

The functions in

The function Totall nsiti
e function Totally Sensi IveTabIe Land i

in Eq. (18)

The function
in Table |

Symbol-wise Functions
\/

Fig. 3. The inclusive relation among the
classes of functions.

When the full side-information is available at the decoder show that the Slepian-Wolf rate cannot be improved
if the function is sensitive and the source is smooth. Thisltegeneralizes the result ihl[4] for smooth sources.
Thus, for the class of sensitive functions, the answer tos@ue (#) is positivein the sense that the Slepian-Wolf
rate cannot be improved.

For the two-encoders case, we show that the Slepian-Woibmezannot be improved if the function is totally
sensitive and the source is smooth. Furthermore, for symisa functions, we show that the achievable region
coincides with the Slepian-Wolf region for any smooth sesrd and only if the function is totally sensitive. In
fact, for a function that satisfies Han and Kobayashi's ctowlibut is not totally sensitive, there exists a finite
state source, which is smooth, such that the Slepian-Wgibnecan be improved. This dichotomy theorem can be
regarded as a smooth source counterpart of Han and Kob&ydsattiotomy theorem[[5]; we need the condition
that is more strict than Han and Kobayashi's condition beeaue broaden the class of sourBéSonsequently,

for the class of HK functions, the answer to Questi®) {s negativein the sense that the Slepian-Wolf region can

4In other words, neither of our dichotomy theorem nor Han amthdgashi’s dichotomy theorem imply each other.
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be improved; but we can say that totally sensitive functiaresdifficult to compute via distributed coding for any
smooth sources.

When a function is sensitive but not totally sensitive, tkensrate can be improved in general. To derive an
outer bound for such a case, we introduce another class ofiéns, which we call-totally sensitive. Then, we
show that the improvement of sum rate is at masFurthermore, we also show that there exist a smooth source
and anr-totally sensitive function such that our outer bound isissted, which means that our outer bound cannot
be improved anymore only from the two assumptions: smootidition andr-total sensitivity.

We also derive the following refinements of the above resdts far, the study of distributed computing has
been restricted to the fixed-length coding in the literafdie[5]. In this paper, by using the techniques developed
by the authors in[[10], we show that the above mentioned tesi$o hold even for the variable-length coding.
Furthermore, for the full side-information case, we shoat tthe Slepian-Wolf rate cannot be improved even in the
moderate deviation regime [11], [12].

Although our main contributions of this paper are strudtaomnections between the achievable rate regions (or
rates) for function computing and the Slepian-Wolf regi¢msrates), as a byproduct, we can derive explicit forms
of the achievable regions (or rates) by using the correspgnasults on the Slepian-Wolf regions (or rates). It
is also known that distributed computing can be regarded sizeaial case of distributed lossy coding studied by
Yamamoto[[13] (see also [14]). Thus, our results may be @starg from the view point of distributed lossy coding
for smooth sources.

From technical perspective, we elaborate El Gamal’s arguift} so that it can be used for the wider class of
sources; Lemm@l 1 is the core of the proofs, and it enables piot@ our main results for both fixed-length coding
and variable-length coding in a unified manner. The boundseimmall is also tight enough to be used for the

moderate deviation analysis.

B. Organization of Paper

In Sectior1l, we introduce the coding problem investigatethis paper, and also introduce classes of functions
and classes of sources. Then, in Secfioh Ill, main codingréres are stated. The proofs of main results are given

in Section 1V, where proofs of some lemmas are shown in Apjesd

C. Notation

Throughout this paper, random variables (eX), and their realizations (e.gsz) are denoted by capital and
lower case letters respectively. All random variables tafties in some finite alphabets which are denoted by
the respective calligraphic letters (e.g). Similarly, X™ £ (X, Xo,..., X,,) andz™ = (x1, 22, ..., z,) denote,
respectively, a random vector and its realization in #thle Cartesian produck™ of X. We will use bold lower
letters to represent vectors if the lengths apparent from the context; e.g., we usénstead ofz".

For a finite setS, |S| denotes the cardinality of and S* denotes the set of all finite strings drawn fratn

For a sequence € S*, |s| denotes the length of. The Hamming distance between two sequenceése S™ is
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defined asi(s, 8) = |{i : s; # 4;}|. S° denotes the complement &t

Information-theoretic quantities are denoted in the usmahner [15], [[15]. For example] (X |Y) denotes the
conditional entropy ofX givenY'. All logarithms are with respect to base 2.

Moreover, we will use quantities defined by using the infaioraspectrum method [8]. Here, we recall the
probabilistic limit operation: For a sequenge2 {7,122, of real-valued random variables, thimit superior in

probability of Z is defined as

p-limsup Z,, £ inf {a : lim Pr{Z, > o} = O} . (1)
n—00 n—oo
Il. PROBLEM

A. General Setting

Let (X,Y) = {(X™,Y™)}°, be a general correlated source with finite alphaliétand ). We consider a
sequencef = {f,}52, of functionsf,: X" x Y — Z,. A variable-length codeb for computingf, is defined
by a triplet(gpél), <p§f), ) Of the first encode(pg): x™ — {0,1}*, the second encodeﬂf): y* —{0,1}*, and
a decoden),, : €\ x ¢{? — 2, whereCV 2 {o{V(z) : @ € X} C {0,1}* andC? 2 {pP(y) 1y € Y} C
{0,1}*. We assume that both ¢&" andc!? satisfy the prefix condition.

For eachi = 1, 2, <p§f) is said to be a fixed-length encoderdif’ consists of codewords of the same length. A
code®,, is called afixed-length codéf both of cpﬁf) (i = 1, 2) are fixed-length encoders. Clearly, the class of all
variable-length codes includes that of all fixed-lengtheds a strict subclass.

The average codeword lengthnd theerror probability of ®,, are respectively defined as

E[lp(xm]] £ Pen@) [¢D (@) 2)
E[|oP ™)) 2 Z Pro(y) [¢2 ()] 3)

N ”
Pe(@nlfa) 2 Pr{ fa(X",Y") # v (6D (X", 6P (v™) . (4)

Definition 1. Given a sourcé X,Y’) and a sequence of functiorfs= {f,}22,, a pair(R;, R2) of rates is said

to beachievableif there exists a sequend®,, }5° ; of codes satisfying

lim Pe(®,|fn) =0 (5)
n—oo
and
lim sup l]E Hcpgll)(X") } < Ry, (6)
n—oo T
lim sup lE Htpg)(Y”) } < Rs. (7
n—oo N

The set of all achievable rate pairs is denoted®¥( X, Y| f).
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Definition 2. Given a sourcé X,Y’) and a sequence of functiorfs= {f,}>2,, a pair(R;, R2) of rates is said
to be achievable by fixed-length coding there exists a sequende,,}° ; of fixed-length codes satisfyin§1(5),
@), and [[7). The set of all rate pairs that are achievablexsdfiength coding is denoted WY/ (X, Y| f).

A variable-length (resp. fixed-length) code, for computing theidentity functionfid(zx, y) £ (x, y) is called a
variable-length (resp. fixed-lengt®Jepian-Wolf (SW) code

Definition 3 (SW region). For a sourcg X,Y), the achievable rate regioR" (X, Y |f') for (X,Y) and the
sequencefid £ {fid}e  of identity functions is called th&lepian-Wolf (SW) regioand denoted bfR¥,, (X,Y).
By considering only fixed-length codeR},, (X ,Y) is defined similarly.

Remark 1. From the definitions, it is apparent tHat,,(X,Y) C R(X,Y|f) andRi,,(X,Y) C R X,Y|f)
for any (X,Y) and f.

Remark 2. A general formula for the SW region for fixed-length codingswgiven by Miyake and Kanaya [17]
as

Réw(X,Y) = {(Ri,Ry) : Ry > H(X|Y),R, > H(Y|X),R1 + Ry > H(X,Y)} (8)
where

_ 1 1
H(X,Y) £ p-limsup — log

- 9
— 1
H(X|Y) 2 p-limsup—log ———— 10
_ 1 1
H(Y|X) £ p-limsup — lo (11)

E o~
n—oo N PY"\X" (Yn|Xn)

As long as the authors know, a general formula ¥, (X,Y") is not known. One of our contributions is to
demonstrate that we can discuss the equivalence bet®gg{X,Y) and R¥(X,Y|f) without knowing the
precise form ofRY,, (X,Y); for specific sources such that the precise fornRdf, (X, Y") is known, we can get

the precise form oRY(X,Y|f) as a byproduct.

As a special case of distributed computation, we are intedeis the case wherg € Y™ is completely known
at the decoder as the side-information. We call this casdasfull-side-information case”. The optimal coding

rates which are achievable in full-side-information case @efined as follows.

Definition 4 (SW rate). For any(X,Y) and f, let

RYX|Y|f) & inf {R1 : (Ry,log|Y]) € RM(X,Y|f)}, (12)

RYX|Y|f) 2 inf {Ry : (Ry,log|V]) e RMX,Y|f)}. (13)
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Similarly, for any (X,Y), let
R4 (X|Y) £inf {Ry : (Ry,log|V]) € Réw(X,Y)}, (14)
RyV(X|Y) &inf {Ry : (Ry,log|Y]) € R&W(X,Y)}. (15)

Remark 3. From [8), we haveRr!, (X|Y) = H(X|Y). A general formula forRY,, (X |Y") is recently given by
the authors[[10].

B. Function Classes

In this subsection, we introduce important classes of fonstinvestigated in this paper. First, we state the

concept of sensitivity introduced inl[4] and related praijes:

Definition 5 (Sensitivity). A function f,,: X™ x Y"* — Z,, is said to besensitiveconditioned ony™ if it satisfies
the following property: Ifx, &,y satisfy f,,(z,y) = f.(2,y) andx; # &; for somei then there existg) € Y™

such thatg; # yi, §; = y; for any j # i and fu(z, 9) # fn(2,9).
Similarly, a functionf, : X™ x Y* — Z, is said to be sensitive conditioned af* if it satisfies the property,

where the role ofe (resp.z) in Definition[3 is switched with that of; (resp.g).

Remark 4. In [6], the concenpt ofx-sensitive functions, which includes sensitive functiassa special case, is
introduced, and it is shown that the result of [4], which iey&d for sensitive functions, can be proved also for
a-sensitive functions. Although our results for sensitivadtions hold also forv-sensitive functions, we consider

only sensitive functions for simplicity.

Now, we introduce some new sensitivity conditions.

Definition 6 (Joint sensitivity). A function f,,: X" xY"™ — Z, is said to bgointly sensitivef f,,(x,y) # fn.(Z,9)
holds for everyr # & andy # g.

Definition 7 (Total sensitivity). A function f,,: X" x Y — Z, is said to betotally sensitiveif it is jointly

sensitive and sensitive conditioned on both\df and ).

Example 1. Let P,, be the joint type of(x,y) [16]; i.e., P,y is a joint distribution ont x Y such as

Pyy(a,b) 2 1 (“’yg = @Oy exxy. (16)

L

The type functionf, (x,y) xy IS sensitive conditioned on both o™ and Y™ but is not jointly sensitive.

Hence, it is not totally sensitive.
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Example 2. The function defined by

(>z) fz>y
fal@y) £ (=) fez=y , 17)
(<y) fz<y
where> and< are with respect to arbitrary ordering éi* = Y™, is jointly sensitive but is not sensitive conditioned
on X™ (nor Y™). On the other hand,

fr(@,y) = (Pay, fn(®,y)) (18)

is totally sensitive.

Next, we consider special classes of symbol-wise functi@igen a functionf on X x ), the functionf,, on
A" x Y™ defined asf, (z,y) 2 (f(z1,v1), f(x2,92), ..., f(xn,yn)) is called the symbol-wise function defined

by f. Now, we introduce a special class of symbol-wise functideined by Han and Kobayashi [5].

Definition 8 (HK functions). A function f,, is called aHan-Kobayashi (HK) functionf f,, is a symbol-wise

function defined by som¢ such that

1) for everya; # as in X, the functionsf(aq,-) and f(as,-) are distinct,
2) for everyb; # be in ), the functionsf(-,b;) and f(-,b2) are distinct, and
3) f(a1,b1) # f(az,be) for everya; # as andby # bo.

By definitions, it is easy to see that (i) an HK function is seéwes conditioned on both oft™ and )", but
(ii) there exists an HK function which is not jointly senséi(and thus not totally sensitive). On the other hand,
it is necessary for a totally sensitive function be an HK fiort. Indeed, the next proposition gives the sufficient
and necessary condition for symbol-wise functions to belljosensitive. The proof of Propositidd 1 is given in

Appendix[A.

Proposition 1. Let f be given andf, be the symbol-wise function defined by Then f,, (n > 2) is totally
sensitive if and only iff is an HK function satisfying at least one of the following tywooperties:

1) forallz € X, if f(x,y) = f(x,y) theny =g, or

2) forally € Y, if f(z,y) = f(Z,y) thenz = z.

Example 3. The function shown in Tablg | is an HK function, but it does satisfy 1) nor 2) of Proposition
0. Thus, anyf, defined byf is not jointly sensitive nor totally sensitive. Indeed, et = (0,1), y" = (0,1),

2 = (1,1), andy? = (0,2), then we havefy (22, y?) = f2(22,9°%) = (0, 3) even though? # 22 andy? # 4. The
function shown in Tabl€ll (resp. Tablellll) is an HK functi@md satisfies 1) (resp. 2)) of Propositidn 1. Hence,
the symbol-wise functiory,, defined byf in Tabled 1l oIl is totally sensitive.

Remark 5. In this subsection, several properties of functionsXdh x Y™ are introduced. In the following, we
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TABLE | TABLE Il TABLE IlI

f(z,y) f(z,v) f(z,y)
z\y ‘ 0o 1 2 z\y ‘ 0o 1 2 z\y ‘ 0o 1 2
0 0 1 0 o 1 2 0 0o 1 2

1 0 3 1 0 3 4 1 3 3

say a sequencg = {f,,}>°, of functions satisfies some property,fif satisfies that property forall =1,2,...;

e.g., we say f is totally sensitive” meaning f;, is totally sensitive for allh = 1,2,...".

C. Classes of General Sources

In this subsection, we introduce the concept of smooth ssurc

Definition 9. A general sourcéX,Y") is said to besmoothwith respect toY” if there exists a constaft< ¢ < 1,

which does not depend an, satisfying
PX"Y"(mv’g) Z qPX"Y" (-’B,y) (19)

for anyx € X™ and anyy,y such thatd(y,y) = 1.

The definition implies that, for a smooth source with resped’, the probability of joint sequencés;, y) does

not drastically change even if a symbol gfis replaced with another symbol.

Example 4 (General Source with Positive Side-Information ®annel). If Q(y|z) > ¢ for all (z,y) € X x Y

and

n

Pxnyn(x,y) = PX"(m)HQ(yi|xi) (20)

i=1

then (X,Y") is smooth with respect t&.

Similarly, a source is said to be smooth with respeciXioif it satisfies the property, where the role afin
Definition[3 is switched with that ofy. If a source is smooth with respect to bakh andY then we just call it a
smooth source.

As shown in the following proposition, the smooth propesyidentical with the positivity condition when we

consider only i.i.d. sources.

Proposition 2. Let (X,Y) be an i.i.d. source with the joint distributiaRx,y, = Pxy. Then,(X,Y) is smooth
if and only if Pxy satisfies the positivity conditiofxy (a,b) > 0 ((a,b) € X x )).

On the other hand, as shown in following examples, the classnooth sources includes not only i.i.d. sources

but also Markov sources and mixed sources.
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10

Example 5 (Markov Source). Let (X,Y") be the source induced by a positive transition mal¥ixz, y|z, ¢) and

a positive initial distributionPx, v, (x,y). Then, by setting

(1>

@ W (s, ys|ze, y2)W (22, y2|z1, Y1), (21)

min
(z1,y1),(w2,y2),(T3,y3)

q2 £ min W(IQay2|x17y1)PX1Y1(Ilay1)7 (22)

(z1,91),(w2,y2)

we can find tha{ X, Y") is a smooth source with the constang min{q;, ¢ }.

Example 6 (Mixed Source).Let (X;,Y;) be a smooth source with the constanti = 1,2,...,k) and consider

a mixture(X,Y") of them such that

k

Pxoyn(2,y) =Y apPxnyn(x,y), (T,9) € X" x V" (23)
i=1

wherea; >0 foralli=1,...,kand) , o; = 1. Then,(X,Y’) is also a smooth with the constapt min g;.

Remark 6. The condition of smooth sources is different from the mixamgdition that is often used as a regularity
condition for the central limit theorem in the probabilityebry (cf. [9]). In fact, as we can find from Example
[6, the class of smooth sources includes non-ergodic squndgsh do not satisfy the mixing condition. On the
other hand, an i.i.d. source that has zero probability fenes@ymbol is not included the class of smooth sources

(cf. PropositioiR). Thus, neither of the conditions impbch other.

I1l. CODING THEOREMS
A. Two Encoders Case
Our first result shows that, given a coé®,,}°2 ; for computing a totally sensitive functiofi, we can construct

a SW code{®, }>° , such that the coding rates ¢f, }°, are asymptotically same gsb,,}>° , and the error

probability of {®,,}°° , is vanishing as: — oo, provided that{ X, Y") is smooth.

Theorem 1. Suppose thatX,Y’) is smooth andf is totally sensitive. Then, for any variable-length (refiped-
length) code{®,,}5, for computing f satisfying [5)-f{(V), there exists a variable-length (reéfsged-length) SW
code{d,12, = {(p%,¢!?,,)}122, such that

lim P (®,|f9) =0 (24)
n—oo
and
1
limsup —E [ @511)()(") } < Ry, (25)
n—oo T
1
limsup —E [ @512)(3/”) } < Ry. (26)
n—oo N

The proof will be given in the next section. As a consequerfcEheorem[l, we have the following theorem,
which shows that the achievable rate region for a smoothceoX,Y’) and a totally sensitive functiorf is

identical with the SW region.
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11

Theorem 2. Suppose thatX,Y") is smooth andf is totally sensitive. Then we have

RUX,Y|f) = Réw(X,Y) (27)
and
RUX,Y|f) = REw(X,Y). (28)

Theoren 2 states that the total sensitivity is a sufficiemdaon for the set of all achievable rates to coincide
with the SW region. It should be noted that total sensitiistyot necessary; See Remark 10 below for more details.
On the other hand, if we restrict our attention to the classyhbol-wise functions, we can also prove the
converse statement, i.e., the total sensitivity is the &y and sufficient condition for the set of all achievable

rates to coincide with the SW region. More precisely, we hieefollowing theorem.

Theorem 3. Let f be a sequence of symbol-wise functions. THeW X ,Y|f) = RY,,(X,Y) for all smooth

sources X,Y) if and only if f is totally sensitive.

Now, let us compare our result with that of Han and KobayeShi [

Proposition 3 (Theorem 1 of [5]). Let f be a sequence of symbol-wise functions. THRA(X,Y |f) =
R, (X,Y) for all i.i.d. sources(X,Y) satisfying the positivity conditionPx,y, (z,y) > 0 if and only if f

is an HK function.

Comparison of Theorefd 3 with Propositibh 3 implies that tbadition given by Han and Kobayashil [5] is no
longer sufficient forR™ (X, Y| f) = R, (X,Y), when we consider not only i.i.d. sources but also sourcés wi

memor

Further, we can generalize the result for the variabletleegding case.

Theorem 4. Let f be a sequence of symbol-wise functions. THW(X, Y |f) = R4y (X,Y) for all smooth

sources X,Y) if and only if f is totally sensitive.

B. Full-Side-Information Case

Theorem2 assumes the smooth property of the source and tdlesémsitivity of functions. In the full-side-
information case, weaker conditions are sufficient to shimevdorresponding result. Indeed we have the following

theorem.

5Note that neither Theorel 3 nor Propositldn 3 subsumes ther.ot

October 9, 2018 DRAFT



12

Theorem 5. Suppose thatX,Y) is smooth with respect t& and f is sensitive conditioned oy™. Then we

have

RYX|Y|f) = Rsw(X|Y). (29)

As a corollary of the theorem, we can derive the first half obdtem 3 of [[4].

Corollary 1 ([4]). Suppose thatX,Y") is an i.i.d. source satisfying the positivity conditid?x, v, (x,y) > 0 and

f is sensitive conditioned oyy™. Then we have
RYX|Y|f) = REw(X|Y). (30)

Remark 7. We can also derive Lemmas 1 and 2 [of [5] by applying ThedremrS@ollary[1) to symbol-wise

functions.

Remark 8. In the second half of Theorem 3 of [4], it is shown thatfifis highly sensitive then Corollafy 1 holds
even under the weaker condition. Similarly, we can prove¢ ithg is highly sensitive then Theorel 5 holds even
under the condition weaker than the smooth property, ansl, thve can derive also the second half of Theorem 3

of [4] as a corollary. See Sectign TIIFC for more details.

Further, we can generalize the result for the variabletleegding case.

Theorem 6. Suppose thatX,Y") is smooth with respect t& and f is sensitive conditioned oy™. Then we

have

RYX|Y|f) = Rgw(X|Y). (31)

C. Weaker Condition on Sources

So far, we consider only smooth sources for simplicity. lis #ubsection, we show that all our results in Sections
[MM-Aland [M-Blare true even for a class of sources wider thanooth sources, provided that the functifnis

highly sensitive in the sense afl [4].

Definition 10. A function f,,: X" x Y™ — Z,, is said to behighly sensitiveconditioned o)™ if for any a; # as
in X andb; # by in Y the following property holds: Ite, &,y satisfy f,,(z,y) = fu(2,y), ; = a1, & = ag,
andy; = b; for somei then forg € Y™ obtained fromy by replacing theith component by, we always have

fo(®,9) # fn(Z, 9).

Similarly, the concept of “the highly sensitivity conditied onX™” is defined. Further, by replacing the sensitivity
with the highly sensitivity in Definitiofi 17, thaighly total sensitivityis defined.

Now, we define a class of sources which is wider than the clissooth sources.
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Definition 11. A general sourcé X,Y") is said to beweakly smootlwith respect toY” if there exists a constant
0 < ¢ < 1, which does not depend om, satisfying the following property: For any # & andy satisfying
Pxnyn(x,y) - Pxnyn(&,y) > 0, whenever; # &;, there existgj € Y such thaty; # v;, §; = y,; foranyj #i

and
PXnYn (w, g) Z qPXnYn (iL‘, y), (32)

Pxnyn(Z,9) > gPxnyn(Z,y). (33)

Similarly, a source is said to be weakly smooth with respecXt if it satisfies the property, where the role of
X in Definition[11 is switched with that o . If a source is weakly smooth with respect to bdkhandY then
we just call it a weakly smooth source.

Then, we can madify theorems in Sectiéns TlI-A dnd TlI-B asthe following theorem.

Theorem 7. Theoremd1L[12[]3, andl 4 hold even when we replace “smoothp.(féetally sensitive”) with
“weakly smooth” (resp. “highly totally sensitive”). Fueh TheoremEl5 arld 6 hold even when we replace “smooth”

(resp. “sensitive”) with “weakly smooth” (resp. “highly isgitive”).

Especially, as mentioned in Remark 8, the second half of iEm@ of [4] can be derived as a corollary of the

above theorem, since the following proposition holds. Theopof Propositiod ¥ is given in Appendix|B.

Proposition 4. Let (X,Y) be an i.i.d. source with the joint distributiaBy,y, = Pxy. Then,(X,Y) is weakly
smooth with respect t& if and only if Pyy satisfies the condition that for evety # as in X the number of

elements € Y with
ny(al,b) -ny(CLQ,b) >0 (34)

is different from one.

D. Weaker Condition on Functions

So far, we considered conditions on functions so tRét(X,Y|f) = R&,(X,Y) (xx = fl/vl) holds. As
a byproduct, we can give explicit forms @**(X,Y|f) by using the corresponding results &g, (X,Y),
provided thatf satisfies conditions for the coincidence of two regions.His subsection, we consider functions
which does not satisfy conditions for the coincidence. Weoifuce a class of functions wider than the totally
sensitive functions, and give an outer bound®ti(X,Y|f) of f in this class.

To define a new class of functions, we introduce a notatiome®a functionf,,: X™ x Y"* — Z,, andz, € Z,,

let Equiv(zy,|f,) be the maximum numbef such that we can choosk pairs (1, y1), (€2,y2),..., (x5, ys) €

X" x Y satisfyingz; # x; andy; # y; for all i # j andz, = fu(z1,y1) = fa(®2,y2) = -+ = fu(®s,Ys)
Definition 12. Fix a number- > 0. A function f,,: X™ x Y™ — Z,, is said to ber-totally sensitivef it satisfies

1
lim sup — log max Equiv(z,|f,) <r (35)

n—oo N Zn€Zn
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and sensitive conditioned on both af* and )".

Remark 9. Note that the maximuni such that we can chooskpairs(x1,y1), (€2, y2),- .., (xs,ys) € X* x Y"
satisfyingx; # x; andy; # y; for all ¢ # j is min{|x™|,|Y™|}. Hence, the definition of-total sensitivity is

meaningless if- > 7 £ min{log|X|,log |V|}.
Theorem 8. Suppose thatX,Y’) is smooth andf is r-totally sensitive. Then we have

R*™(X,Y|f) C {(Rl,Rg) 0<IANLS L, (Ri+ M Re+ (1 — X)) e Rew(X,Y),

Ry > Rgy(X|Y), Ry > Ry (Y| X))} (36)
wheresxx = fl/vl.

Remark 10. Theoren(B states that only the sum rate can be improved at/maeste Fig[%. Note that iff,, is
totally sensitive therEquiv(z,|f,) < 1 for any z,, € Z,, and thus[(35) holds witlr = 0. In other words, the class
of totally sensitive functions can be seen as a special chdeatally sensitive functions. Moreover, by Theorem
[8, we can say thal-total sensitivity is sufficient foR** (X, Y |f) = R&, (X, Y). In this sense, Theoref 8 is a

generalization of Theorem 2.

— SW region

N 78 outer bound

Ran(Y|X)

Fig. 4. The outer bound given in Theoréh 8.

Moreover, as shown in the theorem below, there existtally sensitive function and a smooth source for which

the outer bound given in Theordr 8 is tight.

Theorem 9. For anyd > 0 and0 < r < 7, there exist--totally sensitive functionf and a smooth sourdeX,Y’)

such that

RHNX,Y|f) 2{(R1,R2) : Ri > 6+ (1 — p)log |X|, R2 > 6 + (1 — p) log [V} (37)
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and
Rew(X,Y) C {(Ri,Ry) : Ri > (1 — p)log|X], Ry > (1 - p)log |V,
Ry +Ry>r— 38+ (1—p)log|X| |V} (38)
wherep £ r/7 and* = fl /vl.

By takingd — 0 in Theoren®, we can make the boufd](36) arbitrarily tighta¢ée our outer bound cannot be

improved anymore only from-total sensitivity and smooth condition.

E. Moderate Deviation

In this subsection, we assume th&,Y") is an i.i.d. source with the joint distributiokx,y, = Pxy, and
we consider the full side-information case. The results éot®n[Il-B states tha?** (X |Y'|f) = R (X|Y) =
H(XY) (xx = fl/vl). In the following, we conduct more refined analysis in thedemate deviation regime.

For real numbersg € (0,1/2) andv > 0, and a sequence of functiogs= {f,}>2,, let
1
vl A . . .
eV (t,v|f) = hnn—1>1£f T 1ogr%inPe((I>n|fn) (39)

where the minimum is taken over all sequences of cqdgs > ; = {(<p§11), n) }o2, for computingf = {f.}52,

satisfying

Pl (x™)

lim sup n117t (IE [ ] - nH(X|Y)) <. (40)

Similarly, by taking the minimum over all fixed-length code$(¢,~|f) is defined. Further, by considering the

identity function fi¢ and SW codesel, (t,v) and el (¢,v) are defined. The single-letter characterization of

n

edy(t,7) andefl, (t,v) are obtained by Heet. al[11]. The following theorem states that computing sensitiv

function is as difficult as reproducing itself even for the moderate deviation regime.

Theorem 10. Suppose thaPyy satisfies positivity condition angf is sensitive. Then, we have
Nt y]f) = e (t,7), (41)
"'t AF) = esw (t7) (42)

for everyt € (0,1/2) andy > 0.

IV. PROOF OFTHEOREMS
A. Preliminaries for Proofs
First we introduce some notations used in this sectiodenotes the indicator function, e.d.[s € S] =1 if

s € S and0 otherwise;h(p) is binary entropy functionja]* is 0 if a« < 1 and|a] if a > 1. For given0 < 3 < 1/2,
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let

g1 o
w2 Y (2-1(7) 3)
i=1
< n|x P2, (44)
[ng1-1 s
w® 2 S - (1) (45)
=1
< n[y[rignn(®). (46)

For a given codeb,, = (cp%l), 90512), »), We abbreviate the length of codewords by

(@) 2 o (@), (47)
(2(@) £ o2 (@) (48)
Without loss of generali@,we assume that there afg < oo and L, < oo such that
(W (x) <nL,, forallxzeX™, (49)
(2 (x) <nLy, forallye)". (50)
Let
Do 2 {(@y) : vu(p (@), oD W) = fulz.y)} (52)

be the set of all correctly decodable sequences. When wgzntie performance of a variable length code via

information spectrum approach, the following typicaleligets play an important role:

1 1 o (@)
Tn1 24 (x,y): —lo < +d7, 52
1 1 02 (y)
Tho2{(x,y):—1o <z +4 5, 53
2 {( y) n g Pyn‘xn (y|.’1}) n ( )
1 1 Vi Vi
Too 2 { (@) : ~log <o@ L st (54)
n ~ Pxnyn(x,y) n n

whered > 0 is any real number specified later. The following lemma isdbee of the proofs of coding theorems,
which connect the combinatorial property, i.e., the sarsitof a function, to a probabilistic analysis. The proof

of the lemma will be given in Appendix]C.

Lemma 1. For any codeb,, and real number§, > 0, if f,, is sensitive conditioned op™ and(X,Y") is smooth

with respect toY’, then we have

Pyoyn (D N T54) < %’Pc@nw T (oa(B) + 1)27, (55)

SNote that for any encodeqa%l), we can modifygogf) without increasing the error probability and obtain an eimo,a,(f) satisfying
|4 @)] < max [14+ ol @)] , 1+ nllog|211].
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Similarly, if f,, is sensitive conditioned oA™ and (X,Y") is smooth with respect t&X, then we have

2|X
Preoye (Do 1755) € 2P0 ) + (1 (5) + D277 (56)
Furthermore, iff,, is totally sensitive andX,Y") is smooth, then we have
2(]1x] + _

Bq

The following lemma is an immediate consequence of Lemima 1.
Lemma 2. For anyé > 0 and any code satisfyin§l(5), if is totally sensitive, we have

n—00

Proof: We have
PXnYn (7;101 U 7;10_’2 U 7;7‘070)
= Pxny»(Dy N (T 1 U T o UTy o)) + Pxnyn (Do N (T U T2 U T o)) (59)
< Pe(®nlfn) + Pxryn(Pn N T1) + Pxnyn (Dn N Ty o) + Pxryn (D N T,5). (60)

Then, we apply Lemm@l 1 by taking sufficiently smalt> 0 so thatv,, (3)2~"% andu,(8)2~" converges td) as

n — oo. O

B. Proof of Theorerhll

For a given (variable-length) codg, for function computation, we construct a SW code by using raloa

binning of adaptive Ienng.Let

00 () £ [6)) (@) + 2n4], (61)
(D () £ [0 (w) + 2nd], (62)
and for each integer, let
1 1 l
S, lé{m, :—loig——é}, 63
S, (l)é{(:n )'llo . i—6} (64)
2 Y gPY"\X"(y|m) n ’
Sno) 2 d(@y): tlog— Lt <l 5 (65)
n,O - w7y . n Og PXnYn (w’y) — n N
Further, for integer$; andi,, let
Snl1,l2) 2 Sn1(l) NSn2(le) NSno(ly + 12). (66)

“We only show the statement for variable-length coding siheestatement for fixed-length coding can be proved as aalpemse of the
former.
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Note that, for anyy € )", we have

{2 : (2, y) € Sull, i)} < {&: (2,y) € Sna(l1)} (67)
< ol (68)

Similarly, for anyxz € X", we have

{9 : (z,9) € Sully, 12)}] < 2277 (69)

and
{(#,9) : (&,9) € Sa(ly,lo)}] < 21T (70)

Now, we construct a SW code as follows:
« Givenx € A", the encoder 1
1) sends the integéi = E%l)(w) by using at mosz(LlogZS)(w)J + 1) bits [18], and then
2) by using a random bin-code witﬁl)(m) bits, sends the bin-index; of .
o Giveny € Y, the encoder 2
1) sends the integds = £ (y) by using at mosg(|log %" ()| + 1) bits [18], and then
2) by using a random bin-code wiéﬁf)(y) bits, sends the bin-index of y.
« The decoder
1) extractdly, I, m1, andms from the received codewords, and then
2) looks for the unique paifz, y) such tha(z, y) € S, (11, 1), 1% (z) = 11, 12 (y) = 15, and the bin-index
of x (resp.y) is my (resp.ms).
By using the standard argument, we can upper bound the averagr probabilityE[P.(®,|f9)] of the con-

structed SW code with respect to random bin-coding by

7D (xm)

n

—dor

A . 1
E[Pe(®,|f9] < Pr{ —1lo >
[Pe(®n /)] {n gpxnlyn(Xn|Yn)

llo 1 > Z%Q)(yn)
n 8 Py xn (VX

1 1 Waxm+ iy 5}

—dor

n

~1 >
1 %8 Py (X7, Y1) n

(& @) e Sullld (@), 07 (w))}
ol (z)

{9: @) €Sl (@), 07 w))}
2l (y)

[o:(#,9) € .0 (@), 0 ()}

ol (@) +1 (y)

+ Z Pxnyn(z,y)

z,y

+ ZPX"Y" (x,y)

z,y

+ ZPX"Y" (x,y)

z,y

(71)
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1) yn
>£" (X )+6or
n

1
< Pr¢ —log

1 log ! > 8512)(}/”)
Do 1 N e (xm) + 60 (v
PXnYn(Xn,Yn) n

+ 46 or

n

+5} +3.27m0 (72)

n
= Pxryn (TS UTS, UTS) +3-2770 (73)

Hence, by Lemm&l2, we hau@[P.(®,|fi9)] — 0 asn — co. This implies that there exists a SW codg =
(pn), @1, ) satistying (2H).
On the other hand, the codeword length of the enccﬁﬁl@r of the constructed SW code satisfies that

0 (@)| < B0 (@) + 2(log 10 ()] + 1) 7

< AWM (x) + 206 + 2log(0V (z) + 2n6) + 3 (75)

< AWM (x) + 2n6 + 2log(nLy + 2nd) + 3. (76)

Since we can také > 0 arbitrarily smaII,cﬁ%l) satisfies[(2b). Similarly, we can proe_(26). O

C. Proof of Theorerhl3 and Theorém 4

Since “if” part is obvious from Theoref 2, we only prove “orify part. When a function is symbol-wise but
not sensitive conditioned o/ or Y, then it does not satisfy Conditidd 1 or Conditioh 2 in Defoit[8. Thus,
the result in[[5] implies that the Slepian-Wolf region canitmproved. Hence, it suffice to consider a symbol-wise
function that is sensitive condition okf and ), but not jointly sensitive.

Let us consider a class of finite-state sources such that

Pxanyon (2, y) = [ [ Pxove(@2i122i, y2i-192). (77)
i=1

In other words, let us consider a classteb-symbol-wise i.i.dsources. Note that such a sourc¥,Y") includes
an i.i.d. sourcqU, V) with alphabetd/ = X2 andV = )?.

Assume thatf is symbol-wise but not jointly sensitive. Then, as shownhia proof of Propositioh]1, there exists
2?2 = (ag,a1), 2% = (ag,az), y> = (b1,by), and§? = (be,by) such thatz? # 22, y? # 92, and fo(22,y?) =
f2(22,9?%). Note thatf induces a functioy on 2/ x V which isnot an HK function.

Now, we can prove the theorem by applying the result of Han l&oldayashi([5, Theorem 1] t¢U, V') and
gn(u,v) = (g(ug,v1),...,9(un,vy)); it should be noted that, while Han and Kobayashi deal witkdixength
coding, the SW region for fixed length coding is identicalhwihat of variable length coding if the source is i.i.d..
Further, it is not hard to see théX,Y") is smooth if(U, V') satisfies the positivity condition, i.ePyy (u,v) > 0
for all (u,v). O
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D. Proofs of Theorerll5 and Theorém 6

The proof of these theorems are almost the same as that of&hEh Thus, we only show the outIiHeFor

a given variable-length codé,, = (gp%l), ») for computing f,,, by a similar argument as Sectibn T¥-B, we can

show that there exists a SW code (with full side-informaYidp = (c[a%l), An) satisfying

Pe(®|fid) < Py (T5¢4) +27 (78)
= Pxnyn(DS N TEq) + Pxnyn (D NTEy) +27™° (79)
< Pe(®n|fn) + Pxnyn (Da NTE) +277 (80)
and
G (m)’ < (W (2) 4+ 206 + 2log(nL1 + 2n6) + 3. (81)

Now, we apply Lemmall td (80), and obtain

Po(@, /) < (1 ; %) Pe(@nlf) + (un(8) +2)2°. (62)

Thus, by takings > 0 sufficiently small compared té > 0, we can derive the statement of the theorem. [

E. Proof of Theorerhl7

The only modifications we need is the proof of Lemma 1. In theoprof Lemmall, we use the properties
of sensitivity and smooth i _(116) and (117). Suppose faty~(x},y) - Px»y~(x},y) > 0 (otherwise, since
Pxnyn(@yi2r,y) = 0, the desired inequalitfxnyn (x, ;,y;) > qPxnyn(Ty121,y) holds trivially) andz) and
;. differ in i;th, ..., i, th positions. Sincé X ,Y’) is weakly smooth, for each = 1,...,[fn], there existyy;

that differs fromy only in ;th position and
Pxnyn (), yj) > qPxnyn (), y), (83)
PXnyn (m%, y]) Z qPXnYn ([BZ, y) (84)

Furthermore, sincef,, is highly sensitive conditioned o¥", we havef,(x},y;) # fn(x},y;), which implies
either of the events i (116) is true. Then, by definirigy; in the same manner as the proof of Lemimal1, (117)

also holds. The rest of the proof goes through exactly in #mesmanner. O

F. Proof of Theorem]8

The key of the proof is to modify{ (37) in Lemnla 1 as follows: éndhe assumption of the theorem, we have

< 2(]X] + Iyl)Pe
Bq

Pxnyn (Dn N 7:10,0) ((I)n|fn) + [(Un(ﬁ) + 1) + (un(ﬁ) + 1)]2_n5 (85)

8Again, the result for fixed-length (Theordmh 5) can be proved apecial case of the variable-length code.
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where

- 1 1 o5 o
= {(m,y) P log < (@) + n(y) +r4+20,. (86)

Then, by using the same construction as the proof of ThebtereIan show that, for any € [0, 1], there exists

a SW coded,, = ¢\, ¢\?, 4),,) satisfying [24) and

G (w)‘ < 60(z) + 216 + 2log(nLy + 2n8) + 2 + nAr, (87)
@53>(y)‘ < 0D (y) + 206 + 2log(nLy + 2n8) + 2+ n(1 — A)r. (88)

Hence, we have
RUXYf) C{(R1, R2) : 0 <IN L (R + Ar,Ro + (1= A)r) € Rew (X, Y)} (89)

On the other hand, note thd}, is sensitive conditioned on both ¢ and )™ by the definition ofr-total

sensitivinE Hence, from Theorenid 5 andl 6, we have
R™(X,Y|f) CH{(R1, R2) : R1 > Ry (X|Y), Ry > Ry (Y| X))} (90)

Combining [89) and[{90), we have the theorem.

Now, we prove[(8b). Sincé (85) is a modification bfl(57), we lakphow the proof of[(5]7), which is given in
Appendix[T, is modified to prové (B5).

Since [[3b) holds, for sufficiently large and for anyz, € Z,, we have

Equiv(zy|fn) < 27019, (91)

This guarantees that, instead of (127), we can fiad y1), . .., (xs,ys) such thate; # x; andy; # y; for every
i# 7, J<2"t9 and

J
Do € |J [(Pay, x {yi}) U ({@i} % Do, )] (92)
=1

9 It should be noted that sensitivity conditioned ai* and )™ is not only used to derivd (90), but it is also used to defi@) @f. the
proof of [88)).
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Thus, instead of (130), we have

J J
<D D D0 D Prve(moyi@y) €T+ Y Pxnyn(@i,y)l(xi,y) € 7] (93)

aeC™® beC®@ | i=1 TE€Da,y, i=1 YDy, »
< § § : 1) + 1 u + 1)]275(11)75(1))77"72716
aeC) peC®

7 [20Day,1-0)]*

+ Z Z Z Z (Pxnyn(Totor, Yi) + Pxnyn (Toyoni1, ¥i))

acC beC(2 i=1
+
7 [3(Da; bl -u)]

I Z (Pxnyn (@i Yutor) + Pxoyn (Ti, Yutan1)) - (94)

acC beC(2 i=1
Then, each term i (94) is upper bounded in the same way_a}, (TEB), and[(134) respectively. Hence, we have

(E9). m

G. Proof of Theorerh]9

Let p be the smallest prime integer larger tHar{ +|)| —2 and consider a Galois fieldF (p) = {0, 1,...,p—1}.
Without loss of generality, we assume ttiat= {0, 1,...,|X|—1} C GF(p) andY = {0,1,...,|Y| -1} C GF(p).

Then, let us define the functiof), as

fn (CC y) (Il DY, T2 D Y2, Tnp D Ynp, ('rnp+17 ynp+1)7 (xnp+27 ynp+2)7 ceey (Ina yn)) (95)

whered is addition inGF(p) In other words, the firshp symbols off,, (x,y) is symbol-wise addition ifGF(p)
and the remaining part of, (x, y) is identical with the lask(1—p) symbols of(x, y). We can see that = {f,,}52
is r-totally sensitive, sincenax. ¢z, Equiv(z,|f,) = M™ = 2"", where M £ min{|X|, |V|} = 2".

On the other hand, we consider a general so@XeY') defined as follows. Fix > 0 specified later, and let

Qxy be a joint distribution onY x Y such that

1—
SV (.I',y):(O,M—l),(l,M—2),...,(M—1,0),
Qxv(wy)=q " _ (96)
TRT=37 otherwise
Then, let us define the joint distribution 6K, Y™) as
1 n(l—p)
Pxnyn(x,y) HQXY (i, yi) <W> (97)

for all (x,y). Thatis, the firstup symbols of(X™, Y™) is i.i.d. with the joint distribution) xy and the last(1—p)
symbols of(X™, Y") is i.i.d. with the uniform distribution o’ x J). We can see thatX,Y) £ {(X", Y™},
is smooth, sincé) xy satisfies the positivity condition.

Now, we prove that{(37) and(B8) hold fgr and (X,Y") defined above.

10 More preciselynp in (@3) should be{np|, but we omit the floor function for the simplicity.
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At first, let us construct a coding scheme for computfigas follows: (i) The firstp symbols are coded by the
coding scheme given in Lemma 5 of [5]; i.e., a generalizatibthe coding scheme of Korner and Marton [1]. (ii)
The remaining:(1 — p) symbols are sent to the decoder without compression. NeteiftiX,Y) ~ Qxy ande

is sufficiently small then
H(X ®Y) < h(e) +elog (|X[[Y] — M) < 6/p. (98)

Thus, by the coding scheme described above, the (fair R;) satisfyingR; > ¢ + (1 — p)log|X| and Ry >
d + (1 — p)log|Y| is achievable. Hence, we hale37).
On the other hand, note that(ifX,Y) ~ Qxy ande is sufficiently small then

H(X,)Y)=(1—-¢)logM + h(e) + elog (|X||Y| — M) (99)

>7—3/p. (100)

Hence, from[(97), we have

H(X™Y™) = n(l - p)log|X| (101)
H(Y"|X™) > n(1 - p)log || (102)

and
H(X",Y™) 2 np(r — §/p) +n(1 - p) log | ||| (103)
=n{r—30+(1-p)log|X|[V]}. (104)
From [101)4(104), it is not hard to see thatl(38) holds. O

H. Proof of Theorenh 10

We only prove [(4R) sincd (41) can be proved in a similar manhesuffice to prove only one direction, i.e.,

e'(t, | f) < el (t,7). For a given codg®,,}°° ; satisfying [4D) and

- 1 v
hmmf—W log Pe(®,|fn) > e(t, 7] F), (105)

n—r oo

we can construct a SW code, = (¢4, 4,) satisfying [81) and(82). We sgt= 4, = £ andd = 6, = —*r.
Then, by notingh(3) < 28 + 281og(1/283) for 0 < B < 1/2, we havev, (8,) < 16/X|n3. Thus, we have

. 1 . n
lim sup —— (E { e (X™) } - nH(XIY)) <y (106)
and
E— 1 = i vl
hnrglgf—mloch((I)nUnd) > et 9]f). (107)
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V. CONCLUSION

In this paper, we investigated a dichotomy of functions istribbuted coding: for a sequengg of functions,
does the achievable rate region for computjhgoincide with the SW region? We introduced the class of smoot
sources and gave a sufficient condition for the coincidetficg:is totally sensitive then the achievable rate region
for computingf coincides with the SW region for any smooth sources. Furterproved that, for symbol-wise
functions, the total sensitivity is the necessary and gafficcondition for the coincidence of two regions. On the
other hand, it remains as a future work to establish the sacgand sufficient condition on functions which may
not be symbol-wise.

Moreover, as a generalization of our dichotomy theorem, e gn outer bound on the achievable rate region for
computing a class of functions wider than the totally séresitunctions. Of course, to characterize the achievable
rate region for general functions remains as a future work.

In our investigation, we used the information-spectrumrapph so that we can establish the results in a unified
way. This approach allows us to derive a refined result in tbelerate deviation regime as given in Secfion lIl-E.
Although we consider only i.i.d. sources in Section 1lI-& &mplicity, it is not hard to generalize Theorém] 10
for wider classes of sources. Indeed, the assumption df is.not so critical in the proof of Theoreml10 given in
Section IV-H. On the other hand, for general sources that mgmory and may not be stationary nor ergodic, to
characterizef, (¢,v) andefl, (¢,v) itself remains as an important work.

In this paper, we considered only lossless computationyevitee error probability is required to tend zero as
the block size goes to infinity. It is an important future wadkgeneralize our results fererror case, where the
error probability is required only to be smaller than theegithreshold > 0. When we considet-error case, the
strong converse property is an important subject to be tigated; e.g., it is an interesting problem to establish the
necessary and sufficient condition on functions so thattitemg converse holds for function computation whenever
the strong converse holds for SW coding. Furthermore, itss an important future work to generalize our results
for lossy case and to establish the condition so that thediatertion region for distributed computing coincides

with that for distributed source coding.

APPENDIXA

PROOF OFPROPOSITIONT
a) If part: At first, we assume thaf is an HK function and satisfies 1) of the proposition. Then \aeeh
f(al, bl) = f((IQ, b2) meansb; = bs. (108)

Indeed, ifa; = as then [208) follows from 1) of the proposition. Moreover,df # a, then [108) follows from
the condition 3) in the definition of HK functions.

Now, note that iff,,(x,y) = fn(2,9) then f(x;,y;) = f(&;,9;) foralli =1,2,...,n, sincef, is symbol-wise.
Hence, by[(108), we can see thatfif(x,y) = fn(&,9) theny;, = g; forall i =1,2,... n, that is,y = g.
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On the other hand, similar argument holds for a case wlfesatisfies 2) of the proposition, and we can show
that if f,,(z,y) = fn(2,9) thenz = & in this case.
Summarizing the above, if is an HK function and satisfies 1) or 2) of the proposition tifgtw, y) = f.(&,9)
impliesx = & or y = y. This completes the proof of “if part”. O
b) Only if part: We prove this part by contradiction. ff does not satisfies 1) then there existsh, € Y and
ap € X such thab; # by and f(ag, b1) = f(ag, b2). Similarly, if f does not satisfies 2) then there existsas € X
andby € Y such thata; # as and f(a1,bo) = f(asz,bo). Hence, iff does not satisfies 1) nor 2) theA = (ao, a1),
#? = (ap, az), y* = (b1, bo), andy® = (ba, bo) satisfyz® # 22, y* # §°, and fa(2?,y®) = fo(?,7%). a

APPENDIXB

PROOF OFPROPOSITIONZ

c) If part: Let ¢ £ min{Pxy(a,b) : (a,b) € X x Y, Pxy(a,b) > 0}. Fix z # & and y satisfying
Pxnyn(x,y) - Pxnyn(&,y) > 0 arbitrarily, and suppose that; # #;. Since Px,y,(z;,v:) - Px,v;(Zi,v:) > 0
holds, by the assumption, there exists: y; satisfying Px,y, (z:,b) - Px,v;(Z:,b) > 0. We can see thag € Y™

obtained by replacing théh component ofy with b satisfies[(32) and (33). O
d) Only if part: This part is obvious, since if the source is weakly smootmttiee property required in
Definition[I1 holds fom = 1. O
APPENDIXC

PROOF OFLEMMA [1I

Throughout the proof, we omit subscriptif it is obvious from the context. Furthermore, we also ogifrom

v, (8) andu,(B), and thus they are just denoted byandu. Fora € C(V) andb € C?), let

Doy 2 {(@y): ¢V (@) = 0.0 (y) = b, (2.y) € DJ (109)
Doy 2 {m oW (z) = a, (z,y) € D} : (110)
Dy £ {y 1P (y) = b, (z,y) € D} : (111)

Proof of (G5): We leverage El Gamal’s argumeft [6]. For edchy), we sort the elements i®, , in the

decreasing order of probabilities, i.e.,

PXnYn (ml,y) > PXnYn (iBQ,’y) > 2> Pxnyn (:B‘Da’y‘,y). (112)

First, we takez} £ x;, and pair it with anx// € D, , that satisfiesi(x}, z}) > Sn and has the largest probability.

Clearly, we have

Pxnyn(27,y) > Pxnyn(Tyt2,Y). (113)
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Next, we select ther), € D, ,\{z’, z{} with the largest probability, and pair it with an unselectefi satisfying

d(x}, z4) > Bn and that has the largest probability. Clearly, we have

Pxnyn(xh,y) > Pxnyn(x3,y), (114)

Pxnyn(xh,y) > Pxnyn(€ota,y). (115)
We repeat this process until no more pairing is pos@)fﬁhen, sincef,, is sensitive conditioned o™, for each

pair (z;, z)), we can findyg 1,...,Yx a7 SUCh thatd(y,yr ;) = 1 and f. (), yx,;) # fo(x}, Yx,;), Which
implies that either

(T, yr,j) € D OF (), Yr,j) € D° (116)

is true. For eacly, let z ; € {x;,x}} be such thalz} ;,yx;) € D°. Since(X,Y) is smooth with respect to

Y, we have

PXnYn (:I:;;J, yk,]) Z qPXnYn ($Z7j7 y) (117)

Z QPX”Y” (w’u-‘r?ka y)7 (118)

where the second inequality follows from the procedure afipg (cf. (I14) and[(115)). Thus, we have

[1(1Da,yl-v)]" [gn] [3(Da,yl-)] "
[Bnlq Z Pxnyn(Totor,Y) Z Z Pxnyn (T}, ;5 Yrk.j)- (119)
k=1
Her note that
1 +
U U (%, Yk.j) k_l,...,[§(|Da7y|—v)] ,i=1,...,[Bn] p C D°, (120)
acC) yeyn

and each element i< overlaps at most|Y| times in the lefthand side. Thus, we have

[£(1Da,yl-0)]"

Z Z Z Pxnyn(Tyior,y) < Z|y| Z Pxnyn(z,y) (121)
acCcV) vy nq (z,y)eDe
Iyl
D, fn 122
=54 Pe(®n|fn)- (122)

UThis process continues at legs} (|Da,y| — v)]+ times, which may bé.

121t should be noted that;; ; andyy, ; implicitly depend ona andy.
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Now, we have

Pxnyn(DNT) Z Z Z Pxnyn(z, y)1{(z, y) € T{] (123)

acC) Y xEDq,y
< 3 S+ )Py ()2 @
acC) y
[2(1Dayl-v)]"

+ Z Z Z (Pxnyn(Totor, Y) + Pxryn(Totort1,Y)) (124)

acCl) y
[3(Da,yl— 71)]
<(v+1)27™ 42 Z Z Z Pxnyn(Tyt2r,Y) (125)
acCl) y
< (w4127 4 [gy b (@, £), (126)
q

wherel(a) is the length of codeword; the first inequality is derived by splittin®, ,, into the first(v+1) elements

and the rest, and then by applying the property/¢fto the former; and the second inequality follows from the

Kraft inequality. Thus, we have the desired bound. The bo@®&l is proved exactly in the same manner. [
Proof of (&4): To boundPx~y~ (D N7y ), we need the following observation. Singg is jointly sensitive, if

we pick arbitrary(z} ,, y; ;) € Dab, the following must be true:
Dap € (Dayr, * {¥ap}) U {50} X Daz , 0)- (127)

Otherwise, there existe,y) € D, such thatr # z; , andy # y; ,, but it contradict with the fact thaf,, is

jointly sensmvl Consequently, we have

Poy«(DNT) = > > > Pxaye(zy)ll(x,y) € T (128)

a€CM) beC®@) (x,y)EDq b

S Y Y Peae(moyl)il@oyl) € T

acC) peC(2) mGDa’y* .

+ Z Pxnyn (x4, y)1[(x; 4, y) € Ty] (129)

YEDy* 4
a,b

Z Z [(v+1)+ (u+ 1)]2—f(a)—fz(b)—n5

acC) beC@)
+
[31P00z,1-0)]
+ Z Z Z (Pxnyn (®or2k, Yo p) + Pxoyn (Torant1s Yo )

acC) beC(2) k=1

B3In fact, joint sensitivity of f,, implies a sightly stronger statement, that is, one of thimfiéhg must be true:

Da,b = Da,y; b X {y:,b} or Da,b = {m;b} X Dm; b,b'
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+
(1022, a1-0)]
+ Z Z Z (PX"Y” (T Yut2r) + Pxnyn (T4, yu+2k+1)) g (130)
acC) beC(®) k=1
wherey, o is defined in a similar manner as, 2, by sorting the elements i®,, ;, for eacha andb (cf. (112)),

and where the inequality in_(180) is derived in a similar mamas the inequality il (124). By the Kraft inequality,

we have

SN w1+ (u+ D27 HOTEOT < (o4 1) + (u+ 1)J27, (131)
acC) peC®@

By using [122), we have

(1P 10|

Z Z (Pxnyn(@otor, Yi ) + Pxnyn (Toyori1, Yo )
acC) peC(2) k=1

<2 Z Z Z Pxrnyn(Tyior,y) (132)

acCH) y k=1

21Y|
< ——Po(P|fn). 133
< 5 (Pnlfn) (133)

Similarly, we have

>y (Pxcnyn (€5 4, Yurar) + Pxoyn (5 4, Yuront1))
acC) beC(2) k=1
2|1X|
5g Le(®nlfn)

Thus, we have the desired bound. O
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