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Abstract

The problem of distributed data compression for function computation is considered, where (i) the function to

be computed is not necessarily symbol-wise function and (ii) the information source has memory and may not be

stationary nor ergodic. We introduce the class of smooth sources and give a sufficient condition on functions so that

the achievable rate region for computing coincides with theSlepian-Wolf region (i.e., the rate region for reproducing

the entire source) for any smooth sources. Moreover, for symbol-wise functions, the necessary and sufficient condition

for the coincidence is established. Our result for the full side-information case is a generalization of the result by

Ahlswede and Csiszár to sources with memory; our dichotomytheorem is different from Han and Kobayashi’s

dichotomy theorem, which reveals an effect of memory in distributed function computation. All results are given

not only for fixed-length coding but also for variable-length coding in a unified manner. Furthermore, for the full

side-information case, the error probability in the moderate deviation regime is also investigated.

Index Terms

distributed computing, information-spectrum method, Slepian-Wolf coding

I. I NTRODUCTION

We study the problem of distributed data compression for function computation described in Fig. 1 and Fig. 2,

where the function to be computed is not necessarily symbol-wise function. In [1], Körner and Marton revealed

that the achievable rate region for computing modulo-sum isstrictly larger than the rate region that can be achieved

by first applying Slepian-Wolf coding [2] and then computingthe function.1 Since then, distributed coding schemes

that are tailored for some classes of functions were studied(e.g., see [3, Chapter 21]). These results are the cases

such that the structure of functions can be utilized for distributed coding. However, not all functions have such nice

structures, and even for some classes of functions, it is known that the Slepian-Wolf region cannot be improved at
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1More precisely, the modulo-sum function is a sensitive function explained later, and the individual rates cannot be improved from the

Slepian-Wolf coding rates. In fact, Körner and Marton revealed that the sum rate can be improved from the Slepian-Wolf coding sum rate.
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all [4], [5], i.e., reproducing function value is as difficult as reproducing the entire source. Thus, it is important to

understand what makes distributed computation difficult, which is the main theme of this paper. This direction of

research has been studied for i.i.d. sources, which will be reviewed next.

Fig. 1. Distributed computing
Fig. 2. Distributed computing with full-

side-information

In [4], Ahlswede and Csiszár investigated distributed coding for function computation when the full side-

information is available at the decoder (see Fig. 2); they introduced the concept ofsensitive functions, and showed

that the achievable rate for computing sensitive functionscoincides with the achievable rate of Slepian-Wolf

coding (with full side-information) provided that the source is an i.i.d. source satisfying the positivity condition.2

Surprisingly, the class of sensitive functions includes a function such that the image size is just one bit. Later, El

Gamal gave a simple proof of Ahlswede and Csiszár’s result [6].

In [5], Han and Kobayashi investigated distributed coding for function computation with two-encoders case (see

Fig. 1); they considered the class of symbol-wise functions, and derived the necessary and sufficient condition of

functions such that the achievable rate region coincides with that of Slepian-Wolf coding for any i.i.d. sources

satisfying the positivity condition. In the rest of the paper, we shall call functions satisfying Han and Kobayashi’s

conditionHK functions.

For the class of i.i.d. sources satisfying the positivity condition, the above mentioned two results [4], [5] showed

some classes of functions that are difficult to compute via distributed coding. Then, a natural question is:

(♠) Are functions in those classes difficult to compute even forwider classes of sources that have memory

and may not be stationary nor ergodic?

In order to answer this question in a unified manner, we study distributed computation problem by information-

spectral approach [7], [8]. Our contributions are summarized as follows.

A. Contributions

First, we introduce a class of sources which we calledsmooth sources;3 other than the smooth condition, we do

not impose any condition on sources, i.e., we consider general sources. Roughly speaking, the smooth condition

says that the probability of a sequence does not change significantly when we flip a symbol of the sequence. When

2They also introduced the concept ofhighly sensitive functionsand showed the same result under a slightly weaker conditionon the source.

3We may call this class “stable”, but we avoid to use “stable” since it is sometimes used to describe another concept in probability theory

(eg. [9]). In an earlier version of this paper, we also calledthis class “slowly varying”, but we decided to call it “smooth” since it describes the

property of the sources more accurately.
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we restrict sources to be i.i.d., then the smooth condition coincides with the positivity condition studied in [4],

[5]. However, the class of smooth sources is much wider than the class of i.i.d. sources satisfying the positivity

condition. In fact, it includes Markov sources with positive transition matrices or mixtures of i.i.d. sources satisfying

positivity condition.

Next, we introduce the concept ofjoint sensitivity; a functionfn is said to be jointly sensitive iffn(x,y) 6=

fn(x̂, ŷ) wheneverx 6= x̂ andy 6= ŷ. Then, we introduce the class oftotally sensitivefunctions as the set of all

functions that are sensitive in the sense of [4] and also jointly sensitive. When we restrict functions to be symbol-

wise, the class of totally sensitive functions is a strict subset of the class of HK functions. However, totally sensitive

functions are not necessarily symbol-wise. The inclusive relation among the classes of functions is summarized in

Fig. 3.

Totally Sensitive

HK Functions

Symbol-wise Functions 

The function  
in Table I

The functions in 
Table II and III  

The function 
in Eq. (18)   

Fig. 3. The inclusive relation among the

classes of functions.

When the full side-information is available at the decoder,we show that the Slepian-Wolf rate cannot be improved

if the function is sensitive and the source is smooth. This result generalizes the result in [4] for smooth sources.

Thus, for the class of sensitive functions, the answer to Question (♠) is positivein the sense that the Slepian-Wolf

rate cannot be improved.

For the two-encoders case, we show that the Slepian-Wolf region cannot be improved if the function is totally

sensitive and the source is smooth. Furthermore, for symbol-wise functions, we show that the achievable region

coincides with the Slepian-Wolf region for any smooth sources if and only if the function is totally sensitive. In

fact, for a function that satisfies Han and Kobayashi’s condition but is not totally sensitive, there exists a finite

state source, which is smooth, such that the Slepian-Wolf region can be improved. This dichotomy theorem can be

regarded as a smooth source counterpart of Han and Kobayashi’s dichotomy theorem [5]; we need the condition

that is more strict than Han and Kobayashi’s condition because we broaden the class of sources.4 Consequently,

for the class of HK functions, the answer to Question (♠) is negativein the sense that the Slepian-Wolf region can

4In other words, neither of our dichotomy theorem nor Han and Kobayashi’s dichotomy theorem imply each other.
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be improved; but we can say that totally sensitive functionsare difficult to compute via distributed coding for any

smooth sources.

When a function is sensitive but not totally sensitive, the sum rate can be improved in general. To derive an

outer bound for such a case, we introduce another class of functions, which we callr-totally sensitive. Then, we

show that the improvement of sum rate is at mostr. Furthermore, we also show that there exist a smooth source

and anr-totally sensitive function such that our outer bound is saturated, which means that our outer bound cannot

be improved anymore only from the two assumptions: smooth condition andr-total sensitivity.

We also derive the following refinements of the above results. So far, the study of distributed computing has

been restricted to the fixed-length coding in the literature[4], [5]. In this paper, by using the techniques developed

by the authors in [10], we show that the above mentioned results also hold even for the variable-length coding.

Furthermore, for the full side-information case, we show that the Slepian-Wolf rate cannot be improved even in the

moderate deviation regime [11], [12].

Although our main contributions of this paper are structural connections between the achievable rate regions (or

rates) for function computing and the Slepian-Wolf regions(or rates), as a byproduct, we can derive explicit forms

of the achievable regions (or rates) by using the corresponding results on the Slepian-Wolf regions (or rates). It

is also known that distributed computing can be regarded as aspecial case of distributed lossy coding studied by

Yamamoto [13] (see also [14]). Thus, our results may be interesting from the view point of distributed lossy coding

for smooth sources.

From technical perspective, we elaborate El Gamal’s argument [6] so that it can be used for the wider class of

sources; Lemma 1 is the core of the proofs, and it enables us toprove our main results for both fixed-length coding

and variable-length coding in a unified manner. The bounds inLemma 1 is also tight enough to be used for the

moderate deviation analysis.

B. Organization of Paper

In Section II, we introduce the coding problem investigatedin this paper, and also introduce classes of functions

and classes of sources. Then, in Section III, main coding theorems are stated. The proofs of main results are given

in Section IV, where proofs of some lemmas are shown in Appendices.

C. Notation

Throughout this paper, random variables (e.g.,X) and their realizations (e.g.,x) are denoted by capital and

lower case letters respectively. All random variables takevalues in some finite alphabets which are denoted by

the respective calligraphic letters (e.g.,X ). Similarly,Xn , (X1, X2, . . . , Xn) andxn , (x1, x2, . . . , xn) denote,

respectively, a random vector and its realization in thenth Cartesian productXn of X . We will use bold lower

letters to represent vectors if the lengthn is apparent from the context; e.g., we usex instead ofxn.

For a finite setS, |S| denotes the cardinality ofS andS∗ denotes the set of all finite strings drawn fromS.

For a sequences ∈ S∗, |s| denotes the length ofs. The Hamming distance between two sequencess, ŝ ∈ Sn is
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defined asd(s, ŝ) , |{i : si 6= ŝi}|. Sc denotes the complement ofS.

Information-theoretic quantities are denoted in the usualmanner [15], [16]. For example,H(X |Y ) denotes the

conditional entropy ofX givenY . All logarithms are with respect to base 2.

Moreover, we will use quantities defined by using the information-spectrum method [8]. Here, we recall the

probabilistic limit operation: For a sequenceZ , {Zn}
∞
n=1 of real-valued random variables, thelimit superior in

probability of Z is defined as

p- lim sup
n→∞

Zn , inf
{

α : lim
n→∞

Pr{Zn > α} = 0
}

. (1)

II. PROBLEM

A. General Setting

Let (X,Y ) = {(Xn, Y n)}∞n=1 be a general correlated source with finite alphabetsX andY. We consider a

sequencef = {fn}
∞
n=1 of functionsfn : Xn × Yn → Zn. A variable-length codeΦ for computingfn is defined

by a triplet(ϕ(1)
n , ϕ

(2)
n , ψn) of the first encoderϕ(1)

n : Xn → {0, 1}∗, the second encoderϕ(2)
n : Yn → {0, 1}∗, and

a decoderψn : C
(1)
n × C

(2)
n → Zn, whereC(1)

n , {ϕ
(1)
n (x) : x ∈ Xn} ⊆ {0, 1}∗ andC(2)

n , {ϕ
(2)
n (y) : y ∈ Yn} ⊆

{0, 1}∗. We assume that both ofC(1)
n andC(2)

n satisfy the prefix condition.

For eachi = 1, 2, ϕ(i)
n is said to be a fixed-length encoder ifC(i)

n consists of codewords of the same length. A

codeΦn is called afixed-length codeif both of ϕ(i)
n (i = 1, 2) are fixed-length encoders. Clearly, the class of all

variable-length codes includes that of all fixed-length codes as a strict subclass.

The average codeword lengthand theerror probability of Φn are respectively defined as

E

[∣

∣

∣
ϕ(1)
n (Xn)

∣

∣

∣

]

,
∑

x

PXn(x)
∣

∣

∣
ϕ(1)
n (x)

∣

∣

∣
, (2)

E

[∣

∣

∣
ϕ(2)
n (Y n)

∣

∣

∣

]

,
∑

y

PY n(y)
∣

∣

∣
ϕ(2)
n (y)

∣

∣

∣
, (3)

and

Pe(Φn|fn) , Pr
{

fn(X
n, Y n) 6= ψn

(

ϕ(1)
n (Xn), ϕ(2)

n (Y n)
)}

. (4)

Definition 1. Given a source(X,Y ) and a sequence of functionsf = {fn}
∞
n=1, a pair(R1, R2) of rates is said

to beachievable, if there exists a sequence{Φn}
∞
n=1 of codes satisfying

lim
n→∞

Pe(Φn|fn) = 0 (5)

and

lim sup
n→∞

1

n
E

[
∣

∣

∣
ϕ(1)
n (Xn)

∣

∣

∣

]

≤ R1, (6)

lim sup
n→∞

1

n
E

[∣

∣

∣
ϕ(2)
n (Y n)

∣

∣

∣

]

≤ R2. (7)

The set of all achievable rate pairs is denoted byRvl(X,Y |f).
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Definition 2. Given a source(X,Y ) and a sequence of functionsf = {fn}
∞
n=1, a pair(R1, R2) of rates is said

to be achievable by fixed-length coding, if there exists a sequence{Φn}
∞
n=1 of fixed-length codes satisfying (5),

(6), and (7). The set of all rate pairs that are achievable by fixed-length coding is denoted byRfl(X,Y |f).

A variable-length (resp. fixed-length) codeΦn for computing theidentity functionf id
n (x,y) , (x,y) is called a

variable-length (resp. fixed-length)Slepian-Wolf (SW) code.

Definition 3 (SW region). For a source(X,Y ), the achievable rate regionRvl(X,Y |f id) for (X,Y ) and the

sequencef id , {f id
n }

∞
n=1 of identity functions is called theSlepian-Wolf (SW) regionand denoted byRvl

SW
(X,Y ).

By considering only fixed-length codes,Rfl

SW
(X,Y ) is defined similarly.

Remark 1. From the definitions, it is apparent thatRvl
SW

(X,Y ) ⊆ Rvl(X,Y |f) andRfl
SW

(X,Y ) ⊆ Rfl(X,Y |f)

for any (X,Y ) andf .

Remark 2. A general formula for the SW region for fixed-length coding was given by Miyake and Kanaya [17]

as

Rfl

SW(X,Y ) =
{

(R1, R2) : R1 ≥ H(X|Y ), R2 ≥ H(Y |X), R1 +R2 ≥ H(X,Y )
}

(8)

where

H(X,Y ) , p- lim sup
n→∞

1

n
log

1

PXnY n(XnY n)
, (9)

H(X|Y ) , p- lim sup
n→∞

1

n
log

1

PXn|Y n(Xn|Y n)
, (10)

H(Y |X) , p- lim sup
n→∞

1

n
log

1

PY n|Xn(Y n|Xn)
. (11)

As long as the authors know, a general formula forRvl

SW
(X,Y ) is not known. One of our contributions is to

demonstrate that we can discuss the equivalence betweenRvl
SW

(X,Y ) and Rvl(X,Y |f) without knowing the

precise form ofRvl

SW
(X,Y ); for specific sources such that the precise form ofRvl

SW
(X,Y ) is known, we can get

the precise form ofRvl(X,Y |f) as a byproduct.

As a special case of distributed computation, we are interested in the case wherey ∈ Yn is completely known

at the decoder as the side-information. We call this case as the “full-side-information case”. The optimal coding

rates which are achievable in full-side-information case are defined as follows.

Definition 4 (SW rate). For any(X,Y ) andf , let

Rvl(X|Y |f) , inf
{

R1 : (R1, log |Y|) ∈ Rvl(X,Y |f)
}

, (12)

Rfl(X|Y |f) , inf
{

R1 : (R1, log |Y|) ∈ Rfl(X,Y |f)
}

. (13)
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Similarly, for any(X,Y ), let

Rvl

SW(X|Y ) , inf
{

R1 : (R1, log |Y|) ∈ Rvl

SW(X,Y )
}

, (14)

Rfl

SW(X|Y ) , inf
{

R1 : (R1, log |Y|) ∈ Rfl

SW(X,Y )
}

. (15)

Remark 3. From (8), we haveRfl

SW
(X|Y ) = H(X|Y ). A general formula forRvl

SW
(X|Y ) is recently given by

the authors [10].

B. Function Classes

In this subsection, we introduce important classes of functions investigated in this paper. First, we state the

concept of sensitivity introduced in [4] and related properties.

Definition 5 (Sensitivity). A function fn : Xn ×Yn → Zn is said to besensitiveconditioned onYn if it satisfies

the following property: Ifx, x̂,y satisfy fn(x,y) = fn(x̂,y) andxi 6= x̂i for somei then there existŝy ∈ Yn

such thatŷi 6= yi, ŷj = yj for any j 6= i andfn(x, ŷ) 6= fn(x̂, ŷ).

Similarly, a functionfn : Xn × Yn → Zn is said to be sensitive conditioned onXn if it satisfies the property,

where the role ofx (resp.x̂) in Definition 5 is switched with that ofy (resp.ŷ).

Remark 4. In [6], the concenpt ofα-sensitive functions, which includes sensitive functionsas a special case, is

introduced, and it is shown that the result of [4], which is proved for sensitive functions, can be proved also for

α-sensitive functions. Although our results for sensitive functions hold also forα-sensitive functions, we consider

only sensitive functions for simplicity.

Now, we introduce some new sensitivity conditions.

Definition 6 (Joint sensitivity). A functionfn : Xn×Yn → Zn is said to bejointly sensitiveif fn(x,y) 6= fn(x̂, ŷ)

holds for everyx 6= x̂ andy 6= ŷ.

Definition 7 (Total sensitivity). A function fn : Xn × Yn → Zn is said to betotally sensitiveif it is jointly

sensitive and sensitive conditioned on both ofXn andYn.

Example 1. Let Pxy be the joint type of(x,y) [16]; i.e., Pxy is a joint distribution onX × Y such as

Pxy(a, b) ,
|{i : (xi, yi) = (a, b)}|

n
, (a, b) ∈ X × Y. (16)

The type functionfn(x,y) , Pxy is sensitive conditioned on both ofXn and Yn but is not jointly sensitive.

Hence, it is not totally sensitive.

October 9, 2018 DRAFT
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Example 2. The function defined by

fn(x,y) ,



















(>,x) if x > y

(=,x) if x = y

(<,y) if x < y

, (17)

where> and< are with respect to arbitrary ordering onXn = Yn, is jointly sensitive but is not sensitive conditioned

on Xn (nor Yn). On the other hand,

f ′
n(x,y) , (Pxy, fn(x,y)) (18)

is totally sensitive.

Next, we consider special classes of symbol-wise functions. Given a functionf on X × Y, the functionfn on

Xn × Yn defined asfn(x,y) , (f(x1, y1), f(x2, y2), . . . , f(xn, yn)) is called the symbol-wise function defined

by f . Now, we introduce a special class of symbol-wise functionsdefined by Han and Kobayashi [5].

Definition 8 (HK functions). A function fn is called aHan-Kobayashi (HK) functionif fn is a symbol-wise

function defined by somef such that

1) for everya1 6= a2 in X , the functionsf(a1, ·) andf(a2, ·) are distinct,

2) for everyb1 6= b2 in Y, the functionsf(·, b1) andf(·, b2) are distinct, and

3) f(a1, b1) 6= f(a2, b2) for everya1 6= a2 andb1 6= b2.

By definitions, it is easy to see that (i) an HK function is sensitive conditioned on both ofXn and Yn, but

(ii) there exists an HK function which is not jointly sensitive (and thus not totally sensitive). On the other hand,

it is necessary for a totally sensitive function be an HK function. Indeed, the next proposition gives the sufficient

and necessary condition for symbol-wise functions to be totally sensitive. The proof of Proposition 1 is given in

Appendix A.

Proposition 1. Let f be given andfn be the symbol-wise function defined byf . Then fn (n ≥ 2) is totally

sensitive if and only iff is an HK function satisfying at least one of the following twoproperties:

1) for all x ∈ X , if f(x, y) = f(x, ŷ) theny = ŷ, or

2) for all y ∈ Y, if f(x, y) = f(x̂, y) thenx = x̂.

Example 3. The function shown in Table I is an HK function, but it does notsatisfy 1) nor 2) of Proposition

1. Thus, anyfn defined byf is not jointly sensitive nor totally sensitive. Indeed, letx2 = (0, 1), yn = (0, 1),

x̂2 = (1, 1), andŷ2 = (0, 2), then we havef2(x2, y2) = f2(x̂
2, ŷ2) = (0, 3) even thoughx2 6= x̂2 andy2 6= ŷ2. The

function shown in Table II (resp. Table III) is an HK functionand satisfies 1) (resp. 2)) of Proposition 1. Hence,

the symbol-wise functionfn defined byf in Tables II or III is totally sensitive.

Remark 5. In this subsection, several properties of functions onXn × Yn are introduced. In the following, we

October 9, 2018 DRAFT
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TABLE I

f(x, y)

x \ y 0 1 2

0 0 1 2

1 0 3 3

TABLE II

f(x, y)

x \ y 0 1 2

0 0 1 2

1 0 3 4

TABLE III

f(x, y)

x \ y 0 1 2

0 0 1 2

1 3 3 3

say a sequencef = {fn}
∞
n=1 of functions satisfies some property, iffn satisfies that property for alln = 1, 2, . . . ;

e.g., we say “f is totally sensitive” meaning “fn is totally sensitive for alln = 1, 2, . . . ”.

C. Classes of General Sources

In this subsection, we introduce the concept of smooth sources.

Definition 9. A general source(X,Y ) is said to besmoothwith respect toY if there exists a constant0 < q < 1,

which does not depend onn, satisfying

PXnY n(x, ŷ) ≥ qPXnY n(x,y) (19)

for anyx ∈ Xn and anyy, ŷ such thatd(y, ŷ) = 1.

The definition implies that, for a smooth source with respectto Y , the probability of joint sequences(x,y) does

not drastically change even if a symbol ofy is replaced with another symbol.

Example 4 (General Source with Positive Side-Information Channel). If Q(y|x) > q for all (x, y) ∈ X × Y

and

PXnY n(x,y) = PXn(x)

n
∏

i=1

Q(yi|xi) (20)

then (X,Y ) is smooth with respect toY .

Similarly, a source is said to be smooth with respect toX if it satisfies the property, where the role ofx in

Definition 9 is switched with that ofy. If a source is smooth with respect to bothX andY then we just call it a

smooth source.

As shown in the following proposition, the smooth property is identical with the positivity condition when we

consider only i.i.d. sources.

Proposition 2. Let (X,Y ) be an i.i.d. source with the joint distributionPX1Y1 = PXY . Then,(X,Y ) is smooth

if and only if PXY satisfies the positivity conditionPXY (a, b) > 0 ((a, b) ∈ X × Y).

On the other hand, as shown in following examples, the class of smooth sources includes not only i.i.d. sources

but also Markov sources and mixed sources.

October 9, 2018 DRAFT
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Example 5 (Markov Source). Let (X,Y ) be the source induced by a positive transition matrixW (x, y|x̂, ŷ) and

a positive initial distributionPX1Y1(x, y). Then, by setting

q1 , min
(x1,y1),(x2,y2),(x3,y3)

W (x3, y3|x2, y2)W (x2, y2|x1, y1), (21)

q2 , min
(x1,y1),(x2,y2)

W (x2, y2|x1, y1)PX1Y1(x1, y1), (22)

we can find that(X,Y ) is a smooth source with the constantq , min{q1, q2}.

Example 6 (Mixed Source).Let (Xi,Yi) be a smooth source with the constantqi (i = 1, 2, . . . , k) and consider

a mixture(X,Y ) of them such that

PXnY n(x,y) =

k
∑

i=1

αkPXn
i Y n

i
(x,y), (x,y) ∈ Xn × Yn (23)

whereαi > 0 for all i = 1, . . . , k and
∑

i αi = 1. Then,(X,Y ) is also a smooth with the constantq , min qi.

Remark 6. The condition of smooth sources is different from the mixingcondition that is often used as a regularity

condition for the central limit theorem in the probability theory (cf. [9]). In fact, as we can find from Example

6, the class of smooth sources includes non-ergodic sources, which do not satisfy the mixing condition. On the

other hand, an i.i.d. source that has zero probability for some symbol is not included the class of smooth sources

(cf. Proposition 2). Thus, neither of the conditions imply each other.

III. C ODING THEOREMS

A. Two Encoders Case

Our first result shows that, given a code{Φn}
∞
n=1 for computing a totally sensitive functionf , we can construct

a SW code{Φ̂n}
∞
n=1 such that the coding rates of{Φ̂n}

∞
n=1 are asymptotically same as{Φn}

∞
n=1 and the error

probability of {Φ̂n}
∞
n=1 is vanishing asn→ ∞, provided that(X,Y ) is smooth.

Theorem 1. Suppose that(X,Y ) is smooth andf is totally sensitive. Then, for any variable-length (resp.fixed-

length) code{Φn}
∞
n=1 for computingf satisfying (5)–(7), there exists a variable-length (resp.fixed-length) SW

code{Φ̂n}
∞
n=1 = {(ϕ̂

(1)
n , ϕ̂

(2)
n , ψ̂n)}

∞
n=1 such that

lim
n→∞

Pe(Φ̂n|f
id

n ) = 0 (24)

and

lim sup
n→∞

1

n
E

[∣

∣

∣
ϕ̂(1)
n (Xn)

∣

∣

∣

]

≤ R1, (25)

lim sup
n→∞

1

n
E

[∣

∣

∣
ϕ̂(2)
n (Y n)

∣

∣

∣

]

≤ R2. (26)

The proof will be given in the next section. As a consequence of Theorem 1, we have the following theorem,

which shows that the achievable rate region for a smooth source (X,Y ) and a totally sensitive functionf is

identical with the SW region.
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Theorem 2. Suppose that(X,Y ) is smooth andf is totally sensitive. Then we have

Rfl(X,Y |f) = Rfl

SW(X,Y ) (27)

and

Rvl(X,Y |f) = Rvl

SW(X,Y ). (28)

Theorem 2 states that the total sensitivity is a sufficient condition for the set of all achievable rates to coincide

with the SW region. It should be noted that total sensitivityis not necessary; See Remark 10 below for more details.

On the other hand, if we restrict our attention to the class ofsymbol-wise functions, we can also prove the

converse statement, i.e., the total sensitivity is the necessary and sufficient condition for the set of all achievable

rates to coincide with the SW region. More precisely, we havethe following theorem.

Theorem 3. Let f be a sequence of symbol-wise functions. ThenRfl(X,Y |f) = Rfl

SW
(X,Y ) for all smooth

sources(X,Y ) if and only if f is totally sensitive.

Now, let us compare our result with that of Han and Kobayashi [5].

Proposition 3 (Theorem 1 of [5]). Let f be a sequence of symbol-wise functions. ThenRfl(X,Y |f) =

Rfl
SW

(X,Y ) for all i.i.d. sources(X,Y ) satisfying the positivity conditionPX1Y1(x, y) > 0 if and only if f

is an HK function.

Comparison of Theorem 3 with Proposition 3 implies that the condition given by Han and Kobayashi [5] is no

longer sufficient forRfl(X,Y |f) = Rfl

SW
(X,Y ), when we consider not only i.i.d. sources but also sources with

memory.5

Further, we can generalize the result for the variable-length coding case.

Theorem 4. Let f be a sequence of symbol-wise functions. ThenRvl(X,Y |f) = Rvl

SW
(X,Y ) for all smooth

sources(X,Y ) if and only if f is totally sensitive.

B. Full-Side-Information Case

Theorem 2 assumes the smooth property of the source and the total sensitivity of functions. In the full-side-

information case, weaker conditions are sufficient to show the corresponding result. Indeed we have the following

theorem.

5Note that neither Theorem 3 nor Proposition 3 subsumes the other.
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Theorem 5. Suppose that(X,Y ) is smooth with respect toY andf is sensitive conditioned onYn. Then we

have

Rfl(X|Y |f) = Rfl

SW(X|Y ). (29)

As a corollary of the theorem, we can derive the first half of Theorem 3 of [4].

Corollary 1 ([4]). Suppose that(X,Y ) is an i.i.d. source satisfying the positivity conditionPX1Y1(x, y) > 0 and

f is sensitive conditioned onYn. Then we have

Rfl(X|Y |f) = Rfl

SW(X|Y ). (30)

Remark 7. We can also derive Lemmas 1 and 2 of [5] by applying Theorem 5 (or Corollary 1) to symbol-wise

functions.

Remark 8. In the second half of Theorem 3 of [4], it is shown that iff is highly sensitive then Corollary 1 holds

even under the weaker condition. Similarly, we can prove that if f is highly sensitive then Theorem 5 holds even

under the condition weaker than the smooth property, and thus, we can derive also the second half of Theorem 3

of [4] as a corollary. See Section III-C for more details.

Further, we can generalize the result for the variable-length coding case.

Theorem 6. Suppose that(X,Y ) is smooth with respect toY andf is sensitive conditioned onYn. Then we

have

Rvl(X|Y |f) = Rvl

SW(X|Y ). (31)

C. Weaker Condition on Sources

So far, we consider only smooth sources for simplicity. In this subsection, we show that all our results in Sections

III-A and III-B are true even for a class of sources wider thansmooth sources, provided that the functionf is

highly sensitive in the sense of [4].

Definition 10. A function fn : Xn ×Yn → Zn is said to behighly sensitiveconditioned onYn if for any a1 6= a2

in X and b1 6= b2 in Y the following property holds: Ifx, x̂,y satisfy fn(x,y) = fn(x̂,y), xi = a1, x̂i = a2,

andyi = b1 for somei then for ŷ ∈ Yn obtained fromy by replacing theith component byb2 we always have

fn(x, ŷ) 6= fn(x̂, ŷ).

Similarly, the concept of “the highly sensitivity conditioned onXn” is defined. Further, by replacing the sensitivity

with the highly sensitivity in Definition 7, thehighly total sensitivityis defined.

Now, we define a class of sources which is wider than the class of smooth sources.

October 9, 2018 DRAFT



13

Definition 11. A general source(X,Y ) is said to beweakly smoothwith respect toY if there exists a constant

0 < q < 1, which does not depend onn, satisfying the following property: For anyx 6= x̂ and y satisfying

PXnY n(x,y) · PXnY n(x̂,y) > 0, wheneverxi 6= x̂i, there existŝy ∈ Yn such that̂yi 6= yi, ŷj = yj for any j 6= i

and

PXnY n(x, ŷ) ≥ qPXnY n(x,y), (32)

PXnY n(x̂, ŷ) ≥ qPXnY n(x̂,y). (33)

Similarly, a source is said to be weakly smooth with respect to X if it satisfies the property, where the role of

X in Definition 11 is switched with that ofY . If a source is weakly smooth with respect to bothX andY then

we just call it a weakly smooth source.

Then, we can modify theorems in Sections III-A and III-B as inthe following theorem.

Theorem 7. Theorems 1, 2, 3, and 4 hold even when we replace “smooth” (resp. “totally sensitive”) with

“weakly smooth” (resp. “highly totally sensitive”). Further, Theorems 5 and 6 hold even when we replace “smooth”

(resp. “sensitive”) with “weakly smooth” (resp. “highly sensitive”).

Especially, as mentioned in Remark 8, the second half of Theorem 3 of [4] can be derived as a corollary of the

above theorem, since the following proposition holds. The proof of Proposition 4 is given in Appendix B.

Proposition 4. Let (X,Y ) be an i.i.d. source with the joint distributionPX1Y1 = PXY . Then,(X,Y ) is weakly

smooth with respect toY if and only if PXY satisfies the condition that for everya1 6= a2 in X the number of

elementsb ∈ Y with

PXY (a1, b) · PXY (a2, b) > 0 (34)

is different from one.

D. Weaker Condition on Functions

So far, we considered conditions on functions so thatR∗∗(X,Y |f) = R∗∗
SW

(X,Y ) (∗∗ = fl/vl) holds. As

a byproduct, we can give explicit forms ofR∗∗(X,Y |f) by using the corresponding results onR∗∗
SW

(X,Y ),

provided thatf satisfies conditions for the coincidence of two regions. In this subsection, we consider functions

which does not satisfy conditions for the coincidence. We introduce a class of functions wider than the totally

sensitive functions, and give an outer bound onR∗∗(X,Y |f) of f in this class.

To define a new class of functions, we introduce a notation. Given a functionfn : Xn×Yn → Zn andzn ∈ Zn,

let Equiv(zn|fn) be the maximum numberJ such that we can chooseJ pairs (x1,y1), (x2,y2), . . . , (xJ ,yJ) ∈

Xn × Yn satisfyingxi 6= xj andyi 6= yj for all i 6= j andzn = fn(x1,y1) = fn(x2,y2) = · · · = fn(xJ ,yJ).

Definition 12. Fix a numberr ≥ 0. A function fn : Xn × Yn → Zn is said to ber-totally sensitiveif it satisfies

lim sup
n→∞

1

n
log max

zn∈Zn

Equiv(zn|fn) ≤ r (35)
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and sensitive conditioned on both ofXn andYn.

Remark 9. Note that the maximumJ such that we can chooseJ pairs(x1,y1), (x2,y2), . . . , (xJ ,yJ) ∈ Xn×Yn

satisfyingxi 6= xj and yi 6= yj for all i 6= j is min{|Xn| , |Yn|}. Hence, the definition ofr-total sensitivity is

meaningless ifr > r̄ , min{log |X | , log |Y|}.

Theorem 8. Suppose that(X,Y ) is smooth andf is r-totally sensitive. Then we have

R∗∗(X,Y |f) ⊆
{

(R1, R2) : 0 ≤ ∃λ ≤ 1, (R1 + λr,R2 + (1− λ)r) ∈ R∗∗
SW(X,Y ),

R1 ≥ R∗∗
SW(X|Y ), R2 ≥ R∗∗

SW(Y |X)
}

(36)

where∗∗ = fl/vl.

Remark 10. Theorem 8 states that only the sum rate can be improved at mostr; see Fig. 4. Note that iffn is

totally sensitive thenEquiv(zn|fn) ≤ 1 for any zn ∈ Zn and thus (35) holds withr = 0. In other words, the class

of totally sensitive functions can be seen as a special case of 0-totally sensitive functions. Moreover, by Theorem

8, we can say that0-total sensitivity is sufficient forR∗∗(X,Y |f) = R∗∗
SW

(X,Y ). In this sense, Theorem 8 is a

generalization of Theorem 2.

r

SW region

outer bound

R1

R2

RSW(X|Y)**

RSW(Y|X)**

Fig. 4. The outer bound given in Theorem 8.

Moreover, as shown in the theorem below, there existr-totally sensitive function and a smooth source for which

the outer bound given in Theorem 8 is tight.

Theorem 9. For anyδ > 0 and0 ≤ r ≤ r̄, there existr-totally sensitive functionf and a smooth source(X,Y )

such that

R∗∗(X,Y |f) ⊇ {(R1, R2) : R1 ≥ δ + (1− ρ) log |X | , R2 ≥ δ + (1− ρ) log |Y|} (37)
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and

R∗∗
SW(X,Y ) ⊆

{

(R1, R2) : R1 ≥ (1− ρ) log |X | , R2 ≥ (1− ρ) log |Y| ,

R1 +R2 ≥ r − δ + (1− ρ) log |X | |Y|
}

(38)

whereρ , r/r̄ and∗∗ = fl/vl.

By taking δ → 0 in Theorem 9, we can make the bound (36) arbitrarily tight. Hence, our outer bound cannot be

improved anymore only fromr-total sensitivity and smooth condition.

E. Moderate Deviation

In this subsection, we assume that(X,Y ) is an i.i.d. source with the joint distributionPX1Y1 = PXY , and

we consider the full side-information case. The results in Section III-B states thatR∗∗(X|Y |f) = R∗∗
SW

(X|Y ) =

H(X |Y ) (∗∗ = fl/vl). In the following, we conduct more refined analysis in the moderate deviation regime.

For real numberst ∈ (0, 1/2) andγ > 0, and a sequence of functionsf = {fn}
∞
n=1, let

evl(t, γ|f) , lim inf
n→∞

−
1

n1−2t
logmin

Φn

Pe(Φn|fn) (39)

where the minimum is taken over all sequences of codes{Φn}
∞
n=1 = {(ϕ

(1)
n , ψn)}

∞
n=1 for computingf = {fn}

∞
n=1

satisfying

lim sup
n→∞

1

n1−t

(

E

[
∣

∣

∣
ϕ(1)
n (Xn)

∣

∣

∣

]

− nH(X |Y )
)

≤ γ. (40)

Similarly, by taking the minimum over all fixed-length codes, efl(t, γ|f) is defined. Further, by considering the

identity function f id
n and SW codes,evl

SW
(t, γ) and efl

SW
(t, γ) are defined. The single-letter characterization of

evl
SW

(t, γ) and efl
SW

(t, γ) are obtained by Heet. al.[11]. The following theorem states that computing sensitive

function is as difficult as reproducingX itself even for the moderate deviation regime.

Theorem 10. Suppose thatPXY satisfies positivity condition andf is sensitive. Then, we have

efl(t, γ|f) = eflSW (t, γ), (41)

evl(t, γ|f) = evlSW (t, γ) (42)

for everyt ∈ (0, 1/2) andγ > 0.

IV. PROOF OFTHEOREMS

A. Preliminaries for Proofs

First we introduce some notations used in this section.1 denotes the indicator function, e.g.,1[s ∈ S] = 1 if

s ∈ S and0 otherwise;h(p) is binary entropy function;[a]+ is 0 if a < 1 and⌊a⌋ if a ≥ 1. For given0 < β < 1/2,
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let

vn(β) ,

⌈nβ⌉−1
∑

i=1

(|X | − 1)i
(

n

i

)

(43)

≤ n|X |nβ2nh(β), (44)

un(β) ,

⌈nβ⌉−1
∑

i=1

(|Y| − 1)i
(

n

i

)

(45)

≤ n|Y|nβ2nh(β). (46)

For a given codeΦn = (ϕ
(1)
n , ϕ

(2)
n , ψn), we abbreviate the length of codewords by

ℓ(1)n (x) ,
∣

∣

∣
ϕ(1)
n (x)

∣

∣

∣
, (47)

ℓ(2)n (x) ,
∣

∣

∣
ϕ(2)
n (x)

∣

∣

∣
. (48)

Without loss of generality,6 we assume that there areL1 <∞ andL2 <∞ such that

ℓ(1)n (x) ≤ nL1, for all x ∈ Xn, (49)

ℓ(2)n (x) ≤ nL2, for all y ∈ Yn. (50)

Let

Dn ,

{

(x,y) : ψn(ϕ
(1)
n (x), ϕ(2)

n (y)) = fn(x,y)
}

(51)

be the set of all correctly decodable sequences. When we analyze the performance of a variable length code via

information spectrum approach, the following typical-like sets play an important role:

Tn,1 ,

{

(x,y) :
1

n
log

1

PXn|Y n(x|y)
≤
ℓ
(1)
n (x)

n
+ δ

}

, (52)

Tn,2 ,

{

(x,y) :
1

n
log

1

PY n|Xn(y|x)
≤
ℓ
(2)
n (y)

n
+ δ

}

, (53)

Tn,0 ,

{

(x,y) :
1

n
log

1

PXnY n(x,y)
≤
ℓ
(1)
n (x)

n
+
ℓ
(2)
n (y)

n
+ δ

}

, (54)

whereδ > 0 is any real number specified later. The following lemma is thecore of the proofs of coding theorems,

which connect the combinatorial property, i.e., the sensitivity of a function, to a probabilistic analysis. The proof

of the lemma will be given in Appendix C.

Lemma 1. For any codeΦn and real numbersβ, δ > 0, if fn is sensitive conditioned onYn and(X,Y ) is smooth

with respect toY , then we have

PXnY n(Dn ∩ T c
n,1) ≤

2|Y|

βq
Pe(Φn|fn) + (vn(β) + 1)2−nδ. (55)

6Note that for any encoderϕ(1)
n , we can modifyϕ(1)

n without increasing the error probability and obtain an encoder ϕ̃(1)
n satisfying

∣

∣

∣
ϕ̃
(1)
n (x)

∣

∣

∣
≤ max

[

1 +
∣

∣

∣
ϕ
(1)
n (x)

∣

∣

∣
, 1 + n⌈log |X |⌉

]

.
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Similarly, if fn is sensitive conditioned onXn and (X,Y ) is smooth with respect toX, then we have

PXnY n(Dn ∩ T c
n,2) ≤

2|X |

βq
Pe(Φn|fn) + (un(β) + 1)2−nδ. (56)

Furthermore, iffn is totally sensitive and(X,Y ) is smooth, then we have

PXnY n(Dn ∩ T c
n,0) ≤

2(|X |+ |Y|)

βq
Pe(Φn|fn) + [(vn(β) + 1) + (un(β) + 1)]2−nδ. (57)

The following lemma is an immediate consequence of Lemma 1.

Lemma 2. For anyδ > 0 and any code satisfying (5), iff is totally sensitive, we have

lim
n→∞

PXnY n(T c
n,1 ∪ T c

n,2 ∪ T c
n,0) = 0. (58)

Proof: We have

PXnY n(T c
n,1 ∪ T c

n,2 ∪ T c
n,0)

= PXnY n(Dc
n ∩ (T c

n,1 ∪ T c
n,2 ∪ T c

n,0)) + PXnY n(Dn ∩ (T c
n,1 ∪ T c

n,2 ∪ T c
n,0)) (59)

≤ Pe(Φn|fn) + PXnY n(Dn ∩ T c
n,1) + PXnY n(Dn ∩ T c

n,2) + PXnY n(Dn ∩ T c
n,0). (60)

Then, we apply Lemma 1 by taking sufficiently smallβ > 0 so thatvn(β)2−nδ andun(β)2−nδ converges to0 as

n→ ∞.

B. Proof of Theorem 1

For a given (variable-length) codeΦn for function computation, we construct a SW code by using a random

binning of adaptive length.7 Let

ℓ̃(1)n (x) , ⌈ℓ(1)n (x) + 2nδ⌉, (61)

ℓ̃(2)n (x) , ⌈ℓ(2)n (x) + 2nδ⌉, (62)

and for each integerl, let

Sn,1(l) ,

{

(x,y) :
1

n
log

1

PXn|Y n(x|y)
≤

l

n
− δ

}

, (63)

Sn,2(l) ,

{

(x,y) :
1

n
log

1

PY n|Xn(y|x)
≤

l

n
− δ

}

, (64)

Sn,0(l) ,

{

(x,y) :
1

n
log

1

PXnY n(x,y)
≤

l

n
− δ

}

. (65)

Further, for integersl1 and l2, let

Sn(l1, l2) , Sn,1(l1) ∩ Sn,2(l2) ∩ Sn,0(l1 + l2). (66)

7We only show the statement for variable-length coding sincethe statement for fixed-length coding can be proved as a special case of the

former.
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Note that, for anyy ∈ Yn, we have

|{x̂ : (x̂,y) ∈ Sn(l1, l2)}| ≤ |{x̂ : (x̂,y) ∈ Sn,1(l1)}| (67)

≤ 2l1−nδ. (68)

Similarly, for anyx ∈ Xn, we have

|{ŷ : (x, ŷ) ∈ Sn(l1, l2)}| ≤ 2l2−nδ (69)

and

|{(x̂, ŷ) : (x̂, ŷ) ∈ Sn(l1, l2)}| ≤ 2l1+l2−nδ. (70)

Now, we construct a SW code as follows:

• Givenx ∈ Xn, the encoder 1

1) sends the integerl1 = ℓ̃
(1)
n (x) by using at most2(⌊log ℓ̃(1)n (x)⌋+ 1) bits [18], and then

2) by using a random bin-code with̃ℓ(1)n (x) bits, sends the bin-indexm1 of x.

• Giveny ∈ Yn, the encoder 2

1) sends the integerl2 = ℓ̃
(2)
n (y) by using at most2(⌊log ℓ̃(1)n (x)⌋+ 1) bits [18], and then

2) by using a random bin-code with̃ℓ(2)n (y) bits, sends the bin-indexm2 of y.

• The decoder

1) extractsl1, l2, m1, andm2 from the received codewords, and then

2) looks for the unique pair(x,y) such that(x,y) ∈ Sn(l1, l2), ℓ̃
(1)
n (x) = l1, ℓ̃(2)n (y) = l2, and the bin-index

of x (resp.y) is m1 (resp.m2).

By using the standard argument, we can upper bound the average error probabilityE[Pe(Φ̂n|f
id
n )] of the con-

structed SW code with respect to random bin-coding by

E[Pe(Φ̂n|f
id

n )] ≤ Pr

{

1

n
log

1

PXn|Y n(Xn|Y n)
>
ℓ̃
(1)
n (Xn)

n
− δ or

1

n
log

1

PY n|Xn(Y n|Xn)
>
ℓ̃
(2)
n (Y n)

n
− δ or

1

n
log

1

PXnY n(Xn, Y n)
>
ℓ̃
(1)
n (Xn) + ℓ̃

(2)
n (Y n)

n
− δ

}

+
∑

x,y

PXnY n(x,y)

∣

∣

∣

{

x̂ : (x̂,y) ∈ Sn(ℓ̃
(1)
n (x), ℓ̃

(2)
n (y))

}∣

∣

∣

2ℓ̃
(1)
n (x)

+
∑

x,y

PXnY n(x,y)

∣

∣

∣

{

ŷ : (x, ŷ) ∈ Sn(ℓ̃
(1)
n (x), ℓ̃

(2)
n (y))

}∣

∣

∣

2ℓ̃
(2)
n (y)

+
∑

x,y

PXnY n(x,y)

∣

∣

∣

{

x̂ : (x̂, ŷ) ∈ Sn(ℓ̃
(1)
n (x), ℓ̃

(2)
n (y))

}
∣

∣

∣

2ℓ̃
(1)
n (x)+ℓ̃

(2)
n (y)

(71)
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≤ Pr

{

1

n
log

1

PXn|Y n(Xn|Y n)
>
ℓ
(1)
n (Xn)

n
+ δ or

1

n
log

1

PY n|Xn(Y n|Xn)
>
ℓ
(2)
n (Y n)

n
+ δ or

1

n
log

1

PXnY n(Xn, Y n)
>
ℓ
(1)
n (Xn) + ℓ

(2)
n (Y n)

n
+ δ

}

+ 3 · 2−nδ (72)

= PXnY n(T c
n,1 ∪ T c

n,2 ∪ T c
n,0) + 3 · 2−nδ. (73)

Hence, by Lemma 2, we haveE[Pe(Φ̂n|f
id
n )] → 0 as n → ∞. This implies that there exists a SW codeΦ̂n =

(ϕ̂
(1)
n , ϕ̂

(2)
n , ψ̂n) satisfying (24).

On the other hand, the codeword length of the encoderϕ̂
(1)
n of the constructed SW code satisfies that

∣

∣

∣
ϕ̂(1)
n (x)

∣

∣

∣
≤ ℓ̃(1)n (x) + 2(⌊log ℓ̃(1)n (x)⌋+ 1) (74)

≤ ℓ(1)n (x) + 2nδ + 2 log(ℓ(1)n (x) + 2nδ) + 3 (75)

≤ ℓ(1)n (x) + 2nδ + 2 log(nL1 + 2nδ) + 3. (76)

Since we can takeδ > 0 arbitrarily small,ϕ̂(1)
n satisfies (25). Similarly, we can prove (26).

C. Proof of Theorem 3 and Theorem 4

Since “if” part is obvious from Theorem 2, we only prove “onlyif” part. When a function is symbol-wise but

not sensitive conditioned onX or Y, then it does not satisfy Condition 1 or Condition 2 in Definition 8. Thus,

the result in [5] implies that the Slepian-Wolf region can beimproved. Hence, it suffice to consider a symbol-wise

function that is sensitive condition onX andY, but not jointly sensitive.

Let us consider a class of finite-state sources such that

PX2nY 2n(x,y) =

n
∏

i=1

PX2Y 2(x2i−1x2i, y2i−1y2i). (77)

In other words, let us consider a class oftwo-symbol-wise i.i.d.sources. Note that such a source(X,Y ) includes

an i.i.d. source(U ,V ) with alphabetsU = X 2 andV = Y2.

Assume thatf is symbol-wise but not jointly sensitive. Then, as shown in the proof of Proposition 1, there exists

x2 = (a0, a1), x̂2 = (a0, a2), y2 = (b1, b0), and ŷ2 = (b2, b0) such thatx2 6= x̂2, y2 6= ŷ2, and f2(x2, y2) =

f2(x̂
2, ŷ2). Note thatf induces a functiong on U × V which is not an HK function.

Now, we can prove the theorem by applying the result of Han andKobayashi [5, Theorem 1] to(U ,V ) and

gn(u,v) = (g(u1, v1), . . . , g(un, vn)); it should be noted that, while Han and Kobayashi deal with fixed length

coding, the SW region for fixed length coding is identical with that of variable length coding if the source is i.i.d..

Further, it is not hard to see that(X,Y ) is smooth if(U ,V ) satisfies the positivity condition, i.e.,PUV (u, v) > 0

for all (u, v).
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D. Proofs of Theorem 5 and Theorem 6

The proof of these theorems are almost the same as that of Theorem 1. Thus, we only show the outline.8 For

a given variable-length codeΦn = (ϕ
(1)
n , ψn) for computingfn, by a similar argument as Section IV-B, we can

show that there exists a SW code (with full side-information) Φ̂n = (ϕ̂
(1)
n , ψ̂n) satisfying

Pe(Φ̂n|f
id

n ) ≤ PXnY n(T c
n,1) + 2−nδ (78)

= PXnY n(Dc
n ∩ T c

n,1) + PXnY n(Dn ∩ T c
n,1) + 2−nδ (79)

≤ Pe(Φn|fn) + PXnY n(Dn ∩ T c
n,1) + 2−nδ (80)

and

∣

∣

∣
ϕ̂(1)
n (x)

∣

∣

∣
≤ ℓ(1)n (x) + 2nδ + 2 log(nL1 + 2nδ) + 3. (81)

Now, we apply Lemma 1 to (80), and obtain

Pe(Φ̂n|f
id

n ) ≤

(

1 +
2|Y|

βq

)

Pe(Φn|fn) + (vn(β) + 2)2−nδ. (82)

Thus, by takingβ > 0 sufficiently small compared toδ > 0, we can derive the statement of the theorem.

E. Proof of Theorem 7

The only modifications we need is the proof of Lemma 1. In the proof of Lemma 1, we use the properties

of sensitivity and smooth in (116) and (117). Suppose thatPXnY n(x′
k,y) · PXnY n(x′′

k,y) > 0 (otherwise, since

PXnY n(xv+2k,y) = 0, the desired inequalityPXnY n(x∗
k,j ,yj) ≥ qPXnY n(xv+2k,y) holds trivially) andx′

k and

x′′
k differ in i1th, . . . , i⌈βn⌉th positions. Since(X,Y ) is weakly smooth, for eachj = 1, . . . , ⌈βn⌉, there existsyj

that differs fromy only in ij th position and

PXnY n(x′
k,yj) ≥ qPXnY n(x′

k,y), (83)

PXnY n(x′′
k ,yj) ≥ qPXnY n(x′′

k,y). (84)

Furthermore, sincefn is highly sensitive conditioned onYn, we havefn(x′
k,yj) 6= fn(x

′′
k ,yj), which implies

either of the events in (116) is true. Then, by definingx∗
k,j in the same manner as the proof of Lemma 1, (117)

also holds. The rest of the proof goes through exactly in the same manner.

F. Proof of Theorem 8

The key of the proof is to modify (57) in Lemma 1 as follows: Under the assumption of the theorem, we have

PXnY n(Dn ∩ T̃ c
n,0) ≤

2(|X |+ |Y|)

βq
Pe(Φn|fn) + [(vn(β) + 1) + (un(β) + 1)]2−nδ (85)

8Again, the result for fixed-length (Theorem 5) can be proved as a special case of the variable-length code.
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where

T̃n,0 ,

{

(x,y) :
1

n
log

1

PXnY n(x,y)
≤
ℓ
(1)
n (x)

n
+
ℓ
(2)
n (y)

n
+ r + 2δ

}

. (86)

Then, by using the same construction as the proof of Theorem 1, we can show that, for anyλ ∈ [0, 1], there exists

a SW codeΦ̂n = (ϕ̂
(1)
n , ϕ̂

(2)
n , ψ̂n) satisfying (24) and

∣

∣

∣
ϕ̂(1)
n (x)

∣

∣

∣
≤ ℓ(1)n (x) + 2nδ + 2 log(nL1 + 2nδ) + 2 + nλr, (87)

∣

∣

∣
ϕ̂(2)
n (y)

∣

∣

∣
≤ ℓ(2)n (y) + 2nδ + 2 log(nL1 + 2nδ) + 2 + n(1− λ)r. (88)

Hence, we have

R∗∗(X,Y |f) ⊆ {(R1, R2) : 0 ≤ ∃λ ≤ 1, (R1 + λr,R2 + (1− λ)r) ∈ R∗∗
SW(X,Y )} . (89)

On the other hand, note thatfn is sensitive conditioned on both ofXn and Yn by the definition ofr-total

sensitivity.9 Hence, from Theorems 5 and 6, we have

R∗∗(X,Y |f) ⊆ {(R1, R2) : R1 ≥ R∗∗
SW(X|Y ), R2 ≥ R∗∗

SW(Y |X)} . (90)

Combining (89) and (90), we have the theorem.

Now, we prove (85). Since (85) is a modification of (57), we explain how the proof of (57), which is given in

Appendix C, is modified to prove (85).

Since (35) holds, for sufficiently largen and for anyzn ∈ Zn, we have

Equiv(zn|fn) ≤ 2n(r+δ). (91)

This guarantees that, instead of (127), we can find(x1,y1), . . . , (xJ ,yJ) such thatxi 6= xj andyi 6= yj for every

i 6= j, J ≤ 2n(r+δ), and

Da,b ⊆

J
⋃

i=1

[(Da,yi × {yi}) ∪ ({xi} × Dxi,b)] . (92)

9 It should be noted that sensitivity conditioned onXn andYn is not only used to derive (90), but it is also used to derive (89) (cf. the

proof of (85)).
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Thus, instead of (130), we have

PXnY n(D ∩ T̃ c
0 )

≤
∑

a∈C(1)

∑

b∈C(2)





J
∑

i=1

∑

x∈Da,yi

PXnY n(x,yi)1[(x,yi) ∈ T̃ c
0 ] +

J
∑

i=1

∑

y∈Dxi,b

PXnY n(xi,y)1[(xi,y) ∈ T̃ c
0 ]



 (93)

≤
∑

a∈C(1)

∑

b∈C(2)

J [(v + 1) + (u+ 1)]2−ℓ(a)−ℓ(b)−r−2nδ

+
∑

a∈C(1)

∑

b∈C(2)

J
∑

i=1

[ 12 (|Da,yi
|−v)]+

∑

k=1

(PXnY n(xv+2k,yi) + PXnY n(xv+2k+1,yi))

+
∑

a∈C(1)

∑

b∈C(2)

J
∑

i=1

[ 12 (|Dxi,b
|−u)]+

∑

k=1

(PXnY n(xi,yu+2k) + PXnY n(xi,yu+2k+1)) . (94)

Then, each term in (94) is upper bounded in the same way as (131), (133), and (134) respectively. Hence, we have

(85).

G. Proof of Theorem 9

Let p be the smallest prime integer larger than|X |+|Y|−2 and consider a Galois fieldGF(p) = {0, 1, . . . , p−1}.

Without loss of generality, we assume thatX = {0, 1, . . . , |X |−1} ⊆ GF(p) andY = {0, 1, . . . , |Y|−1} ⊆ GF(p).

Then, let us define the functionfn as

fn(x,y) , (x1 ⊕ y1, x2 ⊕ y2, . . . xnρ ⊕ ynρ, (xnρ+1, ynρ+1), (xnρ+2, ynρ+2), . . . , (xn, yn)) (95)

where⊕ is addition inGF(p).10 In other words, the firstnρ symbols offn(x,y) is symbol-wise addition inGF(p)

and the remaining part offn(x,y) is identical with the lastn(1−ρ) symbols of(x,y). We can see thatf = {fn}
∞
n=1

is r-totally sensitive, sincemaxzn∈Zn Equiv(zn|fn) =Mnρ = 2nr, whereM , min{|X | , |Y|} = 2r̄.

On the other hand, we consider a general source(X,Y ) defined as follows. Fixε > 0 specified later, and let

QXY be a joint distribution onX × Y such that

QXY (x, y) =











1−ε
M

(x, y) = (0,M − 1), (1,M − 2), . . . , (M − 1, 0),

ε
|X ||Y|−M

otherwise.
(96)

Then, let us define the joint distribution of(Xn, Y n) as

PXnY n(x,y) =

[

nρ
∏

i=1

QXY (xi, yi)

]

×

(

1

|X | |Y|

)n(1−ρ)

(97)

for all (x,y). That is, the firstnρ symbols of(Xn, Y n) is i.i.d. with the joint distributionQXY and the lastn(1−ρ)

symbols of(Xn, Y n) is i.i.d. with the uniform distribution onX ×Y. We can see that(X,Y ) , {(Xn, Y n)}∞n=1

is smooth, sinceQXY satisfies the positivity condition.

Now, we prove that (37) and (38) hold forf and (X,Y ) defined above.

10 More precisely,nρ in (95) should be⌊nρ⌋, but we omit the floor function for the simplicity.
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At first, let us construct a coding scheme for computingfn as follows: (i) The firstnρ symbols are coded by the

coding scheme given in Lemma 5 of [5]; i.e., a generalizationof the coding scheme of Körner and Marton [1]. (ii)

The remainingn(1− ρ) symbols are sent to the decoder without compression. Note that if (X,Y ) ∼ QXY andε

is sufficiently small then

H(X ⊕ Y ) ≤ h(ε) + ε log (|X | |Y| −M) ≤ δ/ρ. (98)

Thus, by the coding scheme described above, the pair(R1, R2) satisfyingR1 ≥ δ + (1 − ρ) log |X | andR2 ≥

δ + (1− ρ) log |Y| is achievable. Hence, we have (37).

On the other hand, note that if(X,Y ) ∼ QXY andε is sufficiently small then

H(X,Y ) = (1− ε) logM + h(ε) + ε log (|X | |Y| −M) (99)

≥ r̄ − δ/ρ. (100)

Hence, from (97), we have

H(Xn|Y n) ≥ n(1− ρ) log |X | (101)

H(Y n|Xn) ≥ n(1− ρ) log |X | (102)

and

H(Xn, Y n) ≥ nρ(r̄ − δ/ρ) + n(1− ρ) log |X | |Y| (103)

= n {r − δ + (1 − ρ) log |X | |Y|} . (104)

From (101)–(104), it is not hard to see that (38) holds.

H. Proof of Theorem 10

We only prove (42) since (41) can be proved in a similar manner. It suffice to prove only one direction, i.e.,

evl(t, γ|f) ≤ evlSW (t, γ). For a given code{Φn}
∞
n=1 satisfying (40) and

lim inf
n→∞

−
1

n1−2t
log Pe(Φn|fn) ≥ evl(t, γ|f), (105)

we can construct a SW codêΦn = (ϕ̂
(1)
n , ψ̂n) satisfying (81) and (82). We setβ = βn = 1

n
and δ = δn = 1

n3t/2 .

Then, by notingh(β) ≤ 2β + 2β log(1/2β) for 0 < β < 1/2, we havevn(βn) ≤ 16|X |n3. Thus, we have

lim sup
n→∞

1

n1−t

(

E

[
∣

∣

∣
ϕ̂(1)
n (Xn)

∣

∣

∣

]

− nH(X |Y )
)

≤ γ (106)

and

lim inf
n→∞

−
1

n1−2t
log Pe(Φ̂n|f

id

n ) ≥ evl(t, γ|f). (107)
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V. CONCLUSION

In this paper, we investigated a dichotomy of functions in distributed coding: for a sequencef of functions,

does the achievable rate region for computingf coincide with the SW region? We introduced the class of smooth

sources and gave a sufficient condition for the coincidence:if f is totally sensitive then the achievable rate region

for computingf coincides with the SW region for any smooth sources. Further, we proved that, for symbol-wise

functions, the total sensitivity is the necessary and sufficient condition for the coincidence of two regions. On the

other hand, it remains as a future work to establish the necessary and sufficient condition on functions which may

not be symbol-wise.

Moreover, as a generalization of our dichotomy theorem, we give an outer bound on the achievable rate region for

computing a class of functions wider than the totally sensitive functions. Of course, to characterize the achievable

rate region for general functions remains as a future work.

In our investigation, we used the information-spectrum approach so that we can establish the results in a unified

way. This approach allows us to derive a refined result in the moderate deviation regime as given in Section III-E.

Although we consider only i.i.d. sources in Section III-E for simplicity, it is not hard to generalize Theorem 10

for wider classes of sources. Indeed, the assumption of i.i.d. is not so critical in the proof of Theorem 10 given in

Section IV-H. On the other hand, for general sources that have memory and may not be stationary nor ergodic, to

characterizeevl
SW

(t, γ) andefl
SW

(t, γ) itself remains as an important work.

In this paper, we considered only lossless computation, where the error probability is required to tend zero as

the block size goes to infinity. It is an important future workto generalize our results forε-error case, where the

error probability is required only to be smaller than the given thresholdε > 0. When we considerε-error case, the

strong converse property is an important subject to be investigated; e.g., it is an interesting problem to establish the

necessary and sufficient condition on functions so that the strong converse holds for function computation whenever

the strong converse holds for SW coding. Furthermore, it is also an important future work to generalize our results

for lossy case and to establish the condition so that the rate-distortion region for distributed computing coincides

with that for distributed source coding.

APPENDIX A

PROOF OFPROPOSITION1

a) If part: At first, we assume thatf is an HK function and satisfies 1) of the proposition. Then we have

f(a1, b1) = f(a2, b2) meansb1 = b2. (108)

Indeed, ifa1 = a2 then (108) follows from 1) of the proposition. Moreover, ifa1 6= a2 then (108) follows from

the condition 3) in the definition of HK functions.

Now, note that iffn(x,y) = fn(x̂, ŷ) thenf(xi, yi) = f(x̂i, ŷi) for all i = 1, 2, . . . , n, sincefn is symbol-wise.

Hence, by (108), we can see that iffn(x,y) = fn(x̂, ŷ) thenyi = ŷi for all i = 1, 2, . . . , n, that is,y = ŷ.
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On the other hand, similar argument holds for a case wheref satisfies 2) of the proposition, and we can show

that if fn(x,y) = fn(x̂, ŷ) thenx = x̂ in this case.

Summarizing the above, iff is an HK function and satisfies 1) or 2) of the proposition thenfn(x,y) = fn(x̂, ŷ)

impliesx = x̂ or y = ŷ. This completes the proof of “if part”.

b) Only if part: We prove this part by contradiction. Iff does not satisfies 1) then there existsb1, b2 ∈ Y and

a0 ∈ X such thatb1 6= b2 andf(a0, b1) = f(a0, b2). Similarly, if f does not satisfies 2) then there existsa1, a2 ∈ X

andb0 ∈ Y such thata1 6= a2 andf(a1, b0) = f(a2, b0). Hence, iff does not satisfies 1) nor 2) thenx2 = (a0, a1),

x̂2 = (a0, a2), y2 = (b1, b0), and ŷ2 = (b2, b0) satisfyx2 6= x̂2, y2 6= ŷ2, andf2(x2, y2) = f2(x̂
2, ŷ2).

APPENDIX B

PROOF OFPROPOSITION4

c) If part: Let q , min{PXY (a, b) : (a, b) ∈ X × Y, PXY (a, b) > 0}. Fix x 6= x̂ and y satisfying

PXnY n(x,y) · PXnY n(x̂,y) > 0 arbitrarily, and suppose thatxi 6= x̂i. SincePXiYi(xi, yi) · PXiYi(x̂i, yi) > 0

holds, by the assumption, there existsb 6= yi satisfyingPXiYi(xi, b) · PXiYi(x̂i, b) > 0. We can see that̂y ∈ Yn

obtained by replacing theith component ofy with b satisfies (32) and (33).

d) Only if part: This part is obvious, since if the source is weakly smooth then the property required in

Definition 11 holds forn = 1.

APPENDIX C

PROOF OFLEMMA 1

Throughout the proof, we omit subscriptn if it is obvious from the context. Furthermore, we also omitβ from

vn(β) andun(β), and thus they are just denoted byv andu. For a ∈ C(1) andb ∈ C(2), let

Da,b ,

{

(x,y) : ϕ(1)(x) = a, ϕ(2)(y) = b, (x,y) ∈ D
}

, (109)

Da,y ,

{

x : ϕ(1)(x) = a, (x,y) ∈ D
}

, (110)

Dx,b ,

{

y : ϕ(2)(y) = b, (x,y) ∈ D
}

. (111)

Proof of (55): We leverage El Gamal’s argument [6]. For each(a,y), we sort the elements inDa,y in the

decreasing order of probabilities, i.e.,

PXnY n(x1,y) ≥ PXnY n(x2,y) ≥ · · · ≥ PXnY n(x|Da,y|,y). (112)

First, we takex′
1 , x1, and pair it with anx′′

1 ∈ Da,y that satisfiesd(x′
1,x

′′
1 ) ≥ βn and has the largest probability.

Clearly, we have

PXnY n(x′′
1 ,y) ≥ PXnY n(xv+2,y). (113)
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Next, we select thex′
2 ∈ Da,y\{x

′
1,x

′′
1} with the largest probability, and pair it with an unselectedx′′

2 satisfying

d(x′
2,x

′′
2 ) ≥ βn and that has the largest probability. Clearly, we have

PXnY n(x′
2,y) ≥ PXnY n(x3,y), (114)

PXnY n(x′′
2 ,y) ≥ PXnY n(xv+4,y). (115)

We repeat this process until no more pairing is possible.11 Then, sincefn is sensitive conditioned onYn, for each

pair (x′
k,x

′′
k), we can findyk,1, . . . ,yk,⌈βn⌉ such thatd(y,yk,j) = 1 and fn(x′

k,yk,j) 6= fn(x
′′
k ,yk,j), which

implies that either

(x′
k,yk,j) ∈ Dc or (x′′

k,yk,j) ∈ Dc (116)

is true. For eachj, let x∗
k,j ∈ {x′

k,x
′′
k} be such that(x∗

k,j ,yk,j) ∈ Dc. Since(X,Y ) is smooth with respect to

Y , we have

PXnY n(x∗
k,j ,yk,j) ≥ qPXnY n(x∗

k,j ,y) (117)

≥ qPXnY n(xv+2k,y), (118)

where the second inequality follows from the procedure of pairing (cf. (114) and (115)). Thus, we have

⌈βn⌉q

[ 12 (|Da,y|−v)]
+

∑

k=1

PXnY n(xv+2k,y) ≤

⌈βn⌉
∑

j=1

[ 12 (|Da,y|−v)]
+

∑

k=1

PXnY n(x∗
k,j ,yk,j). (119)

Here,12 note that

⋃

a∈C(1)

⋃

y∈Yn

{

(x∗
k,j ,yk,j) : k = 1, . . . ,

[

1

2
(|Da,y| − v)

]+

, j = 1, . . . , ⌈βn⌉

}

⊆ Dc, (120)

and each element inDc overlaps at mostn|Y| times in the lefthand side. Thus, we have

∑

a∈C(1)

∑

y

[ 12 (|Da,y|−v)]
+

∑

k=1

PXnY n(xv+2k,y) ≤
n|Y|

βnq

∑

(x,y)∈Dc

PXnY n(x,y) (121)

=
|Y|

βq
Pe(Φn|fn). (122)

11This process continues at least
[

1
2
(|Da,y| − v)

]+
times, which may be0.

12It should be noted thatx∗

k,j
andyk,j implicitly depend ona andy.
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Now, we have

PXnY n(D ∩ T c
1 ) =

∑

a∈C(1)

∑

y

∑

x∈Da,y

PXnY n(x,y)1[(x,y) ∈ T c
1 ] (123)

≤
∑

a∈C(1)

∑

y

(v + 1)PY n(y)2−ℓ(a)−nδ

+
∑

a∈C(1)

∑

y

[ 12 (|Da,y|−v)]
+

∑

k=1

(PXnY n(xv+2k,y) + PXnY n(xv+2k+1,y)) (124)

≤ (v + 1)2−nδ + 2
∑

a∈C(1)

∑

y

[ 12 (|Da,y|−v)]
+

∑

k=1

PXnY n(xv+2k,y) (125)

≤ (v + 1)2−nδ +
2|Y|

βq
Pe(Φn|fn), (126)

whereℓ(a) is the length of codeworda; the first inequality is derived by splittingDa,y into the first(v+1) elements

and the rest, and then by applying the property ofT c
1 to the former; and the second inequality follows from the

Kraft inequality. Thus, we have the desired bound. The bound(56) is proved exactly in the same manner.

Proof of (57): To boundPXnY n(D∩T c
0 ), we need the following observation. Sincefn is jointly sensitive, if

we pick arbitrary(x∗
a,b,y

∗
a,b) ∈ Da,b, the following must be true:

Da,b ⊆ (Da,y∗

a,b
× {y∗

a,b}) ∪ ({x∗
a,b} × Dx

∗

a,b
,b). (127)

Otherwise, there exists(x,y) ∈ Da,b such thatx 6= x∗
a,b andy 6= y∗

a,b, but it contradict with the fact thatfn is

jointly sensitive.13 Consequently, we have

PXnY n(D ∩ T c
0 ) =

∑

a∈C(1)

∑

b∈C(2)

∑

(x,y)∈Da,b

PXnY n(x,y)1[(x,y) ∈ T c
0 ] (128)

≤
∑

a∈C(1)

∑

b∈C(2)

[

∑

x∈Da,y∗

a,b

PXnY n(x,y∗
a,b)1[(x,y

∗
a,b) ∈ T c

0 ]

+
∑

y∈D
x
∗

a,b
,b

PXnY n(x∗
a,b,y)1[(x

∗
a,b,y) ∈ T c

0 ]

]

(129)

≤
∑

a∈C(1)

∑

b∈C(2)

[(v + 1) + (u+ 1)]2−ℓ(a)−ℓ(b)−nδ

+
∑

a∈C(1)

∑

b∈C(2)

[

1
2 (|Da,y∗

a,b
|−v)

]+

∑

k=1

(

PXnY n(xv+2k,y
∗
a,b) + PXnY n(xv+2k+1,y

∗
a,b)

)

13In fact, joint sensitivity offn implies a sightly stronger statement, that is, one of the following must be true:

Da,b = Da,y∗

a,b
× {y∗

a,b} or Da,b = {x∗

a,b} × Dx
∗

a,b
,b.
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+
∑

a∈C(1)

∑

b∈C(2)

[

1
2 (|Dx

∗

a,b
,b|−u)

]+

∑

k=1

(

PXnY n(x∗
a,b,yu+2k) + PXnY n(x∗

a,b,yu+2k+1)
)

, (130)

whereyu+2k is defined in a similar manner asxv+2k by sorting the elements inDx,b for eachx andb (cf. (112)),

and where the inequality in (130) is derived in a similar manner as the inequality in (124). By the Kraft inequality,

we have

∑

a∈C(1)

∑

b∈C(2)

[(v + 1) + (u+ 1)]2−ℓ(a)−ℓ(b)−nδ ≤ [(v + 1) + (u+ 1)]2−nδ. (131)

By using (122), we have

∑

a∈C(1)

∑

b∈C(2)

[

1
2 (|Da,y∗

a,b
|−v)

]+

∑

k=1

(

PXnY n(xv+2k,y
∗
a,b) + PXnY n(xv+2k+1,y

∗
a,b)

)

≤ 2
∑

a∈C(1)

∑

y

[ 12 (|Da,y|−v)]+
∑

k=1

PXnY n(xv+2k,y) (132)

≤
2|Y|

βq
Pe(Φn|fn). (133)

Similarly, we have

∑

a∈C(1)

∑

b∈C(2)

[

1
2 (|Dx

∗

a,b
,b|−u)

]+

∑

k=1

(

PXnY n(x∗
a,b,yu+2k) + PXnY n(x∗

a,b,yu+2k+1)
)

≤
2|X |

βq
Pe(Φn|fn). (134)

Thus, we have the desired bound.
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